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Abstract

The outbreak of COVID-19 in 2020 has led to a surge in interest in the research of the mathematical modeling of epidemics.

Many of the introduced models are so-called compartmental models, in which the total quantities characterizing a certain

system may be decomposed into two (or more) species that are distributed into two (or more) homogeneous units called

compartments. We propose herein a formulation of compartmental models based on partial differential equations (PDEs)

based on concepts familiar to continuum mechanics, interpreting such models in terms of fundamental equations of balance

and compatibility, joined by a constitutive relation. We believe that such an interpretation may be useful to aid understanding

and interdisciplinary collaboration. We then proceed to focus on a compartmental PDE model of COVID-19 within the

newly-introduced framework, beginning with a detailed derivation and explanation. We then analyze the model mathematically,

presenting several results concerning its stability and sensitivity to different parameters. We conclude with a series of numerical

simulations to support our findings.
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1 Introduction

Many phenomena in the physical and social sciences fea-

ture a compartmental structure, in which the total quantities
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characterizing a system of interest may be decomposed into

two (or more) species that are distributed into (two or more)

homogeneous units called compartments. As the system

evolves in time, the relative distribution of species across

the compartments changes, as different physical conditions

alter the species state in each compartment and induce species

migration from one compartment to another. Compartmental

models have been used extensively in biological, ecologi-

cal, and chemical applications. Notable examples include the

susceptible-infected-recovered (SIR) models and their vari-

ants for epidemic modeling [1–3], the Lotka–Volterra models

for predator-prey dynamics [1,4,5], pharmacokinetic models

used extensively in pharmacology [6], and demographic and

migration models found in sociology and demography [7–9].

The majority of compartmental models encountered in the

literature consist of systems of ordinary differential equations

(ODEs). These models, while simple to formulate, analyze,

and solve numerically, are limited in their ability to describe

dynamics in both space and time. A common strategy to

introduce spatial variation into such ODE models is by defin-

ing regional compartments corresponding to different areas

in physical space, with coupling terms added to the model
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equations to account for the movement of species among

the different regions [10–13]. This approach was recently

employed in [14,15] to model the spread of COVID-19

among the different administrative regions in Italy. While this

approach may be effective for some applications, description

of complex spatial dynamics within compartments is difficult

and possibly even non-feasible in this framework.

In contrast, compartmental models based on partial dif-

ferential equations (PDEs) incorporate spatial information

more naturally. Specifically, PDE models allow for a space-

continuous description of the relevant dynamics, enabling

one to describe dynamics in time and space across all scales.

This represents a significant advantage over ODE models,

whose ability to describe spatial information is limited by the

number of spatial compartments one includes. Examples of

compartmental models based on PDEs can be found in [16–

21]. Likely owing to their apparent increased mathematical

complexity and more significant computational burden, com-

partmental PDE models are less common and, to the authors’

knowledge, a systematic study of compartmental PDE mod-

els in a general setting has not been performed.

The present work has two primary goals. First, we aim at

formalizing PDE compartmental models in a general frame-

work more familiar to continuum mechanics. Accordingly,

we reinterpret such models as fundamental equations of bal-

ance and compatibility, with the relationship between the

balance and compatibility equations defined by a consti-

tutive relation. We believe that such a framework may be

useful to researchers seeking to better understand general

compartmental models, and may ultimately help facilitate

interdisciplinary collaboration. Our second goal is to improve

our understanding of a specific compartmental PDE model,

which describes the spatiotemporal spread of COVID-19,

and has demonstrated good agreement with the measured

data [22], from the physical, mathematical, and numerical

points of view. As the reinterpretation of the COVID-19

model within the continuum mechanics framework plays a

significant role in this study, the stated goals are complemen-

tary.

The current work is organized as follows. We begin by

introducing compartmental PDE models within the contin-

uum mechanics framework in Sect. 2. As a preliminary

example to aid understanding, we derive a simple two-

compartment Lotka–Volterra-type model within this setting.

In Sect. 3 we turn our attention to the COVID-19 model dis-

cussed in [22], beginning with its derivation within the newly-

introduced notational system from continuum mechanics. We

analyze the model mathematically and establish its formal

sensitivity to diffusivity and its stability in the L1 norm. We

also use an ODE variant of the model, which does not incor-

porate diffusion, to define a basic viral reproduction number

R0, which is extensively used as an epidemiological indicator

of infectious disease spread. A brief spectral analysis is also

performed on the ODE variant. Then, Sect. 4 presents a series

of numerical simulations in 1D and 2D to examine different

aspects of the COVID-19 model behavior. In 1D, we seek to

observe how changes to the spatial and temporal discretiza-

tion affect the model’s numerical solution. In 2D, we analyze

how changes in diffusion affect the physical behavior of the

model. For both the 1D and 2D problems, we evaluate the

effectiveness of the ODE-derived R0 as a predictor of model

behavior, demonstrating the significance of spatial diffusion

on modeled viral reproduction. We conclude by summariz-

ing the presented results and suggesting directions for future

research in Sect. 5.

2 General formulation of compartmental
models in a continuummechanics
framework

We consider a system which may be decomposed into N

distinct species: u1(x, t), u2(x, t), ..., uN (x, t). Each ui is

a function describing the spatiotemporal distribution of the

given species with spatial variable x and time variable t . It

is often the case that
∑

i ui has a natural interpretation: for

example, the ui may represent well-defined subgroups of a

given population, with their sum then yielding the total pop-

ulation. However, this does not always hold. For instance, the

ui may describe the populations of different animal species,

rendering their summation physically meaningless without

additional normalization. It is always the case, however, that

the ui are the fundamental quantities of interest describing

the system dynamics, and change in response to some or all

of the other species in the model.

We arrange the ui in a vector u in R
d such that u =

[u1(x, t), u2(x, t), . . . , un(x, t)]T . Rather than using the

more traditional notation found in mathematical and biologi-

cal references, we opt here for a general notational convention

more common to continuum mechanics. Hence, over a spa-

tial domain � and a time interval [t0, tend ] our equations

read:

∂t u − ∇ · F + b = 0 (1)

ε = ∇u (2)

F = F(u, ε) (3)

b = b(u), (4)

plus appropriate initial and boundary conditions. In the sys-

tem above, Eq. (1) represents a force balance in terms of an

internal force F, which is thermodynamically conjugate to u,

and an externally applied force b. Physically, we may inter-

pret F as describing the changes in the extensive properties

of a given species. Eq. (2) represents the compatibility equa-

tion in terms of species u and specie gradient ε. Physically,
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we may interpret ε as the specie gradient in space. Then, the

relationship between the balance and compatibility equations

is defined by the constitutive relation Eq. (3).

The role of the externally applied forces defined in Eq.

(4) is fundamental in compartmental models, and warrants

some additional discussion. As these forces depend on the

unknown variable u, often in a nontrivial way, their descrip-

tion as ‘externally applied’ may initially seem inconsistent.

To understand why such an interpretation is well-motivated,

we recall that Eqs. (1)–(4) describe N different species and

their relative distribution in time and space. A species ua may

therefore act on a different species ub, such that for ub this

represents an external force. These intra-species interactions

are described by b in Eqs. (1) and (4). We note additionally

that b may only depend algebraically on u. Often, these terms

are referred to in the literature as ‘reaction terms’ [17]. We

consider Eqs. (1)–(2) to be fundamental and fixed; i.e., any

PDE compartmental model will share these equations. The

relations in Eqs. (3)–(4) thus define the specific behavior of

a given model.

2.1 Example: two-compartment
Lotka–Volterra-typemodel

We illustrate the continuum mechanics framework pre-

sented above by first considering a two-compartment Lotka–

Volterra model, also known as the predator-prey equations.

This model describes the interaction between two animal

populations, predator and prey, in time and space [5]. Let

u = [r , w]T where r(x, t) represents a population of rab-

bits (prey) and w(x, t) a population of wolves.1 For ease of

dimensional analysis, we denote characteristic population,

length and time scales as P , L and T . Our model assump-

tions are:

1. The movement of both rabbits and wolves exhibit no spa-

tial preference and are independent of each other;

2. The food supply for the rabbits is sufficiently plentiful

such that it does not depend on rabbit population (in

biological terminology, we say there is no intraspecific

competition [5]) ;

3. The wolves have no sources of food other than rabbits;

4. The mortality rate of the wolves, as well as the non-

predation mortality rate of the rabbits, does not depend

on population size.

As the compatibility equation Eq. (2) describes the change in

a population resulting from its movement in space, with our

1 There is nothing special or physical about the choice of species. Unfor-

tunately, as ‘predator’ and ‘prey’ both begin with the same letter, a

generic notation would be, in the author’s opinion, more arbitrary and

confusing.

constitutive relation Eq. (3) we therefore seek to describe

the natural tendency for a given population to move. This

tendency to move (or resist movement) can be seen as inter-

nal forces that regulate the rate at which movement occurs.

Specifically, the source of such forces in the current setting

may be the level of exertion required for a member of a pop-

ulation to move a certain distance. Therefore, we consider

the following definition for the constitutive relation:2

F(ε) = Eε, (5)

E =

[

νr 0

0 νw

]

, (6)

where νr > 0 and νw > 0 are scalar “diffusion” parameters

with units L2T −1. The line above νr and νw is to indicate that

these are constant, scalar quantities, a convention we will use

throughout the present work. The constitutive relation Eqs.

(5)–(6) can also be seen as arising from the limit of a proba-

bilistic random walk [23]. That νr and νw are scalars (and not

tensors, as may be the case in general) results from assump-

tion 1, which implies that movement exhibits no directional

preference [23].

We now define the external forces b. Assumption 2 implies

that the reproduction rate of rabbits grows with population

size without any limiting factor, as their food supply is uncon-

strained. In mathematical terms, this is expressed as:

∂tr ∝ αrr , (7)

where αr > 0 is the reproduction rate of the rabbits and has

units T −1.

Assumption 3, however, implies that the reproduction rate

of wolves is naturally limited by the size of the rabbit popu-

lation. Accordingly:

∂tw ∝ αw(r)w, (8)

with the reproduction rate of the wolves αw a function of the

rabbit population r . We consider the simplest possible case

and postulate αw is a linear in r :

∂tw ∝ αwrw, (9)

with αw > 0. Note that αw has units T −1 P−1, reflecting

its dependence on the local rabbit population. We naturally

2 Note: For the discussed model, we have two compartments in two

dimensions, giving u dimension 2 × 1. For this model, the physics is

sufficiently simple such that one may define E simply as a 2 × 2 matrix.

However, in general, E may be a higher-order tensor if one wishes to

define the ν as tensor quantities rather than the scalar quantities used

here.
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expect, in turn, that the number of rabbits eaten by wolves

increases with the number of wolves. Then,

∂tr ∝ −γ (w)r , (10)

where γ is the predation rate and depends on w. We again

assume this function to be linear in w, giving:

∂tr ∝ −γwr , (11)

where γ > 0 has units T −1 P−1.

Assumption 4 simply states that the mortality of wolves

and the mortality of rabbits has no dependence on the pop-

ulation size of either species. Mathematically, we may write

this as :

∂tr ∝ −μrr (12)

∂tw ∝ −μww, (13)

where the mortality rates μr and μw are both nonnegative

and with units T −1.

From Eqs. (7)–(13), we may define b as:

b(u) = B (u) u, (14)

B (u) =

[

−αr + μr γ r

−αww μw

]

. (15)

The relations in Eqs. (5) and (14) are sufficient to define

the model in terms of Eqs. (1)–(4). Written in a notation more

common to mathematical biology, the model reads:

∂tr − ∇ · (νr∇r) − αrr + μrr + γwr = 0 (16)

∂tw − ∇ · (νw∇w) − αwrw + μww = 0. (17)

3 Spatiotemporal model of COVID-19
infection spread

We now discuss the COVID-19 model proposed by Viguerie

et al. in [22]. We consider a population p of individuals

divided into compartments corresponding to disease status,

modeling the movement in space and time of the subpopula-

tion in each compartment. Specifically, these compartments

are the susceptible population s, the exposed population e,

the infected population i , the recovered population r , and

the deceased population d. Note that d refers only to deaths

due to COVID-19. We denote the living population pool as

n = s+e+i +r . Due to the names of the compartments used,

this model may be called a susceptible-exposed-infected-

recovered-deceased (SEIRD) model. We therefore formulate

the problem in terms of the vector u = [s, e, i, r , d]T con-

taining the different compartments.

3.1 Model derivation and explanation

Following the example of the Lotka–Volterra-type model

shown in Sect. 2.1, we begin by making several model

assumptions:

1. Movement is proportional to population size; i.e., more

movement occurs within heavily populated regions;

2. No movement occurs among the deceased population;

3. There is a latency period between exposure and the devel-

opment of symptoms;

4. The probability of contagion increases with population

size;

5. Some portion of exposed persons never develop symp-

toms, and move directly from the exposed compartment

to the recovered compartment (asymptomatic cases);

6. Both asymptomatic and symptomatic patients are capable

of spreading the disease;

7. All living persons are capable of reproduction (the pop-

ulation is not age-structured);

8. The non-COVID-19 mortality rate is independent of the

population compartment;

9. New births are susceptible to the virus.

As in the Lotka–Volterra model, the compatibility equa-

tion describes the changes in a population due to movement,

and the constitutive relation will describe the natural extent

to which a given population moves. Assumption 1 above

implies that such movement is proportional to the living pop-

ulation size n, while assumption 2 sets the movement of the

deceased population to zero. Therefore, the constitutive rela-

tion for this model is given by:

F = n Eε, (18)

E =

⎡

⎢

⎢

⎢

⎢

⎣

νs 0 0 0 0

0 νe 0 0 0

0 0 νi 0 0

0 0 0 νr 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (19)

Note that the νs , νe, νi and νr have units L2 T−1 P−1, in con-

trast to the units in Eqs. (5)–(6), which were L2 T−1. This

reflects the population-dependent movement rate implied by

our assumption 1. Another way to interpret Eqs. (18)–(19)

above is as a heterogeneous diffusion process, where the

amount of diffusion is proportional to population size.

Having quantified the internal forces with the constitutive

relation, we now focus on the external forces. Assumption 3

implies that all persons who come into contact with the virus

first move to the exposed compartment e from the susceptible

compartment s:
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∂t e ∝ −∂t s. (20)

However, assumption 6 implies that this contact could come

from both patients showing symptoms (infected population

i) or patients not showing symptoms (exposed population e),

and from assumption 4 we conclude that such contact must

depend on population size n. Therefore,

∂t s ∝ −βe(e, n)s − βi (i, n)s (21)

∂t e ∝ βe(e, n)s + βi (i, n)s. (22)

Color-coding has been introduced for ease of understanding,

to clearly demonstrate that any addition to compartment e

must be accompanied by an equal subtraction from compart-

ment s. We further assume the functions βe and βi to be linear

in e and i respectively:

∂t s ∝ −A(n)βees − A(n)β i is (23)

∂t e ∝ A(n)βees + A(n)β i is. (24)

Parameters βe > 0 and β i > 0 are called the contact

rates (units P−1T −1) and correspond to the likelihood of

contagion resulting from contact with an asymptomatic or

symptomatic person, respectively. We now define the func-

tion A(n) as:

∂t s ∝ −
(

1 − A/n
)

βese −
(

1 − A/n
)

β i si (25)

∂t e ∝
(

1 − A/n
)

βese +
(

1 − A/n
)

β i si . (26)

One can naturally see that for n >> A, the term
(

1 − A/n
)

≈

1, increasing with population as desired. A is referred to as

the Allee parameter (units P) and has to be carefully selected

[5].

From assumption 3 we know that some portion of the

exposed population e will become symptomatic after a

latency period, and hence move to the infected compartment

i :

∂t e ∝ −σe (27)

∂t i ∝ σe, (28)

where σ > 0 is a parameter corresponding to the latency (or

incubation period) with units T −1. However, from assump-

tion 5, we also know that some portion of the exposed

population e will never develop symptoms, moving directly

to the recovered compartment r . These are called asymp-

tomatic cases. Therefore:

∂t e ∝ −φee (29)

∂tr ∝ φee, (30)

where φe > 0 is the asymptomatic recovery rate with

units T −1. In Eqs. (27)–(30), we see again that subtraction

from one compartment is coupled with an equal addition to

another.

Some portion of infected patients will recover, leading to

movement into the recovered compartment r :

∂t i ∝ −φi i (31)

∂tr ∝ φi i, (32)

while others will die, moving into the the deceased compart-

ment d:

∂t i ∝ −φd i (33)

∂t d ∝ φd i . (34)

Parameters φi and φd are the symptomatic recovery rate

and disease mortality rate respectively, both with units T −1.

Finally, assumptions 7 and 9 imply that:

∂t s ∝ αn, (35)

such that new births enter into the susceptible compartment

s, with the birth rate defined by the parameter α (units T −1).

Lastly, assumption 8 states that the deaths that are not due to

COVID-19 have no compartmental dependence, implying:

∂t s ∝ −μs, (36)

with μ > 0 representing the general mortality rate, with

units T −1. Similar terms appear in the exposed, infected,

and recovered compartments as well. The terms in Eqs. (35)

and (36) are not color-coded because they are not accompa-

nied by a corresponding term of opposite sign in a different

compartment.

Finally, Eqs. (25)–(36) allow us to define the external

forces for this model as

b = B(u)u, (37)

B (u) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

μ − α

(

1 − A
n

)

βes − α

(

1 − A
n

)

β i s − α −α 0

0 μ−
(

1 − A
n

)

βes +σ +φe −
(

1 − A
n

)

β i s 0 0

0 −σ μ +φd +φr 0 0

0 −φe −φr μ 0

0 0 −φd 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(38)

We note that the signs in B are reversed when compared to

Eqs. (25)–(36), as we have now placed these terms on the

external force term b of the left hand side of the equilibrium

equation (Eq. (1)).
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Additionally, the standard formulation of the COVID-19

model in mathematical biology would be :

∂t s = ∇ · (n νs∇s) + αn−
(

1 − A/n
)

βi si −
(

1 − A/n
)

βese − μs

(39)

∂t e = ∇ · (n νe∇e)

+
(

1 − A/n
)

βi si +
(

1 − A/n
)

βese −σe −φee − μe (40)

∂t i = ∇ · (n νi ∇i)+σe−φr i−φd i − μi (41)

∂t r = ∇ · (n νr ∇r) +φee+φr i − μr (42)

∂t d = φd i (43)

3.2 Mathematical analysis

In this section, we examine four results: the sensitivity equa-

tions for the diffusion, the nature of the equilibria of the

non-diffusive (space-independent) system, the growth/decay

behavior of the total population n and the resulting stability

in the L1 norm of Eqs. (39)–(43), and a derivation of the

basic viral reproduction number R0 for an ODE variant of

Eqs. (39)–(43).

3.2.1 Sensitivity equations for the diffusion

A fundamental difference between a PDE model such as

Eqs. (39)–(43) and an ODE model is the presence of diffu-

sion. Understanding the nature in which the model solution

depends on diffusion is therefore of critical importance. To

quantify the dependence of the solution on the diffusion

parameters νs, νe, νi , νr , we compute the sensitivity equa-

tions, to determine the quantities

sρ ≡ ∂νρ u, ρ = s, e, i, r . (44)

We proceed by applying standard arguments of perturbation

analysis to Eq. (1) using the constitutive relation introduced

in Eqs. (18)–(19) and the external forces defined as in Eq.

(38). For ρ = s, e, i, r we find the equations:

∂t sρ − ∇ · (n E∇sρ) − ∇ · (Sρ E∇u)

+B(u)sρ + [uT
J

T (u)]sρ = ∇ · (n diag(eρ)∇u) (45)

where es = [1, 0, 0, 0, 0], ee = [0, 1, 0, 0, 0], ei =

[0, 0, 1, 0, 0], er = [0, 0, 0, 1, 0], the third-order tensor J

reads

Ji j,k ≡
∂ Bi j

∂uk

, (46)

and Sρ ≡
∑5

j=1 sρ, j .

For the sake of notation, set �(n) ≡
(

1 − A
n

)

. Recalling

that n = s + e + i + r , we have that ∂ρ�(n) = − A
n2 for

ρ = s, e, i, r . From now on, for simplicity, we set �′ ≡ − A
n2 .

Notice that the matrix [uT J T (u)]has rows from 3 through

5 null since the entries of B are constant. Then, the entries

in the rows i = 1, 2 read

e
∂ Bi2

∂ρ

+i
∂ Bi3

∂ρ

for ρ = s, e, i, r (in the columns 1,2,3,4), while column 5 is

null. This leads to the submatrix

[uT J T (u)][1,2;1−4] =
[

eβe(� + �′s) + iβ i (� + �′s) s�′(βee + β i i) s�′(βee + β i i) s�′(βee + β i i)

−eβe(� + �′s) − iβ i (� + �′s) −s�′(βee + β i i) −s�′(βee + β i i) −s�′(βee + β i i)

]

.
(47)

while all the other entries of the 5×5 matrix [uT J T (u)] are

0.

Equations (45) are equipped with homogeneous initial and

boundary conditions of the same type of the conditions for

u. The resulting solution s then describes the sensitivity of a

given point in time and space to vary with changes in a given

diffusion coefficient.

3.2.2 Equilibria of the non-diffusive system

An analysis of the equilibria of the non-diffusive (space-

independent) system provides guidelines on what to expect

for the asymptotic behavior of the solution in time also for

our PDE system. The equilibria of the space-independent

case are obtained by solving the nonlinear algebraic system

B(u
∗)u

∗ = 0. (48)

It is promptly computed that this system has the following

solutions:

– for α �= μ the equilibrium reads u
∗ = [0, 0, 0, 0, C5];

– for α = μ �= 0 the equilibrium reads u
∗ =

[C1, 0, 0, 0, C5];

– for α = μ = 0 the equilibrium reads

u
∗ = [C1, 0, 0, C4, C5];
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Fig. 1 Non-diffusive SEIRD model for different values of the parameters (specified on the right-bottom panel). For all the simulations the initial

conditions are s(0) = 994, e(0) = 5, i(0) = 1, r(0) = d(0) = 0 Persons. The evolution of the solution is consistent with the predictions of our

asymptotic analysis

here, C1, C4, C5 are constants depending on the initial con-

ditions. Notice that this solution is not incompatible with the

occurrence of n at the denominator of some entries of B, as

the singularity is eliminated by the multiplication of the term

A/n by the terms se or si .

A local stability analysis around those equilibria can be

rapidly achieved, as for i = 0 the eigenvalues of −B(u
∗) are

explicitly computed as

λ1 = α − μ, λ2 = −(μ + σ)

+(1 − A/n∗)βes∗, λ3 = −(μ + φd + φr ), λ4

= −μ, λ5 = 0. (49)

These eigenvalues are all real, so we do not expect an oscil-

latory behavior of the solution in time. If α > μ we have

a positive eigenvalue, that means that in absence of diffu-

sion the solution asymptotically diverges in time (as one may

expect). For α < μ, the equilibrium u
∗ = [0, 0, 0, 0, C5] for

the first four components is stable.

For α = μ, we may expect an asymptotic behavior with

the susceptible, recovered and deceased converging to a

steady nontrivial equilibrium, while exposed and infected

tend to the depletion of the epidemic.

Even though this analysis is conducted on a linearized

problem, extensive numerical simulations with different val-

ues of the parameters show that the results are realistic. In

Fig. 1 we report some illustrative results (obtained by a

python in-house solver using the NumPy library), probing

the asymptotic behavior under different values of the param-

eters. We tested the case α �= μ (with α < μ to have a stable

equilibrium) in panel (a), the case α = μ �= 0 in panels (b-d)

with different values of the parameters and α = μ = 0 in

panel (e). The specific parameter values for each simulation

are also reported in Fig. 1. These values do not represent

necessarily realistic scenarios; they are just used to probe

the asymptotic behavior of the solution under different con-

ditions. We found the expected equilibria. The comparison

among panels (b), (c) and (d) pinpoints the importance of

the depensation (Allee) parameter A in the pattern of the

evolution of the different populations. Depensation impact

is particularly evident when n becomes small. The accurate

identification of the parameters is clearly a major issue for

the practical use of these models (see e.g. [24]).

3.2.3 Growth/decay of the total population and L1 stability

In this section, we examine the behavior of Eqs. (39)–(42).

One easily observes from the lack of diffusion in Eq. (43) and

final column of B(u) in Eq. (38) that d does not influence

the dynamics of the system. Adding Eqs. (39)–(42) together,

we observe cancellation of all the colored terms except φd i ,

leaving:

∂t n = (α − μ) n

−φd i + ∇ · (n (νs∇s + νe∇e

+νi∇i + νr∇r)) .

(50)
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We let η1 = s, η2 = e, η3 = i , η4 = r , ν1 = νs , ν2 = νe,

ν3 = νi , ν4 = νr and rewrite Eq. (50), yielding:

∂t n = (α − μ) n

−φd i + ∇ ·

⎛

⎝n
∑

j

ν j∇η j

⎞

⎠ .
(51)

We now multiply Eq. (51) by a test function w and integrate

over �, giving:

∫

�

∂t nw d� =

∫

�

(α − μ) nw d�

−

∫

�

φd iw d� +

∫

�

∇ ·

⎛

⎝n
∑

j

ν j∇η j

⎞

⎠ w d�. (52)

Applying the divergence theorem, we obtain

∫

�

∂t nw d� =

∫

�

(α − μ) nw d� −

∫

�

φd iw d�

−

∫

�

⎛

⎝n
∑

j

ν j∇η j

⎞

⎠ · ∇w d�

+

∫

∂�

⎛

⎝n
∑

j

ν j∇η j

⎞

⎠ nw dζ.

(53)

From the assumption of zero-flux boundary conditions, the

boundary term on the right-hand side of Eq. (53) vanishes.

Note that n is the outward-pointing normal vector on ∂� and

is not to be confused with n. We now let w = 1 globally,

causing the third term on the right-hand side of Eq. (53) to

vanish as well, leaving:

∫

�

∂t n d� =

∫

�

(α − μ) n d� −

∫

�

φd i d�. (54)

We define the total population N (t) and total infected popu-

lation I (t) as:

N (t) =

∫

�

n(x, t) ∂� and (55)

I (t) =

∫

�

i(x, t) ∂� (56)

respectively. Then, Eq. (54) can be rewritten as the ODE:

∂t N (t) = (α − μ) N (t) − φd I (t), (57)

whose solution is:

N (t) = N (t0) exp
[

(α − μ)(t − t0)
]

− φd

∫ t

t0

I (τ ) exp
[

(α − μ)(t − τ)
]

dτ, (58)

which describes the growth/decay behavior of the total pop-

ulation N . This also amounts to an L1 stability result for the

system, assuming s, e, i, r > 0 (as is the case in the present

applications).

Remark If one assumes that the diffusivities are constant and

all equal, Eq. (50) reduces further to:

∂t n − ∇ · (νn∇n) = (α − μ) n−φd i (59)

The above suggests that one may interpret the global behav-

ior of the system as a nonlinear continuity equation for n

transported over the convective field ν∇n. It can also be inter-

preted as a reaction–diffusion equation.

3.2.4 Determination of R0

The basic viral reproduction number R0 serves an impor-

tant role in the discussion of SIR-type models. In a wholly

susceptible population, R0 describes the average number of

additional infections caused by each infected individual. Nat-

urally, R0 > 1 implies growth of the epidemic, whereas

R0 < 1 implies decay in infectious spread [5]. The concept

of R0 is well-defined for ODE models. However, its exten-

sion to a PDE model is unclear, owing to the influence of

diffusion. We derive R0 for the ODE version of the PDE

model given by Eqs. (39)–(43) and will evaluate its efficacy

with numerical tests in Sect. 4.

The ODE version of the COVID-19 model reads:

ṡ = −β i si −βese (60)

ė = β i si +βese −σe −φee (61)

i̇ = σe −φd i −φr i (62)

ṙ = φr i +φee (63)

ḋ = φd i . (64)

Here, we denote the time derivatives with dots, as we now

consider the derivative of a function of a single variable,

rather than partial derivatives as done previously in this work.

For simplicity, we are not considering non-COVID19 deaths,

new births, and the Allee term (hence, μ = α = A = 0;

although their inclusion is not a problem for the analysis

shown here.

We proceed using the next-generation matrix procedure

outlined in [25]. This approach considers all compartments

regarded as ‘diseased’ in a given model. ‘Diseased’ in this
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context means groups capable of transmitting the infection to

others. The terms in the model corresponding to new diseased

cases are grouped into a matrix N , while the terms describ-

ing the movement of existing diseased cases into different

compartments are grouped into a matrix V . The basic repro-

duction number R0 is then obtained as the spectral radius

of NV
−1. The justification for this is based on the Perron-

Frobenius theorem and is not straightforward. The interested

reader is referred to [25].

In our model, there are two compartments that we consider

‘diseased’: the exposed and the infected compartments. Thus,

we consider the equation:

[

ė

i̇

]

= (N − V )

[

e

i

]

. (65)

As stated above, N is the matrix containing the new appear-

ances of diseased patients into any compartment, and V

contains terms which transfer already diseased individuals

from one compartment to another. In this case, we stress that

movement from e to i is due to the matrix V , as an exposed

patient moving to the infected category is not considered a

new entry into the ’diseased’ category and hence does not

participate in N . Thus, we define N and V as:

N =

[

βes β i s

0 0

]

, V =

[

σ + φe 0

−σ φd + φr

]

(66)

A simple computation shows:

V
−1 =

⎡

⎢

⎢

⎢

⎣

1

σ + φe

0

σ

(σ + φe)(φd + φr )

1

φd + φr

,

⎤

⎥

⎥

⎥

⎦

(67)

which in turn yields:

NV
−1 =

⎡

⎣

βes

σ + φe

+
β iσ s

(σ + φe)(φd + φr )

β i s

φd + φr

0 0

⎤

⎦ . (68)

Hence,

R0 =
βes

σ + φe

+
β iσ s

(σ + φe)(φd + φr )
. (69)

Applied directly to the ODE model Eqs. (60)–(64), the above

Eq. (69) will provide an indication of viral growth rate, as

intended. However, given that Eq. (69) does not account for

the diffusion present in Eqs. (39)–(43), its effectiveness as an

indicator of viral reproduction for the PDE model is unclear

and will be examined during the numerical simulations.

4 Numerical simulations

In this section, we present two numerical simulation stud-

ies of the COVID-19 model in 1D and 2D, respectively, to

examine the behavior of the model in Eqs. (39)–(43) in detail.

4.1 1D simulation study

In this section, we perform a series of simulations using a

one-dimensional version of the model in Eqs. (39)–(43). We

aim at examining the impact of various numerical solution

techniques. In particular, we analyze the spatial and tem-

poral convergence of the computed solutions over various

discretization schemes. We also examine the model dynamics

more generally and evaluate the efficacy of the R0 definition

Eq. (69) for the PDE model.

4.1.1 Problem setup

We consider the spatial domain � given by [0, L] and a time

interval [0, T ], with T = 200 days. In the simulations pre-

sented in this section, we normalize in space with respect to

the characteristic length L of the spatial domain. Hence, we

denote x∗ = x/L . The domain is populated with a popula-

tion distribution with the unit “Persons.” One may interpret

it as denoting a generic normalized population, as we have

done with the length scale. The units and values for the rel-

evant space-normalized parameters for the simulations are

accordingly presented in Table 1.

For the initial conditions, we set s(x∗, 0) = s0(x∗) and

e(x∗, 0) = e0(x∗) as follows

Table 1 Parameter values for the 1D simulations

Parameter Units Value

σ Days−1 1/8

βe Persons−1· Days−1 1/2

β i Persons−1· Days−1 1/2

φr Days−1 1/24

φe Days−1 1/6

φd Days−1 1/160

μ Days−1 0

α Days−1 0

ν∗
s Persons−1· Days −1 5·10−5

ν∗
e Persons−1· Days −1 1·10−3

ν∗
i Persons−1· Days −1 1·10−10

ν∗
r Persons−1· Days −1 5·10−5

Note all values have been normalized in space by a characteristic length

scale L , with this normalization reflected in the units
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Fig. 2 Initial values for susceptible compartment s0 and exposed com-

partment e0 for the 1D simulations

s0(x∗) = e−(x∗+1)4

+ e− (x∗−.35)2

1e−2 +
1

8

(

e− (x∗−.62)4

1e−5

+e− (x∗−.52)4

1e−5 + e− (x∗−.42)4

1e−5

)

+
1

4
e− (x∗−.735)4

1e−5 , (70)

e0(x∗) =
1

20
e− (x∗−.75)4

1e−5 . (71)

Figure 2 shows these initial conditions. We further set

i(x∗, 0) = 0, r(x∗, 0) = 0, and d(x∗, 0) = 0. Qualita-

tively, these initial conditions represent a large population

center around x∗ = .35 with no exposed persons and a small

population center around x∗ = .75 with some exposed indi-

viduals. We also enforce homogeneous Neumann boundary

conditions at x∗ = 0 and a zero-population Dirichlet bound-

ary condition at x∗ = 1 for all model compartments. The

latter represents a non-populated area at x∗ = 1.

Additionally, to assess mesh and time integration conver-

gence, we will analyze the total infected population I (t),

defined previously as Eq. (56), and the analogously-defined

total deceased population D(t). We will also study the time

evolution of the total susceptible population S(t), the total

exposed population E(t) and the total recovered population

R(t), all defined analogously to I (t).

4.1.2 Numerical methods

We use linear finite elements to discretize the spatial domain

and we integrate in time using either a second-order implicit

(BDF2) or first-order implicit Backward Euler scheme. Each

time step is solved fully implicitly using a Picard lineariza-

tion. All linear systems are solved using GMRES with a

Jacobi preconditioner. We employ mass-lumping on all reac-

tion terms.

Table 2 Mesh convergence of 1D simulations in terms of the peak

infection date t̂ , the peak total infected population I (t̂), the total infected

population at peak date of the finest mesh I (118), and the final total

deceased population D(T )

�x∗ t̂ I (t̂) I (118) D(T )

1/500 122 .038401 .037923 .01265

1/1000 119 .038556 .038482 .012804

1/2000 119 .038667 .038662 .012875

1/4000 118 .038738 .038738 .012910

The relative difference of all these metrics between the cases

�x∗=1/2000 and �x∗=1/4000 is inferior to 1%

4.1.3 Mesh convergence

In this analysis, we compare numerical solutions com-

puted on successively refined uniform grids with mesh size

�x∗=1/500, 1/1000, 1/2000, and 1/4000. Time integration

in this study is performed exclusively with a BDF2 scheme

using a constant time step �t = 0.25 days.

In Table 2, we assess mesh convergence using the peak

infection date t̂ , the peak total infected population I (t∗),

and the final total deceased population D(T ). As the peak

infection date for �x∗ = 1/4000 is t̂ =118 days, we also

evaluate I (118) for each level of spatial resolution. We

observe a steady increase in all these metrics as �x∗ is

refined and they all progressively approach the correspond-

ing result for the finest mesh. In particular, the quantities

reported in Table 2 vary less than 1% between �x∗=1/2000

and �x∗=1/4000, which suggests a good level of spatial con-

vergence for �x∗=1/2000.

Figure 3a–e show plots of the total populations S(t), E(t),

I (t), R(t), and D(t) for all the mesh sizes considered in this

study. Additionally, Figs. 4, 5, and 6 respectively present plots

of s(x, t), i(x, t) and d(x, t) for the different spatial resolu-

tions. Qualitatively, these plots confirm the existence of mesh

convergence, as the difference in the plotted variables pro-

gressively reduces as we refine the mesh. Indeed, the change

between the results for �x∗ = 1/2000 and �x∗ = 1/4000

cases is negligible.

We further assess mesh convergence with an operator

δc
�x∗, r that evaluates the percent change in L2 norm for each

model compartment c when a given mesh resolution �x∗ is

refined by a factor of r :

δc
�x∗, r =

√

√

√

√

√

√

√

√

∫ T

0

(∫ 1

0

c�x∗/r (x∗, t) − c�x∗(x∗, t) dx∗

)2

dt

∫ T

0

(∫ 1

0

c�x∗/r (x∗, t) dx∗

)2

dt

.

(72)
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Fig. 3 Mesh convergence analysis in the 1D simulation study. a Total

susceptible population S(t). b Total exposed population E(t). c Total

infected population I (t) . d Total recovered population R(t). e Total

deceased population D(t). f Percent change in L2 norm with succes-

sive refinement. These plots show evidence of mesh convergence, with

the solutions for �x∗=1/2000 and �x∗=1/4000 showing minimal dif-

ferences

In Fig. 3f, we plot the values of this operator for all compart-

ments and �x∗=1/500, 1/1000, 1/2000 (note the refinement

ratio r=2 for all cases). Again, we observe good evidence

of mesh convergence, as δc
1/2000,2 is notably smaller than

δc
1/500,2 and δc

1/1000,2 for all compartments c in the model.
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Fig. 4 Evolution of the susceptible population compartment s(x∗, t)

over time for varying mesh sizes in 1D. a t = 0 days. b t = 40 days.

c t = 90 days. d t = 110 days. e t = 150 days. f t = 200 days. We

see similar results across the different meshes, with some noticeable

transient discrepancy occurring at t=90 and t=110 days. This indicates

that the coarser mesh resolutions cause dispersion error, in which the

phase of the solution is affected. In this instance, the solution on the

coarse meshes appears delayed

An interesting phenomenon we observe is that the largest

source of error does not seem to come from over-diffusion

or an underestimation of peaks. In fact, peak quantities are

predicted similarly across schemes with only slight variation;

instead, dispersion error, in which the primary source of error

is not the magnitude but instead the phase of the solution,

seems the largest problem here. This is particularly apparent

looking at Fig. 3, where the cases of �x∗ = 1/500 appear
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Fig. 5 Evolution of the infected population compartment i(x∗, t) over

time for varying mesh sizes in 1D. a t = 0 days. b t = 40 days. c t = 90

days. d t = 110 days. e t = 150 days. f t = 200 days. We see noticeable

transient discrepancy occurring at t=90, t=110, and t = 150 days, again

suggesting dispersion error arising from the coarse discretizations

similar to the more refined simulations, but with a delay in

their occurrence. This is further supported by the predictions

of t̂ shown in Table 2. Referring to Figs. 4c, d, 5c, d, and 6c, d,

one may see this effect in time across various compartments.

4.1.4 Temporal convergence

In this analysis, we examine the impact of time integration

and time-step size �t on the numerical approximation of the
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Fig. 6 Evolution of the deceased population compartment d(x∗, t) over

time for varying mesh sizes in 1D. a t = 0 days. b t = 40 days. c t = 90

days. d t = 110 days. e t = 150 days. f t = 200 days. We see sim-

ilar results across the different meshes, with some noticeable transient

discrepancy occurring at t=90 and t=110 days, where once again the

dispersion error on the coarse meshes is apparent

model solution. We consider both the Backward Euler and

BDF2 time integration schemes with time step sizes�t=0.25,

0.125, and 0.0625 days. As the results in Sect. 4.1.3 suggested

�x∗=1/2000 was a sufficiently fine spatial discretization, we

utilize this mesh resolution here. Table 3 reports the peak

infection day t̂ , the peak total infection population I (t̂),

and final total deceased population D(T ) for each �t and

time integration scheme. As we reduce �t , these quanti-

ties slightly vary for the Backward Euler scheme, while the

changes are negligible for the BDF2 schemes. Additionally,
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Fig. 7 Temporal convergence analysis in the 1D simulation study. a

Total susceptible population S(t). b Total exposed population E(t). c

Total infected population I (t) . d Total recovered population R(t). e

Total deceased population D(t). The model solutions obtained with

the Backward Euler method change appreciably when the time step is

reduced. In contrast, the BDF2 solutions appear well-resolved in time

and change minimally as we refine the time step

we plot the time evolution of the total population in each

model compartment in Fig. 7 for all time steps considered

in this analysis and for both time integration algorithms.

These plots also show that the results for the Backward Euler

method exhibit small but perceptible difference, while the
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Table 3 Temporal convergence of 1D simulations in terms of the peak

infection date t̂ , the peak total infected population I (t̂), and the final

total deceased population D(T )

�t Scheme t̂ I (t̂) D(T )

0.25 Backward Euler 116 .0384732 .0129437

0.125 Backward Euler 118 .0385545 .0129038

0.0625 Backward Euler 118 .0386006 .0128836

0.25 BDF2 119 .0386668 .0128755

0.125 BDF2 119 .0386587 .0128688

0.0625 BDF2 119 .0386536 .0128658

As we reduce �t , the selected metrics show a slight variation for the

Backward Euler method, while the changes are negligible for the BDF2

scheme

solutions obtained with the BDF2 scheme are virtually the

same for all time steps.

We also define relevant error quantities for a compartment

c using a related but distinct notation to Eq. (72). Some adjust-

ments must be made owing to the fact that we now consider

not only one point of comparison as before (the spatial reso-

lution resolution in the case of Eq. (72)) but two (both time

step size and time integration scheme). For a compartment

c, this quantity reads:

δc
�t,SC H E M E (73)

where c gives the compartment, �t the time step, and

SCHEME the time integration scheme. In all instances, we

compare with the case computed using BDF2 with �t =

.0625. So, for example, to quantify relative error of the solu-

tion of c computed with the Backward-Euler scheme (BE)

using a given �t , δc
�t, B E is defined as:

δc
�t, B E

=

√

√

√

√

√

√

√

√

∫ T

0

(∫ 1

0

c�t, B E (x∗, t) − c.0625, B DF2(x∗, t) dx∗

)2

dt

∫ T

0

(∫ 1

0

c.0625, B DF2(x∗, t) dx∗

)2

dt

.

(74)

Figure 8 plots the temporal convergence in terms of Eq.

(74). We observe that the L2 norm difference decreases as

�t is refined for all model compartments, which indicates

temporal convergence. The solutions obtained with the Back-

ward Euler method differ noticeably at the coarser time steps,

but this difference reduces as we refine �t . In contrast, BDF2

appears to be well-resolved in time even at the coarsest time

step �t = .25, with the refinement to �t = .125 showing

minimal decrease in L2 norm. Thus, the BDF2 scheme pro-

vides satisfactory time resolution, even for large time steps.

0.0625 0.125 0.25

.001

.001

.01

.1

Fig. 8 Percent difference in the L2 norm between 1D solutions obtained

with the Backward Euler (dashed lines) and BDF2 methods (dotted

lines) for each �t . All cases are compared to the BDF2 solution with

�t = .0625, with the formal of definition δ in Eq. (74). The decreasing

trends in both plots show temporal convergence. The BDF2 appears

well-resolved in time for even the coarsest time step �t=.25 days. The

Backward Euler method requires a fine time step to render results with

comparable accuracy to the BDF2 scheme.

4.1.5 Model dynamics

This analysis focuses on the general model behavior, which

we examine in a simulation using the BDF2 scheme with

�t=.0625 days, �x∗=1/2000. The results for all model com-

partments are shown in Fig. 9. The infection begins localized

in a small population center around x∗ = .75 and remains

localized for the first part of the simulation. At day t ≈ 60,

the virus reaches the large population center at x∗ = .35, and

the number of infections begins to increase dramatically. By

day t = 200, nearly all of the population near x∗ = .35 has

been exposed to the virus. Eventually, due to lack of suscep-

tible individuals, the virus spread ceases.

In Fig. 10, we compare R0 as defined by Eq. (69) with the

exposed and infected compartments. Although the definition

in Eq. (69) does not account for diffusion, we observe that

R0 still predicts model behavior reasonably well, with the

point where R0 < 1 corresponding almost exactly with the

decrease in new exposures. This is further corroborated by

the results depicted in Fig. 9, where the regions where R0 < 1

at t = 0 ultimately show very little contagion, and indeed a

distinct ‘hitch’ forms in the distribution infections between

the two population centers. Although there is some slight

discrepancy owing to the diffusion, we find the definition

of R0 given by (69) to be a reliable predictor of the viral

behavior for this 1D simulation scenario.

The model dynamics shown in the 1D simulation in Fig. 9

is similar to that shown for Lombardy in [22] and in the fol-

lowing section. Indeed, for sustained spread of the disease, a

certain level of population density is required. Although the
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(f)

Fig. 9 Evolution of all model compartments and R0 as defined by

Eq. (69) in time and space in 1D. At t = 0 days (a), we see an ini-

tial exposed population centered around x∗ = .75. As time progresses

to t = 30 days (b), the outbreak around x∗ = .75 has grown, with

increasing numbers of infected, recovered, and deceased individuals in

that region. By t = 60 days (c), we begin to see the infection reach

the large population center around x∗ = .35, and by t = 90 days (d),

the outbreak severity in the areas around x∗ = .35 and x∗ = .75 are

similar. By t = 120 days, the outbreak around x∗ = .75 has died down,

with the area around x∗ = .35 now the most affected region; owever,

the R0 < 1 around x∗ = .35 indicates that the epidemic may begin

to subside. This is indeed the case, and by t = 200 days (f), we see

decreases in infections and increases in recoveries near x∗ = .35
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disease contagion will diffuse through low-density regions,

the growth in those areas tends to be small. Though there

have been some notable exceptions, this behavior pattern is

similar to what has been observed worldwide, where low

population-density regions have largely avoided the catas-

trophic contagion found in high-density areas [26] .

4.2 2D simulation study

The primary difference between the PDE version and the

ODE version of the COVID-19 model lies in the influence of

the diffusive term. The impact of diffusion on disease spread

is a priori difficult to quantify. Increased diffusion leads to

a faster and wider dispersion of the virus. However, it also

has regularizing effects and may reduce peaks in general.

Therefore, exploring such dynamics in detail is important

for a full understanding of the model.

In this section, we examine the role of diffusion using the

Italian region of Lombardy as our test geometry, using both

qualitative analysis and the formally derived sensitivity equa-

tion shown in Eq. (45). The problem configuration is identical

to the one given in [22] for the simulation scenario labelled

‘Global Reopening B’. This simulation is intended to model

the spread of the COVID-19 epidemic in Lombardy, begin-

ning on February 27, accounting for various governmental

restrictions and relaxations as they occur. We report the rel-

evant parameter values in Table 4. Good agreement between

the presented simulation setup and measured data was shown

in [22], and we refer the reader to [22] for a detailed compari-

son of simulated and measured data. The problem was solved

using linear finite elements on an unstructured triangular

mesh. The time integration was performed with a Backward

Euler scheme, with a Picard-type linearization used to solve

the nonlinear system at each time step. All linear systems

were solved with GMRES using a Jacobi preconditioner.

In addition to the simulation shown in [22], we now exam-

ine two additional cases: one in which the values of νs , νe,

νi and νr are doubled, and another in which they are halved.

We also consider a case in which νr , νe, and νi are doubled

but νs is halved. This is similar to the parameter setup in

the 1D simulations. The main motivation is to avoid possi-

bly nonphysical diffusion among the susceptible population,

causing reduced population density in general.

Figures 11 and 12 show the spatial distribution of infected

individuals at t=14 and t=30 days, respectively. We see that

larger diffusion leads to a wider geographic range of affected

areas. This is particularly noticeable in the southeastern clus-

ters in Fig. 11. There, the double-diffusion case produces a

homogeneous, continuous region of infection. In contrast,

the half-diffusion case shows more localized dynamics, and

a clear separation into distinct regions. This separation is

maintained in Fig. 12 at t=30 days, whereas the baseline and

double-diffusion cases predict a single, larger area of infec-

0 50 100 150 200
.0001

.001

.01

.1

1

10

Fig. 10 Evolution in time of R0 as defined by Eq. (69) as well as

the total exposed and total infected populations in 1D. We see that

R0 is in good agreement with the observed model dynamics, with the

decrease of new exposures corresponding nearly exactly to the point

where R0 < 1 (indicated with the dotted horizontal and vertical lines

for ease of visualization). The presence of diffusion, not accounted for

in Eq. (69), is likely the source of the slight discrepancy

tion. The simulation case in which νr , νe, and νi are doubled

but νs is halved produces intermediate results between the

double-diffusion and half-diffusion cases. In all cases, we

note that the outbreak path follows regions of high population

density, which is the expected behavior given the constitutive

relation defined by Eqs. (18)–(19).

In Fig. 13, we plot the time evolution of the total active

infections I (t) throughout the entire region of Lombardy.

Both the baseline and half-diffusion simulations show a

distinct long-term growth trend that is not observed in

the double-diffusion case. While it is tempting to say that

increased diffusion leads to reduced outbreak severity, the

reality is more complex. Indeed, the case in which νs is

halved while νr , νe, and νi are doubled shows a higher

peak and slightly faster growth when compared to the base-

line simulation, although the long-term growth more closely

resembles the baseline than either the double-diffusion and

half-diffusion cases. This makes intuitive sense, as the low

diffusion among the susceptible population leads to higher

population densities and more contagion, while increasing

diffusivity among the exposed and infected compartments

accelerates the speed and area of propagation. As discussed in

[22], the spatial pattern predicted by the heterogeneous diffu-

sion shows generally good agreement with reality; however,

nonlocal transmission is not possible using the model given

by Eqs. 39-43 and the addition of nonlocal operators, such

as fractional diffusion operators [27], is an area for future

development.
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Fig. 11 Spatial distribution of

the infected population at

t = 14 days in the 2D

simulations over the Italian

region of Lombardy. a Baseline

scenario. b Half-diffusion case.

c Double-diffusion case. d

Simulation case in which the

baseline νr , νe, and νi are

doubled but νs is halved. With

halved diffusion (b), we see that

outbreaks are more severe, but

also concentrated in smaller

regions, particularly apparent in

the southwest. In contrast,

increased diffusion (c) show a

less intense peak over a greater

overall area. In d, where the

diffusion among susceptibles is

decreased but increased in other

compartments, outbreak severity

seems similar to the baseline in

a, but covering a slightly larger

area (again, most apparent in the

southwest)

Fig. 12 Spatial distribution of

the infected population at

t = 30 days in the 2D

simulations over the Italian

region of Lombardy. a Baseline

scenario. b Half-diffusion case.

c Double-diffusion case. d

Simulation case in which the

baseline νr , νe, and νi are

doubled but νs is halved. In b,

we see both increased severity

and interesting localization

dynamics; in a, c, and d there

appear to be three primary

epicenters of infection, while in

the case of b there appear to be

four. The outbreak in c is much

less severe than the other cases,

owing to the increased diffusion.

In the case of d, we see a larger

overall infected area and similar

intensity of infection to the

baseline (a)
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Fig. 13 Time evolution of the total active infections I (t) throughout

the entire region of Lombardy, showing that diffusion has a strong influ-

ence on the dynamics of disease infection. The double-diffusion case

has a distinctly different qualitative pattern, with no substantial increase

after t = 60, while the baseline and half-diffusion cases increase sig-

nificantly. The dynamics of I (t) for the case in which νs is halved while

νr , νe, and νi are doubled suggests that varying each of these diffusion

parameters may induce dramatically different changes in the evolution

of the outbreak. In the particular scenario considered here, the number

of total infected cases grows slighlty faster and has a higher peak when

compared to the baseline case

In Fig. 14, we plot the computed sensitivity parameters

found using Eq. (45) at t = 20 days. The shown plots quan-

tify sensitivity to νe (left) and νs (right). The regions most

sensitive to νe are regions currently affected by the outbreak.

However, the sensitivity to νs shows larger values in more

highly-populated areas. At the time shown, the area around

Milan (in the west of the shown region, the most populated

area of Lombardy) was not experiencing a large outbreak in

cases. This is reflected in its relatively low sensitivity to νe.

However, its high sensitivity to νs indicates its vulnerability,

irrespective of its current outbreak status. Indeed, the Milan

area was ultimately heavily impacted by the epidemic [28].

Finally, we find the definition of R0 given by Eq. (69) to

be less useful as a predictor of disease spread than in the 1D

simulation. This is likely due to the increased role of diffu-

sion. We observe increase in disease exposure and infected

individuals in areas where R0 < 1 both locally and globally,

particularly around Milan (as shown in Fig. 15). This sug-

gests the need to revise the definition of R0 in Eq. (69) for

the PDE version of the model to account for the influence of

diffusion.

5 Conclusions

In this work, we introduced a new notational framework

for understanding reaction–diffusion compartmental models

by interpreting them as balance equations similar to those

found in continuum mechanics. We first used this system

to derive and explain a simple two-compartment Lotka–

Volterra model as a simple example. We then examined a

more complex compartmental system: the model of COVID-

19 spatiotemporal contagion dynamics introduced in [22].

We showed that this model may be regarded as a sort of con-

servation law, further justifying the continuum-mechanics

type interpretation.

We proceeded to formally derive the model’s sensitivity

to diffusion, describe its growth and decay, and establish its

stability in the L1 norm. We then looked at an ODE version of

the model, using it to derive a basic reproduction number R0

as well as analyzing its spectrum. Additionally, we performed

a series of numerical simulations, showcasing the role that

numerical methods, diffusion, and R0 play in the behavior

Table 4 Parameter values for the 2D Lombardy simulations

Parameter Units Feb.27-Mar.9 Mar.9-22 Mar.22-28 Mar.28-May3 May3-

σ Days−1 1/7 1/7 1/7 1/7 1/7

βe Persons−1·Days−1 3.3·10−4 8.5·10−5 6.275·10−5 4.125·10−5 6.6·10−5

β i Persons−1·Days−1 3.3·10−4 8.5·10−5 6.275·10−5 4.125·10−5 6.6·10−5

φr Days−1 1/24 1/24 1/24 1/24 1/24

φe Days−1 1/6 1/6 1/6 1/6 1/6

φd Days−1 1/160 1/160 1/160 1/160 1/160

νs km2· Persons−1·Days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

νe km2· Persons−1·Days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

νi km2· Persons−1·Days−1 1.0·10−4 1.0·10−4 1.0·10−4 1.0·10−4 1.0·10−4

νr km2· Persons−1·Days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

A Persons 1.0·103 1.0·103 1.0·103 1.0·103 1.0·103

The values change with date as these correspond to various restrictions (or relaxtions) taken by the government during the epidemic. We note that

these parameters are not normalized in space

123



Computational Mechanics (2020) 66:1131–1152 1151

Fig. 14 Sensitivity of the computed baseline solution at t = 20 days

for sensitivity to νe (left) and νs (right). The sensitivity to νe is based

primarily on currently affected regions, reflecting the state of epidemic

progression. The sensitivity to νs , corresponds primarily to highly popu-

lated regions. Even though the number of exposed and infected patients

is low in certain heavily populated regions (particularly the area around

Milan, in the west), the high susceptible sensitivity shown here indi-

cates the region’s vulnerability to the pandemic (which does eventually

occur)

Fig. 15 Comparison between

R0 value and infected

population. Even though R0 < 1

globally, we still observe growth

in some regions, suggesting that

the definition (69) of R0 does

always not hold in the presence

of diffusion

of the system. We found that implicit models are effective in

describing the temporal dynamics of the system, and second-

order in-time methods in particular. We also found that the

ODE-based R0 is not consistently reliable as applied to the

PDE model, as it worked well for the 1D simulations but did

not for the corresponding 2D simulations.

For future work on the COVID-19 model, we would like

to extend the diffusion to model the effects of geographic fea-

tures like roads, rivers, and mountains. We would also like to

examine the effectiveness of the model over larger geometries

and longer time intervals against measured data. To render

the model more effective to decision-makers, incorporating

an age-structured population is important for accurately eval-

uating aspects such as hospitalizations and mortality. The

model may also be extended to account for the effects of

vaccination on adults, by introducing movement between the

susceptible and recovered population [1]. More generally,

we would like to apply the continuum mechanics framework

shown here to a larger class of compartmental models. In

particular, in the field of mathematical epidemiology alone,

there are many variants of the SIR-models shown here. For

instance, the framework established in the present work may

be used for susceptible-infected-susceptible models (such as

those used for the common cold), or Maternal-Susceptible-

Exposed-Infected-Recovered models in which immunity is

inherited from the mother [1,5,20].
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