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Abstract. The problem considered is that of two species or chemical concentrations
which independently diffuse within the same or adjacent regions. The coupling interac-
tion takes place only along a common boundary. This boundary reaction is allowed to
be either totally dissipative wherein both species are removed by the interaction, or
semi-dissipative wherein one species is stimulated at the expense of the other. This
physical situation is modeled by two independent, linear heat equations, each defined
over a one-dimensional, semi-infinite domain. Associated with each heat equation is a
boundary flux condition containing a nonlinear interactive term which couples the solu-
tions of the two heat equations. With only boundary interaction, the problem can be
reduced to the study of two coupled Volterra integral equations. By using monotone
operator methods these integral equations are shown to have positive solutions. Uni-
queness is also established. The large-time asymptotic behavior of the solutions is
examined for the cases of both fast and slow decay of data.

1. Introduction. Let u,(x, t), i = 1, 2, denote solutions to a system of two nonlinear
boundary value problems involving the heat equation,

y'lh^= x>0' t>0'

0 = ViF[ui(o, t), u2(o, f)] - t > o, (i,2)

ut(x, 0) = Ui(x), x > 0, (1.3)

Ui(x,t)-+ 0 as x —*■ oo, t > 0. (1.4)

Here the are given positive constants specifying the diffusivity associated with each
solution. The = ± 1, with the choice depending upon the desired boundary effect. The
qt(t) and Ut(x) are given non-negative functions associated with the external input at the
boundary and the initial data, respectively. The smooth convex function F{ul, u2) pro-
vides the coupling of the system.

This mathematical problem has relevance to various physical situations. Perhaps the
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simplest interpretation would be that of two chemicals coexisting and independently
diffusing in some bath x > 0. Their concentrations u,(x, f) > 0 vary in space and time. At
the surface x = 0 of the bath, the chemicals react so as to influence the flux of concentra-
tion through the surface, and hence throughout the interior. In the case of an m,nth-order
reaction, it follows (cf. [1]) that

F(uu u2) = kmnu^u"2, m, n=l, 2, .... (1.5)

There has been considerable attention devoted to parabolic systems with nonlinear
reaction effects (cf. [2] for references); however, these all have the reaction effects in the
differential equation as opposed to the type of problem posed here. By considering
(1.1)—(1.4) with coupling only on the boundary, it is possible to reduce the problem to
that of two coupled Volterra integral equations for the surface concentrations, namely

<j>(t) = m^O, t), = u2(0, t). (1.6)

Moreover, since only the independent variable t appears in the reduced form of the
problem, this represents a considerably simpler setting for the investigation of com-
plicated reaction effects.

To achieve the desired reduction of the problem, let

* = \/Vi£ = a = P=l/Jy2- (i-7)
Then using the Green's function corresponding to the linear heat equation with zero

flux condition at x = 0, each of the boundary value problems (1.1)—(1.4) can be recast as
an integral equation (cf. [3]). This yields

</>(t) = | 1[n(t - s)]~i,2{f(s) - a/<j F[(f>(s), i//(s)]} ds, (1.8)
*0

where

\J/(t) = | [n(t - s)] 1/2{/i(s) - Pfi2F[<t>(s), iA(s)]} ds, f >0, (1.9)
*0

f(t) = f me-"21" di, (1.10)2n ' t

1
2n^i3/2 Jh(t) = Pq2(t) + —1^372 J t/2(V)'2'/)^ "2/4' dtj, t> 0. (1.11)

The purpose of this work will be to investigate the coupled nonlinear Volterra inte-
gral equations (1.8)—(1.9). By using monotone operator methods, the existence of positive
solutions will be established. Uniqueness will be separately demonstrated. Finally, the
asymptotic behavior as r -* oo will be examined for the special case of first-order reactions
(i.e. F(qb, ip) = (pif/) when the data has algebraic decay.

In carrying out this investigation some distinction will be made between the totally
dissipative reaction (juu n2)= (1, 1), and the semi-dissipative reaction (/il5 /u2) = (1, — 1).
The latter case is both more difficult technically and more interesting in terms of the
physical interpretation of its behavior.
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2. Existence and uniqueness of positive solutions. To carry out the analysis which
demonstrates the existence of positive solutions to (1.8)—(1.9), some reformulation is
convenient. It is easily seen that this system is equivalent to

= coi/>(f) + J(t), J(t) = j [n(t - s)]"1/2[/(s) - a>/i(s)] ds, (2.1)
Jo

iA(t) = | M* -«)]~1/2 !'i(s) - -+ J(4 Hs)]\ ds> (2.2)
Jo CU

where

<a = <W/^2 = Wi/Pn i = <x/Pn 2 = +a/P, (2.3)
with the plus sign corresponding to the totally dissipative case, while the minus sign
designates the semi-dissipative case.

This form of the problem is conceptually more useful for the analysis, since the
existence of ij/(t) can be dealt with directly in (2.2), and then (f>(t) follows from (2.1). The
form of (2.2) is similar to the class of problems treated in [3]; however, the properties of
the function F(<p, \p) are more complicated here.

To produce positive solutions, it is appropriate to require that J(t) be continuous and

J(t) >0, t> 0. (2.4)

For the reaction function F((f>, ip), it is required that F(<f>, ip) be continuously differen-
tiate in (f> and i//, with

F(4>,^)> 0, F{0,t) = F(4>,0) = 0, 4>> 0, > 0, (2.5)
dF dF<A)>^(02, "A)>0, > 02 ̂  0, > 0, (2.6)

dF 8F > «A2 > 0, 4>>0. (2.7)

Of course these properties are consistent with the special case (1.5) for the m,nth-order
reaction.

The form of (2.2) is not appropriate for the application of monotone operator
methods. To put it into the desired form, a more general Green's function Gp(x, 11 x', s) is
used (cf. [3]) which satisfies the boundary condition

SGP = p(t)G,
x = 0

t > s. (2.8)
x = 0dx

Here p(t) is continuous and

Gp(0, 110, s) > 0, s < t < co, when p(t) >0, 0 < t < oo. (2.9)

Furthermore,

| Gp(0, 110, s)p(s) ds < 1, 0 < t < oo. (2-10)
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These properties are discussed in [3, 4], where it is also shown that an integral equation
in the form of (2.2) can alternatively be considered in the form

ip(t) = T\p(t) = | Gp(0, t\0, s)\h(s) + p(s)ip(s) - ^F[wip(s) + J(s), ip(s)]^ds. (2.11)' P\"0

It should be emphasized that subject to its continuity and positivity, p(t) can be chosen
as is convenient for the analysis. The choice p(t) = 0 recovers (2.2); however, the goal
here will be to pick p(t) so that T becomes a monotone operator.

The existence results for (2.11) are obtained under somewhat different conditions for
co > 0 than for to < 0. In light of the asymptotic results to follow in Sec. 3, the need for
these different conditions is confirmed. In both cases, it will be shown that T is a
monotone operator on an appropriate space of non-negative functions. Let P(t) > 0 be a
given continuous function and

KP = iP(t) e C0[0, oo), 0 < ijj(t) < P(t)}. (2.12)
It will be seen that a different P(t) is required for to > 0 than for to < 0. First consider
to > 0 and

Theorem 1. Let co > 0, and the hypotheses on J(t) and F((/>, i//) hold. Also let there exist
a constant M > 0 such that 0 < h(t) < (a./a>)F(coM, M). Then there exists a solution ip(t)
of (2.2) such that ip(t) e KM.

Proof. Consider the alternative form (2.11) of (2.2) with the specification that

p(t) = -djr{wM + J(t\ M) (2.13)
to dip

where
dF _ dF dF
dip W dcf) + dip '

To show that T: KM -» KM, suppose that ip e KM; then Tip can be expressed as

ip\ds>0 (2.14)TiP(t)= |''g p\h +
■ o I

a dF 7 7
p —- 4 + J, ip)a> dtp

for some tp e KM. The positivity of the integrand then follows from the definition of p
and the monotone properties of 8F/d(f> and dF/dtp.

It is also possible to express Tip as

Tip(t) = f G J h - - F(coM + J, M) +
• o I p - ~jr + J' ^oodip

(ip — M) i ds

rf ,r
+ M pGpds<M | pGp ds < M, (2.15)

• 0 • 0

for some ip s KM. The negativity of the first integral again follows from the definition of
p and the hypotheses of the theorem.

To show that T is monotone on KM, let ipu ip2eKM with Then
Tip i — Tip2 can be expressed as

TiPl -Tip2= Gp
o

en dF T r T\
P —((Dip + J, Ip)to dip (>pl-ip2)ds>0, (2.16)
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for some ip e Km. The positivity of the integrand follows as before. Hence Tip1 > Tip 2 ^
ipi > ip2, thereby establishing the desired monotone property.

Finally, it is easily seen that

0 < TO < TM < M. (2.17)

Thus the monotone operator theorem (cf. [5]) applies and provides that there exists a
ip e KM such that ip = Tip. Moreover any solution of (2.11) is also a solution of (2.2).

Next consider co < 0 and

Theorem 2. Let co < 0, and the hypothesis on J(t) and F(</>, ip) hold. Let N(t) =
(1/| co | )J(t). Then there exists a solution ip(t) of (2.2) such that ip(t) e KN.

Proof. Again consider the alternative form (2.11) of (2.2) with the specification that

p(t) = J~[J(t),J(t)]. (2.18)

To show that T: KN -> KN, suppose that ip e KN; then Tip can be expressed as

T<A= | GJh +
• o I

a dF ~ 7P--77 W + •/> "A
co dip ip\ds>0, (2.19)

for some ip e KN. The positivity of the integrand follows from the definition of p and the
monotone properties of dF/d<p and dF/dip upon noting that

a. dF 7 , dF 7 7 a dF 7 ,
P Tr(wlA +J,W) = P -cc—(a>ip + J, ip) — (mip + J, 1p)u> dip d(p woip

dF
> p — a — (coip + J, ip)> 0. (2.20)dtp

It is also possible to express Tip as

Tip(t) = ( GJ\P ~~^j/(co^ + ~ N)ds + J (h + pN)Gp ds
t

< | (h + pN)Gp ds < N(t) (2.21)
• 0

for some ip e KN. The negativity of the integrand of the first integral follows as in (2.20)
and 1p < N. The final inequality in (2.21) follows from the same integral identity that
permits (2.2) to be expressed as (2.11), namely

N(t) = ~J(t)= J \n(t — s)]~1/2
co J0

1 f(s) + h(s)
CO

ds

= fo,'0
1 f(s) + h{s) + p(s)N(s)

CO
ds

> f Gp[/i(s) + p(s)N(s)] ds. (2.22)J PL

•'o
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To show that T is monotone on KN, let ij/ly \p2 e KN with ij/1 > \jj2 ■ Then T\J/1 — T\!/2
can be expressed as

T^i - T*2 = Gp a dF T , t\P-—tt(<oV + j, "A)codip
(i/ty -ip2)ds>0 (2.23)

from some ij/ e KN- The positivity of the integrand follows again as in (2.20). Hence
> Tij/2 if > i/*2, thereby establishing the desired monotone property.

Also, it follows that

0 < TO < TN < N, (2.24)

and again the monotone operator theorem applies. Thus there exists a ip e KN such that
ip = Tip, and that solution also satisfies (2.2).

Now that the existence of a ip(t) > 0 which satisfies (2.2) has been demonstrated for
both co > 0 and co < 0, it follows from (2.1) that there exists a corresponding <p(t) > 0. In
the case a> > 0, it is readily apparent that <p(t) > 0; whereas, for co < 0 it should be noted
that having shown il/(t) < (l/|co | )J(t) is essential to insure that <p(t) > 0.

To show uniqueness of the solutions established in Theorems 1 and 2, it suffices to
prove that (2.2) has only one continuous solution i//(t). The uniqueness of (j>(t) then
follows immediately from (2.1). The cases of co > 0 and co < 0 can be treated together in

Theorem 3. There exists at most one \p(t) e KP which satisfies (2.2).
Proof. Suppose the contrary, namely that there exist 1/^,1j/2e Kp which satisfy (2.2).

Let — i)/2, whereupon it is deduced from (2.2) that

T(f) = | [n(t — s)]~ 1/2y(s)4'(s) ds, (2-25)
Jo

where

v(')= m, (2.26)co a [p

for some 1p e Kp.
Since and are presumed continuous solutions of (2.2), then the properties of F

assure that v is continuous. It is therefore possible to view (2.25) as a linear integral
equation in with a singular kernel u(s)[7r(f — 5)]"1/2. Known uniqueness results on
linear singular integral equations of this type (cf. [6]) provide that T = 0 is the only
solution of (2.25). Thus, uniqueness for (2.2) is established.

3. Large-time behavior for first-order reactions. The investigation of the behavior of
the solution 1//(t) of (2.2) as t -> 00 is crucially dependent upon both the form of F(</>, ip)
and the sign of co. Here attention will be given only to the special case of first-order
reactions where

aF(4>, 4/) = (3.1)

A situation analogous to this with the nonlinearity appearing in the differential equations
has been considered in [7].

For the special form of (3.1), both a> = 1 and co = - 1 will be considered. The asymp-
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totic behavior will be examined when the data has algebraic decay. That is, it will be
prescribed that as t -> oo

f(t)~At~a, h(t) ~ Bt~h; A>0, B > 0, 0 <a<b. (3.2)

Here the multiplicative constants A and B together with the decay rates a and b are
taken as given. The condition a < b is consistent with the specification that J(t) > 0. A
distinction will be made between the situations of fast data decay (a > §) and slow data
decay (b < 1).

For the first-order reaction (3.1), the integral equation (2.2) takes the form

if/(t)= j [>r(r - s)]"1/2 [h(s) — — J(s)\j/(s) - t/>2(s) | ds, (3.3)
*0 CD

where both the totally dissipative case (co = 1) and the semi-dissipative case (co = —1)
will be treated.

As found in [8, 9], the asymptotic analysis of integral equations like (3.3) is often
made easier by an Abel inversion of the integral operator to achieve the alternative form

h(t)-~J(t)ip(t) - il/2(t) = ~ \ [n(t - s)]~ll2il/(s) ds. (3.4)
co at • o

This form has the advantage that, in many instances, the right side is asymptotically
unimportant to leading order. That is, the leading order balance is achieved between two
of the three terms on the left side of (3.4).

For the asymptotic analysis here, it is assumed that as t -> oo,

iJ/(t) ~ Ct~c, C > 0. (3.5)

The requirement that C is positive is consistent with the existence and uniqueness of a
positive solution to (3.3) assured by Theorems 1-3. While the solution does not neces-
sarily have an asymptotic form like (3.5), it will be found to be self-consistent in the cases
considered here. That is, C and c will be uniquely determined by a balance of leading
order terms in (3.4) with other terms being of lower order.

A basic result needed in the asymptotic evaluation of the integral terms in (3.4) is that
if a sufficiently smooth function z(f) has asymptotic behavior as t -> oo of the form

z(t) ~ Dt d, (3.6)

then, as t -* oo,

[n(t - s)]"1/2z(s) ds ~ D^i_ a) tm"' d<l

71
41 1/2 '°§ r' d = 1

jo z(s)ds 1/2
~ n112

This follows from results given in [10].

d> 1. (3.7)
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Now the analysis of (3.4) can be done by utilizing the result (3.6)—(3.7). For fast data
decay (a >l), Eq. (3.4) has the asymptotic form

Bt'" (/— coh) ds f_c_1/2 — C2t~2'

cr(i - c)(| - C)
am

rrti _ All - A
t c 1/2, c < 1,

r (f-c)
c

2n112

Jo ^(s) ds

t 3/2 log t, c = 1,

t"3/2, C>1. (3.8)
2nl/2

First examine the totally dissipative case (to = 1). By systematically considering every
possible match of terms to leading order, it is determined that the only admissible result
came from a balance of the first two terms on the left side (3.8), so that

If °°
c = b-i C = Bn112 \ (/— h) ds. (3.9)

/ "0

All other possible matchings are found to produce a contradiction, either in the sign of C,
the lower bound on a, or an unbalanced dominant term. Thus follows that as t -* oo

•HO Bn1'2 \ (f-h)ds t1'2-", co= 1, j < a < b. (3.10)

For the semi-dissipative case (a> = — 1) a similar analysis reveals a balance to leading
order of the latter two terms on the left side of (3.8). Again, all other possibilities lead to
contradiction. Hence

c = i c = ~m\ if+h)ds, (3.11)n1'2 ,71 • o

and it follows that

il/(t) ds t 11, co = — 1, | < a < b. (3.12)

To examine the slow data decay (b < 1) situation, the asymptotic form of (3.4)
becomes

Bt~b - ACr,^ ~ aKll2~"~c - c2r2c
corg - a)

cr(i-c)a-c) 2
3-c)

c

3 -v r > C<\,r(! - c)

~3/2 log t, c= 1,27T1/2"

j? «A(s)
27C1/2

r3/2, C>1. (3.13)
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Again examining the totally dissipative case (a> = 1), it is found that the only possible
matching is between the first two terms on the left side of (3.13), so that

c-b-a + h C = (3.14)

Thus follows

-a)r<''"+1/2>' °>=1' °^a<b<1- (3.15)

For the semi-dissipative case (to = -1), the only possible matching is again between
the latter two terms on the left side of (3.13), so that

i ^ 4r(l — a) .. .
<316>

Thus follows that

>p(t) ~ ^3^—yt1/2ft) = — 1, 0<a<b<l. (3-17)

The above results (3.10), (3.12), (3.15) and (3.17) cover each situation of fast data
decay (a > §) and slow data decay (b < 1) for either the totally dissipative effect (to — 1)
or semi-dissipative effect (to = —1). It is particularly noteworthy that, with either fast or
slow data decay, the solution ij/(t) -> 0 as t -> oo, except possibly in the case of to = — 1,
0 < a < j. For this situation of slow data decay in the semi-dissipative case, it is possible
that i//(t) is non-decreasing as t -* oo.
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