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Abstract

Interpreting an image as a function on a compact sub-

set of the Euclidean plane, we get its scale-space by diffu-

sion, spreading the image over the entire plane. This gener-

ates a 1-parameter family of functions alternatively defined

as convolutions with a progressively wider Gaussian ker-

nel. We prove that the corresponding 1-parameter family of

persistence diagrams have norms that go rapidly to zero as

time goes to infinity. This result rationalizes experimental

observations about scale-space. We hope this will lead to

targeted improvements of related computer vision methods.

1. Introduction

The work described in this paper is motivated by experi-

mental observations about scale-space, which is defined by

progressive diffusion of an image. Here, we think of the

image as a real-valued function on a compact subset of the

Euclidean plane, and we idealize the effect of diffusion by

convolving the function with an isotropic Gaussian kernel.

This generates a 1-parameter family of functions on the en-

tire R
2, which we refer to as the scale-space of the image.

The construction is popular for the extraction of local to

global features [2, 17], which are useful for image registra-

tion, camera calibration, and object recognition [18], among

other computer vision tasks. Scale-spaces can be computed

for the image itself, or for derivatives including the Lapla-

cian and the determinant of the Hessian [19, 20]. Scale-

space has been defined by Iijima [10], and was rediscovered

by Witkin [27] and by Koenderink [11]; but see also [16].

In this paper, we study the evolution of the structural in-

formation contained in the functions of scale-space. As a

general tendency, diffusion washes out details, so we can

expect the number of critical points to decrease. However,

there are cases in which the critical points grow in num-

ber. Here we discuss one classic example [14, 16]. Making

the construction symmetric, we connect two mountains by
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a relatively narrow arched bridge that reaches its highest

point in the middle, so that the function has its sole max-

imum halfway between the mountains; see Figure 1, left.

Even a small amount of diffusion suffices to erode the arch,

while the two mountains remain relatively unaffected. We

thus get two maxima separated by a saddle; see Figure 1,

middle. Further diffusion also erodes the two mountains

and leaves one relatively shallow hill, so we are back to a

single maximum; see Figure 1, right. Drawing the trajec-

tories of the critical points in scale-space [12], we see the

initial maximum split into two maxima and a saddle which

later merge back into a single maximum.

Figure 1: From left to right: the collapse of the narrow bridge

connecting two mountains. The functions are illustrated by their

level sets and critical points (red dots).

While critical points are sometimes created by diffusion,

the experimental evidence suggests that this rarely happens.

Nevertheless, it is known that the creation of critical points

is a generic event; see Damon [6] and Rieger [23]. More

surprising than this creation is perhaps the possibility of

diffusing a finite number of point masses and getting more

maxima than point masses during an open time interval; see

[4]. The created critical points tend to be fragile, existing

only for a short time, but there are again counterexamples:

we can design our arched bridge to make the gorge that

opens up between the two mountains as deep as we like.

In this paper, we give a quantification of the diffusion

process, in terms of the persistent homology of the func-

tions, that explains the experimental evidence. In a nutshell,

we sweep out the function by gradually increasing the cut-

off value, and we observe topology changes of the subset

of points where the function value lies below the cut-off.

New features are acquired and old features are lost. Calling
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Figure 2: From left to right: an image of galaxies (from Flickr), the number of extrema as a function of the scale t, the norms of the

persistence diagram for p = 1, 3, 5, and same norms in log-log scale. In contrast to the number of extrema, we observe steadily decreasing

norms, whose logarithms are roughly linear in the logarithm of the scale. We have a proof of const/t as an upper bound only for p > 4.562.

these events births and deaths, we pair them up and define

the difference between their values as the persistence of the

feature. Consider the middle function in Figure 1 as an ex-

ample. As explained in Section 2, the global minimum is

paired with the global maximum and the saddle is paired

with the minor maximum. The persistence of the first pair

is the height of the main mountain, while the persistence

of the second pair is the depth of the gorge between the

mountains. Since the gorge can be as deep as we like, we

see that diffusion can create features with arbitrarily large

persistence. In contrast, its ability to affect the average per-

sistence is more limited.

To make this precise, we introduce the p-norm of the

persistence diagram, which takes the p-th root of the sum

of the p-th powers of all persistences, and we prove bounds

on this measure. We state our result for a compact subset

Ω of the Euclidean plane, leaving the formulation of the n-

dimensional result to the technical sections of this paper.

Let f : Ω → R be a function, and define ft : R
2 → R by

convolving f with the isotropic Gaussian kernel with scale

t > 0. Then for every real number p > 1
2 (5 +

√
17), the

p-norm of the persistence diagram of ft satisfies

‖Dgm(ft)‖p ≤ const/t; (1)

see Figure 2. This upper bound is tight. We mention that

measuring the information contained in a smoothed func-

tion is not a new idea. Other such measures studied in the

literature include the generalized entropy [25], the method

noise [3], and the L2-norms of functions and residues [9].

The norm of the persistence diagram proposed in this paper

is different as it captures more of the high-level structural

information contained in a function. Persistence is related

to Morse theory [21], couched in the algebraic language of

homology, and blessed with efficient combinatorial as well

as algebraic algorithms [7].

Most directly related to our result is the work by Linde-

berg [15]. He considers n-dimensional images and proves,

both theoretically and experimentally, that for n = 1 and

for random noise, the expected number of critical points is

const/tn/2, conjecturing the same for n > 1. The restric-

tion of our Main Theorem to n = 1 gives a similar result

with weaker assumptions on the image, which extends to

higher dimensions as expected. It thus rationalizes an in-

tuition that has been used implicitly for decades. We in-

terpret our result as evidence that persistent homology can

gain insight into popular techniques, including the extrac-

tion of keypoints [20]. The additional insight may lead to

refinements of these techniques, e.g. by weighting the crit-

ical points with their persistence. In contrast to many other

studies of keypoint extraction, persistence has solid math-

ematical foundations, while being intuitive and applying to

real-valued functions of any dimension. It therefore gives

hope for extensions to global image structures [26] and fea-

tures in 3- and 4-dimensional images [13].

Outline. Section 2 introduces the necessary background

in analysis and algebraic topology. Section 3 establishes a

connection between the amplitude and the persistence dia-

gram of a function. Section 4 analyzes the convolutions of

a function and proves our main result. Section 5 concludes

the paper.

2. Background

In this section, we introduce the background we will

need in Sections 3 and 4. Beginning with topics in analysis

and algebraic topology, we conclude with persistent homol-

ogy, which forms a bridge between the two mathematical

disciplines.

Convolution and diffusion. The normal distribution plays

a special role in probability. The associated normal density

is the function gt : R
n → R defined by

gt(x) =
1

(2πt)
n
2

· e−
|x|2

2t , (2)

where |x| is the Euclidean norm of x ∈ R
n. In R

1, this

density function has a symmetric, bell-shaped graph with

exponentially decaying tails at both sides. We refer to gt
as the Gaussian kernel with mean zero and scale t. It is a

mathematical model of many physically important phenom-

ena, including the stochastic location of a randomly mov-

ing particle with initial position at the origin. If instead of

a fixed position, we begin with an initial density function,
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f : Rn → R, we get the density at time t > 0 by convo-

lution with the Gaussian kernel: ft = f ∗ gt : Rn → R,

defined by

ft(x) =

∫

y∈Rn

f(y)gt(x− y) dy. (3)

An important property of the Gaussian kernel is its closure

under convolution: gs ∗gt = gs+t for all s, t > 0. In words:

instead of repeatedly convolving, we can convolve f once

with a Gaussian kernel of appropriately chosen larger scale.

Interpreting f as an initial distribution of heat, we get ft as

the distribution at time t > 0. The 1-parameter family of

functions ft is thus the solution to the heat equation:

∇2ft = const · ∂ft
∂t

, (4)

for some positive constant and initial condition f0 = f .

Here ∇2 = ∂2

∂x2
1

+ . . .+ ∂2

∂x2
n

is the Laplace operator. If the

initial condition is a unit amount of heat at the origin, then

the solution to the heat equation is ft = gt.

Amplitudes and norms. Letting f : R
n → R be a

function, and B a subset of Rn, we define the amplitude of

f over B as the supremum difference between two values:

ampB(f) = sup
x,y∈B

|f(x)− f(y)|. (5)

Note that the amplitude is related to the infinity-norm of f ,

defined as ‖f |B‖∞ = supx∈B |f(x)|, but it is not the same.

We have ampB(f) ≤ 2‖f |B‖∞. Assuming f is smooth,

we can take its gradient, ∇f : Rn → R
n, and the magni-

tude of the gradient, |∇f | : Rn → R. The latter is a real-

valued function, so we can define its p-norm over B as the

p-th root of the integral of the p-th power of the magnitude:

‖∇f |B‖p =

(
∫

x∈B

|∇f(x)|p dx
)

1
p

. (6)

Letting p grow, we get the infinity-norm of |∇f | in the limit

as ‖∇f |B‖∞ = supx∈B |∇f(x)|.
We will be interested in bounding the amplitude of f in

terms of the norm of the gradient, which is achieved by the

Sobolev inequalities. A version that is particularly useful

for our purposes is Theorem 1.4.2 in [24, page 22]:

Sobolev Inequality. Let f : Rn → R be smooth, B ⊆ R
n

a closed Euclidean ball, and p > n. Then

|f(x)− f(y)| ≤ const · vol(B)
1
n
− 1

p ‖∇f |B‖p, (7)

for all points x, y ∈ B, where vol(B) is the n-dimensional

volume, and the constant factor depends on n and p.

It is not very difficult to adjust the proof to get the same

inequality (with a different constant) for a cube instead of a

Euclidean ball. This gives the following easy consequence

of the Sobolev Inequality.

Corollary. Let f : Rn → R be smooth, B ⊆ R
n an n-

dimensional cube, and p > n. Then

ampB(f) ≤ const · vol(B)
1
n
− 1

p ‖∇f |B‖p, (8)

where the constant depends on n and p.

Homology. Given a topological space, we use homology

groups to characterize how the space is connected. There

are a number of different but equivalent theories to construct

these groups, and we will sketch the simplicial homology

since we will need triangulations to prove our main result.

Within each theory, we can use different coefficient groups,

leading to potentially different homology groups, but the

differences are well understood. There are many textbooks

in algebraic topology that cover homology groups in detail,

and we recommend [22] as one of them.

We now give a formal introduction of simplicial com-

plexes and the related homology theory. Recall that a j-

simplex in R
n is the convex hull of j + 1 affinely indepen-

dent points. A subset of i + 1 of the j + 1 points defines

an i-simplex that is a face of the j-simplex. A simplicial

complex is a finite collection of simplices, K, that is closed

under the face relation such that any two simplices are ei-

ther disjoint or they intersect in a common face. The un-

derlying space of K, denoted as |K|, is the union of the

simplices in K together with the topology inherited from

R
n. Note that |K| is a topological space, while K is a com-

binatorial representation of the same. A triangulation of

a topological space X is a simplicial complex K together

with a homeomorphism h : |K| → X. We will now con-

struct the homology groups of K and consider them as the

groups of X, which makes sense because different triangula-

tions of the same space give isomorphic groups. We get one

group for each dimension, j, which we denote as Hj(X).
Assuming the binary coefficient group, U = Z/2Z, with

addition modulo 2, each group is a vector space of the form

Hj(X) ≃ U
βj . We call βj = βj(X) the rank of Hj(X)

and the j-th Betti number of X. To construct the homology

group, we call a set c of j-simplices in K a j-chain. The

boundary of c is the set ∂c of (j − 1)-simplices that belong

to an odd number of j-simplices in c. A j-cycle is a j-chain

with empty boundary. Two j-cycles are homologous if their

symmetric difference is the boundary of a (j + 1)-chain.

Finally, a j-dimensional homology class is a maximal set

of homologous j-cycles, and Hj(X) is the group of these

classes, with addition defined by symmetric difference of

representative cycles.

To give an example, let Ω be a rectangular subset of R2,

and let f : Ω → R be the function whose level sets are

shown in Figure 1, middle. Let a be halfway between the

function value of the saddle and the shared function value of

the two maxima. Define X = f−1(−∞, a] and note that it is

a rectangle with two holes. It has two non-trivial homology
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groups, namely H0(X) ≃ U and H1(X) ≃ U
2. The rank of

the former, β0(X) = 1, is the number of components, and

the rank of the latter, β1(X) = 2, is the number of holes

in the rectangle. It will often be convenient to suppress the

homological dimension, which we do by writing H(X) for

the direct sum of all homology groups of the space X.

Persistent homology. Instead of a single space, we now

assume a nested sequence of spaces. We point out that

this sequence is not related to scale-space (or not yet) but

is used to study a fixed function, e.g. by considering the

sequence of sublevel sets: Xa ⊆ Xb for a ≤ b, where

Xa = f−1(−∞, a] and similarly for b. Since every cy-

cle in Xa is also contained in Xb, we have a homomorphism

from H(Xa) to H(Xb), which is induced by the inclusion.

In other words, we have a 1-parameter family of homology

groups with homomorphisms connecting them from left to

right. We call this a filtration, and reading it from begin-

ning to end, we can observe when homology classes are

born and when they die. The key insight is the existence

of a canonical pairing between births and deaths, which is

used to define the persistence of a homology class as the

absolute difference between the values at its birth and at its

death. We refer the reader to [7] for further background on

persistent homology.

A convenient representation of the information in a fil-

tration is the persistence diagram, which we denote by

Dgm(f). We also assume that f is tame, by which we mean

that every sublevel set has finite rank homology groups,

and that there are only finitely many values at which the

group changes non-isomorphically. The persistence dia-

gram is a multiset of dots in the plane, in which each dot

represents a birth-death pair, marking the two events with

its two coordinates. To avoid the complications caused by

classes of X that are born but never die, we assume that

X = S
n (the n-dimensional Euclidean space, compactified

by adding a point at infinity). In this case, we have only

two unpaired births, namely the first component, which is

born at the global minimum, and the n-dimensional class,

which is born at the global maximum. Pairing up these

two events, we thus have finitely many dots, each with fi-

nite coordinates. Take the function shown in the middle

of Figure 1 as an example. We have four critical points:

a minimum at infinity, w, a saddle, x, and two maxima,

y and z. In the evolution of the sublevel set, we first

have the birth of a 0-dimensional class at f(w), second

the birth of a 1-dimensional class at f(x), third the death

of the 1-dimensional class at min{f(y), f(z)}, and finally

the birth of a 2-dimensional class at max{f(y), f(z)}. As-

suming f(y) < f(z), the two dots in the diagram are

(f(w), f(z)) and (f(x), f(y)). We note an ambiguity when

f(y) = f(z), but in this case, we get the same diagram for

the alternative pairing of w with y and x with z.

For each dot u ∈ Dgm(f), we write pers(u) for the

absolute difference between the two coordinates, and we

note that this is the persistence of every class represented

by this dot. Finally, we define the p-norm of the diagram as

‖Dgm(f)‖p =





∑

u∈Dgm(f)

pers(u)
p





1
p

. (9)

As proved in [5], the p-norm is a stable measure provided X

is compact with polynomially growing mesh, f is Lipschitz,

and p > n. In this paper, we consider non-Lipschitz func-

tions on non-compact spaces, and we focus on convergence

properties as opposed to stability. Nevertheless, we will get

results which again hold for all p > n.

The rest of this paper focuses on the proof of the Main

Theorem. More experimental results and details of the al-

gorithm for computing persistence will be made available in

a technical report available at the author’s homepage. As a

proof of concept, we show experimental results for a single

image in Figure 2.

3. Regions and Cycles

Given a smooth function, we show how to subdivide the

domain so that the amplitude within each region is bounded.

Using the Corollary of the Sobolev Inequality, we bound the

number of regions in terms of the norm of the gradient.

Subdivision. Let f : R
n → R be a smooth function.

For a radius r ≥ 0, let δ(f, r) be the amplitude of f outside

the n-dimensional cube Br = [−r, r]n, that is, δ(f, r) =
ampB̄r

(f), where B̄r = R
n − Br. Fixing f , this defines

a non-increasing function in r. We say that f has a flat tail

if δ(f, r) goes to zero when r goes to infinity. We invert

the relationship by defining r(f, δ) as the infimum radius

r for which ampB̄r
(f) ≤ δ. To prepare the next step, we

fix a bound δ > 0, let r = r(f, δ), and consider the n-

dimensional cube Br. Writing 1
m = 1

n − 1
p , we define

F (Br) = vol(Br)
1
m · ‖∇f |Br

‖p, (10)

noting that const · F (Br) is equal to the right-hand side of

the Corollary of the Sobolev Inequality. When we subdivide

Br, the volume of a region is predictably smaller while the

norm of the gradient over the region may be as large as over

the entire Br. For example, if s = r
k , for k ≥ 1, then

F (Bs) = vol(Bs)
1
m · ‖∇f |Bs

‖p (11)

≤ (2s)
n
m · ‖∇f |Br

‖p (12)

= F (Br)/k
n
m . (13)

The same inequality holds for every n-dimensional cube of

radius s = r
k inside Br. Assuming k is a positive integer,

we can therefore subdivide Br into kn cubes B of radius
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s = r
k , such that F (B) ≤ F (Br)/k

n
m for each cube. Our

goal is to choose k as small as possible under the constraint

F (B) ≤ δ/C0, (14)

where C0 is the constant in the Corollary of the Sobolev

Inequality. By (13), it suffices to choose k such that

F (Br)/k
n
m ≤ δ/C0. If F (Br) ≤ δ/C0 then we pick

k = 1 and we are done without subdividing. Else, X =

C
m
n

0 F (Br)
m
n /δ

m
n exceeds 1, and we pick k = 2⌊X⌋ > X .

The number of n-dimensional cubes in the subdivision is

therefore

kn ≤ 2nCm
0 · F (Br)

m/δm (15)

=
2nCm

0

δm
· vol(Br) · ‖∇f |Br

‖pm (16)

≤ (4r)n (C0 · ‖∇f‖p/δ)m . (17)

Including the outside region, B̄r, we have generally at most

1 more region than stated on the right-hand side in (17), and

at most 2 more if k = 1. We therefore define

Mf (δ) = 2 + 4nr(f, δ)n
(

C0
‖∇f‖p

δ

)m

. (18)

Finally, we show that the amplitude of f within each region

is bounded. Using the Corollary of the Sobolev Inequality

stated in Section 2, we get

ampB(f) ≤ C0 · vol(Bs)
1
m · ‖∇f |B‖p (19)

= C0 · F (B), (20)

which, by (14), is at most δ for each cube B. We have

ampB̄r
(f) ≤ δ by definition of r = r(f, δ). It follows that

the amplitude is bounded from above by δ in every region

of the subdivision.

Flat tail compactness. Later in the proof of the Main The-

orem, we will use results that have only been established for

functions on compact domains. To finesse the difficulties

caused by the non-compactness of Rn, we transform f to

a function on the n-dimensional unit sphere, g : Sn → R.

Assuming f has a flat tail, we have the same limit no matter

in which direction we go to infinity: a = lim|x|→∞ f(x).
Let N = (0, . . . , 0, 1) be the north-pole of S

n ⊆ R
n+1,

write Rn for the n-dimensional plane spanned by the first n
coordinate axes, and let ̟ : Sn − {N} → R

n be the stere-

ographic projection that maps every point y ∈ S
n different

from N to

̟(y) = N +
2(y −N)

|y −N |2 (21)

in R
n. Accordingly, define g(̟−1(x)) = f(x), for all

points x ∈ R
n, and complete the construction by defin-

ing g(N) = a. Clearly, g has compact support, and if f is

continuous with flat tail, then g is continuous.

We now prepare a connection between the norm of the

gradient of f and the ranks of the homology groups of the

sublevel sets of f . For this purpose, we use a triangulation

of Sn, which we recall is a simplicial complex K together

with a homeomorphism h : |K| → S
n. For every δ > 0,

we are interested in a triangulation with as few simplices as

possible such that the amplitude of f restricted to the image

of every simplex, ̟(h(ξ)), is bounded from above by δ.

Subdivision Lemma. Let f : R
n → R be smooth with

flat tail. Then for every p > n and every δ > 0, there is a

triangulation of Sn with at most 2nn!Mf (δ) simplices, such

that the amplitude of f within the image of each simplex is

at most δ.

The extra factor, 2nn!, allows for the decomposition of

every n-dimensional cube into n! n-simplices, see e.g. [8],

and for counting all 2n faces of each n-simplex.

Counting cycles. The reason for our interest in the number

of simplices needed to guarantee a bound on the amplitude

within each simplex is its connection to the number of high-

persistence dots in the persistence diagram of f . Recall

that Dgm(f) records the events (births and deaths, and their

correspondence) during a sweep through the sublevel sets,

f−1(−∞, a], in which a goes from −∞ to ∞. To develop

an intuition, let u, v ∈ Dgm(f) be two dots representing i-
dimensional homology classes of persistence larger than δ.

Because of the small amplitude within each (i+1)-simplex,

each of these classes has a representative in the i-skeleton

of the triangulation. Having the same representation in the

i-skeleton would contradict both having large persistence,

but if they are different then we are limited to the classes

generated by the i-skeleton. This suggests that the number

of simplices gives an upper bound on the number of dots:

Persistent Cycle Lemma. Let f : Rn → R be tame and

with flat tail. Then the number of dots in Dgm(f) with per-

sistence larger than δ is at most 2nn!Mf (δ).

A formal proof of this lemma can be found in [5]. More

specifically, the lemma with the same name in this reference

is formulated in terms of an upper bound on the Lipschitz

constant of the function f . This difference is not essential

and the proof extends virtually unchanged. Similar to [5],

we need an integrated version of the bound. To that end, we

consider the p-norm of the diagram after removing all dots

with persistence at most δ:

‖Dgm(f, δ)‖p =





∑

pers(u)>δ

pers(u)
p





1
p

, (22)

Clearly, ‖Dgm(f, 0)‖p = ‖Dgm(f)‖p, the p-norm of the

diagram as defined in Section 2. As proved in [5], we can

get a bound on ‖Dgm(f, δ)‖p by integrating the bound pro-

vided by the Persistent Cycle Lemma:
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Diagram Norm Lemma. Let f : Rn → R be tame and

with flat tail. Then ‖Dgm(f, δ)‖p is at most

const ·
[

δpMf (δ) +

∫ amp(f)

ε=δ

Mf (ε)ε
p−1 dε

]
1
p

,

for every δ > 0.

We delay the computation of the integral until later, when

we will know how Mf (ε) depends on ε. We will see that

this dependence is only polynomial so that it will be easy

to evaluate the integral. Letting δ go to zero, we will then

obtain a bound on the p-norm of the diagram.

4. Convergence

In this section, we prove the main result of this paper in

two steps, first establishing how fast the gradient diffuses to

zero and second how the norm of the persistence diagram

follows this trend.

Two results on Gaussian kernels. We begin with two

exercises in the analysis of a Gaussian kernel, which we will

use to prove properties of general functions with compact

support. Specifically, we consider gt : Rn → R and the

magnitude of its gradient, defined by

|∇gt(x)| =
|x|
t

· gt(x). (23)

It is easy to compute the maximum value as a function of

t, which is gt(0) = 1/(2πt)
n
2 . It decreases monotonically

with increasing t. This is different from the value at a point

x 6= 0, where it first increases to a maximum and then in-

creases. Determining the maximum value at x thus amounts

to computing when the derivative with respect to t vanishes.

We get

∂gt(x)

∂t
=

[ |x|2
2t2

− n

2t

]

gt(x), (24)

which vanishes at t0 = |x|2/n. To see that this indeed

corresponds to a maximum, we may compute the second

derivative and verify that it is negative at t = t0. We get the

upper bound by plugging t0 into the formula for gt(x):

First Kernel Lemma. Let gt be the Gaussian kernel with

t > 0 in R
n. Then gt(x) ≤

(

n

2eπ|x|2
)

n
2

for any |x| > 0.

Second, we are interested in the p-norm of the gradient.

It is intuitively clear that this norm will go to zero when t
goes to infinity, but it will be important to determine how

fast it vanishes. Computing the p-norm of |∇gt(x)| reduces

to a standard exercise in integration, and results can be

found in standard mathematical handbooks, including [1].

Second Kernel Lemma. Let gt be the Gaussian kernel with

t > 0 in R
n, and p ≥ 1. Then ‖∇gt‖p ≤ const/t

n+1

2
− n

2p .

For example, the 1-norm goes to zero like t
1
2 , which does

not depend on n. For p > 1, the convergence is faster in

higher than in lower dimensions.

Quantifying flatness. Let Ω be a compact subset of Rn,

f : Ω → R a function, and f0 : R
n → R defined by

f0(x) = f(x) if x ∈ Ω and f0(x) = 0 otherwise. We are

interested in the behavior of the convolution, ft = f0 ∗ gt,
which is defined by

ft(x) =

∫

y∈Rn

f0(y)gt(x− y) dy. (25)

It will be convenient to side-step the definition of f0 and

write ft = f ∗ gt for t ≥ 0. When f is the Dirac delta func-

tion, with unit mass concentrated at the origin, then ft = gt
for all t > 0. Hence, its amplitude is equal to the maxi-

mum value: amp(ft) = 1/(2πt)
n
2 . Even for general f , the

amplitude cannot be much larger than that, which we prove

using amp(ft) ≤ 2‖ft‖∞. The maximum absolute value is

|ft(x)| ≤
∫

y∈Ω

|f(y)| · 1

(2πt)
n
2

· e−
|x−y|2

2t dy, (26)

for all t > 0. Noting that the exponential term is at most 1,

we get the desired upper bound.

Amplitude Lemma. Let Ω be a compact subset of Rn and

f : Ω → R. Then the amplitude of ft : Rn → R satisfies

amp(ft) ≤ const/t
n
2 , for all t > 0.

The constant in this bound is 2‖f‖1/(2π)
n
2 . We are also

interested in the amplitude of ft outside a sufficiently large

cube. Specifically, we use the First Kernel Lemma to bound

how fast the radius r(ft, δ) grows when δ goes to zero. We

content ourselves with a bound that applies uniformly, for

all t. To state the result, we assume a radius r0 large enough

so that the cube [−r0, r0]
n contains Ω ⊆ R

n, and we define

R(δ) = r0 +

√

n

2eπ
·
(

2‖f‖1
δ

)
1
n

. (27)

Furthermore, we write BR(δ) = [−R(δ), R(δ)]n for the

cube this radius defines, as before.

Flat Tail Bound. Let f : Ω → R be with compact sup-

port Ω ⊆ [−r0, r0]
n. Then the amplitude of ft : R

n → R

outside BR(δ) is at most δ uniformly for all t ≥ 0.

PROOF. Let x be a point outside BR(δ) and note that it is

further than R(δ) − r0 from every point in Ω. By the First

Kernel Lemma, the value of gt at a point y with distance

R(δ)− r0 from the origin is at most

Xδ =

(

n

2eπ(R(δ)− r0)2

)
n
2

. (28)

We can therefore bound ft(x) by concentrating all the mass

at a point at distance R(δ)− r0 from x. More formally, we
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have

|ft(x)| ≤
∫

y∈Ω

|f(y)|gt(x− y) dy (29)

≤ Xδ · ‖f‖1, (30)

where the 1-norm is finite because Ω is compact. Solving

for Xδ‖f‖1 = δ/2, we get R(δ) as defined in (27). The

claim follows because |ft(x)| ≤ δ/2 for all points outside

BR(δ) implies that the amplitude of ft restricted to B̄R(δ) is

at most δ.

We may read (27) as saying that there is a constant that

depends on f and n such that R(δ) = const · [1 + 1/δ
1
n ].

Hence, the infimum radius r(ft, δ), which is bounded from

above by R(δ), grows at most like the n-th root of 1/δ.

Extending to compact support. Using the Second Kernel

Lemma, it is not too difficult to bound the norm of the gra-

dient of a more general diffusing function. A crucial tool in

this analysis is the Hölder Inequality, which we now recall.

Given two functions Φ,Ψ : Rn → R, it says that

∫

Φ(x)Ψ(x) dx ≤
(
∫

Φ(x)p dx

)
1
p
(
∫

Ψ(x)q dx

)
1
q

,

whenever 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. To illustrate its

use, suppose that Ψ has compact support Ω ⊆ R
n and set

Φ(x) = 1 for all x ∈ Ω to get

∫

x∈Ω

Ψ(x)a dx ≤ vol(Ω)
1
p

(
∫

x∈Ω

Ψ(x)aq dx

)
1
q

.

Assuming vol(Ω) = 1, we get ‖Ψ‖a ≤ ‖Ψ‖aq for all q ≥ 1.

In words, the norms are non-decreasing for non-decreasing

index. We are now ready to relate the norm of a general

diffusing function with the norm of the gradient of the dif-

fusing Gaussian kernel.

Compact Gradient Lemma. Let Ω ⊆ R
n be compact, f :

Ω → R a function, ft = f ∗ gt for t > 0, and p ≥ 1. Then

‖∇ft‖p ≤ const · ‖∇gt‖p.

PROOF. In a first step, we write the gradient of ft in terms of

the gradient of the Gaussian kernel and get an upper bound

by integrating magnitudes:

|∇ft(x)| ≤
∫

y∈Ω

|f(y)| · |∇gt(x− y)| dy (31)

≤ ‖f |Ω‖q
(
∫

y∈Ω

|∇gt(x− y)|p dy
)

1
p

(32)

where we apply the Hölder Inequality with 1
q + 1

p = 1.

Note that ‖f |Ω‖q is no more than the q-norm of f , while

the second integral is not the p-norm of |∇gt|. Indeed, the

size of the second integral depends on the relative position

of x and Ω. In the second step, we bound the p-norm of

|∇ft| by integrating the above bound on the magnitude:

‖∇ft‖p =

(
∫

x∈Rn

|∇ft(x)|p dx
)

1
p

(33)

= ‖f‖q
(
∫

Rn

∫

Ω

|∇gt(x− y)|p dy dx
)

1
p

(34)

= ‖f‖q
(
∫

y∈Ω

‖∇gt‖pp dx
)

1
p

, (35)

where we get the last line by exchanging the integrals. The

claimed inequality follows by noticing that the integral is

equal to vol(Ω)‖∇gt‖pp. Simplifying the resulting inequal-

ity by absorbing ‖f‖q and the p-th root of vol(Ω) into the

constant gives the claimed inequality.

Bounding the persistence. We are now ready to prove

the main result of this paper, which states that the p-norm

of the persistence diagram goes to zero like 1/t
n
2 .

Main Theorem. Let Ω ⊆ R
n be compact and f : Ω → R

a function such that ft = f ∗ gt is tame for all t ≥ 0. Then

‖Dgm(ft)‖p ≤ const/t
n
2 , (36)

for all p > 1
2 (2n+1+

√
4n2 + 1), and the exponent on the

right hand side of the inequality is best possible.

PROOF. The tightness of the bound follows from the exis-

tence of f with amp(ft) = const/t
n
2 . We thus get a dot

whose persistence is this amplitude. Taking the p-th root of

the p-th power implies the claim.

To prove the upper bound, we simplify the relevant in-

equalities by focusing on the terms that depend on δ or on

t. For example, for (18) and (27), we get

Mft(δ) ≤ const ·
[

1 +
r(ft, δ)

n ·Xp

δm

]

, (37)

R(δ) ≤ const ·
[

1 +
1

δ
1
n

]

. (38)

where Xp = ‖∇ft‖pm. By the Flat Tail Bound, we have

r(ft, δ) ≤ R(δ), so we can plug (38) into (37) to get

Mft(δ) ≤ const ·
[

1 +
Xp

δ1+m

]

. (39)

Plugging (39) into the Diagram Norm Lemma gives a first

term δp + δℓXp within the outer pair of brackets, where

ℓ = p − 1 − m = p − 1 − np
p−n . The lower bound on p

given in the statement implies ℓ > 0, so the first term can

be neglected as δ goes to zero. The second term within the

brackets is

X ≤ const ·
∫ amp(ft)

ε=δ

(

εp−1 +Xpε
ℓ−1

)

dε. (40)
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Substituting ‖∇gt‖p for ‖∇ft‖p using the Compact Gradi-

ent Lemma and applying the Second Kernel Lemma, we get

Xp ≤ const/tm(n+1

2
− n

2p
). Plugging this bound into (40)

and integrating gives

X ≤ const ·
[

amp(ft)
p
+

amp(ft)
ℓ

tm(n+1

2
− n

2p
)

]

. (41)

Using amp(ft) ≤ const/t
n
2 from the Amplitude Lemma,

we note that the first term in (41) is dominated by the sec-

ond term. We therefore get X ≤ const/t
ℓn
2
+m(n+1

2
− n

2p
).

Substituting p − 1 − m for ℓ and pn
p−n for m finally gives

X ≤ const/t
np
2 , and taking the p-th root gives the claimed

inequality in (36).

5. Discussion

The main contribution of this paper is a bound on the

norm of the persistence diagram of a diffusing function on

R
n. Its proof uses a Sobolev inequality to establish a con-

nection between the gradient and the amplitude of the func-

tion. Indeed, we may think of the Sobolev inequality as the

technical means needed to finesse the difficulties caused by

the non-compactness of Euclidean spaces.

We close by formulating questions related to the work

presented in this paper. Can the assumptions under which

our bounds hold be weakened? In particular, does the up-

per bound hold for value of p that are smaller than allowed

in the Main Theorem? How do the upper bounds extend

to non-Euclidean spaces? What are the characteristics of

spaces with particularly fast or particularly slowly vanish-

ing norm of the persistence? Can the analysis of the contin-

uous case presented in this paper be extended to discretized

versions of convolution, as considered in [15]?
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