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1. Introduction. We consider the so-called backward equation of diffusion
theory

d2 d
(1.1) Ut{t, x) = üu{t, x),       Q = a{x)-\- b{x) —

dx2 dx

in a finite or infinite interval ri<x<r2. Recently [2] the theory of semi-
groups of transformations was used to formulate the integration problem
and to define the notion of lateral conditions. It will now be shown that the
semi-groups constructed in [2 ] permit us to describe the totality of all sto-
chastic processes connected with (1.1). To each there corresponds a forward,
or Fokker-Planck, equation. It reduces only in simplest cases to the familiar
"adjoint"

did \
(1.2) vt = ü*v{t,x),        ii* = — \a{x) — + b{x)-\ ,

dx {        dx )

but the general Fokker-Planck equation is not a differential equation.
The present paper consists of two almost independent parts. Its main

purpose is a probabilistic discussion of the general diffusion process in one
dimension. An informal description of such processes is given in §2, which
may be read independently of this introduction.

First it is necessary to give a strict definition of the notion of a diffusion
process obeying (1.1). This is done in §3 in a formal way convenient for the
application of semi-group theory. To each diffusion process there corresponds
a semi-group of transformations. In [2] we investigated the totality of all
such semi-groups transforming functions which are continuous in [ru r2] into
functions of the same type. In §4 it is shown that each such semi-group yields
a diffusion process. However, as is shown in §13, the semi-group associated
with a diffusion process may transform a continuous function into a function
which is discontinuous at the boundaries. It is for this reason that the semi-
groups constructed in [2] yield the most general diffusion process in the
open interval (rx, r2), but not in [ri, r2]. For the description of the latter, a
rather obvious generalization of the construction of [2] is required.

In §5 the probabilistic background of diffusion processes is discussed. Prob-
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2 WILLIAM FELLER [July

ably it soon will be possible to define diffusion processes as Markov processes
with continuous path functions. Even the present discussion makes it clear
why it is unavoidable to start with the backward equation although the for-
ward equation is intuitively and physically more natural.

These preparations are not required for a formal understanding of the
following, and main, part of the paper (at least if manipulations with Laplace

'transforms are accepted at face value).
In the probabilistic part we make the (unproved but safe) assumption

that the path functions Xit) ("the position of the particle at time t") are
continuous except, perhaps, at the boundaries (which may be at infinity(2)).
There exists then a well-defined probability that a path, starting at x, will
reach a point p2 without first crossing px.

In §6 these first passage probabilities are derived from the familiar renewal
principle. For points in the interior they are the same for all processes obeying
(1.1). In other words, (1.1) determines a class of processes which are not dis-
tinguishable as long as no boundary is reached.

Now the interval (/], r2) may be finite or infinite, and the diffusion equa-
tion (1.1) may be singular in the sense that the coefficients may be un-
bounded or may vanish near r¡. Accordingly, the first passage probabilities
lead to a classification of accessible and inaccessible boundaries.

With this notion we can proceed to the main purpose of the paper,
namely a probabilistic derivation and description of the diffusion processes con-
nected with (1.1). An informal summary is given in the next section.

2. Qualitative description of the processes. In order that there exist one
and only one process satisfying (1.1) it is necessary and sufficient that both
boundaries be inaccessible; that is, the probability that either boundary be
reached within a finite time interval must be zero. A typical example is
ut = uxx in (—00, + »).

If at least one boundary is accessible, then there are infinitely many
processes obeying (1.1). A typical example is the case where r¡ is finite and
a(x) and &(x) are continuous at r¡ with a(r,) y^O.

The "absorbing barrier" process is defined by the rule that the process
terminates at the moment when a boundary is reached.

Next simplest is the instantaneous return process, which is analogous to a
denumerable Markov chain process discussed by Doob [l]. In this process,
whenever the boundary r¡ is reached, an instantaneous return into the in-
terior is effected and the process starts afresh (independently of the past
history) from a point x¡ which is a random variable with distribution func-
tion piix). In other words, if Xis)-+r¡ as s—*#*-, then one puts by definition
Xit) —x¡, where

(2) This is done only for the purpose of a probabilistic interpretation of the quantities
which appear in the formulas derived in [2]. If this interpretation is granted, the main part of
the paper (described in §2) becomes independent of the preceding.
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1954] DIFFUSION PROCESSES IN ONE DIMENSION 3

(2.1) Pr {xj ^ x] = Pj{x), n < x < r2.

The process now starts from scratch.
More generally, there may be a finite sojourn time associated with each

boundary, that is, one may have X{s) =r¡ for a finite time interval / = s <í+ T.
The Markovian character of the process requires that T be a random variable
with

(2.2) Pr {T> /} = exp (-//<ry)

where try is a positive constant. (The limiting cases ay = 0 and cry= <» cor-
respond to the instantaneous return process and the absorbing barrier process,
respectively.) Moreover, T must be independent of the past. We define now
the following set of rules for the

Elementary return process. If at time t the boundary r¡ is reached^),
then X{s) =r¡ for t^s<t-t-T where T is a random variable independent of the
past and distributed according to (2.2). At time t+T a jump occurs to a point
Xj in the interior or to the boundary (4) rk according to the rule

Pr [X{t+T) =rk\ = pik,

Pr [n < X{t+ T) g xj = TfPiix),

and the process starts from scratch. Here

(2.4) Pn + Pi2 + r¡ ¿ 1,

pjie^O, Ty^O, crySïO; and pj{x) are monotonie functions with pj{x)—»0 ai x—>ri
and pj{x)—>l as x—>r2.

(The difference between the two sides in (2.4) accounts for the possibility
of the process terminating or, in physical language, of masses disappearing.)

It should be noticed that the absorbing barrier process and the instan-
taneous return process take place on the open interval (ri, r2) ; whereas the
elementary return process involves the two boundaries as well. (The elastic
and reflecting barrier processes below are also processes in {ru ri).)

In §9 we construct the Laplace transforms of the transition probabilities
of such a process from probabilistic considerations. In abstract terminology,
they represent the resolvent of a semi-group, and they can be identified with a
class of resolvents constructed in [2].

While the elementary return process obeys the backward diffusion equa-
tion (1.1), the corresponding Fokker-Planck equation is not (1.2). It has been
derived in [2], and in §10 it is shown that its obvious physical interpretation

(3) I.e. if X(i)-*r; as s-*t- and rj <X(s) <r2 for t-e<s<t.
(4) The possibility of a transition from r¡ to itself is introduced in order to arrive formally

at the most general boundary condition of [2]. A simple calculation shows that the same set
of rules can be reformulated with pkk = 0 and a modified mean sojourn time n. The correspond-
ing boundary conditions are analytically equivalent to ours.
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4 WILLIAM FELLER [July

essentially restates our probabilistic definition of the process.
We come next to a class of processes associated in classical diffusion

theory with elastic or reflecting barriers. A direct description of the properties
of the path functions Xit) of such processes and their behavior near the
boundaries is very desirable. It represents an unsolved problem even in the
simple case of ut = uxx. (The term "reflecting" with its implication of velocities
is misleading.)

The elementary return process represents the most general diffusion proc-
ess in (ri, r2) except if at least one boundary is regular in the sense of [2].
In this case we obtain analogues to the classical elastic and reflecting barrier
processes by a direct passage to the limit from an instantaneous return process.
When the boundary r,- is reached, with probability 1 — 77 we let the process
terminate, and with probability r¡ we let it recommence from a point p,- near
r¡. (In other words, pjix) has mass one concentrated at p¡.) We now let
Pj-^Tj and at the same time t¡—*\ in such a way as to keep certain absorption
probabilities constant (cf. §11).

If the boundary r¡ is regular, this limiting procedure is shown to lead to
the class of processes which, in the terminology of [2], depend on regular
Green functions. For them, and only for them, does the true Fokker-Planck
equation reduce to (1.2). This limiting procedure sheds some new light on the
elastic barrier processes, but does not give a measure-theoretic description of
the path functions near the boundaries.

For the elastic barrier process one can again define the probabilities that
the process terminates at a boundary r¡, but this event must now be dis-
tinguished from the event of reaching the boundary.

The most general diffusion process associated with semi-groups (cf. [2]) is
now obtained by starting from an elastic barrier process and superimposing
on it the elementary return process in the same way as we have before done
with the absorbing barrier process. In other words, when the elastic barrier
process in itself would terminate at r¡, we let the process recommence ac-
cording to the set of rules described above.

We can calculate the Laplace transforms of all these processes directly.
In this way we get a new, and independent, derivation of all the resolvents of the
semi-groups constructed in [2], However, we require the results of [2] for
the derivation of the Fokker-Planck equations and of the boundary condi-
tions. Moreover, only the semi-group methods of [2] give us the assurance
that we have obtained all diffusion processes of a well-defined class. In par-
ticular, the diffusion processes constructed in §12 represent the most general
type of diffusion process in the open interval (»_, r2). For the closed interval we
have no such complete result, since the associated semi-group may take a
continuous function into a discontinuous one. The nature of the most general
process appears clear enough (§13), and explicit formulas for the transition
probabilities can easily be calculated by the procedure of §9. However, we
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1954] DIFFUSION PROCESSES IN ONE DIMENSION 5

shall not go through the formalities of this derivation nor do we give a formal
proof that we are actually dealing with the most general process.

3. Definitions. We shall be concerned with Markovian processes on an
interval E which may be finite or infinite, open, half-open, or closed. The
end points of E will be denoted by ri and r2, where — °o = rx <r2 = °o. Let X{t)
represent the path function of the process. We assume that a transition prob-
ability

(3.1) P{1, x;t, r) = Pr \X{t) Er| X{t) = x]

is defined for all xEP, all Borel sets T CE, and 0 <t<r < °o. We do not require
that E has assigned probability one, that is, we permit that

(3.2) P{t, x;t, E) g 1.

The difference between the two sides is the probability that the path func-
tions with X{t) =x are defined only in a subinterval of [t, r]. We assume that
the transition probabilities are stationary, that is

(3.3) P{t, x; r, T) = P{t - t, x, r),

with P{t, x, T) defined for all t>0.
For simplicity (8) we introduce the continuity requirement that for each

xETi and each neighborhood Y of x

(3.4) P{t, x, r)-*t, Ü0.
The Markovian character of the process requires the validity of the

Chapman-Kolmogorov identity

(3.5) P{t + s, x, r) =  f P{t, x, dy)P{s, y, T)

for /, 5 > 0. Conversely, suppose that P{t, y, V) is, for fixed T, Borel measurable
in both t and x and, for fixed {t, x), a probability measure on the Borel set of E,
and also that (3.5) holds. Then P{t, x, T) can serve as the transition probabil-
ity of a Markovian process in [ri, r2]. All probability relations in the space
of path functions X{t) are then essentially uniquely determined (6) by the
knowledge of P{t, x, V) and the initial probability distribution

(3.6) M(D = Pr |ï(0)er|.
In particular

(3.7) Pr {X{t) E r] =  f u{dx)P{t, x, V) = V{1, T).
J E

(s) For weak continuity properties which always hold cf. [3]. In the present case (3.4)
actually follows from the assumed form of the infinitesimal generator.

(6) For the qualification "essentially" cf. Doob, Stochastic processes, New York, Wiley, 1953.
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6 WILLIAM FELLER [July

Note. If P = [ri, r2] the event Xit) =r¡ may have a positive probability. Even
if P = (/i, r2), the range of Xit) may coincide with [rlt r2] but the event
Xit) =r¡ will have probability zero for each fixed t. When we refer to a process
in the open interval, we refer to the transition probabilities, and only in this
wide sense to Xit).

The terminology is not well established, and we shall use the term
"process" also to denote the whole class of individual processes with the
same transition probabilities P(¿, x, V) and arbitrary initial distributions.

In diffusion theory one usually starts from the assumption that P(i, x, T)
has a probability density pit, x, y) which for fixed y satisfies the backward
equation (1.1). (Cf. §5.) Now the concept of integrating (1.1) as suggested
by the semi-group theory leads to a definition of diffusion processes more
adapted to our purposes. It is slightly more general, but the main advantage
is a considerable simplification of the analytical apparatus.

In effect, the application of semi-group theory to differential equations
amounts to a justification of formal operations with Laplace transforms.
Classically, the function

(3.8) »it, x) =  f fiy)Pit, x,dy)

is supposed to represent the appropriate solution of (1.1) which reduces to
fix) as I—*0. Its Laplace transform

/► CO

e-^uit, x)dt, X > 0,
o

is supposed to be a solution of the ordinary differential equation

(3.10) \P(x) - OF(x) = fix), ri < x < r2.

In order to avoid further explanations and discussions which are ir-
relevant to the present paper, we shall start with these properties as our
basic definition. This procedure is not elegant, but is simplest for our pur-
poses (and becomes more acceptable when translated into semi-group lan-
guage).

Definition. A Markovian process on E will be said to obey (1.1) if it pos-
sesses transition probabilities satisfying (3.4) and (3.5), and if for every function
f which is continuous and bounded on E the Laplace transforms (3.9) satisfy
(3.10)0.

A process will be said to be of the diffusion type if it obeys some equation of
the form (1.1).

(7) Note that if E is closed, we require/ to be continuous at the end points, but (3.10)
puts a restriction only in the interior. This makes it possible that F{x) becomes discontinuous
at the end points even if / is continuous.
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1954] DIFFUSION PROCESSES IN ONE DIMENSION 7

(A more satisfactory definition will be proposed in §5.)
For simplicity we shall from now on assume that for ri<x<r2 the functions

a(x), a'(x), b{x) are defined and continuous, a(x) >0. Note that a(x) and b{x)
need not be bounded, and that it is permissible that a(x)—K) as x—>ry.

[Note. The preceding definition is sufficient for our purposes, but some
readers may wish to see its connection with general semi-group theory and
with [2]. To explain this we now anticipate the notations of the following
section. The continuity requirement (3.4) implies that for/EG, with the no-
tations of §4,

(3.11) Thf{x)^f{x) (A->0+)

for each xE(ri,r2) (not necessarily for the boundaries), the convergence being
bounded. Unfortunately, in [2] the traditional strong (uniform) continuity
was required. Now only the contraction of the semi-group to its range space
is strongly continuous, and this circumstance necessitated the clumsy ref-
erences to the range space in [2]. The above definition would have resulted
in greater simplicity and elegance.

With the new continuity requirement it is natural also to modify the
usual definition of the infinitesimal generator (for a more general and more
systematic approach cf. [3]). If for some F£-C and each xE(/i, ri) one has

(3.12) —-(*)-»*(*) {$ec)
h

the convergence being bounded, then we put 4> = nP. The operator Í2 thus
defined will now be called infinitesimal generator oí the semi-group. In the
Hille-Yosida theory uniform convergence is required, but no difficulties
arise. For every/EC the Laplace transform (3.9) is in the domain of Û and
satisfies

(3.13) XP-fiP=/;

for given/ this equation has only one solution, and the totality of functions
for which OP is defined is thus identical with the totality of solutions of
(3.13).

Our definition of a diffusion process now amounts to requiring that the
infinitesimal generator Q be a contraction of the operator Í2 (that is, if QF is
defined, then so is ŒP and üF=ÜF, but it is possible that QFE.C without F
being of the form (3.9)).

Of course, not every solution of (3.10) defines a semi-group. The totality
of solutions with this property has been constructed in [2 ] ; in fact, the argu-
ments of [2] remain valid with the new definition of infinitesimal generator,
and the formulations become simpler. However, we can appeal directly to the
theorems in  [2] as they stand since every semi-group with our continuity
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8 WILLIAM FELLER [July

property is strongly continuous in its range space and thus satisfies the condi-
tions imposed in [2].]

4. Diffusion processes as semi-groups. Let B be the Banach space of
bounded Borel measurable functions on P with ||/||=sup |/(x)
and consider (3.8). For each fixed £>0 we have m(¿, x)GP and |
we put

(4.1) «(/, x) = Ttfix)

. Let f<EB
«ll_.ll/IUf

then Tt is a linear operator from B to B which (1) preserves positivity, (2)
has norm ||P(|| ¡SI, and (3) has the semi-group property Tt+, = TtT,. The last
assertion is a direct consequence of (3.5). The three properties are expressed
in the statement that the transformations {Tt} form a contraction semi-
group from B to B.

Every Markov process on E thus defines a contraction semi-group from
B to B. In [2] we have considered such semi-groups subjected to the restric-
tion that they are continuity preserving, that is, that Ttf is continuous
whenever / is continuous. In this case it is useless to admit discontinuous
functions and it is preferable to consider {Tt} as a semi-group from C to C
where C is the subspace of functions f which are continuous in the closed(8)
interval ri £5 #£»>.■

We want now to show that each such semi-group defines a Markov process
on [rit rt].

Lemma. Let {Tt} be a contraction semi-group from C to C such that for each
fixed x the function Tt fix) is continuous in I. Then for each t > 0 there exists a
kernel Pit, x, T) which for fixed x is a probability measure on the Borel sets T.
For fixed T this kernel is Borel measurable in t and x. Finally

fiy)Pit, x, dy).
n-

Note that the semi-group property implies the validity of the Chapman-
Kolmogorov equation (3.5).

Proof. Consider the adjoint semi-group to Tt in the following way. If
j-(r) is any measure on the Borel sets T in [/1, r2] the transform T*p is the
uniquely defined measure with which

TMdy)fiy) = Pidy)Ttfiy)
n— n—

for all fE:C. Let ßx(T) equal 1 or 0 according as x is, or is not, a point of T.
Put

(s) Even if E is open we require that/(„) tends to finite limits as x—>r,-. This looks like an
essential restriction, but it will be shown in §13 that it can be removed and does no harm.
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1954] DIFFUSION PROCESSES IN ONE DIMENSION 9

(4.4) P{t,x,T) = Tt*ríx{T).

The fact that T* is positivity preserving and ||P*|| = 1 implies that P{t, x, T)
is a probability measure for each fixed t and x. When the definition (4.4) is
inserted in (4.3) one sees that (4.2) holds for all /EC. Finally, if T is an
interval and Xrix) its characteristic function, then there exists a sequence
/nEC such that/„ | Xr- Then

P{1, x, dy)fn{y).
ri—

For each n the right side is continuous in / and in x, and this guarantees the re-
quired measurability properties of P{t, x, T) lor all T.

Now in [2] the equation (3.10) for the Laplace transforms appears as
basic requirement for the resolvents. The strong continuity property of the
semi-groups used in [2] obviously implies (3.4) and we have thus

Theorem 1. Each semi-group from C to C constructed in [2 ] defines a dif-
fusion process obeying (1.1).

As will be shown in §13, the converse is true only for diffusion processes
in the open interval (ri, r2). For a diffusion process in [ri, r2] it is possible
that/EC but that u{t, x) is not continuous in [n, r2].

5. The probabilistic interpretation. As is well known, the backward equa-
tion (1.1) has first been derived from probabilistic considerations by Kolmo-
gorov [7]. He showed also that under strong additional conditions the
Fokker-Planck equation in the special form (1.2) must hold. Kolmogorov's
conditions were relaxed in [4]. The principal step towards generalization was
the introduction of the so-called Lindeberg condition which requires that for
each fixed x and e > 0

(5.1) f P{t, x, dy) = o{t)
J  lï-z|>«

as /—>0. This, of course, is a strengthening of the continuity condition (3.4).
It is easily seen that a condition of the Lindeberg type is necessary tor the

continuity of the path functions.
On the other hand, it has been shown recently [5] that under very mild

differentiability conditions the Lindeberg condition^) alone suffices to derive

(9) The abstract formulation is as follows. Let {T¡ J be a semi-group from C to C. The
"Lindeberg condition" requires that if/and g agree in a neighborhood of Xt> then (Tt(f—g))(xo)
= o(t), t—>0. Let i2o be the infinitesimal generator. The differentiability condition mentioned
in the text requires that the Laplace transforms (3.9) be twice differentiable whenever/"EC
The theorem states that under these two conditions and if {T,} is a contraction semi-group, íío
must be a contraction of an operator Si of the form (1.1) with a term c{x)I added—except for the
occurrence of singular points where Í2 is of a different form. This theorem characterizes the
parabolic differential equations.
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10 WILLIAM FELLER [July

the backward equation (1.1). This is at present the most general derivation
of (1.1).

The as yet not completely attained aim of the present method of attack
is to define diffusion processes as those Markovian processes for which the path
functions X(t) are continuous with probability one as long as they are in the
interior of the basic interval E (that is, a discontinuity may occur when a
boundary is reached). This definition carries over to locally compact topo-
logical spaces.

That all our diffusion processes have this property has apparently never
been proved rigorously, but may be assumed with impunity. It is also
safe to assume that the continuity of Xit) implies that the corresponding
transition probabilities define a contraction semi-group which satisfies the
"Lindeberg condition" of the preceding footnote.

This condition expresses essentially that the infinitesimal generator ño
is of a local character.

Now the local character of _!0 and the continuity of __ (/) are topological
properties, whereas a continuous change of the scale may change differenti-
able functions into nondifferentiable ones. Hence fio need not be a differential
operator. However, the surmise is that in each case the semi-group induces a
scale on the x-axis such that the functions in the domain 77 (ß0) become twice
differentiable and £20 the contraction of a differential operator(10).

Even though the program is as yet unattained, the annoying difference
between the forward and backward equations has become understandable.
A Markovian process is, essentially, a semi-group in the Banach space of
measures. However, not every contraction semi-group on measures defines a
Markovian process, whereas each contraction semi-group from C to C does.
Only the backward equation refers to semi-groups in C and this explains why
only the backward equation can be derived from simple probabilistic condi-
tions.

The corresponding forward equations are much more complicated. They
will now be derived probabilistically, but only under the assumption that
Xit) is continuous with probability one.

6. First passage times. We consider a diffusion process obeying (1.1) with
the coefficients satisfying the conditions stated at the end of §3. As explained
in §5 we shall from now on suppose that the path function Xit) is continuous
with probability one as long as rx <Xit) <r2 (so far no conditions are imposed
for the case that a boundary is reached).

Definition. Let ri<pi<p2<r2 be fixed. For any Xit) with pi<X(0) =x<p2
we define the random variable Tx as the moment when for the first time Xit) =pi

(I0) Essential parts of the proof have been obtained by S. Leader and the author. When
proved, the statement will generalize the result described in footnote 9. It now appears possible
to generalize the differential equation (1.1) and to reformulate all the results of [2] in a topo-
logically invariant form.
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1954] DIFFUSION PROCESSES IN ONE DIMENSION 11

or X{i) =p2. We put

(6.1) A{t, x;P2, pi) = Fr [Tx <t, X{TX) = P2 [ X{0) = x},

(6.2) A{t, x;pi, p2) = Pr [Tx < t, X{TX) = Pi\ X{0) = x}.

The corresponding Laplace transforms will be called £(x; p2, pi) and £(x; pi, pi).
Thus

/I  oo cr^f./, x; p2, pi)¿ü (X > 0).
0

In words, A{t, x; p2, pi) is the probability that a path starting from the
position x will within time / reach p2 without previously passing through pi.
Such probabilities occur in the theory of ruin. In physical language
A{t, x; p2, pi) is the probability that a first passage through p2 occurs before time
t when an absorbing barrier is placed at pi. Even under the present general
conditions one has the familiar

Theorem 2. Putting z{x) =£(x; p2, pi) one has Xz — Í2z = 0, and z{x) is the
only solution of this equation with z(pi)=0 and z{pi) =X-1. This solution is
monotone.

Before proving this theorem we shall consider some implications. We in-
terpret "the event that the boundary r¡ has been reached at time t from the
interior"(u) as a verbal description of X(s)^>r¡ as 5—H — 0.

As a corollary of Theorem 2 we shall derive the following results.

Theorem 3. Let X{0)=x, with ri<x<r2. The probability that r¡ will be
reached within finite time from the interior is positive if and only if all solutions
of \z—Qz = 0 remain bounded as z—>Tj (X>0).

Thus the probability in question is zero for all x or for no x. This justifies
the

Definition. The boundary r¡ will be called accessible if and only if there is
a positive probability that it will be reached from the interior within a finite
time{12) (for all X{6) =x).

Thusry is accessible if and only if all solutions of Xz —ßz = 0 are bounded
near r¡. Comparing this with the criteria of [2, p. 488], we see that r¡ is ac-
cessible if it is either a regular or an exit boundary.

Theorem 4. Suppose that r2 is accessible. Then (a) If ri is inaccessible,
there exists one and only one bounded solution z(x) of\z — £2z = 0 with z(x)—->X-1
as x—>r2.

This solution is positive and monotonie. Let A(t, x) be the probability that

(n) Later on we shall consider instantaneous transitions from r¡ to rk.
(12) Cf. footnote 13.
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12 WILLIAM FELLER [July

r2 will be reached before time t assuming that the starting position is X(0) = x.
Then

rOOe-*'Ait, x)dt.

(b) If ri is accessible there exists one and only one solution of Xz — ßz = 0
with z(x)—»0 as x—^ri and z(x)—>X_1 as x—>r2. It is monotonie and for it (6.4)
holds provided that A it, x) is interpreted as the probability that r2 will be reached
before time I and before ri is reached. (7/ ri is accessible, then there exist many
processes obeying (1.1) with different probabilities of reaching r2.)

From Theorem 4 it will be easy to derive the following analogues of classical
results concerning probabilities of ruin.

Theorem 5. Let r2 be accessible and let i>(x) = _l(oo, x) be the probability of
ultimate absorption at r2. Then <_,(x) is the smallest positive solution of a$"(x)
+&<_-'= 0 with <_(x)—>1 as x—>r2.

More explicitly: If r-i is an accessible boundary, then 3>(x) is the strictly
increasing solution with <_*(ri) =0, i>(r2) =1. The same holds true whenever

(6.5) exp {-/;m
is integrable over (fi, x0). Otherwise $(ï)=1. This case arises if ri is an en-
trance boundary, and may arise if ri is a natural boundary(13).

Note. By the same method one can prove that in the case of two accessible
boundaries the expected duration

(6.6) \pix) =  j    tdtAit, x)
J o

is finite and characterized as the unique solution of a\f/"+b\j/' = — 1 with
4/iri) =}Pir2) = 0- However, if rx is inaccessible, the boundary condition ^(/i) = 0
can not be imposed, and it can happen that \pix) is finite but unbounded,
and also that it is infinite for all x.

7. Proofs. We start with a few preliminaries. Let

/i  CO

e-^Pit, x, T)dt, X > 0,
o

and

(13) [Footnote added September 1953.] Doob has discovered the possibility that for a
natural boundary ri there may be a positive probability that X{t)—>ri as ¿—>~ even though r\
cannot be reached in finite time. This explains the possibility that Í><1 even though r¡ is in-
accessible.
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(7.2) F{x) =   f f(y)U(x, dy).
J E

This is defined for all bounded measurable /, and agrees with the definition
(3.9). Hence, at least when/ is continuous, we have by definition

(7.3) XP-Í2P=/.
To solve (7.3) for F we require the fact proved by Hille (cf. [2, p. 483])

that there exist two solutions £i and £2 of

(7.4) X£-fi£ = 0

satisfying the conditions

(7.5) fi(*)4.        Ux)h       fc£0 forri<x<r2.
In terms of two such solutions we construct the classical Green function

Í£2(x)tj
(7.6) K{x,y)=  {   )

Ui(x)j?

where

ti{x)i¡iiy) for n < x ¿ y < n,
2(y) for ri < y á x < r2

(7.7) ijf(y) = UyWiy) - ii'{y)My)
It is known that

(7.8) F{x) =  f" K{x,y)f(y)dy

is a solution of (7.3). If it is unique, then a comparison of (7.2) and (7.8)
shows that

(7.9) n(x, r) = J" K(x, y)dy.

Now the difference of any two admissible solutions of (7.3) is a bounded
solution of (7.4). On the other hand, every solution of (7.4) is a linear com-
bination of §i and £2. As each £y is bounded near one boundary, we conclude
that (7.4) has a bounded solution only if either £i or £2 is bounded. Inde-
pendently of the choice of £i and £2 we can therefore state:

(a) If both £i and £2 are unbounded, then the Laplace transform IT(x, T)
of the transition probabilities is uniquely determined by (7.3).

(b) If, say, £2 is bounded but & unbounded, then necessarily

(7.10) n(x, T)= j K{x, y)dy + £2(x)«h(r).
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(c)  If both ¿i and £2 are bounded, then

(7.11) n(x, D = J Kix, y)dy + ,i(x)$i(r) + W„)._(r).

Here the &j(T) are measures on the Borel sets and depend on X, but not on x.
The most general form of these _»y was the main topic of [2], but for the
present proof we require no special knowledge about _>/.

Proof of Theorem 2. Let ri<x<p<r2 and let

(7.12) Hit, x; p) = Pr {Max __(.) > p\ X(0) = x}

be the probability distribution of the first passage time from x to p. Then, if
r is any set in (p, r2), the event X(/)GT can occur only if the first passage
has occurred at some time s<t. Thus (always assuming the continuity of
Xit))
(7.13) Pit, x,T) =  f   Pit - s, p, T)dsHis, x; p).

J o

For the corresponding Laplace transform

/I oo e-^'Hit, x; p)dl X > 0,
0

this means

(7.15) n(x, r) = xn(p, r)£(x; P).

Now a glance at (7.9)—(7.11) shows that for any fixed set TC(p, ft) and x^p
the function II(x, T) reduces to a linear combination of £i and £2, and hence
to a solution of (7.4). Therefore:

£(x; p) is a solution of (7.4) and £(x; p)—>X_1 as x—>p.

Note that £(x; p) depends on the individual process and cannot be de-
termined without knowing the boundary conditions.

Now let pi <x <p2 and define the first passage transform £(x; pi) in obvious
analogy with (7.14). The first passage from x to p2 can take place either before
or after a first passage from x to pi. This consideration leads to a relation
which, translated into the language of Laplace transforms, reads

(7.16) £(x; p2) = £(x; p2, pi) + X£(x; pi, p2)-£(pi; P2)

with £(x; pi, pi) defined in (6.3). Similarly

(7.17) ,(x; pi) = f(*¡ pi, pi) + Xf(x; p2, pi)£(p2; Pi)-

We have here two linear equations for the two unknowns £(x; pi, p2) and
£(x; pi, pi). From the very definition (7.14) we have 0=_£(p¿; p¡) <X_1 and
therefore the determinant of the system does not vanish. Hence
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,„ <0, „, .      !(*; pi) - Hipi, pi)i.{x; pi)
(7.18) £(*; pi, pi) = —---—- -

1 — X2£(pi; pi)k{p2; Pi)

Remembering that £(py; py) =X_1 we find

(7.19) lim £(x; p2, pi) = 0, lim £(x; p2, pi) = X-1,
x-*pl £—»p2

and £(x; p2, pi), being a linear combination of two solutions of (7.4), is itself
a solution of (7.4). These conditions determine ¿(x; p2, pi) uniquely, and
Theorem 2 is proved.

Proof of Theorems 3 and 4. Let £,(x) be two solutions of (7.4) satisfying
the boundary conditions (7.5). From Theorem 2 we have

ft on\ tí - ^ h(*)fr(pi) - h(*)h(pi) , J.'

Suppose first that £i(x) f oo as x 1 ri. Since £2(x) is positive and non-
decreasing, £2(x) remains bounded, and the ratio £2(x)/£i(x) tends to zero.
Hence in this case

£«(*)(7.21) lim £(x; p2, pi) = ■
Pl—T! X|2(P2)

Next, if £i(x) j £i(/i) < oo as x j. rx, then

(7.22) {*(*) - bO>)£i(fi} - fiWM'i)
is a solution of (7.4) and

e(x)
(7.23) hm £(x; p2, pi) = •

p^n Xr(p2)

Note that £*(x) is obviously nondecreasing, and £*(x)—>0 as #—*fi. Moreover,
if £2(x) f £2(r2) < co as x—>r2, then £* has a finite limit and all solutions of (7.4)
remain bounded near r2. Hence, as P2~>r2, either each of the right-hand
members in (7.21) and (7.23) tends to zero, or each tends to a monotone solu-
tion of (7.4) which tends to X-1 as x—>r2.

Proof of Theorem 5. Put £x(x) =Xz(x). Then

(7.24) Ux) -  f
J 0

e-xtdtA(t, x)

and hence(14) £x(x) Î $(x) as X | 0. Solving the differential equation Í2« =/
and substituting w=/=£x gives an integral equation for £x which shows that

(14) Alternatively, this can be seen directly from X(£\ — £„) — S2(£x —{») = («'—X)£>/ (»>X)
which shows (since £„>0) that £x_£» can have no negative minimum. If ri is accessible, then
{x — iv vanishes at both ends. If fi is inaccessible the result follows by approximation.
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£xî'ï' implies that ß«. exists and ß<_ =lim ß£x = lim X£x = 0. Clearly <_(r2) = 1
since ¿x(x) f 1 as x—>r2. Suppose now that the integral (6.5) diverges as *—*rt.
Then $=1 is the only solution of ß<_- = 0 with i>(r2)=l. On the other hand,
if the integral (6.5) converges, there exists exactly one solution of ßw = 0
with m(/i) =0, u{r2) = 1. From ß(w— £x) = — X£x <0 it is seen that the function
u— ¿jx can have no minimum. Since it vanishes at x = ri, r2 it follows that
£x(x)_=m(x), whence «.(x) _íw(x). The inequality would require <_■ to assume
negative values, and this proves the theorem.

8. The absorbing barrier process. Consider a process obeying (1.1) and
assume, as before, that the path functions Xit) are continuous.

Definition. Using the random variable Tx of the definition of §6 we define
the absorbing barrier processi15) corresponding to our process and (pi, p2) 05 the
process of the path functions Arabs(i) defined by

(Xit) for t < Tx,
(8.1) __„_(/) =  \XxiTx) for t è Tx
with the obvious probability relations induced by the original process.

We shall refer to Tx as the absorption time. With the notation of §6 we have

(8.2) Pr {Tx á t) = Ait, x; Pl, p2) + Ait, x; P2, pi).

Theorem 6(16). Let Pabs(/, x, T) be the transition probability of the ab-
sorbing barrier process and IIabs(x, T) its Laplace transform (7.1). With the
notations of §6 we haveif1) for ri<pi<x<pi<r2

nab8(x, pi) = £(x; pi, p2),
(8 • 3)

nabs(x, p2) = £(x; P2, pi).

For any Borel set rC(pi, P2) we have

(8.4) nab8(x, D = J Kix,y)dy

where P(x, y) is the Green function {cf. (7.6)) of \u — £lu=f formed by means
of two solutions ¿1 and £2 of X£ — ß£ = 0 satisfying the boundary conditions

(8.5) kiipi) = 0,        UH) = 0.
Proof.  Clearly,  (8.3) is only a restatement of Theorem 2.  From this

(16) By (8.1) the absorbing barrier process is defined in the closed interval [pi, p2]. If we
let XabeW be undefined for / & Tx we get the corresponding process for the open interval.

(16) This theorem restates a well known fact. Also the renewal method for the proof is
familiar. Both theorem and proof are (under slightly different hypotheses) found in a recent
paper by Darling and Siegert [0]. (This paper reached the author after completion of the
present manuscript.)

(") In (8.3) and similar formulas later on the letters p or r are used not only to denote a
number, but also for the set consisting of the single point p or r.
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theorem one has also that for pi<x<y <p2

(8.6) íix;y,pi)
Hiiy)

Again, the renewal argument used in (7.15) shows that for TCiy, P¿) one has

(8.7) nabs(x, T) = X,(x; y, Pi)lWy, r)

iiiy)

Thus

(8.8) nab8(x, r) = ,i(x)P(r)

where P(r) is independent of X. This relation holds only for sets rC(x, p2),
but a similar relation holds for sets rC(pi, x). The theorem now follows on
comparing this result with the general form of the transition probabilities
given in (7.11).

Definition. We shall say the transition probabilities of a process are defined
by a Green function if for ri<x<r2 and rÇ(/i, r2) the corresponding Laplace
transform _I(x, V) is of the form (8.4) where K{x, y) is a regular Green func-
tion^).

Note that no restriction is placed on the transitions II(x, pf) and II(p3-, T).

Theorem 7. (a) If both ri and r2 are inaccessible, then as pi—*ri and p2—>-r2
the transition probabilities of the absorbing barrier process for (pi, p2) converge
to transition probabilities in (ri, r2) which are defined by the unique regular Green
function for (ri, r2). In this case there exists one and only one process in (ri, r2)
obeying (1.1).

(b) If ri is inaccessible but r2 accessible, convergence takes place to transition
probabilities defined by that regular Green function which is formed by means of
a solution with £(x) j 0 as x—>r2.

(c) If ri and r2 are accessible, then limiting transition probabilities exist and
are defined by that regular Green function which is formed by means of solutions
£y(x) with £y(x) iO as x—Wj.

This theorem extends the notion of absorbing barrier processes to in-
tervals (ri, r2) with accessible boundaries.

Proof. In the proof of Theorem 3 (§7) it has been shown that as pi—>ri
and p2—*r2 the solutions £(x; pi, P2) and £(x; p2, pi) tend to certain limits. Using
these limiting forms the theorem becomes trivial.

It follows in particular that whenever both ri and r2 are accessible there exists

(18) Cf. (7.6). The notion of regular Green function was introduced in [2] and refers to
Green functions formed by means of solutions satisfying the monotonicity conditions (7.5).
The restriction to regular Green functions is essential for the validity of some of our statements.
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an absorbing barrier process in (rx, ri) obeying (1.1).
The relevant statements concerning the boundary conditions and the

Fokker-Planck equations are contained in Theorem 10, as the limiting case
d = 0.

Note  on  the  corresponding  densities.   It  would  be pleasing  to  assert
that the transition probabilities of the last theorem are determined by
densities p(t, x, y), and that the latter satisfy both the backward equation

(8.9) pt{t, x, y) = a(x)pxx(t, x, y) + b(x)px{t, x, y)

and the forward equation

(8.10) pt(t, x, y) =  [a(y)p(t, x, y)]yy - [b(y)p(t, x, y)]y.

When both boundaries are inaccessible, p{t, x, y) should be uniquely de-
termined by either of these equations; if r¡ is accessible, one should expect
that for (8.9) the boundary condition p(t, x, y)—>0 as x—*r¡ must be imposed;
in the case of (8.10) the corresponding boundary condition is

[-/
(8.11) a(y) exp |        |   b{y)a-1(y)dy \ p(t, x, y) -+ 0

as y-^r,.
These assertions are contained in known results about differential equa-

tions provided that both boundaries are regular and that more stringent
conditions on a(x) and b{x) are imposed. Unfortunately, the theory of semi-
groups leads directly only to a slightly weaker result. We should prove that
for fixed x, y

(8.12) K(x, y) =   I     e-*'p(t, x, y)dt
J o

where p{t, x, y) has a bounded derivative with respect to t. Actually it ap-
pears that without deeper analysis one can assert only that(19)

(8.13) K(x, y) =   I     e-^V(dt, x, y)
J o

where F is a nondecreasing function of t.
Now we have seen that for x<z<y

tix)
(8.14) K{x, y) =-—K{z, y).

Í(z)

Here the second factor on the right is of the form (8.13), while the first

(18) (8.13) is a direct consequence of the Bernstein-Hausdorff-Widder theorem (cf. [8])
and the well known property of resolvents according to which ( — l)"d"K(x, y)/d\" = n\
■ Kn+l (x, y) ^0 where K„ denotes the iterated kernels; cf. [6, p. 99].
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factor is the Laplace transform of the first passage time from x through z.
But the convolution of two monotonie functions will be continuous, or dif-
ieren tiable, whenever one of the two components has this property. It follows
therefore that if p(t, z, y) is, for a fixed z, y, a continuous (differentiable)
function of /, then the same is true for any x, z. Moreover, (8.14) shows that
for the density p{t, x, y) to satisfy (8.9) it is necessary and sufficient that the
first passage time density be a solution of the backward equation (1.1). The
duality principle of [2] permits us to translate these assertions into cor-
responding statements referring to p(t, x, y) as function of t and y, and to
(8.10) instead of (8.9).

Accordingly, to prove the opening surmise of this note it would suffice to
prove that for fixed x<z the ratio £(x)/£(z) is the Laplace transform of a
differentiable function or, alternatively, that this is true of K(x, x). It seems
plausible that this is provable by the methods of the general theory. Un-
fortunately, the author sees at present only a method of proof which is based
on laborious estimates. This does not seem natural, in particular since under
slightly stronger conditions the facts are known. Moreover, the assertion
would improve only the aesthetical appeal and simplify some formulations,
without being essential.

9. The elementary return process. We now proceed to calculate the transi-
tion probabilities of the process defined in §2. For definiteness we assume for
the time being that both boundaries are accessible, and ci>0, cr2>0. The
starting position X(Q) =x is assumed to be the interior (ri, ri).

(a) The probability that up to time t no transitions from a boundary have
occurred and that X(t)=ri (i.e. the first boundary to be reached is fi, and
the first sojourn time has not expired) is

(9.1) I     dsA(t- s, x;ri,fi)-e-'^
J o

where A{t, x; rï, f2) is the distribution function of the absorption time de-
fined in (6.1). For the corresponding Laplace transforms (6.3) we introduce
the notations

(9.2) £i(x) = £(x; ru f2),     £2(x) = £(x; r2, ñ).

Then (9.1) has the Laplace transform

(9.3) Ui{x) 1   *\     ■
1  + X(Tl

(b) At the expiration of the sojourn time a "jump" occurs. The prob-
abilities that it takes X(t) to the interior, to ri, or to r2, are i*i, pu, pu, respec-
tively. The probability density that this jump occurs at time / is the expression
(9.1) multiplied by erf1.
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(c) Let P(n)(í, x, r) be the probability that up to time t exactly w "jumps"
occur and that Xit) Gr. Let II(n) (x, T) be'the corresponding Laplace trans-
form. Then

(9.4) D»'(i, r) = nab8(x, r),

provided T is a set in the interior. If T reduces to a boundary point then, as
shown under (a),

(9.5) nWf>, r,) = \£,-(*)      ~     •
1 + Xff,-

(d) The probability density that the wth jump occurs at r¡ and at time t
is P(n-1)(¿, x, rfi-oj1. It has the Laplace transform

(9.6) n<*-*>(*,vi)-T1.
(e) If the wth jump occurs at r¡ at time s, then for every set rC(/i, r2)

(9.7) Pr {._(_ + ) G r} = t,J dPiiy).

Therefore the probability that Xit+s)ÇfV and that no further absorption
has taken place is

_W*. y, T)-dp,iy).
n

For the corresponding Laplace transform we introduce the abbreviation^0)

(9.9) 77,-(_■) = r, C 2nab9(y, T)dpiiy).
•»n

Thus for rC(ri, r2)
2

(9.10) n<»>(*, r) = 2_ ni»-»ix, rdvi+Utf).

(f) If at any time a jump takes place at r{, the probability density that
it leads into the interior and then, after a time /, to a first absorption at r¡
has the Laplace transform

/.  T2
i.jix)dpiix).

n

(g) From (d) and (f) we conclude

(9.12) IF»>(x, rt) = ¿ ne-^x, rJ)oT1{/,<¿ + Xt«,}
*i

<_i 1 + Xa ,-
(20) In comparing our formulas with those of  [2], put  U¡(T) =fyQ¡{x)dx where Q¡(x) is

the density defined in (21.14).
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For convenience of writing we introduce the matrix notation

/o-i   0\
(9.13) P=(Pa),        * = {*n),        ä = [

\0     cr2/

For row and column matrices we write

(9.14) [xí] =  ■*, [*,]' = xi x2.
x2

Now (9.12) takes on the form

(9.15) [n<»>(x, ri)]' = [n(-'»(ï, r^yô-^p + \n] {l + Xd}-1.}

where 7 is the identity matrix. By definition we have
00

(9.16) n(x, r) = 2Zn(n)(x, r).
r>=0

Thus, using (9.5) and (9.15), we get

[n(x, r,)]' = X[£,-]'(J+ Xd)"i ¿ ({p + Xx} {/+ Xd}-1)"*
n_0

(9.17) =X[?)]'(7+Xd)-1U- {p + XT}{7+Xd}-1)-1d.

For abbreviation put(21)

(9.18) R = (7 + Xd - p - Xt)-1.

Then (9.17) reduces to

(9.19) [n(x, r,)]'= Xfeij/Äd.
Having thus II(x, r¡) we get II(x, T) from (9.16) and (9.10). For TCi/i, r2)

we get

(9.20) n(x, r) = nab8(x, r) + x[^]'r[u^t)].

Finally, for completeness we give the corresponding expressions for the
case where the process starts at a boundary. The argument which led to
(9.19) shows that

(9.21) (n(fi, ri}) - Rè,

and this is also evident from (9.19). Similarly, for rC(»i, r2)

(9.22) [U(n, T)] = R[Ui{T)\,
as is again clear from (9.20).

(21) The proof that R exists is given in [2, p. 512]. It should have been mentioned there
that the proof would formally break down if tri = <tí — n = 0 and pu"I. However, that case is
impossible since it would reduce a lateral condition to 0 = 0.
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In (9.19)-(9.22) we have now expressions for all the transition probabilities.
The very derivation shows that they have the necessary properties like posi-
tivity and that they determine a process obeying (1.1).

We observe that our process is a special case of the one treated in [2, §21 ].
If one puts there 7Ti=7r2 = 0, the formulas agree with ours. The new deriva-
tion is more direct, but we still must refer to [2] for the derivation of the
lateral condition and the proof that they determine the process.

Summing up we have

Theorem 8. If both boundaries are accessible, then there exists exactly one
diffusion process in [n, r2] obeying (1.1) awa" having the properties of the "ele-
mentary return process" described in §2. If, and only if, 0i=a2 = O the process
takes place in the open interval (/i, r2). The solutions of (1.1) corresponding to
our process are characterized by the two lateral conditions

«(/, y)dpiiy) — o-iQuit, ri),
r,

(9.23)

/» 7-2
»it, y)dp2iy) - ff2Q«(<, r2).

n

Note. For lucidity of exposition we have been assuming that both bound-
aries are accessible. The starting point was the absorbing barrier process de-
fined in the open interval (/i, r2). The new process plays in the closed interval
..i r2], unless either 0i or a2 vanishes (in which case the corresponding
boundary is excluded).

If both ri and r2 are inaccessible, then no return process is possible. If n
is inaccessible and r2 accessible, the above construction applies except that no
returns can occur from r_,

10. The corresponding Fokker-Planck equations. If j_(r) is the prob-
ability distribution for the initial point A'(O), then the distribution of the
position Xit) is given by (3.7). Consider now in particular the transition
probabilities of the elementary return process determined by (9.20). The set
functions Uj{T) are defined in (9.8) and (9.9). As explained in §8, the dis-
tribution with the Laplace transform Uj{T) has a density, and the same is then
true of our transition probability. We can therefore write

(io. i) vit, r) - ( vit, y)dy, r c in, r2),

(10.2) Vit,rf) = Viit).

In §§18 and 22 of [2] we have studied, in the Banach space of measures,
the semi-group which is the adjoint to the semi-group from C to C cor-
responding to the process of §9. The following theorem is a restatement of
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these results in terms of differential equations(22).

Theorem 9. (a) In the process of Theorem 8 let the mean sojourn times a¡
be positive. Then

(10.3) a(x)vx{t, x) — b(x)v(t, x) = <$„(/, x)

exists and is of bounded variation. For every set rC(ri, r2) one has{23)

(10.4) — f v(t, x)dx =   f dx Uv{t, x) + — Vi{t)pi(x) + — V2(t)p2{x)\
dt  J T J r 1 (Ti C2 !

and

(10.5) V'i(t) =  -     ~PU Vi{t) + — Vt{t) + *.(/, ri),
¡ri <r2

(10.6) V'2(t) = — Vi{t) -  *"*" V,{t) - #,(*, ri)
ffl <72

where

(10.7) $v(t, r,) = lim $„(/, x).
z-»ry

(b) 7/oi = o-2 = 0 pwi Fi(0= F2(/)=0 ana (10.4) is to be replaced^) by

(10.8) — f »(/, x)dx =   I   ¿„{^(i, x) + Ti$v{t, ri)Pi(x) - T2$v{t, r2)p2(x)).
dt J v J r

(c) These equations are the Fokker-Planck {or forward) equations of our
process. Depending on the nature of the boundaries(25) r¡, they either determine
the process uniquely, or one or two boundary conditions of the form (8.11) are
satisfied and characterize the process.

Physical interpretation. Let T = (pi, pi) be an interval contained in (ri, r2).

(ffi) In order not to obscure a simple situation, the formulation of the theorem avoids an
explicit reference to the fact (described at the end of §8) that the existence and the necessary
regularity properties of the density v(t, x) have been proved in [2 ] explicitly only for the case
when the initial distribution u(T) is sufficiently smooth (that is, belongs to the range of the
resolvent). For an arbitrary initial distribution the theorem has been completely proved only
under slightly more stringent conditions on the coefficients a(x) and b{x).

(*•) Note that in the case n = T2 = 0 equation (10.4) reduces to the classical differential
equation (1.2). If pi(x) and pi(x) are differentiable, the integrals in (10.4) may be omitted and
we still have a differential equation.

(M) Similarly, if <ri=0 and <r2>0 the term oi-1Fi(/) in (10.4) and (10.6) is to be replaced by
*.(/, n).

i25) No lateral conditions are required if r¡ are "exit" boundaries. If r¡ is a "regular"
boundary, a lateral condition is required. In [2, §22] both boundaries are supposed to be
regular. The modification for exit boundaries is contained in §16 of [2],
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The left side of (10.4) represents the rate of change of the mass in T. On the
right the term $„(í, p2)—$vit, pi) represents the net flux through the bound-
aries into T. The term T,V3it) {pipi) — pipi) }crj1 expresses that a direct flow
takes place into T from the boundary r¡. The flow of mass Fy(/) at the
boundaries is described as follows. The boundary ri loses mass at the rate
(1 — pii)aïl times the instantaneous mass (exponential decay). Of this mass
the proportion pu/il—pn) flows to r_, and Ti/il—pu) into the interior. On
the other hand, ri gains mass at a rate p2io-21V2{t) from r2, and at a rate
&vit, ri) through a continuous influx from the interior. For our particular
process this gain can be shown to be positive. Thus the Fokker-Planck equa-
tions give a restatement in physical terms of the original probabilistic de-
scription of the process in §2.

The case a; = 0 means that no mass can accumulate at r¡ and the return
to the interior, if it takes place, is instantaneous. Therefore the flow into T
is no longer proportional to F,-(i) but to the instantaneous flux at the bound-
ary.

11. The elastic barrier process.
Definition. The boundary r¡ is regular if the functions

(11.1) IF(x) = exp {-  f *bis)a-Ks)ds\     and

are integrable in some iand therefore every) neighborhood of r¡.
According to [2, p. 516] every regular boundary is accessible, but an "exit"

boundary is accessible without being regular. For the understanding it is
preferable to express the regularity as a condition on the functions $/ and r¡j
of (7.5) and (7.7) by means of which the Green function is formed: r¡ is
regular if and only if £y(x) is bounded and Vjiy) is integrable in f/i, r2).

Our purpose is now to derive the classical elastic barrier process by a
passage to the limit from a diffusion process in (ri, r2), obeying (1.1). This
process is defined as the following modification of the absorbing barrier
process :

(11.2) When the boundary r,- is reached there is probability Tj_:0 of an in-
stantaneous transfer to the point p¡ in the interior, and probability 1 —tj that the
process terminates.

In the return process thus described let y¡ be the probability that a path
starting at p¡ will be absorbed at r,.

For simplicity, we shall assume that both boundaries are regular and
shall study the following

Passage to the limit. We let p¡—*rj and at the same time t¡—>l in such a way
that the probability 7¿<1 remains constantif6). (There is no harm in putting,
say, Ti = 0 and letting only t2—»1.)

t26) The same result would be obtained if instead of y¡ one keeps constant the expected
duration of the time to the ultimate absorption at r¡.
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(a) We start by calculating y¡. Put

(11.3) P(x) =  f   W{s)ds.
J n

Then aP"+oP' = 0 and by Theorem 5 the probability, in the absorbing barrier
process, that a path starting at p2 will terminate at r2 is F(pi)/F(ri). Accord-
ingly

(11-4)        72 = ^(1-T2)£H^I •

For abbreviation put

(11.5) 02= [F{ri) -F(pi)\/F(r2).

Then from (11.4)

72       F(ri)
(11.6) i_Tï=      i- -rMfflj

1  — 72   P(P2)

and thus

1  — T2 72
(11.7) lim -=-■ = c2.

Pi-*»*       ö2 1 — T2

A similar calculation applies to rx.
(b) In the notations of §9 our return process is characterized by cry = 0,

pij — G, while p¡(x) is a unitary distribution function with the jump at py.
The process is restricted to the interior of (ri, ri) and its transition prob-
abilities are given in (9.20). In the present case we have

(11.8) R = (I - X-c)"1

where the matrix t is defined (cf. (9.11)) by

(11.9) TH-r&O*).

The set function Î7y(r) is defined in (9.9). If rE(pi, pi) it is easily seen that

(11.10) Ui(T) = Ti£2(pi)77i(r),        U2(T) = TÄi{pi) 772(r)

with

(11.10a) H0) - j in{y)4y.

Since py—>ry, it is clear that it suffices to consider sets TCÍPi, pi) so that we
may use (11.10). We now proceed to investigate the asymptotic behavior of
(11.9) and (11.10).
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(c) We recall that ^(x) is a nondecreasing solution of X£ — ß£ = 0 with
£(/i) =0, £(r2) =X_1. From [2] we know (formula (20.2) after eliminating the
restriction a(x) = l) that for regular boundaries the quantities

(11.11) mi = (-1)'' Hm W~\x)¿ix)

exist, and form a symmetric, nonsingular matrix _t.
Now, for example,

£2(x)0"x

(11.12) H
=   1   -   T2 + Xr2   f        {(.22 +  0(1) } Wix)dx.

J H

Using (11.5) and (11.7) we get from this

1   —  T22
(11.13) ->• C2 + XC022.

e2

To simplify the writing put

/#»    0\ /c,    0\

Then (11.13) and its analogues can be combined into the matrix equation

(11.15) «-*(!- i)~*o + \tù.

The same calculation applied to (11.10) yields

(11.16) *r*tffCr) -t - <mH iir).
Hence

(11.17) ä[p,] = (7 - x)-m-i[u3] -> - (o + w)_1l^i(r)]«i_
Thus

(11.18) n(x, r) ^naba(x, r) - «#ufeJ'(o + x«)-1^,^)].

Now the right side can be obtained from the resolvent (21.12) of [2] by
the specialization a¿=a, = 0, (1 — 7r;)7r;_1 = c¿. (It should be noted that our
solutions r/iix) in terms of which Hj{T) is defined in (11.10a) differ from the
corresponding solutions r/jix) introduced in [2, formula (20.3) ] by a factor
—Wi2_1 as can be seen by comparing the Green function (20.9) of [2] and (7.6)
above.) We therefore need no further verification that the right side of
(11.18) really represents transition probabilities.
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This proves that part of the following theorem which refers to the back-
ward equation (1.1). The statements concerning the Fokker-Planck equa-
tion are a consequence of Theorem 9. We have thus

Theorem 10. Our limiting process leads to a diffusion process in the open
interval (ri, r2) which obeys (1.1). The corresponding Fokker-Planck equation is
given by (1.2). The solutions of (1.1) are in this case characterized by the lateral
conditions

(11.19) du{t, x) = (-1)*-1 lim W-\x)ux(t, x)
z^r.

and those of (1.2) by

(11.20) a lim W{x)a{x)v(t, x) = (-iy$v(t, x.)

(cf. (10.3) and (11.1)).

For Ci = 0 the boundary r¿ becomes "reflecting," for c—>°o the process re-
verts into the absorbing barrier process. (The limiting boundary conditions
remain correct.)

It is clear that the resulting formulas do not depend on the assumption
that both boundaries are regular: one elastic barrier can be combined with
any other type at the other end. However, if ri is inaccessible, then the prob-
ability of absorption at r2 may be identically one for all p, and the mean duration
of the absorbing barrier process may be infinite for all p. In this case, there-
fore, one needs a new interpretation for y,-, but one may get it trivially by a
new passage to the limit.

12. The general process induced by semi-groups in C[ri, r2]. The elas-
tic barrier process takes place in the open interval E=(ri, ri). One has
P(t, x, E)—>0 as t—><*>, except when both boundaries are reflecting (cy = 0),
or when one boundary is inaccessible and the other reflecting. If P(t, x, E)—+0
there is probability one that the process terminates either at rx or r2, and we
speak again of an "absorption." Note, however, that the boundary r¡ can be
reached without an absorption taking place. In fact, the process can start from
a boundary(27).

It is now possible to superimpose the elementary return process described
in §2 to any elastic barrier process in the same way as we have superimposed
it to the absorbing barrier process. An alternative way, requiring no new
calculations, consists in a direct passage to the limit. For that purpose we
replace (11.2) by the following conditions.

(") Let £f(x) denote the Laplace transform of the probability that an absorption occurs at
r,- before time t, given that X(0) *=x. If both boundaries are regular, it can be shown without
difficulties that the f*(x) are solutions of X£ — f2{ = 0 satisfying the four boundary
conditions f*(r,) +£(fi) -if(«tf +£<r,) -X~», ciJf/O-linw, W^{x)i*'{x)=0, c2t*(r2)
-r-limj.r2 W~1(x)tf'(x)=0. In particular, fí(ri+) is the (positive) probability of an absorption
at r2 given that the process starts at r¡.
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(12.1) Consider an elementary return process in which ri has a mean sojourn
time €,a¿. When a jump from rt occurs, it leads with probability upa to r¡, with
probability 1 — a to the point ps-, and with probability €íTí to a random point of
(ri, r2) with probability distribution piix). Here pn+pi2+Ti^l. We effect the
same passage to the limit e,~->0, p;—>rt- as described in §11.

It is not necessary to repeat the calculations since a simple inspection
shows that the only change is that the term cf is replaced by another expres-
sion which equally remains unaffected by the passage to the limit. Assuming
both boundaries to be regular, the procedure of §11 shows that the transition
probabilities of the limiting process are determined by

(12.2) n(x, D = nab8(x, r) - »„x &(*)]'*{ [ct1SíÍT)] + [P¿(r)]}

with UiÇT) defined in (9.9), __",-(T) in (11.10a), and?*)
(12.3) R = {l-p + \6 - Xt + Xc"1«}-1.

Furthermore

(12.4) [n(x, n)]' = - wi2\[a,ix)]'R6,
(12.5) [Tlin, D] = - œi2R{ [c^HiiT)] + [&&)]},
(12.6) n(r¿, rk) = - uuRô.

If only r2 is regular, cf1 must be replaced by 0, and if ri is inaccessible,
one has to put pii=pu = Ti = ai = 0.

It has been shown in [2] that in the case ay^O the Fokker-Planckequation
is still given by (10.4)-(10.6) but that the boundary conditions

(12.7) CjVjit) = ff,-lim <_„(*, x)
x—*rj

must   be   added.   On   the   other   hand,   the   lateral   conditions   (9.23)   for
the   backward   equation   are   changed   by   the    addition   of   the   term
— Ci lim ( — l)iW~1ix)uxit, x) to the right-hand member of the ith equation.

13. The most general process.

Theorem 11. The process with transition probabilities (12.2)—(12.6) repre-
sents the most general diffusion process in [rit r2] with the property that the
associated semi-group (4.2) transforms eachfÇ^C[ri, r2] into a function which is
again continuous in [ri, r2]. However, there exist diffusion processes without the
last property.

Proof. The first assertion can be verified by comparing the formulas

(2S) In trying to verify that this result agrees with the equivalent for the resolvent given in
(22.2) of [2] one should put c,- = (l—x.O/tt,- and observe the following change in notations: The
quantities p¡¡, r¿, <n of [2] correspond to p¿,(l —x,-), t<(1 — vi), and <r,(l—tt.) in the present
notations. Furthermore, the solutions rjj{x) of [2] are the same as — ui2í),(x) in the present no-
tation.
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(12.3)—(12.6) with the resolvent of the most general contraction semi-group
from C to C given in [2, (21.12)]. To substantiate the last assertion consider
the

Example. Let Pab8(/, x, T) be the transition probability of the process cor-
responding to ut = uxx in £ = (0, oo) with an absorbing barrier at x = 0. We
now stipulate that if x = 0 is reached at time /, then with probability 1/2 we
shall have AT(t)=0 for r = f, while with probability 1/2 the process termi-
nates. In other words, we put

P(t, x, T) = Pabs(¿, x, r) for r C (0, *>),
P(t, o, r) = o,
P(t, x, 0) = (1/2) {1 - Pob8(¿, x, E)},        P(t, 0, 0) = 1.

Then

/► 00

P*u(l, x, dy)f(y) + (1/2) {1 - PabB(/, x, E) }/(0)

->(l/2)/(0) asx-r0 +

while m (¿, 0)=/(0).

Theorem 12. The transition probabilities of the most general diffusion
process in the open interval (/i, r2) are given by (12.2) with o"i=tr2 = 0. The cor-
responding Fokker-Planck equation is (10.8), subjected to the lateral conditions

(13.1) [*y]'c(7 - p) + [(-l)'*.(i, ry)]' = 0

where &v is defined in (10.3) and

(13.2) tfW = lim W(x)a(x)v(t, x)
x—*r,

with W(x) given in (11.1).

The interesting feature is that although the boundaries r¡ are excluded,
the lateral conditions (13.1) include the terms p,y which correspond to
passages from(29) r, to ry.

Proof. We have seen that the Laplace transform F of (4.1) satisfies
(7.3). If/ is continuous in (ri, r2) and if/(x) approaches limits as x—>ry, then
the same is true of F. This follows [2, Theorem 13.1] and the fact that the
bounded solutions of X£ — £2£ = 0 (if they exist) approach limits as x—»ry. The
Hille-Yosida theorem now implies that our semi-group takes C into C. The
most general diffusion process in (ri, r2) is therefore among those constructed
in §12, and it is obvious that <ri=o-2 = 0 is necessary and sufficient for the

(29) They account for events such as X(/)—>n as ¿—>/0— and X(t)—>r2 as t—>h+, with X(t0)
undefined.
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process to be restricted to the open interval. The lateral condition (13.1) is
not explicitly derived in [2], but is obtained by a calculation analogous to
that given on p. 514.

To return to diffusion processes in the closed interval, let C* denote the
subspace of B consisting of those/(x) (ri^x^r2) which are continuous for
fi<x02 and approach finite limits as x—*r}- (these limits need not coincide
with fir,-)). Using the definition of the infinitesimal generator proposed in
[3] it is easily seen that for a process obeying (1.1) the semi-group (4.1) trans-

forms C* into itself, that is, that /GC implies Ttf(E.C. Using the methods of
[2], it is possible to construct the totality of contraction semi-groups from C*
to C* and then to choose among them those which correspond to a stochastic
process (that is, where the adjoint semi-group transforms measures into
measures).

It is to be expected that the most general diffusion process in [ri, r2] is
obtained by superimposing an elementary return process to any process in
(/1, r2) in which there is a positive probability (and therefore certainty) that
the process will terminate after a finite time(30). The existence of such proc-
esses can be proved, and their transition probabilities can be obtained, by a
straightforward generalization of the arguments of §9. However, the proof
that this leads to the most general diffusion process seems to require a lengthy
argument.
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