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DIFFUSION ON A SPHERE WITH LOCALIZED TRAPS: MEAN
FIRST PASSAGE TIME, EIGENVALUE ASYMPTOTICS, AND

FEKETE POINTS∗
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Abstract. A common scenario in cellular signal transduction is that a diffusing surface-bound
molecule must arrive at a localized signaling region on the cell membrane before the signaling cascade
can be completed. The question then arises of how quickly such signaling molecules can arrive at
newly formed signaling regions. Here, we attack this problem by calculating asymptotic results for
the mean first passage time for a diffusing particle confined to the surface of a sphere, in the presence
of N partially absorbing traps of small radii. The rate at which the small diffusing molecule becomes
captured by one of the traps is determined by asymptotically calculating the principal eigenvalue for
the Laplace operator on the sphere with small localized traps. The asymptotic analysis relies on the
method of matched asymptotic expansions, together with detailed properties of the Green’s function
for the Laplacian and the Helmholtz operators on the surface of the unit sphere. The asymptotic
results compare favorably with full numerical results.
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1. Introduction. In this paper we will consider the diffusion of molecules on
the surface of a spherical cell and, in particular, study the rate of arrival of molecules
to small absorbing traps on the cell surface. We are inspired by an array of biological
situations in which a mobile cell-surface molecule undergoes a chemical reaction upon
arriving at a localized region on the cell surface. By way of example, we now de-
scribe two situations in the activation of immune cells where the arrival of cell surface
molecules at well-defined small regions is important to a cell signaling process.

Mast cells of the immune system present a particular receptor, named FcεRI,
on their surface. When this receptor is bound to the common chain of an antibody
(IgE), the cell is primed to respond to any antigen (for instance, pollen) that can
subsequently bind to a number of antibody-linked receptors and hold them in close
proximity [23]. This process forms a cluster of bound receptors and therefore leads,
via a complex set of biochemical reactions, to cell activation and histamine release and
ultimately the familiar symptoms of allergies. A key player in the signaling cascade is
the transmembrane signaling protein LAT which must arrive at the cluster in order
for signaling to be completed (see Figure 1(a)).

A very similar scenario plays out in experiments designed to examine the response
of T cells of the immune system to molecular stimuli (antigens) presented on synthetic
surfaces. The T cells in the experiments present T cell receptors (TCRs) that can bind
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DIFFUSION ON A SPHERE WITH LOCALIZED TRAPS 303

to the antigen molecules. Upon receptor binding, biochemical signaling pathways are
activated that lead to T cell activation (see Figure 1(b)). In these experiments, the
TCR distribution on the cell surface can be monitored using fluorescent tags, and
the TCRs are observed to form submicrometer scale clusters that are believed to be
critical for TCR signaling and antigen detection [45], [6], [50]. Again, TCR signaling
is dependent on the presence of the transmembrane protein LAT within the TCR
cluster (see Figure 1).

Syk
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Lyn

Mast cell

γ γ
PLCγ IP

3

Ca2+

LAT

FcεRI+Ab

Crosslinking antigen
a.

ZAP70

TCRCD4

Lck

T cell

Antigen presenting surface

ζζ

b.

PLCγ IP
3

Ca2+

LAT

TCRCD4

ζζ

TCR cluster

Fig. 1. Immune cell signaling involves the arrival of surface-bound signaling molecules to
receptor clusters. (a) Multiple FcεRI receptors can be crosslinked by multivalent antigen, forming
a cluster. This allows signaling to begin through the γ chain of the receptor, and the signaling
proteins Lyn and Syk. The signaling pathway shown here requires the surface-bound molecule LAT
to be present at the receptor complex. (b) Binding by recognized antigen leads rapidly to TCR
clustering and signaling through the proteins Lck and ZAP-70. The presence of LAT at the cluster
is essential for the signaling process.

In both these examples, the creation of localized receptor clusters precedes the cell
signaling cascade: a complex network of chemical reactions involving a large number
of surface-bound and cytosolic signaling molecules. In order to understand how the
cascade develops within each individual cluster, we would like to know how quickly
essential signaling molecules can arrive. We would like to determine, for example, the
rate of arrival of LAT to nascent receptor signaling clusters on T and mast cells of
the immune system.

Inspired by these problems, where a mobile cell surface molecule must arrive at
localized signaling domains to catalyze signal transduction and cell activation, we will
focus on the general problem of the arrival of surface-bound signaling molecules to
arbitrarily distributed small signaling clusters (henceforth, traps). We assume that
the molecules are delivered to or activated at the cell surface with a space-dependent
rate M and, subsequently, perform free diffusion with an effective diffusion coefficient
D. We formulate a mean first passage time problem for encounters on the surface of
a spherical cell of radius L with either completely, or partially, absorbing traps. The
problem we consider can be viewed as one of many involving surface diffusion in the
presence of traps.

In a cell-biological context, similar problems have been examined. A classic ex-
ample is found in the phenomenon of receptor-mediated endocytosis [29], [19]. Cell
surface receptors that bind extracellular ligands are found to reach the interior of
the cell after interacting with coated pits (specialized membrane regions that contain
clathrin). In our model, we can describe the coated pits as traps for diffusing sur-
face receptors. Other biological examples include the delivery of proteins to dendritic
spines in neuronal biology [1], [5], [36], [44] and the repeated binding of antigenic
proteins in the immunological synapse [49], [12].

D
ow

nl
oa

de
d 

06
/2

1/
12

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

304 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

From a mathematical viewpoint, our singular perturbation problem on the surface
of the sphere has a structure similar to that of the narrow escape problems analyzed
in [20], [21], [36] (see also the references therein), involving the determination of the
mean first passage time for a freely diffusing particle confined inside either a two- or
a three-dimensional bounded domain that has absorbing windows of small measure
on an otherwise reflecting boundary.

The outline of this paper is as follows. In section 2 we formulate the steady-
state diffusion equation on the sphere with an inhomogeneous source term in the
presence of localized traps of small radii. In addition, we formulate the eigenvalue
problem governing the time-dependent long-time asymptotic approach to the steady-
state problem. In section 2 we also highlight some previous results for the steady-state
and eigenvalue problems, and in Appendix A we give some detailed analytical results
for certain Green’s functions that are central to the asymptotic analysis.

In section 3 we use the method of matched asymptotic expansions to calculate
asymptotic solutions to the steady-state diffusion problem on the unit sphere with
an inhomogeneous source term in the presence of N partially absorbing traps of
asymptotically small radii. The case of a constant spatially homogeneous source term
pertains directly to the problem of calculating the mean first passage time on the unit
sphere containing N localized traps. By using the method of matched asymptotic
expansions, the asymptotic solution is constructed in terms of the modified Green’s
function for the Laplacian on the unit sphere. This Green’s function is well known
from the analyses of vortex motion on the unit sphere (cf. [24], [25], and [26]).

In section 4 we asymptotically calculate the principal eigenvalue for the Lapla-
cian on the unit sphere in the presence of N traps on the surface of the sphere of
asymptotically small radii. Similar problems in planar domains have been considered
in [46] and [27], and on the boundary of the cylinder in [40]. For the case of perfectly
absorbing traps of a common radius, we derive a two-term expansion for the principal
eigenvalue in powers of −1/ log(εa), where εa � 1 is the common trap radius. It is
shown analytically that the second term in the asymptotic expansion of the principal
eigenvalue is maximized when the locations xj for j = 1, . . . , N of the traps, with
|xj | = 1, are chosen to maximize the discrete sum

p(x1, . . . , xN ) =
N∑

i=1

N∑
j=1
j �=i

log |xi − xj |.

Such points are known as elliptic Fekete points (cf. [11], [39], [31], and [32]). In
section 4 we also formulate a transcendental equation that effectively sums the infinite
order expansion in powers of −1/ log(εa) for the principal eigenvalue of the Laplacian
in the presence of N partially absorbing traps. This transcendental equation involves
the Green’s function for the Helmholtz operator on the unit sphere and its regular
part, which are well known from the theory of high-frequency scattering (cf. [43], [38]).

In section 5 we favorably compare our asymptotic results for steady-state diffusion
and the principal eigenvalue with full numerical results computed from COMSOL [8].
Finally, in section 6 we briefly discuss some possible extensions of the analysis pre-
sented herein to other, more intricate, models of biological localization phenomena on
cell surfaces.

2. The surface diffusion equation and some previous results. We consider
steady-state diffusion on the surface of the unit sphere S, with a spatially inhomoge-
neous source term M , in the presence of N partially absorbing nonoverlapping traps.
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DIFFUSION ON A SPHERE WITH LOCALIZED TRAPS 305

The dimensionless problem is formulated as

�su = −M , x ∈ Sε ≡ S\∪N
j=1 Ωεj ,(2.1a)

ε∇su · n̂+ κj(u − bj) = 0 , x ∈ ∂Ωεj .(2.1b)

The source term M is assumed to be a smooth function on S and independent of u.
In (2.1b) the unit normal n̂ points inwardly to the trap Ωεj . Each trap is centered
at some xj ∈ S with |xj | = 1 and has radius O(ε), with ε � 1. The traps are
assumed to be well separated in the sense that |xi − xj | = O(1) for i, j = 1, . . . , N .
The constants bj in (2.1b) denote local threshold values in the sense that if u > bj
(u < bj) near the jth trap, then there will be a local flux of particles into (out of)
that trap, which is proportional to the constant κj/ε > 0. In (2.1b), notice that ε
also has a dual role of setting the asymptotic range of the transfer (or Biot number)
coefficient. This asymptotic range is such that the choice κj = O(1) or κj = ∞ in
(2.1b) has a leading-order effect on the asymptotic solution to (2.1) (see section 3.1
below).

One main application of (2.1) is with regard to the determination of the mean
first passage time for a diffusing particle on the unit sphere in the presence of N
localized partially absorbing traps. For this context, u(x) in (2.1) denotes the mean
first passage time for an initial random walk starting from x ∈ Sε, provided that we
identify M = 1/D, where D is the constant diffusivity, and set bj = 0 for j = 1, . . . , N
in (2.1b) (cf. [35], [37]).

The second main application of (2.1) is that it represents the limiting steady-state
concentration field for a three-dimensional diffusion problem posed in an asymptoti-
cally thin spherical shell, representing the thin cell membrane. Here, we imagine that
a protein or signaling molecule is produced inside the cell and, subsequently, deliv-
ered by some transport mechanism to the near cell-surface region, of thickness δ � 1,
with rate δM . Biological examples of such intracellular signaling mechanisms leading
to spatial gradients of a diffusible signaling molecules, such as Ca2+ or the mobile
protein Rac, are discussed in the introduction of [41] and in section 3 of [30]. In [30]
a numerical method for coupling surface diffusion in the cell membrane to diffusion
within the cell is formulated and applied to the diffusion of Rac, which is known to
exist both inside the cell and in the cell membrane. In our analysis we neglect the
coupling between the cell membrane and cell interior and for definiteness consider a
thin spherical shell of thickness δ � 1 between the outer and inner surfaces at r = 1
and r = 1 − δ, respectively. We impose that there is no flux across r = 1 and a
prescribed flux of δM on the inner surface r = 1− δ. In the thin shell we assume that
there are traps Dδj , or absorbing patches, defined in terms of spherical coordinates by

Dδj = Ωδj × [1 − δ, 1] , Ωδj = {(θ, φ) | (θ − θj)2 + sin2 θj (φ− φj)2 ≤ δ2a2
j} ,

so that Ωδj is the circular projection of the trap on the surface of the sphere. The
time-dependent diffusion equation in the thin spherical shell is

ut =
1
r2
∂r

(
r2∂ru

)
+

1
r2 sin2 θ

∂φφu+
1

r2 sin θ
∂θ (sin θ ∂θu) ,

1 − δ < r < 1 , (θ, φ) /∈ ∪N
j=1 Ωδj ,

(2.2a)

ur = 0 on r = 1 ; ur = −δM on r = 1 − δ ,(2.2b)

with a partially absorbing boundary condition on the sides of each Dδj . In the thin
shell limit δ � 1, we introduce ρ = δ−1(1 − r) and v(ρ, θ, φ, t) = u(1 − δρ, θ, φ, t),
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306 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

and we expand v = v0 + δv1 + δ2v2 + · · · . Upon substituting these new variables into
(2.2) and collecting powers of δ, we obtain that vj = vj(θ, φ, t) for j = 0, 1, and that
v2 satisfies

∂ρρv2 = v0t − 1
sin2 θ

∂φφv0 − 1
sin θ

∂θ (sin θ ∂θv0) ;

∂ρv2 = 0 on ρ = 0 , ∂ρv2 = M on ρ = 1 .

From the solvability condition for v2, we obtain that v0 satisfies

(2.3) v0t =
1

sin2 θ
∂φφv0 +

1
sin θ

∂θ (sin θ∂θv0) +M , (θ, φ) /∈ ∪N
j=1 Ωδj ,

with partially absorbing boundary conditions on Ωδj . The steady-state problem for
(2.3) is precisely (2.1).

We may also consider the time-dependent version associated with (2.1), formu-
lated as

wt = D�sw +M , x ∈ Sε ≡ S\∪N
j=1 Ωεj ,(2.4a)

ε∇sw · n̂+ κj(w − bj) = 0 , x ∈ ∂Ωεj ,(2.4b)
w = w0 when t = 0 .(2.4c)

In order to study the approach to the steady-state solution u, we write w = u +
exp(−σDt)ψ and obtain the following eigenvalue problem for σ, with normalized
eigenfunction ψ:

�sψ + σψ = 0 , x ∈ Sε ≡ S\∪N
j=1 Ωεj ,(2.5a)

ε∇sψ · n̂+ κjψ = 0 , x ∈ ∂Ωεj ,(2.5b) ∫
S

ψ2 ds = 1 .(2.5c)

In section 4 we will asymptotically calculate the smallest, or principal, eigenvalue of
(2.5) in the limit of small trap radii. Some bounds on the principal eigenvalue were
given in [9].

Numerical methods for problems related to (2.1) on the surface of the sphere
were formulated in [18]. Our approach in sections 3 and 4 is to use the method of
matched asymptotic expansions in the limit ε→ 0 of small trap radii to asymptotically
solve (2.1) and (2.5), respectively. Our asymptotic analysis relies on some detailed
properties of the Green’s function for the Laplacian and the Helmholtz operators on
the surface of the unit sphere. These key properties are summarized in Appendix A.

2.1. Previous results. In [29] (see also [2], [17], [42], [37]) the mean first passage
time for a diffusing particle on a sphere of radius L with one perfectly absorbing trap
was considered. By centering the trap conveniently at the north pole, (2.1) with
M = L2/D reduces to the following ODE for u(θ):

(2.6)
1

sin θ
∂

∂θ
(sin θ ∂θu) = −L

2

D
, θc < θ < π ,

with u(θc) = 0 and u′(π) = 0. The solution to (2.6) is readily found to be (cf. [29],
[17], [37])

(2.7) u =
L2

D
log
(

1 − cos θ
1 − cos θc

)
.
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Since the area of the trap is |Ωε1 | = 2π (1 − cos θc) we let θc ≡ ε � 1 so that
|Ωε1 | ∼ πε2. With θc = ε� 1, (2.7) becomes

(2.8) u ∼ L2

D
[−2 log ε+ log 2 + log(1 − cos θ)] .

The corresponding averaged mean first passage time ū = 1
4π

∫
S
u ds, as given in equa-

tion (5.6) of [37], is

(2.9) ū ∼ L2

D
[−2 log ε+ 2 log 2 − 1] .

In section 3 below these results are readily recovered as special cases of our analysis
of (2.1) with N traps.

In [47] (see also [7]), the principal eigenvalue of (2.5) was calculated asymptotically
for the case of one perfect or partially absorbing trap. By centering the trap at the
south pole as in [47], (2.5) reduces to

∂θθψ + cot(θ)∂θψ + σψ = 0 , 0 < θ < θc ,

with ψ singularity-free at θ = 0 and with either ψ(θc) = 0 for a perfectly absorbing
trap or ∂θψ + κ1ψ = 0 at θ = θc for a partially absorbing trap. Here θc ≈ π. In
equations (9) and (15) of [47], the following formulas for the principal eigenvalue σ(ε)
were derived when θc ≈ π:

σ(ε) ∼
[

2
1 − cos θc

log
(

2
1 + cos θc

)
− 1
]−1

(perfectly absorbing) ,(2.10a)

σ(ε) ∼
[

1
κ1

tan
(
θc

2

)
+

2
1 − cos θc

log
(

2
1 + cos θc

)
− 1
]−1

(partially absorbing) .

(2.10b)

Upon defining ε by θc = π − ε, we have that for ε� 1, (2.10) are equivalent to

(2.11)
σ ∼ μ

2
+ μ2

(
− log 2

2
+

1
4

)
;

μ = − 1
log ε

(perfect) , μ = − 1
log
[
εe−1/κ1

] (partial) .

In section 4 below these 1-trap results are readily recovered as special cases of our
analysis of (2.5) with N traps.

3. Steady-state surface diffusion: Mean first passage time. We first con-
struct the asymptotic solution to (2.1) for N identical perfectly absorbing “circular”
traps of a small common radius εa, formulated as

(3.1a) �su = −M , x ∈ Sε ≡ S\∪N
j=1 Ωεj ; u = bj , x ∈ ∂Ωεj .

Here M = M(θ, φ) is a given function, and each Ωεj for j = 1, . . . , N is assumed to
be a small “circular” cap centered at (θj , φj) with boundary

(3.1b) ∂Ωεj ≡ {(θ, φ) | (θ − θj)2 + sin2(θj)(φ− φj)2 = ε2a2} .
The area of Ωεj , denoted by |Ωεj |, is |Ωεj | = πε2a2. We also assume that M and u
are 2π periodic in φ and have no singularities at the poles θ = 0 and θ = π. Although,
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308 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

without loss of generality, we can set a = 1 in the definition of the common trap radius
εa, we choose to keep the product εa in the analysis below in order to more readily
compare our results with those in section 4.1 below for the more general problem
involving traps of different radii.

We will construct the solution to (3.1) by the method of matched asymptotic
expansions. The solution in the inner, or local, region near each trap is determined
and then matched to an outer, or global, solution, valid away fromO(ε) neighborhoods
near each trap. In the inner region near the jth trap we introduce the local variables

(3.2) θ̂ = ε−1(θ − θj) , φ̂ = ε−1(φ− φj) , v(θ̂, φ̂) = u(θj + εθ̂, φj + εφ̂) .

Upon substituting (3.2) into (3.1a) we obtain that

(3.3)
(
∂θ̂θ̂ +

1
sin2 θj

∂φ̂φ̂

)
v = O(ε) outside Ωj ; v = bj on ∂Ωj .

Here Ωj = ε−1Ωεj is the magnified trap region defined by θ̂2 + sin2(θj)φ̂2 ≤ a2. We
then introduce the new variables y1 and y2 by

(3.4) y1 = sin(θj) φ̂ , y2 = θ̂ .

Therefore, with an O(ε) error, and with y = (y1, y2), we obtain to leading order in ε
that v satisfies

(3.5) vy1y1 + vy2y2 = 0 , y /∈ Ωj ; v = bj , y ∈ ∂Ωj ,

where ∂Ωj ≡ {(y1, y2) | y2
1 + y2

2 = a2}. In terms of an unknown constant Aj , the
solution to (3.5) is

(3.6) vj = bj +Aj log (|y|/a) ,
where |y| = (y2

1 + y2
2)

1/2. By rewriting (3.6) in terms of outer variables ŷ = εy and
recalling that |x − xj | = ŷ + o(1) from (A.6), we obtain matching conditions for the
outer solution as x→ xj for j = 1, . . . , N .

The constant Aj has the interpretation as the average flux Fj of u that passes
across the boundary ∂Ωj of the jth trap. Upon using (3.6), we identify Aj as

(3.7) Fj ≡ 1
2π

∫
∂Ωj

∂ρv ds = Aj .

In the outer region, the jth trap shrinks to the point xj as ε → 0. With regard
to the outer solution the influence of each trap is, in effect, determined by a certain
singularity behavior at each xj that results from the asymptotic matching of the outer
solution to the far-field behavior of the inner solution. In this way, we obtain that the
outer solution satisfies

�su = −M , x ∈ S\{x1, . . . , xN} ,(3.8a)

u ∼ bj +
Aj

μ
+Aj log |x− xj | as x→ xj , j = 1, . . . , N ,(3.8b)

where u is singularity-free at the poles θ = 0, π and is 2π periodic in φ. Here Aj =
Aj(μ), where μ is defined by

(3.9) μ ≡ −1/ log(εa) .
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We remark that the singularity behavior in (3.8b) specifies both the regular and the
singular parts of a Coulomb singularity. Consequently, each singularity behavior pro-
vides one constraint for the determination of a linear system for the source strengths
Aj for j = 1, . . . , N .

We decompose the solution to (3.8) in the form

(3.10) u = up − 2π
N∑

i=1

AiG(x;xi) + χ ,

in terms of an additional constant χ = χ(μ) to be determined. In (3.10), up is the
unique solution to

(3.11) �sup = −M + M̄ , x ∈ S ;
∫

S

up ds = 0 ,

where M̄ is defined by

(3.12) M̄ ≡ 1
4π

∫
S

M ds =
1
4π

∫ 2π

0

∫ π

0

M(θ, φ) sin θ dθ dφ .

Moreover, in (3.10), G(x;xj) is the Green’s function of (A.2) given explicitly by (A.5).
Since

∫
S
up ds =

∫
S
Gds = 0, it follows that χ is the average of u over the sphere, i.e.,

(3.13) χ =
1
4π

∫
S

u ds .

To determine a linear algebraic system for Aj , for j = 1, . . . , N , and for χ, we
first use (A.5) for G and then expand (3.10) as x→ xj to obtain

(3.14) u ∼ up(xj) − 2πAj

[
− 1

2π
log |x− xj | +R

]
− 2π

N∑
i=1
i�=j

AiGji + χ as x→ xj ,

where Gji ≡ G(xj ;xi) and R ≡ −(4π)−1 [1 − 2 log 2] is the regular part of G given
in (A.5). Upon comparing this expression with the required singularity behavior in
(3.8b), we obtain the following N linear equations:

(3.15a) Aj

(
1
μ

+ 2πR
)

+ 2π
N∑

i=1
i�=j

GjiAi = up(xj) − bj + χ , j = 1, . . . , N .

We then use the divergence theorem on (3.8) to obtain the additional equation

(3.15b)
N∑

j=1

Aj = 2M̄ ,

where M̄ is the mean of M defined in (3.12). The system (3.15) yields N+1 equations
for the N + 1 unknowns Aj , j = 1, . . . , N , and χ. Upon substituting (A.5) for G into
(3.15), we can write this system as

Aj − μ

N∑
i=1
i�=j

Ai log |xi − xj | = μ [up(xj) − bj ] + μ
[
χ− M̄(2 log 2 − 1)

]
, j = 1, . . . , N ;

N∑
j=1

Aj = 2M̄ .

(3.16)
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310 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

We can then decouple (3.16) and rewrite the system in matrix form. In this way, we
obtain the following main result.

Principal Result 3.1. For the case of N identical perfect “circular” traps of a
common radius εa, the asymptotic solution to (3.1) in the outer region |x−xj |  O(ε)
for j = 1, . . . , N is given by (3.10), where up(x) is the solution to (3.11), and where
At = (A1, . . . , AN ) is the solution of the N ×N linear system

(3.17a) (I − μ (I − E)G0)A =
2M̄
N

e+ μ (I − E) f , μ ≡ −1
log(εa)

.

Here I is the N ×N identity matrix, and we have defined the vectors e and f and the
matrix E by

(3.17b) et ≡ (1, . . . , 1)t , f t ≡ (up(x1) − b1, . . . , up(xN ) − bN ) , E ≡ 1
N
eet ,

where t denotes transpose. In addition, G0 is the symmetric Green’s function matrix
with zero diagonal entries, i.e., G0jj = 0 for j = 1, . . . , N , and G0ij = log |xi − xj | for
i �= j. In terms of A, χ in (3.10) is given explicitly by

(3.17c) χ =
2M̄
μN

+ (2 log 2 − 1) M̄ − 1
N
etG0A− 1

N
etf .

We remark that our asymptotic solution contains all logarithmic terms in powers
of μ in the asymptotic solution of (3.1). As such, (3.17) has in effect “summed” all of
the logarithmic terms in the expansion of the solution.

For the special case where bj = 0 for j = 1, . . . , N and where M is constant, so
that up ≡ 0 from (3.11), the system (3.15) can be simplified considerably. As remarked
in section 2, this special case with M = 1/D is directly relevant to calculating the
mean first passage time on a unit sphere with identical “circular” traps centered at
locations x1, . . . , xN on the sphere. Upon retaining only the first few terms in powers
of μ from (3.17), we obtain that Principal Result 3.1 can be reduced to the following
rather explicit main result.

Corollary 3.1. Under the conditions of Principal Result 3.1, let M be a con-
stant and let bj = 0 for j = 1, . . . , N . Then, the asymptotic solution to (3.1) in the
outer region |x− xj |  O(ε) for j = 1, . . . , N is given by

(3.18a) u(x) = −2π
N∑

j=1

AjG(x;xj) + χ .

For μ� 1, Aj is the jth component of A, which is given asymptotically by

(3.18b) A =
2M
N

[
e+ μ (I − E)G0e+ μ2 [(I − E)G0]

2 e+ O(μ3)
]
.

In addition, the average of u, given by ū = χ, satisfies
(3.18c)

ū = χ =
2M
Nμ

+M

[
(2 log 2−1)− 4

N2
p(x1, . . . , xN )

]
− 2μM

N2
etG0 (I −E)G0e+O(μ2) ,

where the discrete energy p(x1, . . . , xN ) is defined by

(3.18d) p(x1, . . . , xN ) ≡
N∑

i=1

N∑
j>i

log |xi − xj | .
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We remark that it is readily verified that our system (3.15) reproduces the mean
first passage time result (2.8) of [29] for the case of one trap centered, conveniently,
at the north pole x1 of the unit sphere. To see this, we set N = 1, b1 = 0, and
M = 1/D in (3.15) to obtain that A1 = 2 and χ = 4πR+2/μ. Therefore, upon using
|x− x1|2 = 2 − 2 cos θ together with (A.5) for G, we obtain that (3.18a) becomes

(3.19) u ∼ −4πG(x;x1)+
2
μ

+4πR = 2 log |x− xj |+ 2
μ

= log(1− cos θ) + log 2+
2
μ
,

which agrees with (2.8). For this special case, ū from (3.18c) becomes

(3.20) ū = χ = −2 log(εa) + 2 log 2 − 1 ,

which agrees with equation (5.6) of [37] written in (2.9).
In the context of the mean first passage time problem, the constant χ in (3.18a)

and (3.18c) has the immediate interpretation as the mean first passage time averaged
with respect to an initial uniform distribution of starting points on the unit sphere.
Upon setting M = 1/D, where D is the diffusion coefficient on the unit sphere, the
first two terms for the averaged mean first passage time are written using (3.18c) as

ū =
1
D

[
2
Nμ

+ (2 log 2 − 1) − 4
N2

p(x1, . . . , xN ) + O
( μ

N2

)]
,

p(x1, . . . , xN ) ≡
N∑

i=1

N∑
j>i

log |xi − xj | .
(3.21)

Consequently, the problem of determining the spatial configuration {x1, . . . , xN}
of trap locations that minimizes the average mean first passage time is equivalent
in the limit μ � 1 to the well-known discrete optimization problem, popularized by
Whyte in 1952 [48], of finding the set of points {x1, . . . , xN} that maximize the discrete
energy p(x1, . . . , xN ). These points are referred to as either logarithmic points [11]
or elliptic Fekete points [39], with mathematical origins in [16]. For small values
of N , such points can be found by detailed geometrical constructions (see [11] for
N = 5 and [28] for N = 6). In particular, for N = 5, it was proved in [11] that
the optimal configuration for p(x1, . . . , x5) consists of points at the north and south
poles, together with three points forming an equilateral triangle on the equator. In
[3] and [39] different numerical methods are used to compute the optimal energy
max p(x1, . . . , xN ) for a range of values of N . As N increases, it becomes increasingly
difficult to numerically compute the globally optimizing configuration owing to the
very large number of local maxima. However, for N → ∞, equation (4.5) of [32] (see
also [3] and [31]) gives the asymptotics of the optimal energy as

(3.22)
max p(x1, . . . , xN ) ∼ 1

4
log
(

4
e

)
N2 +

1
4
N logN + l1N + l2 ,

N → ∞ , l1 = 0.02642 , l2 = 0.1382 .

The first two terms in (3.22) are rigorous results, while the last two terms are fitted
to results obtained from a numerical optimization of p(x1, . . . , xN ) (cf. [31], [32], [3]).
Upon substituting (3.22) into (3.21), we obtain that the minimum of the averaged
mean first passage time in the limit of large N has the scaling law

(3.23) min ū ∼ 1
D

[
2
Nμ

−
(

logN
N

+
4l1
N

+ O(N−2)
)]

, l1 = 0.026422 .

D
ow

nl
oa

de
d 

06
/2

1/
12

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

312 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

For N  1, this result is asymptotically valid only when ε is sufficiently small so that
the correction term given in the round brackets in (3.23) is smaller than the first term.
This requires that logN � −2 log(εa), which reduces to the assumption Nε2a2 � 1,
i.e., that the total area occupied by the N traps is asymptotically small compared to
the O(1) surface area of the sphere. We can then readily rewrite (3.23) to obtain the
simple explicit result that for N  1, but in the small area fraction limit Nε2a2 � 1,
min ū has the asymptotic behavior
(3.24)

min ū ∼ 1
ND

[
− log

(∑N
j=1 |Ωεj |
|S|

)
− 4l1 − log 4 + O(N−1)

]
, l1 = 0.026422 .

Here
∑N

j=1 |Ωεj | = Nπε2a2 is the total trap area, while |S| = 4π is the surface area of
the unit sphere S. The result (3.24) can then be used to define an effective diffusion
coefficient.

3.1. Partially absorbing traps. Next, we consider the case of partially ab-
sorbing traps of different radii. The boundary condition on the jth trap in (3.1a) is
replaced by
(3.25)
ε∇su·n̂+κj (u−bj) = 0 , x ∈ ∂Ωεj ≡ {(θ, φ) | (θ−θj)2+sin2(θj)(φ−φj)2 = ε2a2

j} .

For this nonidentical multitrap case, we can uniquely define ε as the average dimen-
sionless radius of the collection of traps, so that N−1

∑N
j=1 aj = 1.

In place of (3.5), for this more general problem we obtain the inner problem

(3.26) vy1y1 + vy2y2 = 0 , y /∈ Ωj ; −vρ + κj(v − bj) = 0 , y ∈ ∂Ωj ,

where Ωj ≡ ε−1Ωεj , y = (y1, y2), with ρ = |y|, y1 = ε−1(φ − φj) sin θj , and y2 =
ε−1(θ − θj). The solution to (3.26) in terms of some unknown constant Aj is

(3.27) v = bj +Aj log (ρ/βj) , μj ≡ − 1
log(εβj)

, βj ≡ aj exp (−1/ajκj) .

Upon rewriting (3.27) in outer variables, we obtain that the corresponding outer
solution satisfies

�su = −M , x ∈ S\{x1, . . . , xN} ,(3.28a)

u ∼ bj +
Aj

μj
+Aj log |x− xj | as x→ xj , j = 1, . . . , N ,(3.28b)

where u is singularity-free at the poles θ = 0, π and is 2π periodic in φ. The solution
to (3.28) is decomposed as in (3.10), where in place of (3.16) we obtain that Aj , for
j = 1, . . . , N , and χ in (3.10) now satisfy the linear system

Aj

μj
−

N∑
i=1
i�=j

Ai log |xi − xj | = up(xj) − bj + χ− M̄ (2 log 2 − 1) , j = 1, . . . , N ;

N∑
j=1

Aj = 2M̄ .

(3.29)
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In particular, χ is now given by

(3.30a) χ =
2M̄
Nμ̄

+ (2 log 2 − 1) M̄ − 1
Nμ̄

etUG0A− 1
Nμ̄

etUf ,

where U = diag(μ1, . . . , μN ), Nμ̄ = Trace(U), and A is determined from

(3.30b)
(
I −

(
I − 1

μ̄
UE
)
UG0

)
A =

2M̄
Nμ̄

Ue+
(
I − 1

μ̄
UE
)
Uf .

For the special case where M is a constant and bj = 0 for j = 1, . . . , N , i.e., f ≡ 0,
we can readily obtain simple asymptotic formulae by solving (3.30) asymptotically for
μj � 1. The result is as follows.

Principal Result 3.2. Consider N partially absorbing traps of radii εaj � 1
centered at xj, for j = 1, . . . , N , on the unit sphere. Then, the asymptotic solution to
(3.1a) with boundary conditions (3.25) is given in the outer region |x − xj |  O(ε)
for j = 1, . . . , N by (3.18a), where Aj for each j = 1, . . . , N in (3.18a) is given
asymptotically by

(3.31a) Aj =
2Mμj

Nμ̄

⎡
⎢⎣1 +

N∑
i=1
i�=j

μi log |xi − xj | − 2
Nμ̄

pw(x1, . . . , xN ) + O(|μ|2)

⎤
⎥⎦ .

In addition, ū = χ is given asymptotically by

(3.31b) ū = χ =
2M
Nμ̄

+M

[
(2 log 2 − 1) − 4

N2μ̄2
pw(x1, . . . , xN )

]
+ O(|μ|) .

Here μj, μ̄, and the weighted discrete energy pw(x1, . . . , xN ) are defined by

(3.31c)

μj ≡ − 1
log(εβj)

, βj ≡ aj exp (−1/ajκj) ; μ̄ ≡ 1
N

N∑
j=1

μj ;

pw(x1, . . . , xN ) ≡
N∑

i=1

N∑
j>i

μiμj log |xi − xj | .

In (3.31a) and (3.31b), |μ|2 and |μ| denote terms that are quadratic or linear in the
μj, respectively.

From (3.31b), we note that the average mean first passage time is minimized for
a configuration of traps that maximize the weighted discrete energy pw(x1, . . . , xN )
on the unit sphere |xj | = 1. This discrete optimization problem has not, to our
knowledge, been considered previously. We conclude this section with two remarks.

Remark 3.1. A minor modification of the analysis above is needed to treat the
case of N noncircular, partially absorbing traps on the boundary of a sphere. For this
general case, the following inner problem replaces (3.26):

(3.32) vy1y1 + vy2y2 = 0 , y /∈ Ωj ; −∇v · n̂+ κj(v − bj) = 0 , y ∈ ∂Ωj .

Here Ωj ≡ ε−1Ωεj , y = (y1, y2), ∇v = (vy1 , vy2), and n̂ is the unit normal to ∂Ωj

pointing exterior to Ωj . For an arbitrary noncircular trap Ωj , (3.32) cannot be solved
analytically, but has the far-field behavior (cf. [46])

(3.33) v ∼ bj +Aj log (ρ/dj) + O(1) as |y| = ρ→ ∞ ,

D
ow

nl
oa

de
d 

06
/2

1/
12

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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where dj = dj(κj) is some constant to be computed from the numerical solution to
(3.32). For a perfectly absorbing trap, where κj = ∞, dj(∞) is called the logarithmic
capacitance of Ωj (cf. [46], [33]), and explicit formulae for it are available for different
trap shapes such as ellipses, squares, and equilateral triangles (cf. [33]). Numerical
methods for computing dj(∞) are given in [10] and [34]. It is well known that of all
convex planar regions with a fixed area, the circular disk has the smallest logarithmic
capacitance. The asymptotic expansion in Principal Result 3.2 still holds, provided
that we replace μj there by μj ≡ −1/ log[εdj(κj)].

Remark 3.2. The analysis leading to Principal Result 3.2 has assumed that the
traps are well separated in the sense that |xi − xj | = O(1) for i �= j. Next, we
briefly consider the case where there are Mj nonoverlapping traps clustered in an
O(ε) ball near each xj , for j = 1, . . . , N , where N now denotes the number of clusters
and M1 + · · · + MN = n is the total number of traps. Then, we need only replace
μj in Principal Result 3.2 with −1/ log(εdj), where, for each j = 1, . . . , N , dj is to
be determined from the far-field behavior of the following inner problem with Mj

nonoverlapping traps:

(3.34a)
vy1y1 + vy2y2 = 0 , y /∈ Ωjk

; −∇v · n̂+ κjk
v = 0 , y ∈ ∂Ωjk

, k = 1, . . . ,Mj ,

v ∼ log |y| − log dj + o(1) as |y| = (y2
1 + y2

2)
1/2 → ∞ .(3.34b)

In general, dj must be computed numerically from a boundary integral method. Al-
ternatively, the analytical approach in [14] based on coupled integral equations could,
in principle, be suitably modified to formulate an analytical iteration scheme to nu-
merically determine dj . A systematic and comprehensive theory for solving rather
general classes of mixed boundary-value problems in potential theory is developed
and surveyed in [15]. However, as shown in Appendix B, for the special case of two
perfectly absorbing circular traps of a common radius εaj, (3.34) can be solved an-
alytically by introducing bipolar coordinates. From (B.5), we obtain that dj can be
written as the infinite sum

(3.35) log dj = log(2βj) − ξj
2

+
∞∑

m=1

e−mξj

m cosh(mξj)
, βj ≡

√
l2j − a2

j .

Here 2lj, with lj > aj , is the distance between the centers of the two circular traps
measured in the inner y variable, and ξj is the unique root of cosh(ξj) = lj/aj . A
plot of dj versus lj/aj > 1 is shown in Figure 2 for the case where aj = 1/

√
2, for

which the combined area of the two traps is πε2. Recall that for a single circle of area
πε2 the logarithmic capacitance is d = 1. From Figure 2 we obtain that dj > 1 for
any lj/aj . Therefore, this plot shows that for trap areas of the same total size, the
logarithmic capacitance of the two-circular-disk cluster is always larger than that of a
single circular disk. Hence, the averaged mean first passage time of a two-circular-disk
cluster is always smaller than that of a single circular disk of the same total area.

Finally, for the case of exactly two traps on the unit disk we show that (3.35)
allows for a uniform transition between the case of two clustered traps and two well-
separated traps. For the case of two clustered traps, (3.20) with log(εa) replaced by
log(εd1) becomes

(3.36) ū ∼ −2 log(εd1) + 2 log 2 − 1 ,
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2.6
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2.2

2.0
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1.6

1.4

1.2

1.0
6.05.04.03.02.01.0

dj

lj/aj

Fig. 2. Plot of the logarithmic capacitance dj versus lj/aj for the two-disk cluster when aj =

1/
√

2. For this value of aj the total trap area for the two-disk cluster is πε2. For a single disk with
area πε2 the logarithmic capacitance dj0 is dj0 = 1. The plot shows that dj > dj0 = 1 and that dj

is an increasing function of lj/aj . The heavy solid curve is (3.35), while the dashed curve is the

asymptotic result dj ∼ √
lj/aj valid for aj = 1/

√
2 when lj/aj � 1.

where d1 is given in (3.35). In contrast, for two well-separated traps of a common
radius εa, (3.21) yields

(3.37) ū ∼ − log(εa) + 2 log 2 − 1 − log |x2 − x1| .
By taking the limit l/a  1 in (3.35), we readily obtain from (3.35) that d1 ∼
log(

√
2la), where 2l = |x2 − x1|/ε  1. With this limiting result for d1, we obtain

that (3.36) reduces to the result (3.37) for two well-separated traps.

4. The asymptotics of the principal eigenvalue. In this section we derive
asymptotic expansions for the principal eigenvalue of (2.5) in the limit of small trap
radii.

We first consider the special case of N identical perfectly absorbing traps of a
common radius εa. Then, (2.5b) becomes ψ = 0 on ∂Ωεj for j = 1, . . . , N . We let
σ(ε) denote the principal eigenvalue, and we expand σ(ε) as

(4.1) σ(ε) = μσ0 + μ2σ1 + · · · , μ ≡ − 1
log(εa)

.

The logarithmic nature of the expansion is similar to other problems in two space
dimensions with localized perturbations (cf. [5], [27], [40], and [46]). Our goal is to
derive an explicit two-term expansion for σ(ε) by deriving simple formulae for the
coefficients σ0 and σ1.

In the outer region, away from O(ε) neighborhoods of the traps, we expand the
outer solution for ψ as

(4.2) ψ = ψ0 + μψ1 + μ2ψ2 + · · · .
Upon substituting (4.1) and (4.2) into (2.5a) and (2.5c), we obtain that ψ0 ≡ (4π)−1/2,
and that ψ1 and ψ2 satisfy

�sψ1 = −σ0ψ0 , x ∈ S\{x1, . . . , xN} ;
∫

S

ψ1 ds = 0 ,(4.3a)

�sψ2 = −σ1ψ0 − σ0ψ1 , x ∈ S\{x1, . . . , xN} ;
∫

S

(
ψ2

1 + 2ψ0ψ2

)
ds = 0 .(4.3b)
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The singularity conditions for ψ1 and ψ2 as x→ xj are derived by matching the
outer solution to appropriate inner solutions near each trap. Near the jth trap we
introduce inner variables by

(4.4) θ̂ ≡ ε−1(θ − θj) , φ̂ ≡ ε−1(φ− φj) , y1 ≡ φ̂ sin θj , y2 ≡ θ̂ .

Then, upon neglecting O(ε) terms, we obtain that (2.5a) and (2.5b) with κj = ∞
reduces to the following inner problem for Ψ(y1, y2):

(4.5) Ψy1y1 + Ψy2y2 = 0 , y /∈ Ωj ; Ψ = 0 , y ∈ ∂Ωj ,

where Ωj = {(y1, y2) | y2
1 +y2

2 ≤ a2}. The solution to (4.5) is written in terms of some
unknown constant Aj(μ) as

(4.6) Ψ = μAj(μ) log (|y|/a) , Aj(μ) = A1j + μA2j + μ2A3j + · · · .
Here Aj for j = 1, . . . , 3 are unknown coefficients that are independent of μ. Upon
using |y| ∼ ε−1|x − xj | to rewrite (4.6) in outer variables, we obtain the following
matching condition for the outer solution for ψ as x→ xj :
(4.7)
ψ0 + μψ1 + μ2ψ2 ∼ A1j + μ [A1j log |x− xj | +A2j ] + μ2 [A2j log |x− xj | +A3j ] + · · · .

Therefore, (4.7) implies that A1j = ψ0 = (4π)−1/2. In addition, we obtain that
ψ1 and ψ2 have the following singularity behavior as x→ xj for each j = 1, . . . , N :

(4.8) ψ1 ∼ ψ0 log |x− xj | +A2j ; ψ2 ∼ A2j log |x− xj | +A3j .

Therefore, from (4.3a) and (4.8), we can write the problem for ψ1 in terms of singular
forces as

(4.9) �sψ1 = −σ0ψ0 + 2πψ0

N∑
j=1

1
sin θj

δ(θ − θj)δ(φ − φj) , x ∈ S .

Since (�sψ1, 1) = 0, we obtain by the divergence theorem that σ0 satisfies −σ0

∫
S
ψ0 ds

= −2πψ0N . This yields

(4.10) σ0 =
N

2
.

The unique solution to (4.9) with
∫

S
ψ1 ds = 0 is then written in terms of the Green’s

function of (A.2) as

(4.11) ψ1 = −2πψ0

N∑
i=1

G(x;xi) , ψ0 ≡ (4π)−1/2 .

Then, by using (A.5) for G, we expand (4.11) as x→ xj to obtain that

(4.12) ψ1 ∼ ψ0 log |x− xj | − 2πψ0

[
R+

N∑
i�=j

Gji

]
as x→ xj .

Here Gji ≡ G(xj ;xi) and R is the regular part of G given in (A.5). Upon comparing
(4.12) with the required singular behavior (4.8) for ψ1, we identify the constant A2j

in (4.8) as

(4.13) A2j ≡ −2πψ0

[
R+

N∑
i�=j

Gji

]
.
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Then, the problem for ψ2 consists of (4.3b) with the singular behavior (4.8). This
problem can be written in terms of singular forces as

(4.14) �sψ2 = −σ1ψ0 − σ0ψ1 + 2π
N∑

j=1

A2j

sin θj
δ(θ − θj)δ(φ − φj) , x ∈ S .

Since (�ψ2, 1) = (ψ1, 1) = 0, we obtain from the divergence theorem and (4.13) that

(4.15) −σ1

∫
S

ψ0 ds = −2π
N∑

j=1

A2j = 4π2ψ0

N∑
j=1

(
R+

N∑
i�=j

Gji

)
.

Upon using (A.5) for G, we readily obtain that this expression for σ1 reduces to

(4.16) σ1 = −π
N∑

j=1

(
R+

N∑
i�=j

Gji

)
= −πN2R+

N∑
j=1

N∑
i>j

log |xi − xj | ,

where R = (4π)−1 [2 log 2 − 1] as given in (A.5). This determines σ1 explicitly. We
summarize our two-term asymptotic result for the principal eigenvalue of (2.5) for
identical perfectly absorbing traps in the following statement.

Principal Result 4.1. Consider (2.5) for N identical perfectly absorbing (κj =
∞) traps of a common radius εa centered at xj , for j = 1, . . . , N , on the unit sphere.
Then, the principal eigenvalue σ(ε) of (2.5) is given for ε� 1 by

(4.17) σ(ε) ∼ μN

2
+ μ2

[
−N

2

4
(2 log 2 − 1) + p(x1, . . . , xN )

]
, μ ≡ − 1

log(εa)
,

where p(x1, . . . , xN ) is the discrete energy as given in (3.18d).
As a remark, for the special case of one perfectly absorbing trap where N = 1,

(4.17) reduces to

(4.18) σ(ε) ∼ μ

2
+
μ2

4
(1 − 2 log 2) .

This result agrees with the result (2.11) of section 2, as originally derived in [47].
There is a simple relationship between (4.17) for the principal eigenvalue σ(ε)

and the averaged mean first passage time ū = χ in (3.18c). Upon setting M = 1 in
(3.18c) for simplicity, we claim that

(4.19) ū = χ =
1
σ

+ O(μ) .

This relationship is readily verified by comparing (3.18c) and (4.17). To derive (4.19),
we expand the solution to (2.1) with M = 1 in terms of all of the normalized eigenfunc-
tions of (2.5). In the usual way, we obtain an eigenfunction expansion representation
for u, and from it calculate ū as

(4.20) ū = χ =
1
4π

[
(ψ1, 1)2

σ1
+

∞∑
j=2

(ψj , 1)2

σj

]
.

Here (u, v) ≡ ∫
S
uv ds, and we have labeled σj(ε) and ψj(x; ε) as the jth normalized

eigenpair of (2.5). Therefore, in the limit of small trap radii ε → 0, the higher
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modes with j ≥ 2 contribute (ψj , 1) = O(μ) and σj = O(1) to the sum in (4.20).
This estimate for (ψj , 1) when j ≥ 2 follows from the orthogonality of eigenfunctions
and the fact that 1 is an O(μ) close approximation to the principal (unnormalized)
eigenfunction ψ1 when ε� 1. However, for the j = 1 mode, we obtain from the outer
expansion (4.2) that (ψ1, 1) ∼ √

4π + μ2 (ψ12, 1) and σ1 = O(μ) from (4.17). Here,
with a minor change in notation, ψ12 is the solution to (4.14). With these estimates,
(4.20) readily yields (4.19).

Finally, as in section 3, we note that the principal eigenvalue σ(ε) is maxi-
mized at the elliptic Fekete points {x1, . . . , xN} that maximize the discrete energy
p(x1, . . . , xN ). When {x1, . . . , xN} is chosen to maximize p(x1, . . . , xN ), we obtain
from the optimal energy (3.22) that (4.17) for N  1 becomes

(4.21) maxσ(ε) ∼ μN

2
+ μ2

[
N

4
logN + l1N + l2

]
,

where l1 and l2 were given in (3.22). This scaling law is valid only when μN � 1, so
that σ � 1.

4.1. Summing the logarithmic series for the principal eigenvalue. Prin-
cipal Result 4.1 gives a two-term expansion in powers of μ for σ(ε) for the case of
identical perfectly absorbing traps. We now formulate a hybrid asymptotic-numerical
matrix eigenvalue problem that has the effect of summing all of the logarithmic terms
in the asymptotic expansion of σ(ε). In doing so we will obtain σ(ε) accurate up to
insignificant algebraically small terms in ε. In our analysis, we will consider the gen-
eralized problem of (2.5) with N partially absorbing circular traps of different radii.
As a by-product of our analysis, we will derive an explicit two-term expansion for
σ(ε), similar to that in Principal Result 4.1, for the case of partially absorbing traps
of different radii.

In the inner region near the jth trap for (2.5), we obtain the following inner
problem in place of (4.5):

(4.22) Ψy1y1 + Ψy2y2 = 0 , y /∈ Ωj ; −Ψρ + κjΨ = 0 , y ∈ ∂Ωj .

Here Ωj = {(y1, y2) | y2
1 + y2

2 ≤ a2
j}, ρ ≡ (y2

1 + y2
2)

1/2, where y1 and y2 were defined
in (4.4). The solution to (4.22) is given in terms of some unknown constant Aj by

(4.23) Ψ = μjAj log (|y|/βj) , μj ≡ − 1
log(εβj)

, βj ≡ aj exp (−1/ajκj) .

To formulate a problem that has the effect of summing all of the logarithmic terms
in the asymptotic expansion of (2.5), we do not expand ψ or σ(ε) in a logarithmic
series as in (4.2) and (4.1). Instead, we take the outer solution for ψ to satisfy (2.5a)
in the punctured domain S\{x1, . . . , xN}, with a singularity behavior at each xj that
asymptotically matches with (4.23). In this way, the hybrid asymptotic-numerical
formulation for the outer solution for ψ and the eigenvalue σ(ε) is to solve

�sψ + σψ = 0 , x ∈ S\{x1, . . . , xN} ,(4.24a)
ψ ∼ Aj + μjAj log |x− xj | as x→ xj ,(4.24b)

with
∫

S
ψ2 ds = 1, where ψ is singularity-free at the poles θ = 0, π and is 2π periodic

in φ.
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DIFFUSION ON A SPHERE WITH LOCALIZED TRAPS 319

The solution to (4.24) is written in terms of the Helmholtz Green’s function of
(A.7), with σ = ν(ν + 1) in (A.7a), as

(4.25) ψ = −2π
N∑

i=1

μiAiGh(x;xi) .

Then, by using (A.11a) of Principal Result A.1 of Appendix A, we can expand ψ as
x→ xj to obtain that

(4.26) ψ ∼ μjAj log |x− xj | − 2πμjAjRh − 2π
N∑

i=1
i�=j

μiAiGhji as x→ xj .

By comparing (4.26) with the required singular behavior (4.24b), we conclude that
Aj must satisfy the following homogeneous linear system:

(4.27) Aj + 2πμjAjRh + 2π
N∑

i=1
i�=j

μiAiGhji = 0 , j = 1, . . . , N .

Here Ghji = Gh(xj ;xi) is given in terms of σ = ν(ν + 1) by (A.8). The condition
that this system has a nontrivial solution determines the eigenvalue σ(ε), while the
corresponding eigenvector determines A1, . . . , AN up to a scalar multiple. This scalar
multiple can then be found by substituting (4.25) into the normalization condition∫

S ψ
2 ds = 1. This leads to the following result.
Principal Result 4.2. Consider (2.5) for N partially absorbing traps of radii

εaj for j = 1, . . . , N . Then, with an error of order O(ε), the principal eigenvalue
σ(ε) of (2.5) is the smallest root of the transcendental equation

(4.28a) Det (I + 2πRhU + 2πGhU) = 0 .

Here U is the diagonal matrix with diagonal entries Ujj = μj for j = 1, . . . , N , and
Gh is the Helmholtz Green’s function matrix with matrix entries
(4.28b)

Ghjj = 0 , j = 1, . . . , N ; Ghij = − 1
4 sin(πν)

Pν

( |xj − xi|2
2

− 1
)
, i �= j ,

where Pν(z) is the Legendre function of the first kind of order ν (see (A.8)).
We remark that both Rh, given in (A.11b), and Ghij depend on ν. In section 5 we

solve (4.28) numerically for ν = ν(ε), which determines σ(ε) from σ = ν(ν+1). For the
special case of identical perfectly absorbing traps where U = μI with μ = −1/ log(εa),
the solution to (4.28) extends the two-term result in Principal Result 4.1 by effectively
summing all of the logarithmic terms in the expansion of σ(ε).

For the special case of one trap N = 1, (4.28) reduces to the transcendental
equation 2πRh = −1/μ1. By using (A.11b) for Rh, we obtain that σ(ε) is the smallest
root of

(4.29) − log 2 + γ + ψ(ν + 1) +
π

2
cot(πν) =

1
μ1

, σ = ν + ν2 ,

where γ is Euler’s constant and ψ(z) is the digamma function defined in (A.10). We
can readily recover the two-term expansion (4.18) by substituting ψ(ν + 1) ∼ −γ
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320 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

and π cotπν ∼ 1/ν for ν � 1 into (4.29) and then solving for σ. For a perfectly
absorbing trap of radius ε, in Figure 3 we compare the result for σ(ε) obtained from
the transcendental equation (4.29) with that given by the two-term result (4.18).
Since πε2/(4π) = (ε/2)2 = 0.04 when ε = 0.4, we conclude from this figure that the
two-term expansion provides a decent approximation to the eigenvalue provided that
the trap area is less than roughly 4% of the surface area of the unit sphere.

0.5

0.4

0.3

0.2

0.1

0.0
0.400.350.300.250.200.150.100.050.00

σ

Fig. 3. For one perfectly absorbing trap of radius ε, we compare the two-term expansion for
σ(ε) given in (4.18) (top curve) with the result obtained from the transcendental equation (4.29)
(bottom curve), which sums all logarithmic terms.

Next, we use (4.28) to derive a two-term expansion for σ(ε) for the case of partially
absorbing traps. For ν → 0, we use (A.14) for Gh to write Gh as

(4.30) Gh = − 1
2π

G0 +NRh0E −Rh0I , E ≡ 1
N
eet .

Here et = (1, . . . , 1), Rh0 is given in (A.15), and G0 is the Green’s function matrix
of Principal Result 3.1 with zero diagonal entries and off-diagonal entries G0ij =
log |xi − xj | for i �= j. Upon using (4.30), we can write (4.27) asymptotically as a
matrix eigenvalue problem of the form

(4.31) BA = ωA , B ≡ (I − G0U)−1
EU , ω ≡ − 1

2πNRh0
.

Since E is a matrix of rank one and U is invertible, then B also has rank one.
Hence the unique nonzero eigenvalue of B is ω = Trace(B). Hence, for μj � 1, we
obtain the transcendental equation

(4.32) − 1
2πNRh0

= Trace
[
(I − G0U)−1

EU
]
,

where the right-hand side of (4.32) is independent of ν.
For ν � 1 and μj � 1 for j = 1, . . . , N , we use (A.15) for Rh0 together with the

approximate inverse (I − G0U)−1 ≈ I + G0U to reduce (4.32) to

2ν
N(1 − 2ν log 2)

∼ Trace (EU) + Trace [G0UEU ] + · · · ,
1
N

[
2ν + 4ν2 log 2

] ∼ μ̄+ Trace [G0UEU ] + · · · .
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We then solve this equation asymptotically for ν and we identify that Trace [G0UEU ] =
2pw(x1, . . . , xN ), where pw(x1, . . . , xN ) is the weighted discrete energy of (3.31c). In
this way, we obtain the following two-term expansion.

Principal Result 4.3. Let σ(ε) be the principal eigenvalue of (2.5) for N
partially absorbing traps of radii εaj for j = 1, . . . , N . Then, a two-term logarithmic
expansion for σ(ε) is given explicitly by

(4.33) σ(ε) ∼ Nμ̄

2
− (Nμ̄)2

4
(2 log 2 − 1) + pw(x1, . . . , xN ) + O(|μ|3) ,

where μ̄ is defined by

(4.34) μ̄ ≡ 1
N

N∑
j=1

μj , μj ≡ − 1
log(εβj)

, βj ≡ aj exp (−1/ajκj) ,

and pw(x1, . . . , xN ) is the weighted discrete energy given in (3.31c).
For the special case of one circular partially absorbing trap of radius ε, (4.33)

with N = 1 and a1 = 1 reduces to

(4.35) σ(ε) ∼ μ

2
+ μ2

(
1
4
− log 2

2

)
+ · · · , μ =

(
− log

[
εe−1/κ1

])−1

.

This result agrees with the result (2.11) of section 2, as originally derived in [47].
Finally, we remark that noncircular traps can be treated simply by replacing βj in

(4.34) with dj(κj), where dj(κj) is to be computed from the modified inner problem
(3.33). For a cluster of traps in an O(ε) neighborhood of some point on the sphere,
dj is to be found from (3.34).

5. Numerical results and validation of asymptotic theory. In this section
we compare the asymptotic results for the solutions of (2.1) and (2.5) for perfectly
(3.1) and partially (3.25) absorbing traps. In (2.1) we will consider two cases for the
source term:

(5.1) M1 ≡ 1 and M2 =
1
2

(1 + cos 2θ) .

The choice M1 corresponds to a constant source density which yields the mean first
passage time for perfectly absorbing traps, i.e., bj = 0 for j = 1, . . . , N in (3.1). The
second choice with M2 models a source density that is largest at the poles and zero
on the equatorial plane. In the case of M1 the solution of (3.11) is simply up ≡ 0,
while for M2 it is given by up = (1/6)(cos2 θ − 1/3).

5.1. Steady state diffusion. To compare the asymptotic solution (3.10) with
those from numerical simulations using the COMSOL software package [8], we must
solve (3.17) in the case of perfect traps and (3.30) for partially absorbing traps. Fig-
ure 4 shows the numerical solution of (3.1) with bj = 0 for a 5-trap configuration
that maximizes the discrete energy p(x1, . . . , x5) defined in (3.18d). This optimal
configuration has a trap at each pole together with three traps forming an equilateral
triangle on the equatorial plane (cf. [11]). For the inhomogeneous source distribution
M2 in (5.1) the mean first passage time u is maximal in the two belt-like regions
along the φ-direction (Figure 4(a)), while for the homogeneous distribution M1 it is
maximal in the three rectangular regions between each of the two equatorial traps

D
ow

nl
oa

de
d 

06
/2

1/
12

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 DANIEL COOMBS, RONNY STRAUBE, AND MICHAEL WARD

Fig. 4. Solution of (2.1) with M2 = (1/2)(1 + cos 2θ) (a) and M1 = 1 (b) for a 5-trap
configuration with (θ1, φ1) = (0, 0), (θ2, φ2) = (π, 0), (θ3, φ3) = (π/2, 0), (θ4, φ4) = (π/2, 2π/3), and
(θ5, φ5) = (π/2, 4π/3) that maximizes the discrete energy p(x1, . . . , x5) as defined in (3.18d). The
traps are identical and perfectly absorbing, and have a common radius ε = 0.1.

0
0

0.2

0.4

0.6

0.8

θ

u

A

π/2 π

0
0

0.2

0.4

0.6

0.8

φ

u

B

2π/3 4π/3 2π

0
0

0.2

0.4

0.6

0.8

1

θ

C

π/2 π

0
0

0.2

0.4

0.6

0.8

1

φ

D

2π/3 4π/3 2π

Fig. 5. Comparison between numerical solutions (solid lines) of (2.1) and the asymptotic results
given by (3.10), (3.17), and (3.30) for perfectly (a), (b) and partially (c), (d) absorbing traps in the
5-trap configuration shown in Figure 4. (a) and (c) show the solution at φ = 0, while (b) and (d)
show it along the equator θ = π/2. Open circles and triangles correspond to asymptotic solutions
with M1 = 1 and M2 = (1/2)(1 + cos 2θ) in (2.1), respectively. Parameters for (a), (b): bi = 0,
ai = 1 for i = 1, . . . , 5, ε = 0.1. Parameters for (c), (d): b1 = 0.1 = b2, b3 = 0 = b4 = b5,
a1 = 1 = a2, a3 = 0.5 = a4 = a5, ε = 0.2, κ1 = 2 = κ2, κ3 = 4 = κ4 = κ5.

(Figure 4(b)). In Figure 5 we compare the numerical solutions (solid lines) shown in
Figure 4 along the longitudinal direction for fixed φ = 0 (Figure 5(a)) and along the
latitudinal direction for θ = π/2 (Figure 5(b)) with the asymptotic result (3.17). In
the computations we have taken identical, perfectly absorbing traps with a common
radius ε = 0.1, which corresponds to μ = −1/ log ε ≈ 0.43. Although this value of μ
is not small compared with unity as should be required by the asymptotic theory of
section 3, the asymptotic solutions are still found to be in excellent agreement with
the full numerical solutions computed from COMSOL.
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0
0

0.5

1

1.5

2

2.5

θ

u

A

3π/4π/4 π 0
0.5

1

1.5

2

2.5

3

3.5

θ

B

3π/4π/4 π

Fig. 6. Comparison between numerical solutions (solid lines) of (2.1) and the asymptotic
results given in (3.10), (3.17), and (3.30) for perfectly (a) and partially (b) absorbing traps in a
nonsymmetrical 2-trap configuration with (θ1, φ1) = (π/4, 0) and (θ2, φ2) = (3π/4, 0). Shown are
solutions at φ = 0. Open circles and triangles correspond to asymptotic solutions with M1 = 1 and
M2 = (1/2)(1 + cos 2θ) in (2.1), respectively. Parameters for (a): b1 = 0 = b2, ε = 0.1. Parameters
for (b): b1 = 1, b2 = 0.5, a1 = 0.5, a2 = 1, ε = 0.2, κ1 = 4, κ2 = 2.

In Figures 5(c) and 5(d) we show a similar comparison between the full numerical
and the asymptotic solutions (3.30) for partially absorbing traps of different radius.
Here, the radii of the largest traps are ε = 0.2, which corresponds μ = −1/ log ε ≈
0.62. Even with this relatively large value of μ, the asymptotic results still agree
extremely well with the full numerical solutions. We mention that we would have
obtained the same results if we had used the asymptotic approximations for A and χ
in (3.18b), (3.31a) and (3.18c), (3.31b), respectively. Upon increasing the radius of the
trap we observed that the asymptotic solutions begin to diverge from the numerical
ones at ε = 0.2 (ε = 0.3) in the case of perfectly (partially) absorbing traps for the
5-trap configuration.

In Figure 5, the excellent agreement between the asymptotic solutions and those
from full numerical simulations is partially due to the particular configuration of the
traps. For example, Figure 6 shows a 2-trap configuration where a small deviation
becomes visible at the boundary of the traps (Figure 6(a)) as the zero boundary con-
dition is not exactly satisfied. For partially absorbing traps in the same configuration
the deviation is smaller (Figure 6(b)).

5.2. Eigenvalue asymptotics. We have used the eigenvalue solver of the COM-
SOL software package [8] to compute the smallest eigenvalue together with the corre-
sponding eigenmode of (2.5) for the 2- and 5-trap configurations shown in Figures 6(a)
and 5(a) for identical perfectly absorbing traps. Figure 7 shows the numerical results
(solid lines) together with the asymptotic solutions in (4.2) (dashed lines) and (4.25)
(open circles). For the 2-trap configurations (Figures 7(a) and 7(b)) the two-term
expansion yields a reasonable approximation even for ε = 0.1 (see Figure 5(b)). In
contrast, for the 5-trap configuration the two-term expansion fails to correctly repro-
duce the absorbing boundary conditions even at ε = 0.05. In contrast, the asymptotic
solution (4.25), which sums all logarithmic corrections, is in excellent agreement with
the numerical solution up to ε = 0.1. Table 1 shows the smallest eigenvalue as a func-
tion of the trap radius ε and compares it with the asymptotic results from (4.28a)
and (4.17). The corresponding results are shown graphically in Figure 8.
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0
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0.2

0.3

u

A

π/4 3π/4 0
0

0.1

0.2

0.3
B

π/4 3π/4

0
0

0.1

0.2

0.3

θ

u
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π/2 0
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0.2

0.3

θ

D

π/2

Fig. 7. Eigenmodes corresponding to the smallest eigenvalue of (2.5) for the 2- (a), (b) and
5- (c), (d) (perfect) trap configurations shown in Figures 6(a) and 5(a). Solid lines are numerical
solutions. Open circles mark the asymptotic solution in (4.25), while the dashed lines correspond
to the two-term expansion in (4.2) with ψ0 = 1/(4π) and ψ1 given by (4.11). In (a), (c) ε = 0.05,
while in (b), (d) ε = 0.1.

Table 1

Smallest eigenvalue of (2.5) for the 2- and 5-trap configurations shown in Figures 6(a) and 5(a)
as a function of the trap radius ε. Here, σ is the numerical solution found by COMSOL [8], σ∗ =
ν(1 + ν) corresponds to the root ν of the transcendental equation (4.28a), and σ2 is calculated from
the two-term expansion (4.17).

5 traps 2 traps

ε σ σ∗ σ2 σ σ∗ σ2

0.02 0.7918 0.7894 0.7701 0.2458 0.2451 0.2530

0.05 1.1003 1.0991 1.0581 0.3124 0.3121 0.3294

0.1 1.5501 1.5452 1.4641 0.3913 0.3903 0.4268

0.2 2.5380 2.4779 2.3278 0.5177 0.5110 0.6060

Finally, we illustrate the effect of the locations of the traps on the sphere with
regard to the eigenvalue approximation σ(ε), computed from (4.28a), and the averaged
mean first passage time χ, computed from (3.17c) for the special case M = 1 and
f = 0 in (3.17c). We consider three different spatial configurations of four identical
perfectly absorbing traps with a common radius ε. The specific configurations and
the corresponding asymptotic results for σ(ε) and χ(ε) are shown in Figures 9(a)
and 9(b), respectively, and are compared there with full numerical results computed
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0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.300.250.200.150.100.050.00

σ

(a) 2-trap pattern

2.0

1.5

1.0

0.5

0.0
0.150.120.090.060.030.00

σ

(b) 5-trap pattern

Fig. 8. Comparison of the two-term approximation (solid curve) for σ(ε) versus ε given in
(4.17) with the root of the transcendental equation (4.28a) (heavy solid curve) for the 2-trap con-
figuration (top) and the 5-trap configuration (bottom) shown in Figures 6(a) and 5(a), respectively.
The data at selected points are given in Table 1.

from COMSOL [8]. Notice that the optimal 4-trap pattern, with two traps at the
poles and two traps equally spaced on the equatorial plane, is the configuration that
gives the largest σ(ε) and the smallest averaged mean first passage time χ(ε). Such a
4-trap pattern, with widely spaced traps, is optimal for minimizing the lifetime of a
random walker on the sphere.

6. Discussion and conclusion. We have given asymptotic results for the mean
first passage time for a diffusing particle confined to a spherical surface that has N
partially absorbing traps of asymptotically small radii. By asymptotically calculating
the principal eigenvalue for diffusion on the sphere with small localized traps, we
have determined analytically the asymptotic rate at which a small diffusing molecule
becomes captured by one of the small traps. The asymptotic results were favorably
compared with full numerical results computed from COMSOL [8].

In the introduction we motivated our model using examples from cell biology.
Using physical parameters we can now use our results to estimate the minimum time
it takes for a surface-bound molecule to reach a molecular cluster on a spherical cell,
for example. We take the diffusion coefficient of a typical surface molecule (e.g.,
LAT) to be 0.25μm2/s and consider N nascent signaling regions (traps) of radius
10nm on a cell of radius 5μm. Using (3.23) we can place an approximate lower bound
on the averaged mean first passage time (valid when N is sufficiently large) for the
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2.0

1.5

1.0

0.5

0.0
0.250.200.150.100.050.00

σ

(a) σ(ε) vs. ε

2.5

2.0

1.5

1.0

0.5

0.0
0.250.200.150.100.050.00

χ

(b) χ(ε) vs. ε

Fig. 9. Results for σ(ε), computed from (4.28a) (top) and χ(ε) computed from (3.17c) with
f = 0 and M = 1 (bottom) for three different 4-trap patterns. The traps are perfectly absorbing and
have a common radius ε. The heavy solid curves correspond to (θ1, φ1) = (0, 0), (θ2, φ2) = (π, 0),
(θ3, φ3) = (π/2, 0), (θ4, φ4) = (π/2, π); the solid curves correspond to (θ1, φ1) = (0, 0), (θ2, φ2) =
(π/3, 0), (θ3, φ3) = (2π/3, 0), (θ4, φ4) = (π, 0); and the dotted curves correspond to (θ1, φ1) = (0, 0),
(θ2, φ2) = (2π/3, 0), (θ3, φ3) = (π/2, π), (θ4, φ4) = (π/3, π/2). The marked points are the full
numerical results computed from COMSOL [8].

diffusive arrival of a particular molecule to a cluster. For N = 100 traps, the bound
is 7.7s. This bound is achieved when the clusters are placed at the Fekete points
on the sphere. Note that we can also compute the principal eigenvalue using (4.21).
As a comparison, if the 100 traps were joined together to form one big trap of the
same area, (2.8) gives the averaged mean first passage time as 360s. More generally,
(3.21) allows this estimate to be made for any arbitrary distribution of separated traps
that might be observed in experiments. Assuming that the signaling molecules are
initially uniformly spread across the cell, these results can quantify the ability of cells
to control the signaling rate at clusters by modulating their spatial distribution.

We close by outlining a few possible extensions of this study. One possible gener-
alization of our analysis would be to consider a nonspherical surface, with possibly a
spatially inhomogeneous surface diffusivity. Such an analysis would require detailed
properties of the Green’s function for the Laplace–Beltrami operator and the Helm-
holtz operator on the nonspherical surface. For a general surface these functions can
only be determined numerically.

In the context of a spherical surface, a second natural extension of the work
presented here would be to include chemical reactions within each signaling region
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(trap), combined with a detailed account of the escape of molecules from each trap.
A simple problem of this nature was considered in [12], where, in the context of
T cell activation, the delivery of surface-bound antigen to reactive signaling clusters
was considered. In that study, diffusing antigen underwent binding and unbinding
events within each cluster (bound antigen was assumed to be immobile), and the
escape time from a disk-shaped region on a flat surface was calculated using matched
asymptotics. It should be possible to analyze more complex situations of this nature,
for instance, by finding the steady states of the system and examining their stability
to small perturbations. The mathematical interest of such problems is that for the
stability calculation the eigenvalue parameter would appear in both the differential
operator and in the boundary condition on the boundary of each localized reaction
site, effectively yielding a novel class of Steklov-type eigenvalue problems.

Finally, our analysis has been restricted to the steady-state situation where the
traps are at fixed locations on the surface of the sphere. This is a considerable
simplification of the biological situation where cell-surface regions may be expected
to diffuse or undergo directed motion [45]. Furthermore, colliding traps can sometimes
be expected to coalesce, while traps may also appear and disappear on the cell surface.
Certain problems with moving traps have been analyzed, such as in [22] and [4], but
the field remains quite open.

Appendix A. The modified and Helmholtz Green’s functions on the
sphere. In this appendix we give some properties of the modified and Helmholtz
Green’s functions on the unit sphere that are central to the analysis in sections 3
and 4. We first introduce the inner product (u, v) over the unit sphere S defined by

(A.1) (u, v) ≡
∫

S

uv ds =
∫ 2π

0

∫ π

0

uv sin θ dθ dφ .

If u and v are 2π periodic in φ, then Lagrange’s identity (�su, v) = (u,�sv) holds.
The following uniquely determined, modified Green’s function G(x;x0) is central to
the asymptotic analysis of (2.1) and (2.5):

�sG =
1
4π

− δ(x− x0) , x ∈ S ,(A.2a)

G is 2π periodic in φ and smooth at θ = 0, π ,(A.2b) ∫
S

Gds ≡
∫ 2π

0

∫ π

0

G sin θ dθ dφ = 0 ,(A.2c)

where, in terms of spherical coordinates, x and x0 are given by
(A.3)

x = (cosφ sin θ, sinφ sin θ, cos θ) , x0 = (cosφ0 sin θ0, sinφ0 sin θ0, cos θ0) .

Since (�sG, 1) = 0 the divergence theorem is satisfied.
The solution of (A.2) is well known from various studies of the motion of fluid

vortices on the sphere (cf. [24], [25], and [26]) and is given explicitly by

(A.4) G(x;x0) = − 1
4π

[log (1 − x · x0) + 1 − log 2] ,

where · denotes dot product. From the law of cosines, 1−x ·x0 = |x−x0|2/2, so that
(A.4) becomes

(A.5) G(x;x0) = − 1
2π

log |x− x0| +R , R ≡ 1
4π

[2 log 2 − 1] ,
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where R is the regular part of G. We then calculate the Jacobian of (A.3) to conclude
that as x→ x0

(A.6) |x− x0| = |ŷ| + o(1) , ŷ = (ŷ1, ŷ2) =
(
φ̂ sin θ0, θ̂

)
.

In section 4 we require some properties of the Helmholtz Green’s functionGh(x;x0),
satisfying

�sGh + ν(ν + 1)Gh = −δ(x− x0) , x ∈ S ,(A.7a)
Gh is 2π periodic in φ and smooth at θ = 0, π .(A.7b)

This Green’s function, which arises in the study of high frequency wave scattering
(cf. [38]; see also [43]), is given explicitly by

(A.8) Gh(x;x0) = − 1
4 sin(πν)

Pν (−x · x0) ,

where Pν(z) is the Legendre function of the first kind of order ν. As z → −1, it
follows from [13] that

(A.9) Pν(z) ∼ sin(πν)
π

[
log
(

1 + z

2

)
+ 2γ + 2ψ(ν + 1) + π cot(πν)

]
,

where ψ(z) is the psi or digamma function, which is defined in terms of the Gamma
function Γ(z) by (cf. [13])

(A.10) ψ(z) =
Γ′(z)
Γ(z)

= log z +
∫ ∞

0

e−zt

(
1
t
− 1

1 − e−t

)
dt .

Here γ ≈ 0.577216 is Euler’s constant. Upon substituting (A.9) into (A.8), and
recalling that 1 − x · x0 = |x− x0|2/2, we readily obtain the following result required
in section 4.

Principal Result A.1. As x→ x0, Gh(x;x0) satisfies

(A.11a) Gh(x;x0) = − 1
2π

log |x− x0| +Rh(ν) + o(1) as x→ x0 ,

where

(A.11b) Rh(ν) ≡ − 1
4π

[−2 log 2 + 2γ + 2ψ(ν + 1) + π cot(πν)] .

In section 4 we need a result for Gh in the limit ν → 0 that is uniformly valid in
x. For ν → 0, we expand the solution Gh to (A.7) as

(A.12) Gh =
1
ν
G−1 +G0 + νG1 + · · · ,

where, on the unit sphere, G−1, G0, and G1 solve

(A.13) �sG−1 = 0 , �sG0 = −G−1 − δ(x− x0) , �sG1 = −G−1 −G0 .

Thus, G−1 is a constant, and from the equation for G0, we get that G−1 = −1/4π.
From the equation for G1, we obtain that

∫
S
G0 ds = 1. Therefore, G0 = G+ 1/(4π),
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where G satisfies (A.2). Hence, by using (A.5) forG, we have for ν � 1, and uniformly
in x, that

(A.14) Gh = − 1
2π

log |x− x0| +Rh0 + O(ν) ,

where Rh0 is defined by

(A.15) Rh0 =
1
4π

[
2 log 2 − 1

ν

]
+ O(ν) as ν → 0 .

We remark that the limiting form Rh0 agrees with that obtained by substituting the
limiting expressions ψ(ν + 1) ∼ −γ + O(ν) from [13]) and π cotπν ∼ ν−1 into the
expression (A.11b) for Rh(ν).

Appendix B. The logarithmic capacitance of a two-disk cluster. We
derive the result (3.35) for the logarithmic capacitance d of two circles of common
radius a, where 2l, with l > a, denotes the distance between the centers of the circles.
Since d is invariant under coordinate rotations, we conveniently choose the centers of
the circles to lie along the horizontal axis. For this special 2-trap cluster, the inner
problem (3.34) with y = (y1, y2), and in a more convenient notation, is

vy1y1 + vy2y2 = 0 , y /∈ Ωj , j = 1, 2 ; v = 0 , y ∈ ∂Ωj ,(B.1a)

v ∼ log |y| as |y| = (y2
1 + y2

2)
1/2 → ∞ ,(B.1b)

where Ω1 and Ω2 are the circles (y1+l)2+y2
2 = a2 and (y2−l)2+y2

2 = a2, respectively.
The logarithmic capacitance d is defined in terms of the solution to (B.1) by the far-
field condition

(B.1c) v − log |y| = − log d+ o(1) as |y| = (y2
1 + y2

2)
1/2 → ∞ .

To solve (B.1) we introduce bipolar coordinates ξ and η defined by

(B.2) y1 =
β sinh ξ

cosh ξ − cosη
, y2 =

β sin η
cosh ξ − cos η

.

Then, |y| → ∞ corresponds to ρ ≡ (ξ2 +η2)1/2 → 0. From (B.2) we obtain |y| ∼ 2β/ρ
as |y| → ∞. Therefore, the singularity condition in (B.1b) is equivalent to v ∼ − log ρ
as ρ = (ξ2 + η2)1/2 → 0. We then define ξc and β by

(B.3a) l = β coth ξc , a =
β

sinh ξc
,

so that, for l > a, β and ξc are given uniquely by

(B.3b) β =
√
l2 − a2 ; cosh(ξc) =

l

a
, ξc = log

⎡
⎣ l
a

+

√(
l

a

)2

− 1

⎤
⎦ .

Under the coordinate transformation the circle (y1 − l)2 + y2
2 = a2 corresponds to

ξ = ξc with |η| ≤ π. Similarly, the circle with center at (−l, 0) corresponds to ξ = −ξc
with |η| ≤ π. In terms of bipolar coordinates, (B.1) transforms to the following
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Green’s function problem for U(ξ, η) ≡ v (y1(ξ, η), y2(ξ, η)) in the rectangle |ξ| ≤ ξc
and |η| ≤ π:

Uξξ + Uηη = 0 , |ξ| ≤ ξc , |η| ≤ π ,(B.4a)
U = 0 on ξ = ξc , ξ = −ξc ; U, Uη 2π periodic in η ,(B.4b)

U ∼ − log ρ+R+ o(1) as ρ = (ξ2 + η2)1/2 → 0 .(B.4c)

This problem uniquely defines the Green’s function U and its constant regular part R
at the origin. Upon using ρ ∼ 2β/|y| as ρ→ 0 and |y| → ∞, the singularity condition
for U transforms to v ∼ log |y| − log (2β) + R as |y| → ∞. Upon comparing this
expression with (B.1c), we conclude that d is related to β = (l2 − a2)1/2 and R by

(B.5) log d = log (2β) −R .

To solve (B.4) we could write an eigenfunction expansion solution for U , similar
to that in [40], and then use Ewald-type summation formulae to extract the regular
part of the singularity behavior. Instead, we proceed in a more direct manner by first
seeking a solution to Laplace’s equation that is 2π periodic in η and that satisfies the
singularity behavior in (B.4c). To this end, we define the harmonic function H(ξ, η)
for ξ > 0 by

H ≡
∞∑

m=1

e−mξ

m
cos(mη) = Re

[ ∞∑
m=1

ωn

n

]
= − log |1 − ω|

= −1
2

log
(
1 − 2e−ξ cos η + e−2ξ

)
,

(B.6)

where ω ≡ e−(ξ+iη) is the complex number with ξ > 0. In (B.6) we used the identity∑∞
m=1m

−1ωm = − log (1 − ω). As ρ = (ξ2 + η2)1/2 → 0, we get that H ∼ − log ρ,
which yields the logarithmic singularity in (B.4c).

Next, we add a harmonic function to H so that the resulting function is even in
ξ. Since H can be written as

(B.7) H = −1
2

log 2 +
ξ

2
− 1

2
log (cosh ξ − cos η) ,

it follows that the harmonic function Up defined by

(B.8) Up = H − ξ

2
= − ξ

2
+

∞∑
m=1

e−mξ

m
cos(mη) , ξ > 0 ,

is 2π periodic in η, is even in ξ, and satisfies the singularity condition in (B.4c).
Therefore, we decompose the solution to (B.4) as U = Up +Uh, where Uh is harmonic
with no singularities, is an even function of ξ, is 2π periodic in η, and satisfies Uh =
−Up on ξ = ξc. This problem for Uh is readily solved by separation of variables, to
obtain that

(B.9) U = Up +
ξc
2

−
∞∑

m=1

1
m

cosh(mξ)
cosh(mξc)

e−mξc cos(mη) .

Finally, upon taking the limit (ξ, η) → (0, 0), (B.9) becomes

(B.10) U = − log ρ+R+ o(1) as ρ→ 0 , R ≡ ξc
2

−
∞∑

m=1

e−mξc

m cosh(mξc)
.
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Therefore, the logarithmic capacitance d from (B.5) is given by

(B.11) log d = log (2β) − ξc
2

+
∞∑

m=1

e−mξc

m cosh(mξc)
,

where β and ξc are determined in terms of the disk radius a and half-separation l
by (B.3). This completes the derivation of (3.35) of Remark 3.2. As a remark, the
analysis above is readily extended to calculate the logarithmic capacitance of two
nonoverlapping disks of different radii.
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