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Network science investigates the architecture of complex systems to understand their functional
and dynamical properties. Structural patterns such as communities shape diffusive processes on
networks. However, these results hold under the strong assumption that networks are static entities
where temporal aspects can be neglected. Here we propose a generalised formalism for linear
dynamics on complex networks, able to incorporate statistical properties of the timings at which
events occur. We show that the diffusion dynamics is affected by the network community structure
and by the temporal properties of waiting times between events. We identify the main mechanism
— network structure, burstiness or fat-tails of waiting times — determining the relaxation times of
stochastic processes on temporal networks, in the absence of temporal-structure correlations. We
identify situations when fine-scale structure can be discarded from the description of the dynamics
or, conversely, when a fully detailed model is required due to temporal heterogeneities.

The relation between network structure and dynamics has
attracted the attention of researchers from different disci-
plines over the years1–5. These works are rooted in the ob-
servation that, in contexts as diverse as the Internet, society,
and biology, networks tend to possess complex patterns of
connectivity, with a significant level of heterogeneity4. In
addition, a broad range of real-world dynamical processes,
from information to virus spreading, is akin to diffusion. If
the effect of structure, such as communities or degree hetero-
geneity, on diffusive processes is now well-known6,7, the im-
pact of the temporal properties of individual nodes is poorly
understood1,8. Yet, empirical evidence indicates that real-
world networked systems are often characterised by com-
plex temporal patterns of activity, including a fat-tailed dis-
tribution of times9–16, correlations between events17,18 and
non-stationarity19–21. This is in remarkable contrast to a
vast majority of mathematical models, which assume homo-
geneous interaction dynamics on networks1,2,22,23. In this
work, we focus on the impact of structure and the waiting
time distribution on dynamics, and set aside any other tem-
poral properties. This subject has triggered intense theoret-
ical work in recent years, for example in relation to anoma-
lous diffusion, but predominantly on lattice-like, annealed24

and random structures20,23,25–28. These limitations leave a
fundamental question open, with important applications for
the modelling of temporal networks: what are the effects of
complex patterns, simultaneously in time and in structure,
on the approach to equilibrium of diffusion processes?

To comprehend the interplay between temporal and struc-
tural patterns, we focus on a broad class of linear multi-agent
systems describing N interacting nodes, defined by

Dx = Lx (1)

∗Electronic address: Jean-Charles.Delvenne@uclouvain.be

where xi, the ith component of x, represents the observed
state of node i. The N×N real matrix L encodes the mutual
influences in the network, with non-zero entries indicating
the presence of a link. D is either d/dt, the delay Dxi(t) =
xi(t+1), or any other causal operator acting linearly on the
trajectory of each entry xi(t). This equation couples network
structure (represented by L) and time evolution (represented
by D) by describing a system where every node i has a state
xi(t) = Fui(t), where ui(t) =

∑

j Lijxj(t) represents the
input, or influence of the neighbouring states on node i. The
operator F is the so-called transfer function29,30, defined as
the inverse of D (See Methods).

A classic example is heat diffusion on networks, where
every node has a temperature xi evolving according to the
Fourier Law

µ
dx

dt
= Lx, (2)

where µ is the characteristic time of the dynamics and L is
a Laplacian of the network. The same set of equations can
represent, possibly up to a change of variables, a basic model
for the evolution of people’s opinions31, robots’ positions in
the physical space30,32, approach to synchronisation33,34 or
the dynamics of a continuous-time random walker35—our
main example from now. In any case, the dynamical prop-
erties of the system are described by the spectral properties
of the coupling matrix. The constraints imposed by the con-
servation of probability imply that the Laplacian dynamics
is characterised by a stationary state, associated to the dom-
inant eigenvector of L, which we will assume to be unique,
as is the case in a large class of systems, for example strongly
connected networks. A key quantity is thus the second dom-
inant eigenvalue, also called the spectral gap6, which pro-
vides us with the relaxation time to stationarity, usually
called mixing time36 for stochastic diffusion processes. The
spectral gap determines the speed of convergence to the sta-
tionary state, and measures the effective size of the system
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Figure 1: Diffusion on temporal networks. (a) A random walk process can be illustrated by a letter (or banknote, etc.) being randomly passed from
neighbour to neighbour on a social network. Temporal patterns of waiting times between arrival and departure of the letter may be homogeneous (for
instance discrete or exponentially distributed times), or heterogeneous (for instance bursts). (b) The relaxation time measures the characteristic time
to reach equilibrium from any starting condition. (c) The competition between structure and temporal patterns regulates the relaxation time, or mix-
ing time, of stochastic processes.

in terms of dynamics. The spectral gap is also related to im-
portant structural and dynamical properties of the system,
such as the existence of bottlenecks and communities in the
underlying network7,30.

In this paper, we generalise the concept of spectral gap
and of mixing time to random processes with general causal
operator D, and focus in detail on operators with long-term
memory, naturally emerging in diffusion with bursty dynam-
ics. After showing connections between the theory of ran-
dom walks and that of multi-agents systems, we identify the
temporal and structural mechanisms driving the asymptotic
dynamics of the system, and provide examples when each
mechanism prevails. By doing so, we show that the form of
the temporal operator D may either slow-down or accelerate
mixing as compared to the differential operator equation (2).
The results are further exploited to assess the possibility of
coarse-graining the dynamics based on the network commu-
nity structure, and tested using numerical simulations on
synthetic temporal networks calibrated with empirical data.

Results
Random walks with arbitrary waiting times. The
generalised dynamics of the random walker, illustrated in
Fig. 1a, is defined as follows. Assume that a walker arrives
at node i and hops at a time between ∆t and ∆t + δ after
its arrival. A walker arriving at a node i jumps towards a
neighbouring node within a time interval [∆t,∆t + δ] with
probability ρ(∆t)δ (for small δ). In line with a standard
discrete time random walk process, the jump is directed to-
wards a neighbour j with probability Pij . The probability
density function ρ(∆t) is called the waiting time distribution
of the walker. At each hop, the waiting time ∆t is reset to
zero, and consecutive waiting times are independent. The
evolution of probability of presence of a stochastic process
in each state is ruled by the so-called master equation, or
Kolmogorov forward equation, well known for this family of
generalised walks24,37,38. We prefer to adopt here the equiv-

alent, dual, viewpoint of Kolmogorov backward equation39,
which belongs to the class of processes defined by equation
(1) and can be analysed using the toolbox typical to multi-
agent systems30,32, such as the transfer function formalism
and eigenmode decomposition.

We assign a fixed real-valued observable xobs,i to every
node i, and consider the value observed at time t by a walker
starting initially from node j. This value is a random vari-
able, with an expected value denoted by xj(t), taking initial
value xj(0) = xobs,j . The random walk is ergodic and mix-
ing on a strongly connected aperiodic network (aperiodicity
is only required for the discrete-time, when ρ(∆t) is a Dirac
distribution). In this case, x(t) describes a consensus dy-
namics, meaning that the individual values asymptotically
converge to one another, xi(∞) = xj(∞). If we choose the
observable xobs,j = 0 at all nodes j, except 1 at node k,
then xi(t) is precisely the probability for the random walker
starting at i to be found at k at time t. Therefore the Kol-
mogorov backward equation, a consensus dynamics, embeds
in particular the evolution of the probability of presence on
nodes.

The walker, assumed to have just hopped at time zero
and finding itself at node i (another origin of time would
not change the asymptotic decay times, of main interest in
this work), hops again at time ∆t with probability density
ρ(∆t), and moves towards a neighbour j with probability
Pij . The expected value observed by the walker at time t
is xobs,i if it is still waiting for its first hop (t < ∆t) and
otherwise

∑

j Pijxj(t−∆t), by induction on the number of
hops. Therefore we obtain the vector equation

x(t) = xobs

∫

∞

t

ρ(∆t)d∆t+

∫ t

0

Px(t−∆t)ρ(∆t)d∆t, (3)

with the discrete transition matrix P of entries Pij . The con-
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Figure 2: Network structure or waiting times regulate mixing times.

We illustrate the findings simple network composed of two communities,
where the community structure is modulated by rewiring edges starting
from two separated random graphs, as shown in a). Each panel (b-f)
shows (on the top bar) for each value of the rewiring probability the
slowdown factor Θ, ratio of the exact mixing time for a given waiting
time distribution and for the exponential case (Poisson process). Each
panel corresponds to a different waiting time distribution and the col-
orbar scale on the right represents the values of Θ for the respective
colormap. Θ close to one indicates that non-trivial waiting time pat-
terns can be neglected in the determination of the mixing time. On the
other hand, a high Θ indicates that the details of the network struc-
ture are overshadowed by the temporal dynamics. b) shows the refer-
ence case, that is, the exponential waiting times. We observe a speedup
(Θ < 1) for c) Dirac (discrete) and d) Erlang distributions and a slow-
down (Θ > 1) for e) a power-law with sharp cutoff and for f) a power-
law with soft cutoff. From left to right, we show how this factor depends
on the network structure by progressively removing the community struc-
ture (increasing ǫ). The bottom bar of each panel shows, according to
equation (14), which is the dominant factor, either structure, burstiness,
or tail, regulating the relaxation time for each model of waiting times.
See Methods for details on the synthetic networks and waiting time dis-
tributions.

volution in time in the last term calls for a Laplace transform

x (s) =

∫

∞

0

x (t) e−stdt. (4)

For simplicity, we use the same notations for functions in the
time and in the Laplace domain, only distinguished by their
variable, namely t or ∆t for time, and s for Laplace. This is
justified as time and Laplace domain representations encode
the same single physical object, for example a probability or
an observable. The same holds for operator D, thought of
as acting in the time domain (for instance D = d/dt) or the
Laplace domain (D = s) according to the context.
The Laplace transform ρ(s) is the moment generating

function of the waiting time distribution ρ(∆t), as it encodes

the moment in its Taylor series ρ(s) = 1−µs+(µ2+σ2) s
2

2 −

· · · , where µ is the expected waiting time (first moment), σ2

is the variance and µ2 + σ2 is the second moment. Using
the fact that convolution (respectively, integration from 0
to t) in the time domain corresponds to the usual product
(respectively, division by s) in the Laplace domain40, equa-
tion (3) reduces to

x(s) =
1− ρ(s)

s
xobs + ρ(s)Px(s), (5)

or equivalently

(

1

ρ(s)
− 1

)

x(s) =

(

1

ρ(s)
− 1

)

1

s
x(t = 0) + Lx(s), (6)

where we have made the dependence on the initial condition
explicit by using the relation xobs = x(t = 0) and where
L = P − I denotes the (normalised) Laplacian of the net-
work. This is an instance of equation (1), which shows that
an input-output relationship is often best expressed in the
Laplace domain rather than in the temporal domain. In
this case, the transfer function F (s) is defined by the alge-
braic relation F−1(s) = 1/ρ(s)− 1 = D(s), up to the initial
condition term, implicit in equation (1). See Methods for a
derivation of equation (1) in a more general context.

From temporal networks to random walks. Diffusive
processes often take place on temporal networks where indi-
viduals initiate from time to time short-lived contacts with
their neighbours. A random walker can represent for exam-
ple a letter or a banknote passing from hand to hand through
first contact initiated by the current node. The formalism
described above focuses on the statistical properties of the
waiting times of a walker on a node15,25, and not of the
inter-contact times (the times between two subsequent con-
tacts from a given node to another), as often considered in
the literature20,27,28,42,43,47. To illustrate this difference, let
us consider an idealised scenario, where the network looks
locally like a directed tree, in order to avoid indirect correla-
tions due to cycles44, where the inter-contact time t between
two contacts initiated by the same node is characterised by
the same probability distribution ρcontact(t), and where ac-
tivations on different edges are an independent random pro-
cess. The corresponding waiting time distribution ρ(∆t) for
the random walker can be determined from ρcontact

45,46.

For example, the classic inspection paradox, or bus para-
dox, observes that the waiting time has a mean

µ = 1/2µcontact(1 + σ2
contact/µ

2
contact) (7)

which can be much higher than the average inter-contact
time µcontact in case of bursts. This fact has been used in the
literature to deduce that burst contact statistics slow down
diffusion in a complex network47. Nevertheless it should
not be confounded with the results presented in this paper,
which will focus on the statistical properties of the waiting
time distribution and identify, amongst others, that its vari-
ance plays a significant role on the asymptotic behaviour of
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the walker. In the above scenario, the variance of ρ(∆t) de-
pends on the third moment of the inter-contact time distri-
bution ρcontact(t), and is associated to a mechanism distinct
from that of the bus paradox (7).

Eigenmodes for heterogeneous temporal operators.

Equation (1) typically takes the form of an integro-
differential equation. However, it simplifies into the differen-
tial equation (2) in the case of a memoryless random walker.
Memoryless refers to the case when the probability of hop-
ping between ∆t and ∆t + δ, knowing that the walker has
waited at least ∆t, is independent of ∆t. This leads to an
exponential waiting time distribution45 ρ(∆t) = e−∆t/µ/µ,
in other words an unconditional probability e−∆t/µδ/µ of
jumping between ∆t and ∆t + δ, for small δ and for mean
waiting time µ. In that case, we find D(s) = 1/ρ(s)−1 = µs
in the Laplace domain, indeed recovering equation (2) in the
time domain. The differential equation can then be anal-
ysed by changing the variables x to a linear combination
of the eigenvectors vk of the Laplacian L, of eigenvalues
λ0 = 0 > λ1, λ2, . . . , λN−1 ≥ −2 as follows30:

x(t) =
∑

k

zk(t)vk. (8)

For simplicity we have supposed that the underlying net-
work is undirected, connected and, in case of a discrete-time
random walk, non-bipartite. Thus the eigenvalues are real
and the stationary state is uniquely defined6. Every zk(t),
solution of Dzk(t) = λkzk(t), is called an eigenfunction of
the operator D, and here takes the form of a decaying expo-
nential. The problem is thus solved by decoupling structural
and temporal variables, first by identifying structural eigen-
vectors (vk), and then how they evolve in time (zk(t)). The
resulting fundamental solutions zk(t)vk for equation (1) are
called modes, or eigenmodes, of the system.

A similar analysis can be performed in the Laplace do-
main in the case of an arbitrary waiting time distribution
ρ(∆t), and thus when equation (1) has an arbitrary tempo-
ral operator D. In that case, the elementary solutions zk(t),
associated to zk(s), need not be exponential functions, and
are obtained as solutions of equation (6), where the Lapla-
cian is reduced to its eigenvalue λk

zk(s) =
1

1− λk

1/ρ(s)−1

zk(t = 0)

s
, (9)

As before, any trajectory of the system can be expressed as
a linear superposition of some or all the N modes.

Characteristic decay times of eigenmodes. Despite
their non-exponential nature, a broad class of eigenfunc-
tions (9) still have a characteristic time τk describing the
asymptotic decay of zk(t) to equilibrium as e−t/τk (Fig. 1b).
We find that the decay time can be accurately estimated by
performing a small s expansion in the Laplace domain (see
Methods for the derivation and range of validity):

τk ≈ µ(|λk|
−1 + β), (10)
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Figure 3: Dominating mechanisms on temporal networks. (a) shows
the regulating potential of each mechanism according to equation (14),
either structure (µǫ−1), burstiness (µβ), or tail (τtail), for the synthetic
networks based on the empirical network structures and on the waiting
times obtained by simulating a random walk on these structures. Either
structure (brown) or tail (yellow) dominates the mixing time, also when
structure or contact times are randomized independently (b-d).

where

β =
σ2 − µ2

2µ2
(11)

is a measure of the burstiness of the temporal process based
on the first and second moments of its distribution. Bursti-
ness β equals to zero for a Poisson process (memoryless
waiting times, ρ(∆t) = e−∆t/µ/µ) and ranges from −1/2
(if ρ(∆t) is a Dirac distribution) to arbitrarily large positive
values (for highly bursty activity). This expression emerges
naturally from the dynamical process and can be viewed as
a measure of burstiness, equivalent to the commonly used
burstiness measure48.

The estimate (10) can be further tightened whenever
the distribution ρ(∆t) of waiting times contains a fat tail,
possibly softened by an exponential tail. The archetyp-
ical example is a power-law with soft cut-off, ρ(∆t) ∝
(∆t + A)−γe−∆t/τtail , a frequent model in human dynam-
ics supported by empirical evidence9,14,42. More generally
ρ(∆t) ∝ ρ0(∆t)e−t/τtail , where ρ0 is a fat tailed distribution,
that is, decreasing subexponentially. The non-analytic point
created in ρ(s) by the fat tail leads to an additional term in
the characteristic time (see Methods)

τk ≈ max(µ(|λk|
−1 + β), τtail). (12)

which can be approximated as follows, if |λk|
−1 and β have

different orders of magnitude

τk ≈ max(µ|λk|
−1, µβ, τtail). (13)

Mixing times and dominating mechanisms. Of partic-
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ular importance is the slowest non-stationary mode (k = 1),
or mixing mode, the characteristic decay time of which rep-
resents the worst-case relaxation time of any initial condition
to stationarity. We call this time the mixing time of the pro-
cess, in generalisation of the classic memoryless case, where
it is given by τmix = µǫ−1, determined by the so-called spec-
tral gap ǫ = −λ1 > 06,36. This quantity is related to the
presence of bottlenecks (that is, weak connections between
groups of highly connected nodes, a.k.a. network commu-
nities) in the network (via Cheeger’s inequality49,50). It is
approximated as

τmix ≈ max(µǫ−1, µβ, τtail). (14)

This expression shows that the asymptotic dynamics of each
mode is determined by the competition between three fac-
tors: a structural factor (µǫ−1), associated to the spectral
properties of the Laplacian of the underlying network, and
two temporal factors associated to the shape of the wait-
ing time distribution, namely its burstiness (µβ) and its ex-
ponential tail (τtail). The slowest (largest) of these factors
dominates the asymptotic dynamics (Fig. 1c).
We emphasise that the burstiness and the fat tail ef-

fects are not necessarily related46. For instance a power-law
ρ(∆t) ∝ (∆t + 1)−3 restricted to times ∆t ≤ T (sharp cut-
off), is arbitrarily bursty but has no tail at all (τtail = 0) for
large but finite T . On the other hand, the delayed power-
law ρ(∆t) ∝ (∆t − T )−4, restricted to times ∆t ≥ T + 1
has a fat tail (it decreases subexponentially, τtail = ∞) but
low burstiness β for large T , as the mean time µ increases
without bound and the variance remains constant. In the
latter case, as for all pure power laws, ρ(∆t) ∼ ∆t−γ for
large ∆t, the mixing time τmix, as τtail, is actually infinite,
reflecting that mixing, or relaxation to stationarity, occurs
only with subexponential convergence. In general, the prop-
erties of the tail of the distribution depend on the high-order
moments of the distribution, and not only on the first two
moments as captured in the coefficient of burstiness.
In Fig. 2, we study the mechanism dominating the mix-

ing time in toy synthetic temporal networks with differ-
ent waiting time distributions. Not surprisingly, structure
is the driving mechanism when waiting times are narrowly
distributed around a mean value, as in the case of Dirac
(discrete-time, Fig. 2c) and Erlang distributions (resembling
a discrete-time distribution with small fluctuations, Fig. 2d).
For those, the slowdown factor Θ = τmix/(µǫ

−1), compar-
ing the exact mixing time (computed with equation (18)
in Methods), to what it would be with memoryless waiting
times (µǫ−1), takes value in [0.6, 1]. This indicates a limited
speed up of the mixing due to negative burstiness, β < 0,
while the structure plays a major role through ǫ traversing
orders of magnitude.
On the other hand, competition between structure and

time appears in scenarios of high temporal heterogeneity.
For example, only strong communities are able to dominate
power-law waiting times (Fig. 2e-f). The effect of struc-
ture on the mixing times is otherwise removed as burstiness
(Fig. 2e) or tail (Fig. 2f) becomes the leading mechanism,
scaling the mixing times up to 14-fold in the shown config-
urations. The transitions between the different mechanisms

for a range of power-law configurations are presented in Fig-
ure 6 and Supplementary Note 1.

Model reduction. The use of coarse-graining through time
scale separation, which is the separate treatment of fast and
slow dynamics that coexist inside a system, is crucial to re-
duce the complexity of systems made of a large number of
interacting entities51–53. This procedure is well known for
differential equations like (2). In this case, it consists in ne-
glecting fast decaying modes, for example with decay time
less than a certain threshold τtresh—an approximation in-
valid for early times but acceptable for times significantly
larger than τtresh. Only the dominant modes, thus fewer
variables, are left in the reduced model. Decreasing the
threshold time, one produces a full hierarchy of increasingly
more accurate models, but also with increasingly more vari-
ables. Reduced models have a clear interpretation from the
structural point of view, as fast modes typically correspond
to the fast convergence of the probabilities of presence on
nodes to a quasi-equilibrium within a network community.
This process is followed by a slow equilibration of the pop-
ulation of random walkers trapped in each community to
a global equilibrium53–55. Each new reduced variable can
therefore be interpreted as the slow-varying probability of
presence in each community, as if it had been collapsed into
a single node. The hierarchy of increasingly more accurate
and complex reduced models corresponds in this structural
picture to a hierarchy of increasingly finer partitions into
communities. Given that the decay times of the different
modes in equation (2) correspond to the Laplacian eigenval-
ues, the k-community partition is unsurprisingly found to
be encoded into the k dominant Laplacian eigenvectors, in a
way that is decoded by spectral clustering algorithms56,57.

This methodology can be extended to more general tem-
poral operators D, where the successive decay times now
depend on the Laplacian eigenvalues and the temporal char-
acteristics, following equation (13). However, the effect of
temporality may have non-trivial consequences, as it may
limit the number of reduced models. As an extreme sce-
nario, let us consider a complex network in which the tran-
sient dynamics is dominated by the fat tail of the waiting
time distribution, such that all transient modes decay for
large times as e−t/τtail . Following equation (8), the approach
to stationarity is described by the superposition of modes,
all of the form fk(t)e

−t/τtailvk, for various functions fk(t)
that decay more slowly than exponentially, as for example
fk(t) ∝ t−γk . Among those, any mode can only become neg-
ligible with respect to another after a very long time. For all
practical purposes, the system exhibits an inherently com-
plex dynamics with no time scale separation, as the fine scale
structure (the finest being at the level of a single node) and
the large scale network communities have equal or similar
impact on the random walk dynamics. As a consequence,
only two reduced models are available, one in which all N
modes are considered, and another described solely by the
stationary state.

In general, only the Laplacian eigenvalues smaller in mag-
nitude than µ/τtail determine corresponding decay times.
Just like in classical memoryless case, they generate a hi-
erarchy of times scales and reduced models corresponding
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Figure 4: Global mixing time vs mixing times in communities. (a)
While the mixing time of diffusion on a network may be defined by the
community structure, diffusion in the communities themselves may be
regulated by structural or temporal patterns. (b) The original network
constructed from an empirical dataset is divided into communities with
a multi-resolution community detection algorithm, for different values
of the resolution parameter (See Methods). For each partition, we iden-
tify the fraction of communities larger than 10 nodes (y-axis) where
either structure or tail dominates (according to equation (14)), and plot
against the number of communities detected at each partition (x-axis).
This confirms our spectral analysis, that predicts a compact description
of the diffusion dynamics on EMA into three modes describing a prob-
ability flow between three communities, each dominated by fat tailed
waiting times. Also in agreement with the spectral viewpoint, this is not
the case for SEX or POK, unless at the level of a few-node communities.

to multiple levels of community structures. For instance,
if 5 eigenvalues are smaller than µ/τtail, thus 0 = λ0 >
λ1 > · · · > λ4 > −µ/τtail, then there is a reduced diffu-
sion model capturing the movement of the random walker
between 5 aggregated nodes. The mixing, internal to each
community and decaying as e−t/τtail , is considered instan-
taneous at large enough time scales. Coarser aggregation,
for example based on two communities and two eigenvalues
λ0, λ1, may be relevant although valid only at even larger
times. However, aggregation based on any finer partitioning
(other than into one-node communities) has the same accu-
racy as the five-community model, and thus little practical
value as a reduced model. The degeneracy of characteristic
decay times therefore limits the number of useful reduced
models. This implies that a decomposition into communi-
ties is not necessarily associated to a time scale separation,
or a reduced model, of the dynamics. For this reason, only
models incorporating 1 to 5 or N dominating modes are ad-
equate for this particular example. This smaller choice of
reduced models has ambivalent consequences. It limits the
set of resolutions at which to describe the dynamics, but also
provides a natural level for community structure (an open
problem in multi-scale community detection58–62), defined

as the finest partitioning yielding a reduced model for the
system.

Numerical Analysis. Equation (14) shows that the mix-
ing time depends in first approximation only on the mean,
variance and tail of the waiting time distribution, while other
properties of the distribution are irrelevant. With numeri-
cal simulations, we validate this approximation and provide
some quantitative intuition on the competition between the
three factors regulating the mixing. We construct synthetic
temporal networks respecting our assumptions, for example
stationarity or absence of correlations, and calibrate them
with the static structure and the inter-contact time distri-
bution observed on a number of empirical datasets. The
empirical networks used for calibration correspond to face-
to-face interactions between visitors in a museum (SPM),
between conference attendees (SPC)13, and between hos-
pital staff (SPH)16; email communication within a univer-
sity (EMA)10; sexual contacts between sex-workers and their
clients (SEX)14; and communication between members of a
dating site (POK)12 (See Methods). On these networks we
observe the waiting time distribution and the spectral gap,
which allows to compute both the exact mixing time, with
equation (18) in Methods, and its approximation in equa-
tion (14). The results, reported in Table 1, show a good
agreement, except for SPC, as analysed later in this section.

SPM SPC SPH EMA SEX POK
Θ 1.77 1.81 1.54 1.19 1.02 1.02

Exact Mixing 54 205 671 718 7,887 29,347
Approximate Mixing 61 313 664 603 7,741 28,685

Relative Difference (%) 13.0 52.7 -1.0 -16 -1.9 -2.3

Table 1: Exact vs. approximate mixing times. The table shows
that for six configurations of temporal networks the slowdown factor
Θ = τmix/(µǫ

−1), that is the ratio of the exact mixing time, calculated
from equation (18) using the simulated waiting time distribution, to the
mixing time we would have for the exponential case (Poisson process,
with same mean). The results indicate strong (SPM, SPC and SPH),
medium (EMA) and weak (SEX and POK) slowdown (Θ > 1). The
approximate mixing time, computed with equation (14), shows a good
agreement with the exact value.

Except for SEX43 and POK datasets, in the other cases
the temporal heterogeneity substantially increases the mix-
ing times (see slowdown factor Θ in Table 1). Fig. 3 shows
that in these networks the dominant factor regulating the
mixing time depends on the characteristics of the system.
Fat tails of the waiting time distribution drive the relaxation
for the cases of face-to-face contacts (SPM, SPC, SPH).
Structure however is the leading mechanism behind the net-
works corresponding to other situations of human commu-
nication (EMA, SEX, POK).
If communities are completely removed by randomising

the network structure, the link sparsity of SEX and POK
networks guarantees that structure remains dominating, as
the sparsity results in the inevitable creation of bottlenecks
for diffusion even in a random network. On the other hand,
in the EMA network, which has a relatively dense connected
structure, absence of communities leads to temporal domi-
nance (Fig. 3). Finally, when the contact times are uniformly
distributed, we recover the well-known result that network
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structure, with or without communities (Fig. 3), is the main
factor regulating the convergence to stationarity.

Because the raw empirical temporal networks do not nec-
essarily abide by our simplifying assumptions, one cannot
validate our theoretical derivations, for example, by estimat-
ing the mixing time directly from simulations on empirical
data. Indeed the periodic rythms or correlations between
successive jumps or other temporal patterns may induce ef-
fects not captured by our formula, as discussed in Table 3
and Supplementary Note 3.

Empirical data are collected during a finite time span T ,
leaving the choice between a model for ρ(∆t) that is lim-
ited to T (sharp cut-off) or extrapolated to infinite times
with a tail decay (soft cut-off). The latter may occur for
instance if we have theoretical or practical reasons to prefer
a fat-tail-based model (for instance power-law) with expo-
nential cut-off for ρ(∆t). This choice is of little impact on
the results, provided a sufficient observation time T (Supple-
mentary Note 2). When temporal patterns trump structure,
we have a self consistency condition τmix ≈ µ(ǫ−1+β) ≈ τtail
(Fig. 3) for SPM and SPH), expressing that both models lead
to similar mixing times, albeit through the different mecha-
nisms of either burstiness (sharp) or fat-tail (soft). For SPC,
self consistency is not attained. This happens possibly be-
cause the observation time of ∼ 2 days is not sufficiently
large to dilute the irregularity on the observed inter-contact
time distribution (thus in the simulated waiting times) in-
duced by the inactivity during night periods. Consequently,
this makes the tail difficult to measure as it has not clearly
emerged from a still transient behaviour, and a significant
mismatch is observed between exact and approximate mix-
ing (Fig. 3).

We evaluate the possible sizes of reduced models for the
data as follows. As the eigenvalues λk of the Laplacian
range between 0 and −2, the number of modes with struc-
turally determined decay times (−µ/τtail < λk ≤ 0) can
be roughly evaluated to Nµ/2τtail on an N -node network,
if eigenvalues are evenly spaced. A similar reasoning holds
whenever burstiness dominates the tail effect. This analysis
reveals three different scenarios in the structure-dominated
datasets considered above: i) SEX benefits from a full hier-
archy of reduced models, as µ/2τtail > 1. ii) The dynamics
on EMA can be approximated with just three modes, as-
sociated to three network communities, as 0 = λ0 > λ1 >
λ2 > −µ/τtail > λ3 > . . ., while a more detailed description,
unless at the node level, would not gain any significant ac-
curacy as further modes are all degenerate with the same
decay time µ/τtail. iii) POK exhibits a practically full hi-
erarchy of reduced models as around one third of its modes
are determined by structure, µ/2τtail = 0.33, therefore the
finest reduced model is at a few-node community level. This
spectral analysis is comforted by applying a multiscale com-
munity detection algorithm to the empirical networks, which
finds a partition into three communities dominated by fat-
tail effects for EMA, but not for POK or SEX (Fig. 4).

Discussion
We have presented a unified mathematical framework to cal-
culate the relaxation time to equilibrium in a wide variety
of stochastic processes on networked temporal systems. Our

formalism is able to refer to arbitrary linear multi-agent com-
plex systems, including linearisations of non-linear dynam-
ical models such as Kuramoto oscillators or non-Laplacian
diffusion dynamics such as SIR-like epidemics, as detailed in
Methods. It is also possible to accommodate non-uniformity
of parameters as nodes are not identical in real systems. Our
results are particularly relevant to improve the understand-
ing of temporal networks, by highlighting the important in-
terplay between structure and the temporal statistics of the
network. Our formalism is different from previous studies of
random walks on temporal networks that focus on homoge-
neous temporal patterns23 or do not account for the com-
petition between structure and time15. We emphasise that
questions related to ordering, not timing of events, such as
the number of hops before stationarity or the succession of
nodes most probably traversed by the walker, depend on the
structure alone and not of hops timing statistics. Moreover,
key mechanisms have been left aside in our modelling ap-
proach, such as the non-stationarity or periodicity of most
empirical networks19–21, and the existence of correlations be-
tween edge activations and therefore preferred pathways of
diffusion17,18,42. Important future work includes their incor-
poration in our mathematical framework, and the identifi-
cation of dominant mechanisms in empirical data.
We have shown that, in the absence of some temporal cor-

relations, the characteristic times of the dynamics are domi-
nated either by temporal or by structural heterogeneities, as
those observed in real-life systems. The competing factors
are not only observed in different classes of networks mod-
elled from empirical data but also at different hierarchical
levels of the same network represented by its different scales
of community structure. We have also identified two con-
trasting metrics of the statistics of waiting times, burstiness
and fat-tails. We have shown that they regulate the dynam-
ics on the network in different ways. In systems where tem-
poral patterns are the dominating factor, the reduced models
obtained by aggregation of communities as commonly used
in practice are not necessarily relevant, as small scale de-
tails are impenetrably intertwined with large scale structure
to form a complex global dynamics. In general, the tem-
poral characteristics impose the natural description levels of
the dynamics. Altogether, our results suggest the need for a
critical assessment of a complexity/accuracy trade-off when
modelling network dynamics. In some classes of real-world
systems, the burden of increased model complexity may not
compensate the incremental gain in knowledge, while other
systems require the fine network structure as a key ingredi-
ent to any realistic modelling.

Methods
Overview. We provide a description of multi-agent linear dynamics,
detail the derivation of approximation (12) and its range of validity,
illustrate the generality of the framework beyond random walks, and
describe the empirical data and numerical implementations. In the
Supplementary Information, we discuss on power-laws and cut-offs
(Supplementary Note 1 and Figure 6), the evaluation of waiting time
distributions in empirical data (Supplementary Note 2), and the
adequacy of our theoretical framework in empirical networks with
correlations and non-stationarity (Supplementary Note 3).

Linear multi-agent systems. We derive equation (1) for general lin-
ear networked systems, or multi-agent systems30, with an illustration
on consensus dynamics. Every node i is modelled by a linear agent
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whose internal state is initially zero and that converts an input signal
ui with an operator Fi—the so-called transfer function—into a state
signal xi = Fiui. Here, ui represents a time trajectory ui(t) or its
Laplace transform ui(s), and similarly for the state trajectory xi. The
transfer function Fi is a operator mapping input trajectories ui to state
trajectories xi, that is requested to be linear, causal (if ui(t) = 0 for all
t < T , then the same holds for xi(t)), and time invariant (shifting ui(t)
in time results in shifting xi(t)). Under those conditions, this operator
takes the form xi(s) = Fi(s)ui(s), a simple product of functions, in
the Laplace domain.

When using Laplace transforms it is customary to use time domain
trajectories that are zero for negative times. We account for the state
initial condition xi(0) = xi,0 with another input term vi that can be
for example an impulse exciting the rest state to any desired initial
condition at time zero. The agent dynamics therefore writes xi(s) =
Fi(s)(ui(s)+vi(s)). For instance if Fi is the integration operator in the

time domain, xi(t) = xi,0+
∫ t
0
ui(t

′)dt′ from the initial value at time 0,

or in other terms xi(t) =
∫ t
0
ui(t

′) + xi,0δ(t)dt
′ (for the Dirac impulse

δ(t)) then in the Laplace domain we find xi(s) = 1/s(ui(s) + xi,0); in
this case the Laplace domain operator is the multiplication by 1/s, and
vi is a Dirac impulse in the time domain, a constant in the Laplace
domain that encodes the initial condition. One can as well invert the
transfer operator, Di = F−1

i , and write dxi/dt = ui(t) + xi,0δ(t), or
sxi(s) = ui(s) + xi,0; here the Dirac impulse is seen as arising from
differentiating the discontinuous step of the state from rest to initial
condition xi,0.

Connecting agents such that the input ui(t) of agent i is a weighted
sum of other agents’ states

∑
j Lijxj(t) leads to a global dynamics

dx/dt = Lx + x0δ(t), or equivalently sx(s) = Lx(s) + x0, where L
is the matrix of entries Lij , x is the vector of states xi, and x0 the
vector of initial conditions xi,0. When L is a Laplacian (rows summing
to zero, nonnegative off-diagonal weights), this is a simple consensus
system where agents (for instance robots or individuals) change their
state (for instance position, opinion modelled as a real number) towards
an average of their neighbours’ states. With arbitrary interconnection
weights and arbitrary transfer functions, one similarly obtains

Dx = Lx+ v (15)

where D is the diagonal matrix of transfer functions F−1
i (D reduces

to a scalar in case of identical agents Fi = Fj), and v the vector of
initial condition input vi. The case when L remains Laplacian, but D
is arbitrary, describes general, higher-order, consensus systems where
the agents converge to equal values on a strongly connected network
through arbitrarily complicated internal dynamics, for example mod-
elling realistic robots or vehicles. For example, vehicles of mass m
driven by a force and friction will obey mẍ + αẋ = Lx. An abuse of
notation allows to drop implicitly the initial condition and write sim-
ply dx/dt = Lx, and more generally equation (1), Dx = Lx, instead
of equation (15) above. Discrete-time systems are recovered with a
discrete-derivative operator Dx(t) = x(t+ 1)− x(t).

Exact and approximate characteristic times for random walk-

ers. We derive the approximate characteristic times (12) of decaying
modes associated to a general random walk. The dominant mode as-
sociated to λ0 = 0 is the stationary distribution, unique for an ergodic
random walk. The relaxation time to the stationary distribution, gen-
eralising the well-known mixing time of Markov chain theory36, is the
characteristic time of the slowest decaying mode after the stationary
mode, usually associated to λ1, as we suppose here. An example of a
case when λ1 is not associated to the mixing mode, but rather λN , is
the discrete-random walk, where the distribution is a Dirac distribu-
tion at µ, with zero variance, and the network is bipartite or close to
bipartite.

The characteristic decay time of a time-domain function f(t) ∼

e−t/τdecay can be found in the Laplace domain, as f(s) is defined and
analytic over all s of real part larger than −1/τdecay, but undefined or
non-analytic in at least one point s of real part −1/τdecay. For exam-

ple the Laplace transform of e−t/τdecay is 1/(1+ τdecays), with pole at

s = −1/τdecay, and the Laplace transform of (t + 1)−γe−t/τdecay for
γ > 1, is defined, but non-analytic, at s = −1/τdecay.

The eigenfunction zk(t) associated to λk is the solution of
D(s)zk(s) = λkzk(s) + D(s)zk(t = 0)/s, derived in the text as equa-
tion (6), with D(s) = 1/ρ(s) − 1 and L replaced with λk. The decay

time of zk(t) is found if we find the right-most non-analytic point of

zk(s) =
1

D(s)− λk

D(s)

s
zk(t = 0), (16)

derived in the main text as equation (9). Note that for λk 6= 0, the
singularity in s = 0 is only apparent as D(s) = µs − (σ2 − µ2)s2/2 +
. . . This expression is non-analytic in s in exactly two circumstances:
i. D(s) is non-meromorphic in s, meaning that it cannot be defined
analytically in a punctured neighbourhood of s (a neighbourhood of s,
minus s) or ii. D(s) = λk.

Case i. happens when ρ(s) is non-meromorphic in s. A typical ex-
ample is when ρ(∆t) ∝ ρ0(∆t)e−∆t/τtail , where ρ0(t) is a fat-tailed
distribution, in other words decreases more slowly than any exponen-
tial, leading to a non-meromorphic transfer function—a rare occur-
rence in standard systems theory. The non-analytic point is precisely
s = −1/τtail.

Case ii. commands to solve the equation

ρ(s) = 1/(1 + λk), (17)

whose solution sk enters the expression for the exact characteristic
decay time, combining the two cases:

τk = max(−1/sk, τtail), (18)

which can be approximated from an expansion of ρ(s). Note that
ρ(s) = 1−µs+(µ2+σ2)s2/2−· · · is also called the moment generating
function, whose successive derivatives around s = 0 are the moments
of the distribution, up to sign. We consider the Padé (that is, rational)
approximation:

ρ(s) ≈
2µ+ (σ2 − µ2)s

2µ+ (σ2 + µ2)s
, (19)

equivalent for small s to a second-order Taylor approximation in terms
of accuracy. This approximates the transfer function D−1(s) = F (s) =
ρ(s)/(1− ρ(s)) as

F (s) ≈
1

µs
+ β, (20)

where the adimensional term β = σ2
−µ2

2µ2 takes its minimum value at

−1/2 for the discrete-time random walk, zero for a memoryless process,
and arbitrary large values for highly heterogeneous distributions. It is
therefore a suitable measure of the burstiness of the process42,48. Such
a transfer function is called Proportional-Integral, a common class in
systems theory29. The equation D(s) = λk is approximately solved by
1/sk ≈ µ(|λk|

−1 + β). A possible non-analytic point at s = −1/τtail
caps the characteristic decay time of eigenfunction k to

τk ≈ max(µ(|λk|
−1 + β), τtail). (12)

If λ−1
k and β are of different orders of magnitude, one may further

approximate as

τk ≈ max(µ|λk|
−1, µβ, τtail). (13)

in which the influence of the fat tail, the structure and the burstiness
are decoupled. The mixing time is associated with λ1. Fig. 5 shows
that typically half of the modes have structurally determined decay
times, namely those with positive 1 + λk, if eigenvalues are uniformly
spaced between 0 and −2, in apparent contradiction with the back of
the envelope calculation Nµ/2τtail proposed in the main text, which
can reach N . This is a consequence of the progressive degradation of
the Padé approximation for larger s (larger eigenvalues).

Even for small eigenvalues, for example for λ1 = −ǫ, the approxima-
tion (12), thus also equation (14), has a limited range of validity. The
underlying Padé approximation (19) is valid for small enough s, while
for large enough s the exact solution is τtail. The small s behaviour is
captured by the first and second moments, and the large s behaviour,
in other terms the tail τtail, determines the growth of high order mo-
ments. This double approximation based on high and low moments
may explain why the approximation is successful on diverse data sets
(see Fig. 4a). However it is likely to fail precisely when the intermedi-
ate moments (third, fourth, etc.), not covered by the approximation,
dominate the behaviour of the moment generating function ρ(s). This
occurs for instance in the case of a power law of exponent > 3 with
sharp cut-off at a large time: while the first and second moment remain
bounded and the tail is absent, the intermediate moments grow with-
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Figure 5: The exact and approximate characteristic times of a waiting

time probability distribution. Computation of the characteristic time
of the distribution ρ(s) ∝ ρ0(t)e−t/τtail (blue curve) with a fat-tailed
ρ0 and a non-analytic point at s = −1/τtail. The exact characteristic
decay times τk are found from the eigenvalues and the blue curve, fol-
lowing equation (18). In this example only three modes, including the
stationary, are influenced by the structure of the network, while the other
modes collapse to a single decay time τtail. The dynamics can thus be
approximated by three modes, typically describing aggregate probabil-
ity flows between three network communities. The approximate solution
equation (12) follows the red curve, constructed from the Padé approx-
imant ρapprox, see equation (19). As eigenvalues λk change from 0 to
−2, the values 1/(1 + λk) can take any real value larger than 1 or less
than −1.

out bound with the cut-off time. Such distributions are rarely used
as models for real-life data however. On the other hand, numerical
experiments showed excellent accuracy for a wide range of power-laws
with soft cut-off.

Beyond random walks. Random walks are many times formally
identical to the asymptotic behaviour of non-linear dynamical models,
and also serve as a prototype for a wider class of dynamics that includes
epidemic spreading. For example, power networks may be modelled as
a network of second-order Kuramoto oscillators33 whose state in every
node is a phase (an angle) θi influenced by its neighbours

Iθ̈i + αθ̇i = ω +
∑

j

Lij sin(θj − θi), (21)

where I is the inertia, α the friction, and ω describes the natural fre-
quency of the oscillation. In this construction, we assume identical pa-
rameters for each node. After the change of variables φi = θi − ωt/α,
the linearisation around the synchronised equilibrium (φi = φj is con-
stant for all times) is written

I∆φ̈i + α∆φ̇i =
∑

j

Lij∆φj , (22)

which is formally identical to a consensus equation structured by the
Laplacian L33. Hence it supports the same formalism as random walks,
after the operator D is changed accordingly. The linear dynamics as-
sociated to the asymptotic behaviour is often a crucial first step in
understanding the non-linear dynamics of the network at some time
scale.

Another class of dynamical systems where our results apply are lin-
ear dynamics given by equation (1), but where the interaction matrix
L does not have a Laplacian structure, and where the dominant eigen-
mode is not necessarily stationary. This is the case, for instance, for epi-
demic processes where infected individuals diffuse on a meta-population

network, where nodes are large populations (cities, etc.), and the in-
dividuals may either reproduce (by contamination of a healthy indi-
vidual) or die (or recover). One classic model for this process is a
multi-type branching process. This is akin to a random walk whose
number of walkers is not preserved in time, as random events are not
limited to hops but also death or split. This kind of model also emerges
as the linearisation of classic compartmental epidemic models such as
SI or SIR41. The waiting time between two consecutive events may also
be described by an arbitrary distribution ρ(∆t). The expected number
of walkers in time may again be described by an equation Dx = Lx,
where D depends on ρ in the same way as before, but now L is no
more a Laplacian, and in particular may have negative and positive
eigenvalues. If the epidemics is supercritical, then the system is unsta-
ble. This implies the existence of unstable eigenmodes (λk > 0) where
the number of walkers grows exponentially as et/τk , with τk now ap-
proximated by µ(−λ−1

k − β). In this case, the fat tail of the waiting
time distribution does not play any role for the unstable eigenmodes.
From this formula, we see that while the decay of stable eigenmodes
tends to slow down due to burstiness and possibly fat tail, the unstable
eigenmodes are boosted by burstiness. As a consequence, it leads in
all eigenmodes to a long-term increase of the infected population due
to the temporal heterogeneity.

Numerical analysis. We use six datasets of empirical networks: face-
to-face interactions between visitors in a museum (SPM), between con-
ference attendees (SPC)13, and between hospital staff (SPH)16; email
communication within a university (EMA)10; sexual contacts between
sex-workers and their clients (SEX)14; and online communication be-
tween members of a dating site (POK)12 (See Table 2).

SPM SPC SPH EMA SEX POK
N 72 113 75 3,186 11,416 28,295
L 6,980 20,818 32,424 309,120 33,645 528,869
δt min min min hour day hour

T (days) 1 2.5 4 82 1,000 512
µ 15.4 80.5 288 61.5 92.9 1,205
σ 30.8 143 502 119 121 1,634
ǫ 0.505 0.709 0.66 0.102 0.012 0.042

τtail 61 313 664 207 98 1,755

Table 2: Summary statistics of the empirical networks. For the largest
connected component of the empirical networks used in this study we
display the number of vertices (N); number of links (L); temporal res-
olution used in the simulations (δt); total duration of the network data
(T ); average (µ) and standard deviation (σ) of waiting times for the
simulated random walk, in same unit as δt; and the spectral gap of the
original unweighted network (ǫ).

The synthetic networks used in Fig. 2 are formed by 1000 nodes
and 10000 links equally divided into two groups, initially disconnected
(rewiring probability equal to zero). Within each group, pairs of nodes
are formed between uniformly chosen nodes. A fraction of links are
rewired to weaken communities. Rewiring consists of uniformly choos-
ing two pairs of nodes and swapping the pairs. Rewiring probability
equal to one removes any significant community structure of the net-
work. Communities refer to groups of nodes with more connections
between themselves than with nodes at other groups. The spectral gap
is calculated for each network configuration. The exemplified waiting
time distribution are ρ(∆t) = exp(−∆t/µ)/µ with µ = 1 (exponen-
tial); = 1.0 (discrete); ∝ ∆tk−1 exp(−k∆t/µ) with k = 3 and µ = 3
(Erlang law); ∝ ∆tγ with γ = 2 and cutoff at T = 1000 (power-law
with sharp cut-off); ∝ ∆tγ exp(−∆t/τtail) with γ = 3 and τtail = 20
(power-law with soft cut-off).

The synthetic temporal networks used in Figs 3 and 4 are con-
structed by using the unweighted version of the empirical networks as
underlying fixed structures. The randomised networks used in Fig. 3
are obtained by uniformly selecting two pairs of nodes of the original
network and then swapping the respective contacts. In the dynamic
network, a node and its links alternate between inactive and active
states. In order to fit this synthetic temporal network to our theo-
retical assumptions, we assume that all links of a node are activated
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simultaneously, the system is time-invariant (no daily or weekly cy-
cles), exhibits no temporal correlations between successive jumps and
node activation times are sampled from the same distribution of inter-
activation times (node homogeneity). The active state of a node and
its links lasts for one time step δt and then the node and links re-
turn to the inactive state. The distribution of inter-activation times
(a.k.a. inter-contact times) corresponding to the original times is ob-
tained by pooling the times between two subsequent activations of the
same node, in other words two consecutive contacts established be-
tween the node and its neighbourhood, as observed in the empirical
networks20,43. The randomised times in Fig. 3 correspond to activa-
tion times sampled from exponential distributions with the same mean
as the corresponding empirical cases. To obtain the waiting time es-
timates presented in Fig. 3, we simulate a random walk in these syn-
thetic networks. A random walker starts in a randomly chosen node.
As time goes by, a walker remains in the node until its new activation
and then hops to a uniformly chosen neighbour. The waiting time is
thus the time elapsed between the arrival and departure of the walker
in a node. We simulate a single random walker and let it hop 300,000
times, starting at 10 uniformly chosen nodes, hence we collect a total
of 3 million points for the statistics of waiting times. Besides that, for
each starting configuration, we discard the initial 5,000 hops to remove
the stochastic transient. The waiting time distribution observed in the
simulations provides us with estimates of τmix, µ, σ

2 and τtail. The
mixing time τmix is estimated from the distribution expressed in the
Laplace domain through equation (18) (for k = 1, the mixing mode).
This equation is exact since the synthetic data has been constructed
so as to satisfy the conditions of validity under which it is proved. One
could also estimate the mixing time from the convergence of random
trajectories starting in a definite node towards stationarity, however
this exercise is computationally demanding. The exponential tail de-
cay time τtail is estimated using least-square fitting by a line in a lin-log
plot of the second half of the waiting time distribution data, thus be-
tween Tmax/2 and Tmax, where Tmax is the largest observed waiting
time. Indeed an exponential decay translates into a straight line in a
lin-log plot, the slope of which determines the decay time. The choice
of the interval [Tmax/2, Tmax] to perform a linear fit is steered by the
want for a simple criterion, uniform across datasets. This may be in-
appropriate for datasets where the observation time forces a cut-off on
the datasets before the tail decay has had time to emerge, for instance
in SPC, where a more careful definition of tail, for example on a smaller
interval, may be more adequate.

Let us interpret some elementary observations that can be made on
Fig. 3. From a) to b), τtail is only approximately preserved because
it is recomputed from the simulated waiting time distribution on a
different network, thus a slightly different distribution, even though
the inter-contact times are sampled from the same distribution in both
panels. In c) and d) the inter-contact time distribution is memoryless
(exponential), thus identical to the waiting time distribution regardless
of the network, and τtail coincides with µ. From a) to c), the quantity
µǫ−1 drops sharply, although ǫ is clearly preserved as the network is
unaltered. The reason is that although the mean inter-contact time is
preserved by construction, the mean waiting time also depends on the
variance of the inter-contact times, in virtue of the bus paradox, and
this variance is clearly strongly affected by the time randomisation.
The drop in µǫ−1 from b) to d) is associated to the same mechanism.

To identify the community structure of the empirical networks in
Fig. 4, we use the partition stability method55 using a freely available
implementation63. The method uses a simple diffusion process such
that different communities are detected at different time scales accord-
ing to the potential of the communities to trap the diffusion at the
given time scale. Optimal communities have been derived for values of
the resolution parameter decreasing from 102, 101.95, 101.9, 101.85, . . .,
with increasingly fine partitions. After identifying the relevant commu-
nities, we discard the inter-community links and calculate the spectral
gap of each individual community of at least 10 nodes.
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SUPPLEMENTARY NOTE 1
We extend the discussion on the main text on power-law distribution
of waiting times and show results for various values of parameters, in-
cluding the transition thresholds between dominating factors. Power-
law functions represent a particularly important family of probability
distributions. Although many times power-laws are not the optimal
statistical probability distribution to model waiting times of human
interactions, they properly capture both aspects of realistic distribu-
tions, i.e. fat tails and burstiness, in a single functional form, and is
in contrast to standard models of homogeneous (e.g. exponential) and
regular times.
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Figure 6: Slowdown factor and mixing times for power-law distribu-

tions of waiting times. Panels (a,b) correspond to strong clustering
(fixed ǫ = 0.05) and (c,d) to fixed γ = 3 for soft cutoff; and (e,f)
correspond to fixed γ = 2 for sharp cutoff. Black curves divide the
phases where either structure (topology), or burstiness, or tail dom-
inates. The slowdown factor is the ratio between the mixing time of
the power-law distribution of waiting times and of the exponential dis-
tribution (Poisson process). The value of the mixing time is taken as
max(µ(ǫ−1 + β), τtail), always within 5% of the exact value as com-
puted with equation (18) of the main text.

As presented in the main text, in the extreme case of waiting times
following a pure power-law, i.e. τtail = ∞, infinite mixing time occurs
irrespective of the network structure, as convergence to stationary state
takes place at subexponential rate. This can be shown directly as after
any time t, there will be a probability 1−

∫ t
0
ρ(r)dr, polynomially de-

creasing, that the random walker has not moved at all from its initial
node, making exponential convergence to stationarity impossible. If a
soft (exponential) cutoff is added so that ρ(t) ∝ (t+1)−γ exp(−t/τtail),
the slowdown is either driven by the tail or by the structure (Fig-
ure 6b,d). Above a certain ǫ∗, the tail completely determines the mix-
ing time, which is not surprising considering that large ǫ corresponds to
the absence of bottlenecks or strong clustering. Below this threshold,
for instance at ǫ = 0.05 (Figure 6a,b), there is a strong dependence
on the structure for a range of exponents γ and τtail. In this scenario,
burstiness never dominates, and the power-law exponent γ does not
play a direct role other than influencing µ. Nevertheless, if the distri-
bution of waiting times is modelled by a power-law with sharp cutoff,
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e.g. ρ(t) ∝ (t + 1)−γ for 0 ≤ t ≤ τsharp, and ρ(t) = 0 for t > τsharp,
there is no tail, and only burstiness and structure compete to regulate
the slowdown (Figure 6e,f).

These simple theoretical models allow to validate the accuracy of the
approximation given by equation (12) in the main text for the mixing
mode, τmix ≈ max(µ(ǫ−1 + β), τtail), to estimate the mixing time, as
compared to the exact formula, see equation (18) in Methods B (error
< 5% on the examples of Figure 6). They also allow to illustrate
the fact that burstiness (dominating sharp cut-off power-laws) and fat
tails (dominating soft cut-off power-laws) are independent features of a
distribution of waiting times, as already exemplified in the main text.

SUPPLEMENTARY NOTE 2
An empirical distribution of waiting times necessarily vanishes after
some observation time T . Assume that the actual distribution is
ρ(∆t) = αρ0(∆t)e−∆t/τtail , where ρ0(∆t) is a fat tailed distribution
and α a normalising constant. Assimilate the empirically observed dis-

tribution ρT to the truncation ρ(∆t)/
∫ Tobs
0

ρ until ∆t = T and zero
for ∆t > T . Then as T grows to infinity, the moments of empirical and
actual distribution will coincide. As for the empirical Laplace trans-
form ρT (s), it is defined and analytic on the whole complex plane. We
know that the Laplace transform of the actual distribution ρ(∆t) can-
not be extended to the left of s = −1/τtail. What happens to ρT (s)
around those values? Choosing s = −1/τtail − ∆s, we write ρT (s) =∫
ρT (∆t)e−s∆td∆t. If assume for simplicity ρ0(∆t) to be decreas-

ing, then a simple calculation yields ρT (s) ≥ αρ0(T )(e∆sT − 1)/∆s.
Therefore ρT (s), for s even slightly below −1/τtail, increases exponen-
tially with T , thus is practically vertical for a high enough value of
T . Therefore whenever a mode has characteristic time τk = τtail, the
computation of τk from the empirical distribution and equation (17-
18) in Methods B, ρT (−1/τk) = (1+ λk)

−1, is expected to be close to
τk ≈ τtail as well. We deduce that provided a high enough observation
time, the modelling of the distribution by a truncated distribution over
the finite interval or by the extrapolation to a form ρ0(∆t)e−∆t/τtail

is irrelevant, as both will lead to the same conclusions.
This fact leads to an interesting self-consistency condition as if the

observation time is sufficiently long, we find that both the truncated
model ρT (via the equation ρT (−1/τmix) = (1 − ǫ)−1) or the full-
timeline model ρ (leading to τmix = τtail for fat-tail dominated net-
works) conclude to the same mixing time. If in addition, the approxi-
mation of equation (12) of the main text is valid for the mixing mode
(k = 1), we find the equation

τmix ≈ µ(ǫ−1 + β) ≈ τtail, (23)

indeed approximately verified by the face-to-face networks dominated
by fat tail effect (see Fig. 3), especially SPM and SPH. A strong dis-
crepancy between the sharp cut-off and full timeline model may reveal
an excessively short observation time, insufficient for a reliable estima-
tion of the mean, variance and/or tail of the distribution of waiting
times, as is the case for SPC.

SUPPLEMENTARY NOTE 3
The mathematical framework proposed in the main text adresses the
combined effect of the network topology and the distribution of wait-
ing times. Temporal networks obtained from real data however con-
tain a number of temporal correlations and patterns, such as non-
stationarity19–21 and causality18, or structure-time correlations42,47.
A careful analysis of the various patterns and correlations present in
real data is out of the scope of our analysis. In order to contrast the
limitations of our theory to the dynamics in real settings, we test our

estimations by simulating a random walk dynamics directly on the em-
pirical network such that the effect of all correlations and patterns of
both time and structure are captured.

In the empirical temporal network each link has a time-stamp to in-
dicate exactly the time it is active (being inactive at other times). The
link to empirical temporal networks is done by performing a random
walk on the time-stamped empirical data. We start a large number of
walkers on each node at t = 0. As time goes by, a walker remains in
the node until one of its links becomes active and then jumps to the
corresponding neighbour. The potential paths for the random walk are
entirely defined by the empirical sequence of contacts (capturing tem-
poral and temporal/structure correlations), meaning that not only the

δt µ σ τtail ǫ β τmix M
SPM min 3.3 15.7 48.8 0.142 10.8 59.0 Tail
SPC min 16.2 101.2 182.5 0.073 19.0 529.8 Burstiness
EMA hour 14.5 59.4 177.4 0.074 7.9 310.4 Structure
SEX week 18.0 32.2 20.2 0.012 1.1 1519.8 Structure

Table 3: Summary statistics of the empirical networks. Temporal res-
olution (δt); mean (µ) and standard deviation (σ) of the waiting time
distribution; τtail is the least-square estimate of the tail characteristic
time of the cumulative distribution of waiting times; ǫ is the spectral
gap for the aggregated weighted network; τmix is formally computed as
max(µǫ−1, µβ, τtail) in analogy with the main text’s case, even though
this is not necessarily representative of the actual mixing time in this sit-
uation; and M refers to the regulating mechanism that determines τmix.
We use the largest connected component.

inter-contact time distribution is regulating the diffusion. This is in
contrast to the experiments presented in the main text, where the dy-
namic networks had the empirical structure (unweighted) fixed and the
activation times of nodes were sampled from the empirical inter-contact
time distribution (this process generates uncorrelated activation times
following the empirical inter-contact time distribution). The spectral
gap is calculated using the weighted version of the network, therefore
inhomogeneities in the weight-topology are captured. The distribution
of waiting times of the walkers provides us with empirical measures of
µ, σ2 and τtail. We apply this process to four of the datasets studied in
the main text: face-to-face interactions between visitors in a museum
(SPM) and between conference attendees (SPC)13, to email commu-
nication within a university (EMA)10 and to sexual contacts between
sex-workers and -buyers (SEX)14 (see Table 3). We underline that
the two experiments, from this section and from Fig. 3, use different
methodologies, as the latter removed correlations or non-stationarity,
but also weights on the network (allowing to perform structure ran-
domisation in Fig. 3b,d – main text – conveniently). Therefore they
are not supposed to deliver the same temporal or structural character-
istics, except in order of magnitude. Moreover the mixing time in the
diffusion process involving all correlations is not necessarily given by
the formula τmix ≈ max(µǫ−1, µβ, τtail), which should be updated to
account for event-event correlations, daily or weekly periodicity, etc.
Nevertheless among those three mechanisms included in the formula,
we notice a domination of waiting time effects, tail or burstiness in the
SPC and SPM datasets. On the other hand, structural bottlenecks
seem to be strong enough to dominate waiting times effects for EMA
and SEX datasets, consistently with the experiment results in Fig. 3
in the main text. In future work, it would be interesting to check
if supplementary correlations may reverse the respective strength of
structure and waiting time effects.


