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Abstract. Tracking microsctructural changes in the developing brain
relies on accurate inter-subject image registration. However, most meth-
ods rely on either structural or diffusion data to learn the spatial cor-
respondences between two or more images, without taking into account
the complementary information provided by using both. Here we pro-
pose a deep learning registration framework which combines the struc-
tural information provided by T2-weighted (T2w) images with the rich
microstructural information offered by diffusion tensor imaging (DTI)
scans. This allows our trained network to register pairs of images in a
single pass. We perform a leave-one-out cross-validation study where we
compare the performance of our multi-modality registration model with
a baseline model trained on structural data only, in terms of Dice scores
and differences in fractional anisotropy (FA) maps. Our results show that
in terms of average Dice scores our model performs better in subcortical
regions when compared to using structural data only. Moreover, average
sum-of-squared differences between warped and fixed FA maps show that
our proposed model performs better at aligning the diffusion data.
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1 Introduction

Medical image registration is a vital component of a large number of clini-
cal applications. For example, image registration is used to track longitudinal
changes occurring in the brain. However, most applications in this field rely on
a single modality, without taking into account the rich information provided by
other modalities. Although T2w magnetic resonance imaging (MRI) scans pro-
vide good contrast between different brain tissues, they do not have knowledge
of the extent or location of white matter tracts. Moreover, during early life, the
brain undergoes dramatic changes, such as cortical folding and myelination, pro-
cesses which affect not only the brain’s shape, but also the MRI tissue contrast.
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In order to establish correspondences between images acquired at different
gestational ages, we propose a deep learning image registration framework which
combines both T2w and DTI scans. More specifically, we build a neural network
starting from the popular diffeomorphic VoxelMorph framework [2], on which
we add layers capable of dealing with diffusion tensor (DT) images. The key
novelties in our proposed deep learning registration framework are:

• The network is capable of dealing with higher-order data, such as DT images,
by accounting for the change in orientation of diffusion tensors induced by
the predicted deformation field.

• During inference, our trained network can register pairs of T2w images with-
out the need to provide the extra microstructural information. This is helpful
when higher-order data is missing in the test dataset.

Throughout this work we use 3-D MRI brain scans acquired as part of the
developing Human Connectome Project1 (dHCP). We showcase the capabilities
of our proposed framework on images of infants born and scanned at different
gestational ages and we compare the results against the baseline network trained
on only T2w images. Our results show that by using both modalities to drive
the learning process we achieve superior alignment in subcortical regions and a
better alignment of the white matter tracts.

2 Method

Let F, M represent the fixed (target) and the moving (source) magnetic reso-
nance (MR) volumes, respectively, defined over the 3-D spatial domain Ω, and
let φ be the deformation field. In this paper we focus on T2w images (FT2w and
MT2w which are single channel data) and DT images (FDTI and MDTI which
are 6 channels data) acquired from the same subjects. Our aim is to align pairs
of T2w volumes using similarity metrics defined on both the T2w and DTI data,
while only using the structural data as input to the network.

In order to achieve this, we model a function gθ(F
T2w,MT2w) = v a velocity

field (with learnable parameters θ) using a convolutional neural network (CNN)
architecture based on VoxelMorph [2]. In addition to the baseline architecture,
we construct layers capable of dealing with the higher-order data represented by
our DT images. Throughout this work we use T2w and DTI scans that have been
affinely aligned to a common 40 weeks gestational age atlas space [14], prior to
being used by the network.

Figure 1 shows the general architecture of the proposed network. During
training, our model uses pairs of T2w images to learn a velocity field v, while the
squaring and scaling layers [2] transform it into a topology-preserving deforma-
tion field φ. The moving images M are warped by the deformation field using
a SpatialTransform layer [5] which outputs the moved (linearly resampled) T2w
and DT images. The DT images are further processed to obtain the final moved
and reoriented image.

1 http://www.developingconnectome.org/.

http://www.developingconnectome.org/
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Fig. 1. The proposed network architecture at both training and inference time.

The model is trained using stochastic gradient descent to find the optimal
parameters θ̂ that minimize a sum of three loss functions, representing the tensor
similarity measure, the scalar-data similarity measure and a regulariser applied
on the predicted deformation field. The DTI data is not used as input to our
CNN, but only used to drive the learning process through calculating the sim-
ilarity measure. During inference, our model uses only T2w images to predict
the deformation field, without the need for a second modality. In the following
subsections, we describe our model in further detail.

Network Architecture. The baseline architecture of our network is a 3-D UNet
[12] based on VoxelMorph [2]. The encoding branch is made up of four 3D con-
volutions of 16, 32, 32, and 32 filters, respectively, with a kernel size of 3 × 3 × 3,
followed by Leaky ReLU (α = 0.2) activations [18]. The decoding branch con-
tains four transverse 3D convolutions of 32 filters each, with the same kernel size
and activation function. Skip connections are used to concatenate the encoding
branch’s information to the decoder branch. Two more convolutional layers, one
with 16 filters and a second one with 3 filters, are added at the end, both with
the same kernel size and activation function as before.
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A pair of T2w images are concatenated on the channel axis and become a
96 × 96 × 64 × 2 input for the CNN network. The output is a three channel
velocity field of the same size as the input images. The velocity field is smoothed
with a 3 × 3 × 3 Gaussian kernel (with σ = 1.2 mm), and passed onto seven
squaring and scaling layers [2], which transform it into a topology-preserving
deformation field. The SpatialTransform layer [5] receives as input the predicted
field φ and the moving scalar-valued T2w image, and outputs the warped and
resampled image. A similar process is necessary to warp the moving DT image,
with a few extra steps which are explained in the next subsection.

Tensor Reorientation. Registration of DT images is not as straightforward
to perform as scalar-valued data. When transforming the latter, the intensities
in the moving image are interpolated at the new locations determined by the
deformation field φ and copied to the corresponding location in the target image
space. However, after interpolating DT images, the diffusion tensors need to be
reoriented to remain anatomically correct [1]. In this work we use the finite strain

(FS) strategy [1].
When the transformation is non-linear, such as in our case, the reorientation

matrix can be computed at each point in the deformation field φ through a
polar decomposition of the local Jacobian matrix. This factorisation transforms
the non-singular matrix J into a unitary matrix R (the pure rotation) and a
positive-semidefinite Hermitian matrix P , such that J = RP [15]. The rotation
matrices R are then used to reorient the tensors without changing the local
microstructure.

Loss Function. We train our model using a loss function composed of three
parts. First, the structural loss Lstruct (applied on the T2w data only) is a popular
similarity measure used in medical image registration, called normalised cross
correlation (NCC). We define it as:

NCC(F,M(φ)) = −

∑

x ∈ Ω(F (x) − F ) · (M(φ(x)) − M)
√

∑

x ∈ Ω(F (x) − F )2 ·
∑

x ∈ Ω(M(φ(x)) − M)2

where F is the mean voxel value in the fixed image F and M is the mean voxel
value in the transformed moving image M(φ).

Second, to encourage a good alignment between the DT images, we set
Ltensor to be one of the most commonly used diffusion tensor similarity mea-
sures, known as the Euclidean distance squared. We define it as:

EDS(F,M(φ)) =
∑

x ∈ Ω

||F (x) − M(φ(x))||2C

where the euclidean distance between two pairs of tensors D1 and D2 is defined
as ||D1 − D2||C =

√

Tr((D1 − D2)2) [19].
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Finally, to ensure a smooth deformation field φ we use a regularisation
penalty Lreg in the form of bending energy [13]:

BE(φ) =
∑

x ∈ Ω

[(∂2φ(x)

∂x2

)2

+
(∂2φ(x)

∂y2

)2

+
(∂2φ(x)

∂z2

)2

+

2
(∂2φ(x)

∂xy

)2

+ 2
(∂2φ(x)

∂xz

)2

+ 2
(∂2φ(x)

∂yz

)2]

Thus, the final loss function is:

L(F,M(φ)) = α EDS(FDTI ,MDTI(φ)) + β NCC(FT2w,MT2w(φ)) + λBE(φ)

We compare our network with a baseline trained on T2w data only. For the
latter case the loss function becomes: L(F,M(φ)) = β NCC(FT2w,MT2w(φ))+
λBE(φ). In all of our experiments we set the weights to α = 1.0, β = 1.0 and
λ = 0.001 when using both DTI and T2w images, and to β = 1.0 and λ = 0.001
when using T2w data only. These hyper-parameters were found to be optimal on
our validation set.

3 Experiments

Dataset. The image dataset used in this work is part of the developing Human
Connectome Project. Both the T2w images and the diffusion weighted (DW)
images were acquired using a 3T Philips Achieva scanner and a 32-channels
neonatal head coil [6]. The structural data was acquired using a turbo spin
echo (TSE) sequence in two stacks of 2D slices (sagittal and axial planes), with
parameters: TR = 12 s, TE = 156 ms, and SENSE factors of 2.11 for the axial
plane and 2.58 for the sagittal plane. The data was subsequently corrected for
motion [4,8] and resampled to an isotropic voxel size of 0.5 mm.

The DW images were acquired using a monopolar spin echo echo-planar
imaging (SE-EPI) Stejksal-Tanner sequence [7]. A multiband factor of 4 and
a total of 64 interleaved overlapping slices (1.5 mm in-plane resolution, 3 mm
thickness, 1.5 mm overlap) were used to acquire a single volume, with parameters
TR = 3800 ms, TE = 90 ms. This data underwent outlier removal, motion
correction and it was subsequently super-resolved to a 1.5 mm isotropic voxel
resolution [3]. All resulting images were checked for abnormalities by a paediatric
neuroradiologist.

For this study, we use a total of 368 T2w and DT volumes of neonates born
between 23–42 weeks gestational age (GA) and scanned at term-equivalent age
(37–45 weeks GA). The age distribution in our dataset is found in Fig. 2, where
GA at birth is shown in blue, and post-menstrual age (PMA) at scan is shown
in orange. In order to use both the T2w and DT volumes in our registration
network, we first resampled the T2w data into the DW space of 1.5 mm voxel
resolution. Then, we affinely registered all of our data to a common 40 weeks
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Fig. 2. Distribution of gestational ages at birth (GA) and post-menstrual ages at scan
(PMA) in our dataset. (Color figure online)

gestational age atlas space [14] available in the MIRTK2 software toolbox [13]
and obtained the DT images using the dwi2tensor [17] command available in
the MRTRIX3 toolbox. Finally, we performed skull-stripping using the available
dHCP brain masks [3] and we cropped the resulting images to a 96 × 96 × 64
volume size.

Training. We trained our models using the rectified Adam (RAdam) optimiser
[9] with a cyclical learning rate [16] varying from 10−9 to 10−4, for 90, 000 iter-
ations. Out of the 368 subjects in our entire dataset, 318 were used for training,
25 for validation and 25 for test. The subjects in each category were chosen
such that their GA at birth and PMA at scan were distributed across the entire
range. The validation set was used to help us choose the best hyperparameters
for our network and the best performing models. The results reported in the
next section are on the test set.

Final Model Results. In both our T2w-only and T2w+DTI cases we performed
a leave-one-out cross-validation, where we aligned 24 of the test subjects to a
single subject, and repeated until all the subjects were used as target. Each of the
25 subjects had tissue label segmentations (obtained using the Draw-EM pipeline
for automatic brain MRI segmentation of the developing neonatal brain [10])
which were propagated using NiftyReg

4 [11] and the predicted deformation
fields. The average resulting Dice scores are summarised in Fig. 3, where the
initial pre-alignment is shown in pink, the T2w-only results are shown in light
blue and the T2w+DTI are shown in purple. Our proposed model performs better
than the baseline model for all subcortical structures (cerebellum, deep gray
matter, brainstem and hippocampi and amygdala), while performing similarly
well in white matter structures. In contrast, cortical gray matter regions were
better aligned when using the T2w-only model, as structural data has higher
contrast than DTI in these areas.

2 https://mirtk.github.io/.
3 https://mrtrix.readthedocs.io/.
4 https://github.com/KCL-BMEIS/niftyreg/.

https://mirtk.github.io/
https://mrtrix.readthedocs.io/
https://github.com/KCL-BMEIS/niftyreg/
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We also computed the FA maps for all the initial affinely aligned and all
the warped subjects in the cross-validation study and calculated the sum-of-
squared differences (SSD) between the moved FA maps and the fixed FA maps.
The resulting average values are summarised in Table 1, which shows that our
proposed model achieved better alignment in terms of FA maps.

Fig. 3. Average Dice scores for our cross-validation study for 7 tissue types: corti-
cal gray matter (cGM), white matter (WM), ventricles, cerebellum, deep gray matter
(dGM), brainstem and the hippocampus. For both of our trained models the input
images, F T2w|DTI and MT2w|DTI , have been affinely aligned to a template, prior to
being used by the models. Our proposed model outperforms the T2w-only training in
terms of obtaining higher Dice scores for the cerebellum, dGM, brainstem and hip-
pocampus. (Color figure online)

Finally, Fig. 4 shows two example registrations. The target images are from
two term-born infants with GA = 40.86 weeks and PMA = 41.43 weeks, and
GA = 40.57w and PMA = 41w, respectively, while the moving images are from
infants with GA = 40.57 weeks and PMA = 41 weeks, and GA = 37.14w and
PMA = 37.28w, respectively. The figure shows both T2w and FA maps of axial
slices of the fixed (first column), the moving (second column) and the warped
images by our proposed method (third column) and the baseline method (fourth
column), respectively. The moved FA maps show that by using DTI data to drive
the learning process of a deep learning registration framework, we were able to
achieve good alignment not only on the structural data, but also on the diffusion
data as well.
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Fig. 4. First two rows show an example registration between a neonate with GA =
40.57w and PMA = 41w as moving, and one with GA = 40.86w and PMA = 41.43w
as fixed, last two rows show an example where the moving image is from a neonate
with GA = 37.14w and PMA = 37.28w, and fixed is a neonate with GA = 40.57w and
PMA = 41w. First column shows axial slices of the fixed T2w images and FA maps,
the second column shows axial slices of the moving T2w images and FA maps, and the
third and fourth columns show the moved images using our proposed network and the
baseline network, respectively. In the T2w maps the deep gray matter (dGM) labels
are shown for the fixed images in dark blue and for the moving and moved in cyan.
In both cases a higher dGM Dice score was obtained for the T2w+DTI model (0.88
and 0.88, respectively), than when using T2w-only (0.84 and 0.87, respectively). The
arrows point at areas where the underlying anatomy was better preserved when using
T2w+DTI, than when using T2w-only. (Color figure online)
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Table 1. Average sum-of-squared differences between warped and fixed FA maps in our
leave-one-out cross-validation study. The first line shows mean and standard deviation
SSD values for the initial affine alignment.

Method Mean (SSD) Std.Dev. (SSD) p-value

Affine 1087 174 Affine vs T2w p < 1e−5

T2w 1044 168 Affine vs T2w+DTI p < 1e−5

T2w+DTI 981 181 T2w vs T2w+DTI p < 1e−5

4 Discussion and Future Work

In this work we showed for the first time a deep learning registration framework
capable of aligning both structural (T2w) and microstructural (DTI) data, while
using only T2w data at inference time. A key result from our study is that our
proposed T2w+DTI model performed better in terms of aligning subcortical
structures, even though the labels for these regions were obtained from structural
data only. For future work we plan to focus on improving the registration in the
cortical regions, and to compare our deep learning model with classic registration
algorithms.

Acknowledgments. This work was supported by the Academy of Medical Sciences
Springboard Award (SBF004\1040), European Research Council under the European
Union’s Seventh Framework Programme (FP7/ 20072013)/ERC grant agreement no.
319456 dHCP project, the Wellcome/EPSRC Centre for Medical Engineering at King’s
College London (WT 203148/Z/16/Z), the NIHR Clinical Research Facility (CRF) at
Guy’s and St Thomas’ and by the National Institute for Health Research Biomedical
Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s
College London. The views expressed are those of the authors and not necessarily those
of the NHS, the NIHR or the Department of Health.

References

1. Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of
diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11),
1131–1139 (2001)

2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38(8), 1788–1800 (2019)

3. Christiaens, D., et al.: Scattered slice shard reconstruction for motion correction in
multi-shell diffusion MRI of the neonatal brain. arXiv preprint arXiv:1905.02996
(2019)

4. Cordero-Grande, L., Hughes, E.J., Hutter, J., Price, A.N., Hajnal, J.V.: Three-
dimensional motion corrected sensitivity encoding reconstruction for multi-shot
multi-slice MRI: application to neonatal brain imaging. Magnet. Reson. Med.
79(3), 1365–1376 (2018)

http://arxiv.org/abs/1905.02996


140 I. Grigorescu et al.

5. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning
for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A.,
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