
Background

Diffusion-weighted imaging (DWI) is a well-established
method implemented as a part of a routine protocol at
many institutions. It shows the diffusivity of water
molecules [1] and the principles of measurement of
diffusion with MRI are well described [2, 3]. DWI has
shown to be very useful for early signs of ischemia [4, 5],
but is also increasingly used in the investigation of other
brain diseases, e.g., multiple sclerosis [6, 7, 8], trauma [9,
10], brain tumors [11, 12], and hypertensive encepha-
lopathy [13, 14].

Improvements in the imaging of water diffusion have
been made by the development of the more complex
diffusion tensor imaging (DTI), which allows direct
examination, in vivo, of some aspects of tissue micro-
structure. DTI yields quantitative measures reflecting
the integrity of white-matter fiber tracts, by taking
advantage of the intrinsic directionality of water
diffusion in human brain. The diffusion of water
molecules is characterized by Brownian motion. When
water molecules are unconstrained, the direction of
motion of a given molecule is random. The displace-

ments of water molecules over time are described by a
Gaussian distribution. Diffusion is called isotropic when
motion is equal and unconstrained in all directions.
However, the microstructure of brain tissue forms
physical boundaries that limit the Brownian motion of
water molecules, resulting in restriction of the total
amount of diffusion. In structures such as the white-
matter fibers, the diffusion of water molecules will be
relatively more restricted perpendicular to than parallel
to the microstructural boundaries and diffusion is then
called anisotropic [15].

In DWI, diffusion is described using a scalar
parameter, the diffusion coefficient D. In tissues such as
gray matter, where the measured apparent diffusivity is
isotropic, it is sufficient to describe the diffusion char-
acteristics with a single scalar apparent diffusion coeffi-
cient (ADC). In the presence of anisotropy, diffusion can
no longer so be characterized, but requires a tensor D,
which fully describes the mobility of the molecules in
each direction and the correlation between these
directions. The mathematical construct used to
characterize anisotropic Gaussian diffusion is a second-
order diffusion tensor [16]. Since the tensor is symmetric,
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at least six unique elements are required to fully char-
acterize it [3]. The tensor can be diagonalized such that
only three non-zero elements (k1, k2, and k3) remain
along the diagonal. These are known as the eigenvalues.
Each eigenvalue is associated with an eigenvector (�1, �2
and �3), where the largest of the three eigenvalues (k1)
corresponds to the eigenvector �1 and describes the
principal direction of diffusion at that point.

The main artifacts in DTI data are the usual arti-
facts and problems associated with acquiring DWI
data from which the diffusion tensor is estimated or
measured. Artifacts include misregistration of data due
to eddy currents, ghosting due to motion artifacts, and
signal loss due to susceptibility variations. Hardware
issues such as background gradients, gradient non-
linearity and miscalibration also have to be taken in
consideration. However, improvements in image reso-
lution and reduction of distortion have been made
using motion-corrected multishot echoplanar imaging
(EPI) PROPELLER and SENSE-EPI techniques [17,
18].

Diffusion tensor measurements result in a rich data
set. Diffusion anisotropy can be measured in different
ways by applying simple or more complicated mathe-
matical formulae and recalculations using the underly-
ing eigenvectors [3, 4, 16, 19]. A common way to
summarize diffusion measurements in DTI is calculation
of a parameters for overall diffusivity and for anisot-
ropy. The ADC serves for overall diffusivity and is
derived from the trace of the diffusion tensor, while
anisotropy is represented by fractional anisotropy (FA)
or relative anisotropy (RA). FA is a measure of the
portion of the diffusion tensor due to anisotropy. The
RA is derived from a ratio between the anisotropic and
isotropic portions of the diffusion tensor. Another
commonly used value is the volume ratio (VR) which
expresses the relationship between the diffusion ellipsoid
volume and that of a sphere, radius {k} [20]. Both water
ADC and diffusion anisotropy differ markedly between
childhood and adult brains, each varies with increasing
age [21, 22, 23].

The differences between these measurements lie in
their sensitivity to anisotropy: FA is more sensitive to
low and VR to high values of diffusion anisotropy, and
RA scales linearly for different levels of anisotropy [3].
Both FA and RA are 0.0 for a purely isotropic medium.
For higher symmetric anisotropic media FA tends to-
wards 1, while RA tends towards �2. Both FA and RA
maps can be presented as gray-scale images. VR ranges
from 1 (isotropic diffusion) to 0; some workers therefore
prefer to use (1-VR). In contrast to the aforementioned
measurements, which all represent intravoxel anisot-
ropy, the lattice anisotropy index—another way of
assessing diffusion—measures intervoxel anisotropy.
The lattice measures of diffusion anisotropy allow
neighboring voxels to be considered together in a region

of interest, without losing anisotropy effects that result
from different fiber orientations across voxels [20].

DTI allows us to look at anisotropic diffusion within
white-matter tracts but is limited in demonstrating spa-
tial, directional diffusion anisotropy. New and/or more
sophisticated methods for demonstrating diffusion
directions, such as color-coding and fiber tracking, have
therefore been proposed [24, 25, 26, 27].

By choosing the eigenvector associated with the
largest eigenvalue, the principal diffusion direction of
the brain structure to be examined can be color-coded,
resulting in color-coded maps or directionally encoded
(DEC) FA maps. In these the fibers have been given
different colors (blue for superior-inferior, green for
anterior-posterior and red for left to right) depending on
their direction of diffusion (Fig. 1). The magnitude of
anisotropy, such as FA, can be used as an illumination
factor of the calculation of a directionally coded color
image [24].

In fiber tractography, or fiber tracking, white-matter
tract directions are mapped on the assumption that in
each voxel a measure of the local fiber orientation is
obtained through diffusion tensor imaging. The task of
tractography is sensibly to assign mathematical associ-
ations between adjacent voxels based on eigenvalue and
eigenvector information. In DTI tractography it is as-
sumed that the eigenvector associated with the largest
eigenvalue is aligned with the direction of the fiber
bundle [25, 26, 27, 28]. There are several problems
associated with quantitative fiber tract tractography.
First, all the usual artifacts and problems associated
with DWI, as mentioned above, can adversely affect fi-
ber tracking [27]. Interaction between vectors in the
where fibers are crossing or ‘‘kissing’’ or where they
branch or merge poses additional problems. A further
problem is that there is no reference standard for in vivo
tractography.

Since fiber tracking requires more extensive computer
calculations and manpower than DWI or DTI it remains
more of a research instrument and has, to date, little or
no clinical application. However, it seems likely that
tractography will improve our understanding of brain
pathology, especially that of white-matter abnormalities.
Possible applications include closed head injury and
stroke, and even peripheral nerve injuries. Fiber tracking
can be used in conjunction with functional MRI to
analyze the anatomical connections and functional
pathways for diagnostic purposes and presurgical
planning [26].

Clinical applications

While DWI has several clinical applications and is rou-
tinely used in investigation of stroke, DTI is not routine
in most institutions. However, an increased interest in
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possible clinical applications and for evaluation of the
value of DTI for examination of the brain has lead to
intensive research and resulted in several reports. We
reviews some clinical areas in which DTI has been
shown to be of interest.

Cerebral ischemia, leukoariaosis and wallerian
degeneration

A decrease in cerebral blood flow below 10–15 ml/100
g/min leads to an increased volume of intracellular wa-
ter. This influx of water from the extracellular com-
partment causes the cells to swell producing cytotoxic
edema. With conventional MRI, the acute stage of
ischemia is poorly assessed and the extent of the ische-
mic parenchyma can be demonstrated only at a later
stage, when vasogenic edema is present. DWI and DTI

have been extensively used to detect acute ischemic brain
injury while conventional MRI is still normal [1, 29, 30,
31]. They also make it possible to distinguish acute from
chronic ischemic changes, which may have impact on
treatment. In the acute phase, ADC are initially reduced
by 30–50% within 30 min of the onset of focal ischemia
[29, 30, 31, 32], more severely in the white than in the
gray matter in acute and early subacute infarcts [33, 34].
With ischemic brain trauma, DTI parameters such as the
Dav (equivalent to ADC), initially decrease but subse-
quently increase and become higher than normal. They
remain elevated in the chronic phase of injury [35]. In
the short interval between decreases and subsequent
increases in ADC there is a time during which the values
are normal, a process referred to as pseudonormaliza-
tion. This occurs approximately 9 days after a cerebral
infarct in adults and after 7 days in newborns [35]. In
addition to the changes in the ADC, an acute elevation

Fig. 1a–d A healthy 30-year-
old man. aNormal T2-weighted
image b apparent diffusion
coefficient (ADC) map c
fractional anisotropy (FA) map
d color-coded FA map. Highly
directional white-matter struc-
tures are clearly seen on the FA
maps. In d the fibers have been
given different colors: blue for
superior-inferior, green for
anterior-posterior, and red for
left to right, depending on their
direction of diffusion
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in FA has been observed in ischemic white but not grey
matter. This acute elevation is followed by a marked
reduction in FA during the chronic phase [36]. These
changes are believed to be due to loss of organization
in normal structures when their cytoarchitecture is
disrupted.

In contrast to the renormalization and subsequent
elevation of the ADC in chronic stroke, diffusion
anisotropy remains significantly lower in the infarcted
area than in the homologous contralateral region of the
brain, even 2–6 months after an ischemic stroke [37].
ADC threshold values are useful in predicting tissue
viability and stroke outcome [33, 38] and, combining
ADC and anisotropy data, it is possible to assess the
severity of strokes and predict outcome [33].

There are conditions under which ADC increase
rather than decrease after an injury. In general, it appears
that ADC decrease immediately after cell injury in the
presence of cytotoxic edema.However it they be increased
early when there is vasogenic edema, for example, in the
reversible posterior leukoencephalopathy syndrome [13,
14], or in high-pressure hydrocephalus [39].

Leukoaraiosis is a nonspecific term for the radiolog-
ical appearance of diffuse changes in the periventricular
white matter seen on CT or MRI [40]. It may be seen in
various diseases, including chronic ischemia, Alzhei-
mer’s disease, and CADASIL (cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leukoencephalopathy): histologically, axonal loss and
proliferation of glia has been reported [41, 42]. In
ischemic leukoaraiosis, DTI shows elevated mean dif-
fusivity and reduced FA in areas of increased signal on
T2-weighted images [41]. Mean diffusivity in leukoarai-
osis is significantly lower than that in a lacunar infarct,
probably due to proliferation of glial tissue in the
former, interfering with water diffusion [43].

Wallerian degeneration (WD) is as antegrade degen-
eration of axons and their myelin sheath secondary to
proximal axonal injury or cell death, and most com-
monly involves the corticospinal tracts secondary to an
ipsilateral cerebral infarct. DTI was more sensitive than
T2-weighted imaging to WD [44]. Diffusion anisotropy
was reduced both in the primary lesion and in the areas
of WD, whereas the ADC are only slightly increased in
WD markedly increased in primary ischemic stroke
lesions. ADC may thus have the potential to distinguish
primary lesions from areas of WD [44].

Developing brain, maturation and aging

Several challenges exist for the application of DTI to the
developing human brain. As mentioned above, the val-
ues of water ADC and diffusion anisotropy vary with
age [21, 22, 23]. However, similar pulse sequences and
post processing methods are used for both childhood

and adult DTI with the exception of the b value which
is typically of the order of 1000mm2/s for adults and
700–800 mm2/s for infants.

Significantly higher ADC and lower FA have been
found in neonates than in adults [45]. The ADC have
also been shown to be higher in the white than in the
gray matter in childhood [21, 22]. ADC for the white
matter of the centrum semiovale in premature infants
approach 2.0·10-3 mm2/s. Thereafter, with increasing
age, they decrease and the anisotropy values, especially
the RA increase in a non-linear fashion during devel-
opment until they reach the ADC of the adult brain,
typically 0.7·10-3 mm2/s [21, 22] (Fig. 2). The changes in
ADC occur predominantly occur within the first
6 months of life and are believed to be related to
decreasing total water content, myelination, and the
organization of the white-matter tracts, which all de-
crease diffusivity [46, 47, 48]. ADC change with
increasing age and when measured in different parts of
the brain [45, 49].

DTI has been used in the investigation of normal
aging, to detect age-related degeneration [23, 50]. ADC
are higher in the cerebral white matter of individuals
older than 40 years of age than in younger individuals
[51]. In addition, a decrease in diffusion anisotropy has
been shown to occur after 20 years of age. Significant
age-related declines in median FA have been demon-
strated in densely packed white matter fiber areas,
especially the genu of the corpus callosum and the
centrum semiovale [23]. These interesting findings must
be taken into account when assessing the effects of
disease, especially in the elderly.

Diffuse axonal injury

Focal brain injuries other than stroke have not been
widely studied with DTI, and it is not known whether
mechanisms similar to those reported in ischemic stroke
are involved in their recovery. Traumatic brain injuries
can be classified as focal and diffuse. A focal head injury
results from direct impact trauma, such as hematoma or
cerebral contusion, whereas diffuse injuries result from
shearing injuries and tensile strain on the brain as a
result of rotation or deceleration of adjacent tissues that
differ in density or rigidity. DWI can be used to show
shearing injuries not visible on spin-echo or fluid
attenuated inversion-recovery (FLAIR) T2-weighted
images but is less sensitive than T2* imaging to hem-
orrhagic lesions [52]. In one study ADC maps were
obtained in all patients and 65% of the DWI-positive
lesions showed decreased diffusion [52] (Fig. 3). Sur-
rounding a focal brain lesion such as a contusion or a
focal hematoma, there is zone of ‘‘tissue at risk’’ defined
by reduced diffusivity. This zone might be of importance
in the development of new rescue therapy for patients
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with head trauma [53]. Most of the histopathologic
abnormalities seen in with altered diffusion anisotropy
appear to be in the internal capsule and corpus callosum.
The significant reduction in diffusion anisotropy seen in

white matter appearing normal on conventional MRI in
the first 24 h after diffuse axonal injury will be less
evident, although still abnormal weeks after the trauma
[54]. A decrease in diffusion coefficient have been dem-
onstrated in normal or almost normal appearing areas
on T1-weighted and spin-echo or FLAIR T2-weighted
images in the first day of life in newborns with high risk
of perinatal brain injury. However, this decrease became
more obvious on the third day of life, with pseudonor-
malization of the values within a week, by which time
conventional MRI was abnormal. This suggests that
DTI on the first day after trauma might not show the
full extent of the injury in a neonate and that images
3 days after the injury might be better predictors of the
final extent of the damage [55]. Further research in this
area is needed to fully evaluate the use of DTI to esti-
mate the full extent of a brain injury, optimal timing for
MRI and prediction of outcome.

Fig. 2a–e A 45-year-old woman with a partly resected intraven-
tricular ependymoma and a postoperative course complicated by
left, dominant hemisphere ischemia, leading to aphasia. a A T2-
weighted fluid-attenuated inversion recovery (FLAIR) image
demonstrates a slightly high-signal area medially in the left frontal
lobe (arrow) and a large area of more increased signal in the deep
subcortical and cortical regions of the left frontal lobe (arrow-
heads), which, on a contrast-enhanced T1-weighted image b gives
low signal without obvious contrast enhancement. c Diffusion-
weighted imaging (DWI) shows an area of restricted diffusion
consistent with acute ischemia. The ADC were decreased
(0.50±06·10-9± mm2/s) in this area (arrow) and d increased
(1.5±0.05·10-9 mm2/s)in an area of chronic ischemia (arrowhead).
FA was decreased (0.22±0.05) in the area of acute ischemia
(arrow) and even more so (0.07±0.02) in the area of chronic
ischemia (arrowhead)
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Multiple sclerosis

Numerous studies on multiple sclerosis (MS) have
shown that mean diffusivity is elevated in the lesions
seen on T2- weighted images. The degree of elevation
seems to be related to the clinical course of the disease.
The lesions with more ‘‘destructive’’ pathology are
generally shown to have the highest diffusivity [7, 50, 56,
57, 58]. Increased diffusivity (4–13%) has also been
found in normal-appearing white matter of patients with
MS, which may suggest that it is a diffuse white matter
disease as well as multifocal. On the other hand, this
may also suggest that the white matter is subject to
wallerian degeneration proximal and distal to the visible
lesions [7, 8, 57, 58, 59]. A recent study has demon-
strated increased water diffusivity in the cerebral gray
matter of patients with MS, suggesting that the gray
matter may not be spared by the pathological process
[60].

It would appear that the FA is more sensitive than
ADC values to white-matter abnormalities in MS [57,
61, 62]. Some studies have demonstrated generally
reduced diffusion anisotropy in MS plaques (Fig. 4); in
one, the lowest anisotropy was seen in acute lesions [57]
while in another, the lowest anisotropy was found
in ‘‘black holes’’, the lesions giving low signal on
T1-weighted images [58].

Epilepsy

A common cause of refractory complex partial seizures
arising in the temporal lobes is hippocampal sclerosis
[63]. High-resolution MRI has been used to identify
specific features such as hippocampal volume loss and
high signal on spin-echo or FLAIR T2-weighted images
[64, 65]. Recent studies applying DTI to patients
with chronic epilepsy and hippocampal sclerosis have

Fig. 3a–d A 23-year-old man
with a severe brain injury,
unresponsive after a motor
vehicle accident. a T2-weighted
FLAIR and b T2-weighted
images 30 h after the accident
demonstrate high signal in the
body and splenium of the cor-
pus callosum, without hemor-
rhage, consistent with axonal
shearing. c, d ADC were in-
creased (1.1±0.06·10)9 mm2/s)
(arrow) and FA was decreased
(0.38±0.05) (arrow)
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demonstrated increased diffusivity and reduced anisot-
ropy in sclerotic hippocampi, suggesting loss of struc-
tural organization and expansion of the extracellular
space [66, 67]. The changes in diffusion extend to involve
normal-appearing brain [67]. In contrast to these
patients, high-resolution techniques have been used to
identify malformations of cortical development (MCD)
as potential epileptogenic foci in patients with refractory
extratemporal, neocortical epilepsy. Preliminary studies
of in 12 patients with refractory epilepsy and cortical
signal abnormalities showed differences in ADC within
the lesion and contralateral normal brain in the same
location; there was a significant overlap between the FA
[68]. Several investigations using DTI revealed higher
diffusivity and lower anisotropy in the zones of MCD
[69], and in surrounding brain that appeared normal on
conventional MRI [69, 70]. DTI may prove valuable for
identifying epileptogenic foci as well as more optimally
defining the extent of the lesion for surgical resection.

Alzheimer’s disease (AD)

Studies of patients with a clinical diagnosis of AD have
concentrated on changes in anisotropy associated with
progression of the disease. Changes in diffusion anisot-
ropy have been demonstrated by measuring diffusivity in
the corpus callosum in the midline, where axons are
predominantly oriented transversely. One study showed
that anisotropy was lower in the genu and splenium in
patients with presumed AD than in sex- and age-mat-
ched controls, probably due to axonal loss or demye-
lination in these areas [71]. In another study the integrity

of axonal tracts in areas associated with cognitive
function was compared with that of tracts associated
with motor function [72]. Using the lattice index [20] as a
measure of white-matter tract integrity, the motor tracts
appeared preserved, but there was presumed axonal
degeneration in the cognitive tracts [72].

DTI has also been used in the investigation of other
forms of cognitive impairment, such as in adults with
reading difficulties [73], and for detecting degenerate
fiber tracts in the disconnection syndrome [74]. A recent
investigation showed decreased diffusion anisotropy
bilaterally in the temporoparietal white matter in pa-
tients with reading difficulty. White-matter diffusion
anisotropy in the left temporoparietal region correlated
significantly with the reading scores of the reading-im-
paired adults and a control group [73], presumably
reflecting the microstructure of white-matter tracts,
which may contribute to reading ability.

Brain tumors

Radiological specification and grading of a brain tumor
is limited, although conventional MRI can be used to
demonstrate the site and extent of the tumor. There has
been an increasing interest in the use of DWI and DTI to
identify different tumor components, and to differentiate
tumor invasion from normal brain tissue or edema.
ADC maps have proved helpful in defining solid,
enhancing tumor, nonenhancing lesion, peritumoral
edema, and necrotic and/or cystic regions from normal
surrounding brain.

Cystic or necrotic regions have the highest ADC [75]
while the contrast-enhancing part of a tumor has lower
ADC than the cystic or necrotic areas and the edema
[11, 12, 75, 76, 77, 78, 79, 80]. Significantly higher mean
diffusivity and lower FA than in normal-appearing white

Fig. 4a–c A 45-year-old woman with multiple sclerosis. a A
T2-weighted image demonstrates areas of increased signal repre-
senting plaques (arrows). These show b increased ADC (arrows)
and c decreased FA (arrows)
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matter have been demonstrated in the peritumoral
region of both gliomas and metastases. Peritumoral
mean diffusivity of metastases was significantly higher
than that of gliomas whereas the FA was similar, sug-
gesting that the FA changes surrounding gliomas can be
attributed to both increased water content and tumor
infiltration [81].

The possibility of determining the type and grade of a
tumor using DWI and DTI has been explored in both
adults and children. Low-grade astrocytomas have
higher and high-grade malignant gliomas lower ADC
values, reflecting more restricted diffusion with increas-
ing tumor cellularity [12, 77, 78, 82]. However a recent
study showed that FA values, which are generally re-
duced in tumors, suggesting structural disorder, do not
add additional information for tissue differentiation [79],
but may help in the understanding of the effect of brain
tumors on white-matter fibers, which might be impor-
tant in surgical planning [83, 84] (Fig. 5).

Obtaining reliable information about tumor response
to therapy is crucial to treatment. New data from both

animal models and human studies suggest that diffusion
imaging may be sensitive to tumor response to therapy
[85, 86, 87]. An early increase in ADC during therapy
may relate to therapy-induced cell necrosis. A sub-
sequent fall in ADC to pretreatment levels within the
tumor is thought to indicate tumor regrowth.

Metabolic disorders

Reports on DTI in metabolic disorders, such as adre-
noleukodystrophy (ALD) [88, 89, 90], and Krabbe’s
disease [91], and in the differentiation of dysmyelinating
from the demyelinating disorders [92, 93] have been
published. In X-linked ALD a decrease in FA and an
increase in ADC have been demonstrated [89, 90],
correlating with the well-recognised histopathological
zones described in this disease [94] (Fig. 6). These find-
ings suggest increased diffusivity due to an increase in
free water and loss of the integrity of the myelin sheaths
and axons in the white matter.

Fig. 5a–d A 53-year old man
who had received radiation
therapy for a left posterior
frontal glioblastoma multi-
forme. a T2-weighted (arrows)
and b contrast-enhanced
T1-weighted images show an
enhancing lesion adjacent to the
left lateral ventricle. In region
of interest 2 ADC are slightly
increased (0.87±0.08·10-
9 mm2/s), compared to the
normal region of interest 3
(0.76±0.03·10-9 mm2/s
(arrows). d FA are decreased
(0.09±0.02) compared to
(0.5±0.04) (arrows)
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DTI has been found to be superior to conventional
MRI in differentiating dysmyelinating disorders, such as
Pelizaeus-Merzbacher disease from demyelinating dis-
orders, such as Krabbe’s disease and Alexander’s dis-
ease. Diffusional anisotropy is present in dysmyelinated
lesions but is lost in demyelinated lesions; these findings
have been verified in both humans and in mice with
conditions thought to parallel the human diseases [92,
93].

Recent reports describe the use of DTI to character-
ize and diagnose other diseases such as amyotrophic
lateral sclerosis [95], hereditary disorders such as CA-
DASIL [96, 97], and infectious diseases including HIV
[98].

Conclusions

The recent development of DTI allows direct examina-
tion, in vivo, of some aspects of brain microstructure.
DTI has already shown to be of value in studies of
neuroanatomy, fiber connectivity, and brain develop-
ment. It has become interesting for investigation of
different brain pathology, such as cerebral ischemia,
trauma, MS, presumed AD and cognitive impairment,
epilepsy, brain tumors and metabolic disorders. How-
ever, further improvement in technique and stable post-
processing analyses is needed to increase the utility of
DTI in both research and clinical applications.
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Fig. 6a–c A 6-year-old boy with x-linked adrenoleukodystrophy.
a High signal on a T2-weighted image extends along the splenium
the of corpus callosum bilaterally, with minimal extension into the
peritrigonal white matter of both occipital lobes. b ADC are
markedly increased ADC, while c FA is decreased. On the FA map
the splenium of the corpus callosum appears darker (arrows) than
the genu of the corpus callosum
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