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Early diagnosis of primary central nervous system lymph-

oma (PCNSL) is important, because its treatment differs 

substantially from that of other primary CNS tumors, and 

a correct diagnosis can avoid unnecessary surgical resec-

tion.1 Advanced magnetic resonance imaging (MRI) tech-

niques have been proposed, as PCNSL has lower apparent 
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Abstract

Background. Radiomics is a rapidly growing field in neuro-oncology, but studies have been limited to conventional 

MRI, and external validation is critically lacking. We evaluated technical feasibility, diagnostic performance, and 

generalizability of a diffusion radiomics model for identifying atypical primary central nervous system lymphoma 

(PCNSL) mimicking glioblastoma.

Methods. A total of 1618 radiomics features were extracted from diffusion and conventional MRI from 112 patients 

(training set, 70 glioblastomas and 42 PCNSLs). Feature selection and classification were optimized using a 

machine-learning algorithm. The diagnostic performance was tested in 42 patients of internal and external valid-

ation sets. The performance was compared with that of human readers (2 neuroimaging experts), cerebral blood 

volume (90% histogram cutoff, CBV90), and apparent diffusion coefficient (10% histogram, ADC10) using the area 

under the receiver operating characteristic curve (AUC).

Results. The diffusion radiomics was optimized with the combination of recursive feature elimination and a ran-

dom forest classifier (AUC 0.983, stability 2.52%). In internal validation, the diffusion model (AUC 0.984) showed 

similar performance with conventional (AUC 0.968) or combined diffusion and conventional radiomics (AUC 0.984) 

and better than human readers (AUC 0.825–0.908), CBV90 (AUC 0.905), or ADC10 (AUC 0.787) in atypical PCNSL 

diagnosis. In external validation, the diffusion radiomics showed robustness (AUC 0.944) and performed better 

than conventional radiomics (AUC 0.819) and similar to combined radiomics (AUC 0.946) or human readers (AUC 

0.896–0.930).

Conclusion. The diffusion radiomics model had good generalizability and yielded a better diagnostic performance 

than conventional radiomics or single advanced MRI in identifying atypical PCNSL mimicking glioblastoma.
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diffusion coefficient (ADC) values2 and a lower relative 

cerebral blood volume (rCBV) ratio3–5 than glioblastoma 

(GBM). However, there is some overlap in ADC values 

between PCNSL and GBM,6,7 making it difficult to distin-

guish the 2 entities with the ADC parameter alone. The CBV 

has demonstrated better diagnostic performance,5 but it 

remains difficult to unequivocally distinguish the atypical 

manifestations with this parameter. The combination of the 

imaging parameters ADC and rCBV has a diagnostic per-

formance of 84%.3

A recently introduced radiomics model is able to extract 

descriptors using an automated data mining algorithm 

and to extend MRI data into a high-dimensional feature 

space.8,9 Because radiomics models use high-throughput 

imaging features, they are prone to discover hidden infor-

mation inaccessible with single-parameter approaches. 

Radiomics studies in neuro-oncology have reported that 

this approach can predict the prognosis10,11 and/or treat-

ment response12 and is correlated with genetic features13 

in gliomas. Moreover, exploratory studies using radiomics 

models have shown great promise in differentiating vari-

ous histopathological types of cancer, such as lung,14 head 

and neck,15,16 and breast cancer.17

The conventional types of MRI sequences include T1, 

contrast-enhanced T1-weighted imaging (CE-T1WI), and 

fluid-attenuated inversion recovery (FLAIR), which are 

highly available and the most widely used method in radi-

omics. However, the biological meaning of conventional 

radiomics data is often unclear. Moreover, it is difficult to 

derive physiological biomarkers from the extracted imag-

ing phenotypes. On the other hand, ADC values reflect high 

cellularity and a high nuclear/cytoplasmic ratio in PCNSL,18 

and radiomics features of ADC may contain useful infor-

mation and improve diagnostic performance relative 

to what is currently being utilized as a single parameter. 

Furthermore, because ADC maps are parametric, they can 

provide more robust results than conventional radiom-

ics models when tested for different imaging parameters 

across different institutions. Several investigators have 

utilized ADC maps to differentiate PCNSL from high-grade 

gliomas, but no radiomics analyses have been performed. 

We hypothesized that a radiomics model using ADC maps 

along with conventional post-contrast T1-weighted imag-

ing would result in distinct combinations of imaging 

parameters to differentiate atypical PCNSL from GBM. In 

addition, this approach will extract more information than 

single-parameter analyses of ADC or rCBV and improve 

diagnostic performance without contrast bolus injec-

tion. In this study, we tested the technical feasibility, gen-

eralizability, and diagnostic performance of a radiomics 

model using ADC for the identification of atypical PCNSL 

mimicking GBM.

Materials and Methods

Patients

Our institutional review board approved this retrospect-

ive study, and the requirement for informed consent 

was waived. We searched the electronic database of the 

Department of Radiology at our institution, retrospect-

ively reviewed records for patients between March 2011 

and March 2017, and identified 208 patients pathologically 

confirmed to have de novo GBM or PCNSL. Patients were 

immune competent (n =  208); CE-T1WI was obtained for 

the patients (n = 200); and preoperative diffusion-weighted 

imaging (DWI) was obtained for the patients (n  =  194). 

Patients were excluded if no histopathological specimen 

was available (n  =  39) or DWI was unreadable (because 

of an artifact) (n = 1). These steps yielded 154 consecutive 

patients (mean age, 62.4 y; male:female ratio, 81:73).

To test the diagnostic performance of our model for 

atypical PCNSL, we constructed a separate set with atypi-

cal PCNSL cases. An independent radiologist (H.S.K., with 

15 years experience in neuroradiology) assessed the origi-

nal radiological reports and assigned an ‘atypical PCNSL’ 

diagnosis to each patient when 2 differential diagnoses 

of GBM or PCNSL were listed in the official radiological 

reports for patients with pathologically confirmed lym-

phoma. Atypical PCNSL cases had necrosis, hemorrhage, 

or heterogeneous contrast-enhancing lesions.6,19 The same 

number of patients (n  =  21) with GBM were assigned to 

the set using the random number generation function in 

Excel. This internal validation set (n = 42) was not included 

in the construction process of the radiomics model, which 

was performed with the training set (n = 112; 70 GBMs, 42 

PCNSLs).

To further validate our model, a cohort of 42 patients 

with pathologically confirmed GBM (n =  28) and PCNSL 

(n =  14) at another tertiary medical center was used 

for external validation of the model. The PCNSL group 

included 11 cases of atypical PCNSLs in the external val-

idation set, and the assignment criteria were the same as 

those in the internal validation set.

Imaging Data

All MRI studies in enrolled patients in both institutions 

were performed on the same 3T unit (Achieva, Philips 

Medical Systems), using an 8-channel head coil.

The brain-tumor imaging protocol at our institution 

includes the following sequences: T2-weighted imaging, 

FLAIR imaging, T1-weighted imaging, DWI, CE-T1WI, and 

dynamic-susceptibility contrast (DSC) perfusion MRI. The 

Importance of the study

Diagnosing PCNSL mimicking glioblastoma is chal-

lenging. Here, a high-dimensional, diffusion radiom-

ics model provided higher diagnostic performance 

compared with conventional radiomics or individual 

advanced MRI parameters. This is the first study to 

validate radiomics analysis with an external dataset 

obtained using a heterogeneous MRI protocol, which 

confirmed its robustness. Our results suggest diffu-

sion radiomics could be used across centers for tumor 

diagnosis.
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external validation set followed the similar brain tumor 

imaging protocol, except for DSC perfusion MRI. Detailed 

description and comparison of imaging parameters is 

shown in the Supplementary Table S1.

Imaging Postprocessing and Tumor 
Segmentation

The ADC map was calculated using the b values of 0 and 

1000  s/mm2, using a 2-point estimate of signal decay: 

ADC = −ln (S[b]/S[0])/b, where b indicates the b value and 

S(0) and S(b) are the signal intensities of images with b 

values at 0 and 1000, respectively. The postprocessing of 

DSC imaging was performed using commercial software 

(NordicICE, NordicNeuroLab). After correction for con-

trast agent leakage, the whole-brain rCBV was calculated 

using the numerical integration of the time concentration 

curve. Then we normalized the rCBV (nCBV) images with 

the mean intensity of the contralateral normal-appearing 

cerebral white matter at the corona radiata, which was 

manually selected by a researcher (with 3 years experience 

in neuroimaging processing). The diameter of the selected 

region of interest (ROI) was 10 mm. The nCBV maps were 

created by dividing each CBV value by the contralateral 

ROI on a pixel-by-pixel basis.

Calculated ADC and DSC maps were then co-registered 

to the 3D CE-T1WI using SPM software (www.fil.ion.ucl.

ac.uk/spm/). The co-registration process includes genera-

tion of a brain mask from 3D CE-T1WI and transformation 

to ADC and DSC maps for each patient. Images were regis-

tered to the brain-extracted 3D CE-T1WI volume using aff-

ine transformation with normalized mutual information as 

a cost function,20 with 12 degrees of freedom and trilinear 

interpolation.

Tumor segmentation was performed semi-automat-

ically by a neuroradiologist (with 4  years experience in 

neuro-oncological imaging) on 3D CE-T1WI to select the 

contrast-enhancing solid portion of the tumor using a 

segmentation threshold and region-growing segmenta-

tion algorithm that was implemented using MITK soft-

ware (www.mitk.org, German Cancer Research Center, 

Heidelberg).21 All segmented images were checked by one 

author. Finally, we resampled the ADC images into a uni-

form voxel size of 1 × 1 × 1 mm across all patients for radi-

omics construction. The overall process of the radiomics 

pipeline is shown in Fig. 1.

Extraction of Radiomics Features

Both ADC and 3D CE-T1WI data were subjected to radiom-

ics feature extraction. For 3D CE-T1WI data, signal intensity 

normalization was used to reduce variance in the T1-based 

signal intensity of the brain. We applied the hybrid white-

stripe method21 for intensity normalization using the 

ANTsR and WhiteStripe packages22,23 in R.  This incorpo-

rates processes of the statistical principles of image nor-

malization, preserving ranks among tissue and matching 

the intensity of tissues without upsetting the natural bal-

ance of tissue intensities.23 Before feature extraction, we 

normalized the image intensities of ADC between μ ± 3σ 

where μ and σ were the mean value of the standard devia-

tion inside the ROI, respectively.24

Radiomics features were extracted using Matlab R2014b 

(Mathworks), in accordance with previous studies.11,12 The 

1618 radiomics features comprised 4 feature groups: 17 

first-order features, 7 volume and shape features, 162 tex-

ture features, and 1432 wavelet features. The first-order, 

texture, and wavelet features were estimated using sig-

nal intensity and volume, and the shape features were 

obtained from the segmented mask. Further details of 

the radiomics feature extraction are described in the 

Supplementary Material S2, and the code for extracting 

CE-T1W1

Segmentation

I. Image acquisition,

registration, and segmentation

II. Feature extraction III. Feature selection and

classification

Registered on ADC maps

ADC maps

Volume and shape (7) ROC analysis

Classification

Optimization of feature selection and

classification using cross-validation
First-order statistics (17)

8 times multiplied by

Wavelet transformation

Second-order statistics (162)

0
1

1

1

1

1

1

1
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0
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Fig. 1. The radiomics pipeline of our study.
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radiomic features is given in the online supplement. The 

processing time to extract 1618 features was approxi-

mately 3 minutes per patient. The entire feature extraction 

algorithm was fully automated and yielded identical fea-

tures regardless of operators.

Feature Selection and Classification Methods

Because radiomics has a highly redundant feature 

space,14 it is very important to reduce highly correlated 

features in the selected feature subset to avoid collinear-

ity.25 Furthermore, a high-dimensional feature space pre-

sents potential risks of overfitting or false discovery.26 To 

improve system efficiency and accuracy,27 we computed 

different combinations of feature selection methods and 

classifications using machine learning. Methods were 

chosen largely based on their common use in previ-

ous studies and readily available implementation.14,17,28 

Details of each feature selection and classification meth-

ods are summarized in the Supplementary Table S3. The 

feature selection methods included minimum redun-

dancy maximum relevance (mRMR), relief, mutual infor-

mation, feature selection via concave minimization, 

recursive feature elimination (RFE), zero-norm minimiza-

tion, generalized Fisher score, infinite feature selection, 

eigenvector centrality, unsupervised discriminative fea-

ture selection, and correlation-based and local learning-

based clustering feature selection. The feature selection 

methods were carried out using Feature Selection Library 

(FSLib).29 For classification, we investigated 8 machine 

learning classifiers, including k-nearest neighbor, naïve 

Bayes classifier, decision tree, linear discriminant analy-

sis (LDA), random forest, adaptive boosting, linear sup-

port vector machine, and radial basis function support 

vector machine classifiers, using Statistics and Machine 

Learning Toolbox in Matlab.

The best performing combinations of different feature 

selection and classification methods were computed using 

the training set with 12 feature selection and 8 machine 

learning classification methods for the analysis. The differ-

ent feature selection and classification methods were com-

puted using Matlab R2014b (Mathworks).

Measurement of Single Parameters

In the internal validation set, values of the cumulative 

histogram parameters ADC and DSC were generated for 

segmented entire contrast-enhancing volumes. For cumu-

lative histogram parameters, the 10th percentile of ADC 

(ADC10) and the 90th percentile of nCBV (nCBV90) were 

derived for the entire contrast-enhancing lesion. The nth 

percentile is the point at which n% of the voxel values 

making up the histogram are located left of the point. The 

number of bins was 100 in the histogram analysis. The cut-

offs of 10% for the ADC histogram and 90% for the nCBV 

histogram were chosen because they are less influenced 

by random statistical fluctuations and are analogous to the 

minimum and maximum values that have commonly been 

used with the hotspot method.30 In the external validation 

set, ADC10 was derived for contrast-enhancing lesion.

Comparison of the Diagnostic Performance with 
That of Human Readers

We tested the diagnostic performance of distinguishing 

PCNSL from GBM in the internal and external validation 

set by 2 readers, who were experienced neuroradiologists 

with 5 years (reader 1) and 20 years experience (reader 2). 

After anonymization and data randomization, the readers 

were given 4 image sets for each patient, which included 

FLAIR, DWI, ADC maps, and CE-T1WI images. The rea-

son for choosing the above sequences was to establish 

a comparison with the radiomics model, while provid-

ing important imaging sequences to simulate the radi-

ology workflow. We did not separately test the imaging 

sequences to prevent learning effect of readers. The read-

ers indicated the level of confidence in their interpretation 

for each patient using 5 levels: definitely PCNSL, probably 

PCNSL, equivocal, probably GBM, and definitely GBM.

Statistical Analysis

Optimization of the Radiomics Model in the Training Set

All radiomics features were z transformed for group com-

parison. To find the best combination between feature 

selection and classification methods, we tuned hyper-

parameters with the fashion of grid search. For each 

of the 12 feature selection methods, we incrementally 

selected features ranging from 5 to 50, with an incre-

ment of 5. The 8 classifiers had different types of hyper- 

parameters, and the detailed parameter search is given in 

the Supplementary Table S3 for each classifier. The  subsets 

of selected features were evaluated by being paired with 

each of the 8 classifiers and the diagnostic performance 

was calculated using area under the receiver operat-

ing characteristic curve (AUC). For each combination, we 

trained the model on the subsampled cohort in the training 

set (size n/10) and cross-validated data using 10-fold cross-

validation. The AUC of each combination was  compared. 

Optimization was separately performed for ADC maps and 

3D CE-T1WI data.

Measuring Stability of the Radiomics Model

The stability of the combination was quantified empirically 

using relative standard deviation (RSD).15 RSD was defined 

as a percentage equal to: (standard deviation of AUC/mean 

AUC) × 100, where the AUC values were the 10 obtained 

from cross-validation in the training set.

Comparison of Diagnostic Performance

Based on the radiomics construction in the training set, 

the best combination of feature selection and classifica-

tion methods was used on ADC and CE-T1WI data in the 

validation set. Also, the best ADC and CE-T1WI radiomics 

features were combined and the diagnostic performance 

was calculated. The ADC radiomics model, the CE-T1WI 

radiomics model, combined ADC and CE-T1WI radiomics 

model, nCBV90, and ADC10 were compared in their diag-

nostic performance using AUC. The accuracy, sensitivity, 
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and specificity are defined as follows, in correctly diagnos-

ing PCNSLs (TP: true positive, TN: true negative, FP: false 

positive, FN: false negative): 

Accuracy

Sensitivity

Specificity

=
+

+ + +

=

+

=

TP TN

TP TN FP FN

TP

TP FN

,

,

TTN

TN FP+

P-values less than 0.05 were considered to indicate sig-

nificant differences. Statistical analyses were performed 

using R v3.3.2 statistical software and Matlab R2014b with 

Windows 10.

Measuring Effect of Adding Atypical PCNSLs in the 

Training Set

Additionally, using the best model in each radiomics analy-

sis, the effect of adding atypical PCNSLs in the training set 

was tested. The lymphoma dataset was randomly divided 

without selecting for atypical feature and the diagnostic 

performance was tested in both validation sets.

Results

Clinical Characteristics of the Study Patients

The baseline demographics and clinical characteristics 

of the patients are summarized in Table 1. There were 112 

patients in the training set (70 GBMs, 42 PCNSLs), 42 

patients in the internal validation set (21 GBMs, 21 atypical 

PCNSLs), and 42 patients in the external validation set (28 

GBMs, 14 atypical PCNSLs). There were no significant dif-

ferences in sex between patients with GBM and PCNSL in 

either the training or the validation set. The PCNSL group 

showed a smaller tumor size than the GBM group on 

CE-T1WI in both the training (P = 0.0002) and the internal 

(P = 0.02) and external validation sets (P = 0.04).

Determination of the Best Radiomics Model in the 
Training Set

Using radiomics features, each combination of the 12 fea-

ture selection and 8 classification methods was trained 

and diagnostic performance was calculated with a 10-fold 

cross-validated threshold. Table 2 summarizes the results 

of the diagnostic performance using different combina-

tions for each feature selection and classification method, 

according to the feature numbers.

ADC Radiomics

In the ADC radiomics model, the combination of the RFE 

feature selection and the random forest classification 

method (model 5, mean AUC  =  0.983) showed the best 

diagnostic performance. The stability of this combination 

was 2.52% (RSD), and the optimal number of radiomics 

features was 15. Significant radiomics features are given in 

the Supplementary Table S4. Fig. 2 demonstrates different 

combinations of each feature selection and classification 

method with 15 ADC radiomics features.

CE-T1WI Radiomics

The combination of the relief feature selection method and 

LDA classifier showed the best diagnostic performance 

(model 4, mean AUC  =  0.976), with 40 optimal radiomic 

features. The stability of this combination was 1.73%. 

Significant radiomic features of CE-T1WI are presented in 

Supplementary Table S6.

Generalizability of the Radiomics Model in the 
Validation Sets

Table  3 summarizes the diagnostic performance of the 

radiomics model in internal and external validation sets. 

In all, 15 significant ADC radiomics features and combina-

tions of RFE feature selection and random forest classifier 

were trained in the validation sets. In an independent inter-

nal validation, the ADC radiomics model demonstrated an 

AUC of 0.984 (95% CI: 0.945–1), with a sensitivity of 80.9%, 

a specificity of 100%, and an accuracy of 90.5%. The 40 sig-

nificant CE-T1WI radiomics features and the combination 

of relief feature selection with LDA classification were used 

in the validation set. The CE-T1WI radiomics model had an 

AUC of 0.968 (95% CI: 0.913–1), with a sensitivity of 85.7%, 

a specificity of 95.2%, and an accuracy 85.7%. The com-

bined ADC and CE-T1WI radiomics features (using the 15 

ADC and 40 CE-T1WI radiomics features) showed an AUC 

of 0.984 (95% CI: 0.945–1), a sensitivity of 85.7%, a specific-

ity of 100%, and an accuracy of 92.9%.

Table 1. Baseline demographics and clinical characteristics of patients

Pathology Training Set P-value Internal Validation Set P-value External Validation Set P-value

PCNSL GBM PCNSL GBM PCNSL GBM

Patients (N) 42 70 21 21 14 28

Number of  
females (N)

23 29 .47 11 10 .51 12 11 .53

Age, y 64.1 ± 12.9 61.1 ± 11.5 .19 67.8 ± 10.6 62.3 ± 11.4 .01 57.9 ± 12.1 57.4 ± 11.4 .43

Tumor size (cm2) 10.9 ± 7.9 16.1 ± 8.4 .002 9.9 ± 7.7 16.2 ± 7.9 .02 11.9 ± 8.7 16.2 ± 7.9 .04

Note: P-values apply to the differences between the PCNSL and GBM groups. Age and tumor size are expressed as means ± standard deviations.
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In the external validation set, the ADC radiomics model 

demonstrated an AUC of 0.944 (95% CI: 0.856–1), with 

a sensitivity of 85.7%, specificity of 75%, and an accur-

acy of 88.6%. The CE-T1WI radiomics model had an AUC 

of 0.819 (95% CI: 0.671–0.967), with a sensitivity of 71.4%, 

specificity of 82.1%, and an accuracy of 78.6%. Meanwhile, 

the combined ADC and CE-T1WI radiomics features had 

an AUC of 0.946 (95% CI: 0.861–1), with a sensitivity of 

85.7%, a specificity of 82.1%, and an accuracy of 83.3%. 

The combined radiomics showed similar diagnostic per-

formance with ADC radiomics in both internal and external 

validation sets.

Fig.  3 shows the heatmap of GBM and PCNSL in the 

training, internal validation, and external validation sets.

Comparison of the Diagnostic Performance of the 
Radiomics Model and Single Parameters in the 
Validation Set

ADC10 was obtained in both internal and external valida-

tion sets, whereas nCBV was obtained in only the inter-

nal validation set. Using the optimal cutoff, ADC10 had an 

AUCs of 0.79 (95% CI: 0.633–0.898) and 0.81 (95% CI: 0.683–

0.901) in the internal and external validation sets, respec-

tively, with a sensitivity of 95.2% and 75.9%, a specificity 

of 57.1% and 82.1%, and an accuracy of 76.2% and 84.9%, 

respectively. Using the optimal cutoff, nCBV90 had an AUC 

of 0.905 (95% CI: 0.774–0.973), with a sensitivity of 80.9%, 

a specificity of 90.5%, and an accuracy of 85.7%. Both ADC 

radiomics and CE-T1WI radiomics had better diagnostic 

performance than the single parameters ADC10 and 

nCBV90 (Table 3). A comparison of AUCs among the ADC 

radiomics model, CE-T1WI radiomics model, and single 

parameters (ADC10 or nCBV90) did not show statistically 

significant differences, but the trend of higher diagnostic 

performance of the radiomics model was consistent in the 

training and validation sets.

Diagnostic Performance of the Human Readers

Table 3 summarizes the results. In the internal validation 

set, reader 1 had an AUC of 0.825 (95% CI: 0.755–0.881), 

with a sensitivity of 69.4%, a specificity of 95.6%, and an 

accuracy of 86.7%, while reader 2 had an AUC of 0.908 (95% 

CI: 0.851–0.949), with a sensitivity of 83.9%, a specificity of 

97.8%, and an accuracy of 92.8%. In the external validation 

set, reader 1 had an AUC of 0.896 (95% CI:  0.836–0.940), 

with a sensitivity of 82.5%, a specificity of 96.7%, and an 

accuracy of 90.8%, while reader 2 had an AUC of 0.930 

(95% CI: 0.831–0.981), with a sensitivity of 89.7%, a specifi-

city of 96.4%, and an accuracy of 93.0%.

Effect of Incorporating Atypical PCNSL in the 
Training Set

When the training set included atypical PCNSLs, the 

ADC radiomics model showed an AUC of 0.971 (95% CI: 

 0.917–1), with a sensitivity of 85.7%, a specificity of 95.2%, 

and an accuracy 90.5% in the internal validation set, and 

Table 2. Diagnostic performance and stability of the ADC and post-contrast T1 radiomics model, using different combinations of feature selection 
and classification methods in the training set

Model Classification Method Best Feature Selection Method Optimum Feature Number Mean AUC Value RSD (%)

ADC

1 k-NN mRMR 45 0.968 3.99

2 Naïve Bayes RFE 45 0.955 6.88

3 Decision tree RFE 10 0.910 9.51

4 LDA mRMR 15 0.982 3.53

5 Random forest RFE 15 0.983 2.52

6 Adaboost FSV 20 0.979 5.76

7 Lin-SVM L0 35 0.979 3.53

8 RBF-SVM L0 15 0.968 9.28

Post-contrast T1

1 k-NN FSV 20 0.940 5.77

2 Naïve Bayes L0 5 0.940 7.66

3 Decision tree Relief 40 0.927 10.61

4 LDA Relief 40 0.976 1.73

5 Random forest FSV 45 0.954 5.33

6 Adaboost Inf.FS 10 0.941 8.95

7 Lin-SVM Relief 15 0.958 5.23

8 RBF-SVM RFE 50 0.937 5.24

Abbreviations: RSD = relative standard deviation; k-NN = k-nearest neighbor; mRMR = minimum redundancy maximum relevance; RFE = recursive 
feature elimination; LDA = linear discriminant analysis; Adaboost = adaptive boosting; FSV = feature selection via concave minimization; Lin-SVM =  
linear support vector machine; L0 = zero-norm minimization; RBF-SVM = radial basis function support vector machine; Inf.FS = infinite feature selection
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an AUC of 0.911 (95% CI: 0.802–1), with a sensitivity of 

85.7%, a specificity of 75%, and an accuracy of 85.6% in 

the external validation set. In CE-T1WI radiomics, the 

model showed an AUC of 0.938 (95% CI: 0.862–1), with a 

sensitivity of 90.5%, a specificity of 90.5%, and an accur-

acy of 90.48% in the internal validation; and an AUC of 

0.773 (95% CI: 0.611–0.934), with a sensitivity of 71.4%, a 

specificity of 79%, and an accuracy of 76.2% in the external 
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Fig. 2 (A) Heatmap depicting the diagnostic performance (AUCs) of 12 feature selection (columns) and 8 classification (rows) methods in the train-
ing set. (B) Stability of the AUCs using 10-fold cross-validation (CV) in the training set. Color scale: expressed from yellow (AUC 1.00) to blue (AUC 
0.65).
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validation set. Compared with the radiomics model trained 

with typical PCNSLs, the diagnostic performance of the 

ADC radiomics model was similar in both validation sets, 

while CE-T1WI radiomics dropped in the external valid-

ation comprising typical PCNSLs mostly.

Discussion

Here, we created a high-dimensional feature space from a 

radiomics model by extracting 1618 phenotypic features 

and computing different feature selection and classification 

algorithms, which yielded high diagnostic performance in 

identifying atypical PCNSL mimicking GBM. We found that 

the ADC radiomics model was particularly useful in show-

ing better diagnostic performance than human readers and 

single-parameter ADC or even nCBV, with robust results in 

external validation. Also, the ADC radiomics model gave 

similar diagnostic performance with that from combined 

ADC and CE-T1WI radiomics features in both validation 

sets. Particularly, the ADC radiomics model provided more 

robust results than the CE-T1WI radiomics model across 

different imaging acquisitions, supporting its use as a mul-

ticenter imaging biomarker in radiomics research.

Atypical PCNSL is still a challenge in radiological diag-

nosis when it manifests ring-like enhancement, necrosis, 

internal hemorrhage, or calcification mimicking GBM. As 

Patients

Training Set Internal Validation External Validation

GBM PCNSL

R
a

d
io

m
ic

 f
e

a
tu

r
e

s

Fig. 3 Heatmap of radiomic features selected on the basis of recursive feature elimination and a random forest classifier in the diffusion radi-
omics model. Each row corresponds to a z-score of normalized radiomics features, and each column corresponds to one patient. The heatmap 
is grouped for the training, internal validation, and external validation sets and the GBM versus PCNSL group by means of radiomics analysis.

Table 3. Comparison of diagnostic performance of the radiomics model, combined radiomic features, histogram analyses of ADC and CBV, and 
human readers in the validation set

Parameter AUC Value Cutoff Sensitivity (%) Specificity (%)

Internal validation set

ADC radiomics 0.984 (0.945, 1) NA 80.9 100

CE-T1WI radiomics 0.968 (0.913, 1) NA 85.7 95.2

ADC+ CE-T1WI radiomics 0.984 (0.945, 1) NA 85.7 100

ADC10 0.787 (0.633, 0.898) 0.92 95.2 57.1

nCBV90 0.905 (0.774, 0.973) 4.27 80.9 90.5

Human readers 0.825–0.908 (0.755, 0.949) NA 69.4–83.9 95.6–97.8

External validation set

ADC radiomics 0.944 (0.856, 1) NA 85.7 75.0

CE-T1WI radiomics 0.819 (0.671, 0.967) NA 71.4 82.1

ADC+ CE-T1WI radiomics 0.946 (0.861, 1) NA 85.7 82.1

ADC10 0.809 (0.683,0.901) 0.80 75.9 82.1

Human readers 0.896–0.930 (0.831, 0.981) NA 82.5–89.7 96.4–96.7

Note. Data in parentheses are 95% CIs. ADC is shown in × 10–3 mm2 sec−1.
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evidence, the readers (comprising 4 and 20 years of expe-

rience in neuroradiology) showed diagnostic performance 

of AUC 0.825 to 0.908 in diagnosing atypical PCNSLs. On 

the other hand, a number of studies have found that the 

mean, minimum/maximum, or histogram value of ADC 

and CBV extracted from physiological imaging biomark-

ers can improve diagnostic performance to differentiate 

PCNSL4,7,31 from GBM, with better diagnostic performance 

reported for CBV.4,5 However, the diagnostic performance 

of this single-parameter approach drops in atypical mani-

festations of PCNSL, with the minimum ADC showing 

an AUC of 0.71–0.736 and with the combination of mean 

ADC and rCBV showing an accuracy of 84%.3 The single-

parameter approach is inherently limited, in that it does 

not characterize tumor heterogeneity or quantify compre-

hensive phenotypic information from imaging data. Using 

a radiomics model, we expanded the feature dimensions 

of conventional and DW imaging to address an important 

clinical question of the diagnosis of atypical PCNSL mim-

icking GBM. Our model yielded better diagnostic perfor-

mance than the human readers and single-parameter ADC 

and CBV in the validation sets. Furthermore, the radiomics 

pipeline was automated and the extraction of 1618 features 

took 3 minutes per patient. This further emphasized the 

potential clinical utility of radiomics analysis.

Our radiomics model utilized ADC values for all 

enhanced tumors. However, to date, they have not been 

used as a useful source of a radiomics model. Recent stud-

ies that have focused on performing analyses of conven-

tional MRI have used T1, FLAIR, and CE-T1WI protocols, 

but signal intensities are arbitrary units and lack biological 

information. The ADC radiomics model promises to be able 

to examine the tumor microenvironment and can enrich 

existing imaging features, since ADC values can contain 

biological information. Significant ADC radiomics features 

included minimum ADC and histogram skewness, which 

may indicate high cellularity as well as a homogeneous 

tumor microenvironment compared with glioblastoma. 

The most relevant imaging feature was the Gray-level co-

occurrence matrix (GLCM) in both the ADC radiomics. The 

GLCM is a texture-analysis method that calculates how 

often pairs of pixels with specific values and in a speci-

fied spatial relationship occur in an image.32 Since GLCMs 

characterize tumor heterogeneity, obtaining statistical 

measures and creating radiomics models from GLCM are 

important to distinguish PCNSL from GBM. This is further 

supported by a recent pixelwise study for prostate can-

cer,33 which found that increases in ADC values correlated 

positively with extracellular spaces and nuclear sizes, but 

negatively with nuclear counts. In addition, ADC maps 

allow reliable feature extraction using absolute values 

within the same protocol as in our present study, whereas 

contrast-enhanced T1 signals vary even within the same 

subject,22 and different preprocessing methods of intensity 

normalization may give different results.34

Notably, the diagnostic performance of CE-T1WI radiom-

ics decreased in the external validation set. Also, diagnos-

tic performance of combined CE-T1WI and ADC radiomics 

features was similar in both internal and external validation 

sets. In contrast to a highly homogeneous imaging acquisi-

tion scheme in the training set, the external validation set 

had highly heterogeneous imaging protocols for both DWI 

and CE-T1WI. A previous CT study35 showed that radiom-

ics features are reproducible over a wide range of imaging 

settings, unless smooth and sharp reconstruction algo-

rithms are used. Our data suggest that CE-T1WI radiom-

ics features are more vulnerable to changes in acquisition 

parameters, wherein margin, gadolinium contrast media, 

and signal-to-noise ratio can be easily varied across imag-

ing protocols. However, ADC maps are parametric and are 

likely to be robust across the different acquisition schemes. 

Moreover, ADC maps are derived from non-enhanced MRI 

data and their clinical utility can be further enhanced.

Further, we tested the effect of including atypical PCNSLs 

in the training set. Compared with the original training set, 

the performance of CE-T1WI radiomics dropped in the 

external validation, while ADC radiomics showed similar 

results. This is probably because the radiomics analysis is 

focused on the solid enhancing portion, while “atypical” 

features of PCNSL usually come from necrosis or hemor-

rhage, apart from the solid portion. This is partly supported 

by a histopathological study of PCNSL showing that the 

macroscopic features of PCNSLs are similar in immuno-

competent and immunodeficient patients36 and that the 

tumor cells are diffusely compact with a characteristic 

angiocentric growth pattern in PCNSL, which may result 

in a similar diffusion restriction pattern. This needs further 

investigation.

Machine learning methods with high statistical power 

and stability are desired for radiomics analysis.15,28 In addi-

tion, a robust algorithm for feature selection37 is important 

to handle enormous amounts of radiomics features and 

to reduce the curse of dimensionality.38 We computed 12 

feature selection and 8 classification methods to find an 

optimal method yielding the best diagnostic performance 

and model stability. Among them, RFE feature selection 

with random forest classification and relief feature selec-

tion using LDA showed the best diagnostic performance 

in the ADC and CE-T1WI radiomics models, respectively. 

In addition, the ADC radiomics model was optimized with 

15 features, whereas the CE-T1WI radiomics model needed 

40 features. Our current results indicate that the radiomics 

model must be optimized based on different imaging data 

and different outcomes, including diagnosis, histopatho-

logical subtypes, and survival, to provide a reliable algo-

rithm and automated analysis platform.

This study has several limitations. The first is its retro-

spective design and the small number of patients in the 

validation set. We attempted to overcome this issue by 

constructing a separate model with the training set and 

demonstrating robust results using the external validation 

set. Furthermore, results showed robustness regarding the 

differed ratio of GBM and PCNSL in internal validation (1:1) 

and external validation (2:1), or different combinations of 

training set including atypical features of PCNSLs. Second, 

comparison of diagnostic performance radiomics with CBV 

was performed using only internal validation. This was due 

to the lack of DSC imaging in the external validation set. 

To expand radiomics research and validate different radi-

omics models, larger cohort studies and standardization of 

imaging acquisition will be necessary. Third, the preproc-

essing of DWI is still not well established. Although we 

tested the ADC radiomics using different scanning param-

eters on 3T, testing with a 1.5T system will be an important 
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task that must be completed before ADC radiomics is inter-

changeably used as a multicenter imaging biomarker.

In conclusion, our radiomics model utilizing ADC maps 

had good generalizability and showed a better diagnos-

tic performance than single-parameter measurements in 

identifying atypical PCNSL mimicking GBM by providing 

robust high-dimensional analyses of conventional and 

physiological imaging features.

Supplementary material

Supplementary material is available at Neuro-Oncology 

online.
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