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Abstract: For a positive integer n and R > 0, we set Bn
R = {x ∈ R

n | ‖x‖∞ < R}. Given

R > 1 and n ≥ 4 we construct a sequence of analytic perturbations (Hj) of the completely

integrable Hamiltonian h(r) = 1
2r2

1 + · · · 1
2r2

n−1 + rn on T
n ×Bn

R, with unstable orbits for which

we can estimate the time of drift in the action space. These functions Hj are analytic on a

fixed complex neighborhood V of T
n ×Bn

R, and setting εj := ‖h − Hj‖C0(V ) the time of drift of

these orbits is smaller than exp(c(1/εj)
1/2(n−3)) for a fixed constant c > 0. Our unstable orbits

stay close to a doubly resonant surface, the result is therefore almost optimal since the stability

exponent for such orbits is 1/2(n − 2). An analogous result for Hamiltonian diffeomorphisms

is also proved. Two main ingredients are used in order to deal with the analytic setting: a

version of Sternberg’s conjugacy theorem in a neighborhood of a normally hyperbolic manifold

in a symplectic system, for which we give a complete (and seemingly new) proof; and Easton

windowing method that allow us to approximately localize the wandering orbits and estimate

their speed of drift.
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1 Introduction and main results

The present work is devoted to the optimality of stability exponents for analytic quasi-

convex near-integrable Hamiltonian systems, which amounts to the search for an example

of an unstable orbit with the highest possible speed of drift.
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We begin with a short reminder on stability over exponentially long times (as pio-

neered by N.N.Nekhorhoshev) in the analytic and Gevrey categories and the optimaity

problem for the stability exponents. We then state our main instability results in the

framework of discrete as well as continuous systems.

1.1 The general problem

1.1.1 Let T = R/Z and An = T ∗Tn = Tn ×Rn for a positive integer n. In this paper we

deal with Hamiltonian systems close to an integrable one on the annulus An, of the form

H(θ, r) = h(r) + εf(θ, r),

which gives rise to the following vector field

XH

∣∣∣∣∣∣∣

θ̇i = ∂ri
h(r) + ε∂ri

f(θ, r),

ṙi = −ε∂θi
f(θ, r), i = 1, . . . , n.

The canonical coordinates (θ, r) ∈ Tn×Rn are angle-action coordinates for the integrable

part h. When ε = 0, the actions ri are first integrals of the system and the motion takes

place on the corresponding invariant tori Tn × {r}, all the solutions being quasiperiodic.

For a generic real-analytic function h and for any real-analytic perturbation f , Nekho-

roshev theorem [29] asserts that all solutions remain stable in action over exponentially

long time intervals: there exist positive numbers a and b, depending only on h, such that

for each small enough ε > 0 any initial condition (θ0, r0) gives rise to a solution (θ(t), r(t))

which is defined at least for |t| ≤ exp( const (1
ε
)a) and satisfies ‖r(t) − r(0)‖ ≤ const εb

in that range.

When n = 2 and h is nondegenerate (or simply isoenergetically nondegenerate), the

KAM Theorem yields more than Nekhoroshev theorem, since on each energy level the

trajectories are confined on or between invariant tori. For n ≥ 3 however, KAM tori do

not a priori prevent the projection in action space of a solution from drifting arbitrarily

far from its initial location; in this case Nekhoroshev theorem becomes fully relevant.

A main question now is to determine how large the stability exponents a and b can

be taken in general. This is especially relevant for the first one: the larger a, the longer

the time of stability guaranteed by the theorem. As for b, its value controls the closeness

of the action variables ot their initial values.

1.1.2 The generic condition imposed by Nekhoroshev on the unperturbed Hamiltonian h

is a transversality property called steepness. Here we will confine attention to quasiconvex

functions h, which is a simple particular class of steep functions. Recall that a function h

is quasiconvex when it has no critical points on its domain, and when there exists m > 0

such that, at any point r of that domain, the inequality D2h(r)(v, v) ≥ m ‖v‖2 holds for

all vectors v orthogonal to ∇h(r).
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As noticed by the Italian school ([5], [18], [4]), assuming the (quasi) convexity of the

unperturbed Hamiltonian h yields refined results from the point of view of finite time

stability. The introduction of simultaneous (diophantine) approximation, in conjunction

with these remarks were the main ingredients in [22] which was designed to determine the

best possible stability exponents a and b. As a result of this paper and minor subsequent

improvements, one finds that if h is assumed to be quasiconvex, Nekhoroshev result holds

with the exponents.

a = b =
1

2n

as proved independently in [24, 25] and [30]; the latter paper actually takes up Nekhoro-

shev’s original strategy and improves it to reach the above mentioned values. Note that

the prediction of these values was part of the problem and comes from heuristic ideas of

B.V.Chirikov, as formalized in [22] (see further references in that paper).

Moreover, again as predicted by B.V.Chirikov [14] and proved in [22] one can state

local results in action space, near resonant surfaces. If m ∈ {1, . . . , n − 1}, a set of m

independent linear relations with integer coefficients to be satisfied by the ∂ri
h(r) deter-

mines a resonant surface of multiplicity m in the action space. Given any ̺ > 0, for the

trajectories starting at a distance less than ̺ ε1/2 of such a surface one can take the larger

exponents

a = b =
1

2(n−m)
.

This may be rather surprising at first sight as it shows that resonance enhances the

stability of the nearby trajectories, at least over exponentially long times, whereas it is

usually thought of as a cause of instability.

1.1.3 The optimality question for the exponents amounts to looking for systems which

are arbitrarily close to integrable, admit unstable orbits, i.e. orbits experiencing a drift in

action independent of the size of the perturbation (we will let aside the role of the second

exponent b), and such that one can prove an asymptotic upper bound for the time of drift

which is close as possible to the lower bound exp( const (1
ε
)a) provided by the stability

results.

In Arnold’s famous note [1], an example of a three-degree-of-freedom system was

proposed in view of exploring the complement of KAM tori in phase space, and instability

was obtained from heteroclinic connections between whiskered tori.

It is by no means obvious that the diffusion time one obtains in Arnold’s example (or

immediate higher-dimensional generalizations) is comparable with the predictions of the

stability theory. Again, the first heuristic arguments in this direction are to be found in

[14], see also [22].

The first rigorous results on this problem were proved by U. Bessi. Making use of

Arnold’s model and a four degrees of freedom variant, he obtained in ([6, 7]) an answer for

the optimality of the exponents in the cases n = 3, 4. He succeded in constructing orbits

drifting in a time exp( const (1
ε
)1/2) for n = 3, and exp( const (1

ε
)1/4) for n = 4. These
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orbits pass close enough to a double resonance, thus the exponents cannot be improved

for such trajectories; this shows that the exponent 1/2(n−2) for doubly-resonant surfaces

is optimal when n = 3 or 4. It seems however difficult to generalize these ideas to higher

dimensional systems, essentially due to the lack of a satisfactory higher dimensional analog

of the continued fraction theory.

1.1.4 Following new ideas of Herman the framework was enlarged in [28] so as to be

able to deal with Gevrey perturbations of integrable systems. Recall that given two

real numbers α ≥ 1 and L > 0, and a positive radius R, a C∞ function ϕ on K =

Tn ×B∞(0, R) ⊂ An is said to be Gevrey-(α, L) on K when

‖ϕ‖α,L :=
∑

k∈N2n

L|k|α

k!α

∥∥∂kϕ
∥∥

C0(K)
<∞ (1.1)

with the usual notation for multi-indices of derivation: |k| = k1+· · ·+k2n, k! = k1! · · · k2n!,

∂k = ∂k1
x1
· · ·∂k2n

x2n
. We denote by Gα,L(K) the Banach algebra formed by such functions.

Real-analytic functions are recovered in the special case when α = 1, the number L then

indicates the size of a complex domain of analytic extension.

For h ∈ Gα,L(BR) which is quasi-convex and without critical point, it is proved in [28]

that Nekhoroshev theorem holds with the exponents

a =
1

2(n−m)α
, b =

1

2(n−m)
,

for orbits passing close enough to resonant surfaces of multiplicity m.

In the same paper examples of unstable systems are constructed when the Gevrey

exponent α is > 1. In this case the Gevrey class Gα is effectively larger than the space

of real analytic functions, as it contains compactly supported functions which gives a lot

of flexibility in the construction of examples. The main result of [28] goes as follows: let

n ≥ 3 and α > 1, and set

a∗ =
1

2(n− 2)α
.

Given L > 0 and R > 1, there exist a sequence of functions (fj)j≥0 converging to 0 in the

space Gα,L(Tn × BR) and an increasing sequence of integers (τj)j≥0 such that, for each

j ≥ 0, the Hamiltonian system generated by

Hj(θ, r) =
1

2
(r2

1 + · · ·+ r2
n−1) + rn + fj(θ, r)

admits a solution (θ(t), r(t)) defined at least for t ∈ [0, τj] and for which r1(0) = 0 and

r1(τj) = 1. Moreover, there exist positive constants C1 < C2 such that the time of drift τj
and the norm εj = ‖fj‖α,L are related by

C1

ε2
j

exp
(
C1

( 1

εj

)a∗
)
≤ τj ≤

C2

ε2
j

exp
(
C2

( 1

εj

)a∗
)
,
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for j ≥ 0. Moreover, one proves that our solution passes through doubly-resonant do-

mains, so the corresponding stability exponent is a = 1/2(n− 2)α. Therefore our result

proves the optimality of that local exponent for the Gevrey classes of exponent α > 1.

1.2 Main results of the paper

In this paper we are concerned with the same optimality problem in the analytic category,

for which we have to introduce new ideas to construct examples.

Let d∞ denote the product distance (supnorm) in Cn. We adopt the following notation

for complex domains: for ρ > 0, we write Vρ(T
n) (or simply Vρ) for the closed neighbor-

hood of width ρ of the real torus Tn in Cn/Zn, that is Vρ = {z ∈ Cn | d∞(z,Tn) ≤ ρ},
and for a domain D in Rn, we set Wρ(D) = {z ∈ Cn/ζn | d∞(z,D) ≤ ρ}. We write

Uρ(D) = Vρ × Wρ(D). We endow the spaces of bounded analytic functions on these

domains with its usual C0 norm.

We first state our instability result in the framework of exact symplectic diffeomor-

phisms. Given a point z ∈ An, we denote by ri(z) the component of rank i of its action

variable r. Given a Hamiltonian H , we denote by ΦH the corresponding time-one map

(provided it exists).

Theorem A (Instability example in the discrete case). Let n be an integer ≥ 3, and set

a∗d =
1

2(n− 2)
.

Let h(r) = 1
2
(r2

1 + · · ·+r2
n). Then there exist ρ > 0 and a sequence (Ψj)j≥0 of real-analytic

exact symplectic diffeomorphisms of An, with analytic continuation to Uρ = Uρ(R
n),

verifying

εj :=
∥∥Ψj − Φh

∥∥
C0(Uρ)

→ 0 when j → ∞,

such that each Ψj admits a wandering point z(j). Moreover there exists a sequence (κj)j≥0

of positive integers and a constant C > 0 satisfying

κj ≤
C

ε2
j

exp
(
C

( 1

εj

)a∗
)

such that

r2(Ψ
κj

j (z(j))) − r2(z
(j)) ≥ 1

for j ≥ 0. The constant C depends only on n and R.

The main part of this paper is devoted to the proof of Theorem A. We then easily

deduce the following result from the analytic suspension technique of [21].
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Theorem B (Instability example in the continuous case). Let n ≥ 4 and set

a∗c =
1

2(n− 3)
.

Let R > 1. Then there exist ρ > 0, a sequence of analytic functions (fj)j≥0 with analytic

continuation to the domain Uρ = Uρ(BR), and an increasing sequence of integers (τj)j≥0

such that, for each j ≥ 0, the Hamiltonian system generated by

Hj(θ, r) =
1

2
(r2

1 + · · ·+ r2
n−1) + rn + fj(θ, r)

admits a solution (θ(t), r(t)) defined at least for t ∈ [0, τj] and for which r2(0) = 0 and

r2(τj) = 1. Moreover, there exists a positive constant C which depends only on n and R,

such that the time of drift τj and the norm εj = ‖fj‖C0(Uρ) are related by

τj ≤
C

ε2
j

exp
(
C

( 1

εj

)a∗

c

)
, j ≥ 0.

As in the Gevrey case the orbits we construct pass very close to double resonant

surfaces, so the optimal value for the exponent a∗c would be 1/2(n − 2). We could not

reach this value due to some technical difficulties in the construction of our analytic

example, but this result is almost optimal, and becomes more and more so when the

number of degrees of freedom tends to infinity, which was our original goal. Nevertheless

we think that an improved construction could yield the correct exponent, as well as

unstable orbits which are close to simple resonances. But these methods will contain

technical refinements which can obscure the underlying ideas, so we see the present work

as a first significant step in the direction of optimality in the analytic category, as well as

a basis for further work.

1.3 Description of the method and general comments

The proof splits into two main parts. The first one (Sections 2 and 3) gathers the

dynamical constructions: roughly speaking the whole method relies on an embedding of a

two-dimensional normally hyperbolic annulus with homoclinic connections into a higher

dimensional near-integrable system, which enables us to obtain the drifting orbits by

means of a semi-local analysis combining the dynamics near the annulus with heteroclinic

excursions. In order to perform an accurate enough analysis of the local dynamics in the

neighborhood of the annulus it is necessary to conjugate our system to a direct product.

This kind of result, close in spirit to Sternberg’s conjugacy theorem, is in large part

classical but we could not find in the literature a version that would suit our needs. The

second part of the proof (Section 4) is devoted to the extension of Sternberg’s theorem

to our normally hyperbolic and symplectic framework.
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For the convenience of the reader we describe our constructions a little bit more in

the present section. We take the opportunity to point out the similarities between our

method and that introduced by J. Bourgain and V. Kaloshin in [8, 9], which nevertheless

yields qualitatively very different results. We conclude the section with a discussion of

the respective scopes of the two approaches.

1.3.1 The dynamical constructions

The construction of our examples is reminiscent of that of [28], with which it presents

some similarities: the major part of the work consists in producing discrete systems with

wandering points (first theorem), and we then recover the continuous setting (second

theorem) thanks to an analytic suspension process. Also, we “embed” here low dimensio-

nal diffeomorphisms with controlled dynamics essentially the existence of wandering

points with estimates on the speed of drift into high-dimensional near integrable ones,

and deduce the existence of instability in these systems from that of the wandering points

in the low dimensional ones.

But here, due to analytic rigidity, we are led to vary the geometry of our diffeomor-

phisms. While in [28] our low dimensional systems were particular standard maps on the

two-dimensional annulus A, here we have to make use of suitable discrete systems defined

on the annulus A2. The construction of these diffeomorphisms on A2 is indeed the main

part of the present work.

The main point is that in [28] the “embeddings” of the standard map were made

possible by the existence of compactly supported functions in the Gevrey category. Here,

we can only obtain approximate embeddings and it is necessary to introduce perturbative

techniques in order to keep control of the orbits of the wandering points.

This is precisely the reason why we first construct intermediate systems on the annulus

A
2, in the the same way as in [27], into which we are able to embed approximate standard

maps defined on A. These systems on A2 are analytic perturbations of the time-one map

of the (hyperbolic) Hamiltonian

K(θ, r) = 1
2
(r2

1 + r2
2) + cos 2πθ1

on A2, i.e. the product of a pendulum and an oscillator. These perturbations still admit

the annulus A = (0, 0)× A (that is the product of the hyperbolic point of the pendulum

with the second factor) as a normally hyperbolic invariant manifold. In [27] we proved

that A admits a homoclinic two-dimensional annulus, and (even if we will not make use

of such an elaborate construction) it is possible to prove the existence of a family of

two-dimensional annuli which are invariant under the qth-iterates of the system, for each

q large enough. The perturbation is chosen in such a way that the induced dynamics

on these invariant annuli uniformly approximate suitable standard maps with wandering

points, which we see this way as approximately embedded in our system.

Indeed, it will not be necessary to perform such a refined dynamical analysis. Our

construction may also be viewed as a discrete version of Arnold’s example in which every

quantity is (almost) explicitly computable. The invariant annulus A is foliated by in-
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variant circles, and the effect of the perturbation is to create heteroclinic connections

between their invariant manifolds. Our strategy will be to use Easton’s windowing tech-

nique to detect and localize the drifting points located in the neighborhood of these

heteroclinic intersections. One could check a posteriori that the drifting points coincide

with those of the embedded standard map.

Let us describe more precisely our method. One main remark is that the wandering

points have to stay most of the time in a small neighborhood of the invariant annulus A.

Therefore we can expect to control a large number of their iterates as soon as a precise

knowledge of the dynamics near the hyperbolic manifold is possible. To this end we deri-

ved a new version of the Sternberg conjugacy theorem, adapted to the case of noncompact

normally hyperbolic manifolds in analytic systems, based on Moser’s deformation method

as described in [2]. This way our system appears to be locally conjugate to the product

of a neighborhood of the hyperbolic fixed point of the pendulum map with the harmonic

oscillator. This brings us back to the case of compactly supported functions much as in

the Gevrey category (see Lemma 2.5).

Next, in order to evaluate the drift along one action axis, we introduce as in [26] a

method based on the shadowing lemma of Easton, which consists in constructing small

boxes localized very near the heteroclinic points and enjoying suitable intersections pro-

perties under the effect of the diffeomorphism. Here the use of that method is facilitated

by the almost product structure of our system and the final situation is very similar to

that of [28]. Moreover, windowing is robust enough so that we can include the remainders

originating from Sternberg’s conjugacy (see Lemma 2.9), which enables us to “shadow the

boxes” in the final system. Since these boxes may be chosen regularly spaced along one

of the action coordinate axes, we finally easily obtain our drifting orbits and control their

drifting time.

In conclusion, we wish to point out that our system is also very close to an anti-

integrable limit, and can be seen as an example of the methods developed by D. Treschev

in [35], which could probably apply in our context to simplify the windowing control.

Another remark is that more general examples could certainly be obtained using the pre-

paration method developed in [17]. We hope to get back to that question in a subsequent

paper.

1.3.2 The conjugacy theorem

The conjugacy result we alluded to above deals with analytic diffeomorphisms, in a sym-

plectic setting and along a normally hyperbolic non compact invariant submanifold. This

prompted us to develop a tailor-made version of the theorem we are interested in and in

so doing we were led to some observations which may be of independent interest. We

hope to return to these points elsewhere, in more detail and in a more general setting.

Let us be more precise. Let f0, f1 be two symplectic diffeomorphisms of some sym-

plectic manifold V , which preserve the submanifold M ⊂ V and are normally hyperbolic

along M . All these data, namely V , M , f0, f1 are assumed to be analytic. We wish

to show that if f0 and f1 have a contact of large enough order along M , they are Cℓ
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conjugate in a neighborhood of M , for an integer ℓ ≥ 1 which we will compute.

Such results originate in [32] for (germs of) diffeomorphisms of the Euclidean space

near the origin, which is assumed to be a hyperbolic fixed point. In short such germs

are conjugate if and only if they are formally conjugate, a phenomenon which elaborates

on considerations first made by Poincaré (see [31, 32]). For all the metamorphoses, the

modern proofs are still quite close to the original one by S.Sternberg. In particular, in

[10] such results are proved in a more modern and precise fashion, namely using –by now

classical– fixed point theorems in Banach spaces. The symplectic setting is only briefly

mentioned at the end of the book. In [13], [11, 12] (see additional references in these

papers) it is shown how such conjugacy results can in principle be reduced to general

invariant submanifold theorems although that reduction may not be concretely so easy

or effective; it is advocated that this more abstract framework should make it possible to

derive more general results.

Here we will follow the strategy developed in [2], which connects this circle of problems

with two classical and well-established techniques, namely the deformation method and

the various theories of “normal forms,” the germs of which can be found (as usual) in

Poincaré. We refer to the clear and thorough discussion in [2] for more detail. This in

particular enables one to easily incorporate the various types of geometry in the discussion;

in [2] four kinds of geometry are discussed, namely general (no invariant), symplectic,

volume preserving and contact diffeomorphisms (see also [3] for this last type). One also

easily incorporates the continuous setting, i.e. replaces diffeomorphisms with flows.

We insist that we start here from analytic data, with an invariant submanifold M

which is not reduced to a point, as is the case in all papers we have mentioned so far.

The output, namely the local conjugacy, is only finitely differentiable but the analyticity

of the data will help to simplify the proof and it leads to interesting specific and perhaps

surprising phenomena in terms of regularity properties along the invariant submanifold

M (see §§4.3, 4.4).

1.3.3 Asymptotics and high dimensional diffusion

To begin with let us remark that our problem is to find asymptotic estimates when the

size of the perturbation tends to 0. Our construction here may be viewed as lying between

the method developed in [28] and the original Arnold mechanism. Indeed, as is proved in

[27], the hyperbolic annulus described aboved admits a continuous foliation by invariant

circles, such that two nearby circles possess heteroclinic intersections. It is therefore

possible to extract a “transition chain” from that family, and usual results ([26]) prove

the existence of drifting points along such a chain. Our main difficulty was to explicitely

determine the time of drift from the data, which necessitates a very precise control of

all the parameters and makes it necessary to use a Sternberg type conjugacy result as

explained above.

The approach in [9] involves similar constructions, while the purpose is not the same:

the authors produce examples of perturbations of a given completely integrable system

which admit unstable orbits whose drifting time is linear with respect to the inverse of the
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perturbation. Due to the classical exponential normal form theory and stability estimates

this cannot be an asymptotic mechanism. Instead, the perturbation is assumed to be not

too small, typically ε ≥ exp−d, where d is the dimension of the phase space. It is then

only when d → ∞ that the system can be considered as a genuine perturbation of an

integrable one.

While the dynamical constructions are similar, there are two main differences between

these two approaches, actually aiming at different goals. The first one is that here we

limit ourselves to a simple example of standard map in order to produce unstable orbits,

whereas the use of Mather’s theory in [9] makes it possible to use more general examples,

and as a consequence to extend the validity of the method to broader classes of unper-

turbed systems. The second one is that thanks to the short time needed for the orbits to

drift one can first construct the perturbations in the C∞ category and then use smoothing

results in order to restore analyticity. Due to the much longer drifting times involved in

the present paper (which are again unavoidable because of the stability theorems in the

perturbative framework) we cannot use this more direct path, and this is precisely the

reason why we had to develop the conjugacy results presented and used in this paper.

We believe that a slight modification of our systems would make it possible to exhibit

analytic examples of high dimensional diffusion which belong to the class constructed in

[9], but we have not pursued the matter further.

Finally we remark that we also could have chosen a non-convex unperturbed Hamil-

tonian h, of the form

h(r) = 1
2
(ℓ1r

2
1 + · · ·+ ℓn−1r

2
n−1) + ℓnrn

with (ℓ1, · · · , ℓn) ∈ {−1, 1}n. The necessary modifications are almost obvious, we refer to

[27] for details. One should however beware of the fact that when the quadratic form is

not definite (i.e. the ℓi’s are not all equal), one can very easily construct a perturbation

of h of size ε for which the action variables experience a drift with average speed ε along

the isotropic planes of h (the stability theorems do not apply there).

Acknowledgments: It is a pleasure to thank H.S.Dumas for a careful reading of a first

version of the manuscript.

2 Speed of drift for diffeomorphisms on A
2

The family (Fq)q∈N of diffeomorphisms we consider in this section was introduced in

[27], to which we refer for a detailed study. When q → ∞ the maps Fq are analytic

perturbations of the time-one map

F∗ = Φ
1
2
(r2

1+r2
2)+cos 2πθ1 = Φ

1
2
r2
1+cos 2πθ1 × Φ

1
2
r2
2 (2.2)

so we call it an initially hyperbolic (or a priori unstable) family. Here we first briefly

recall the main properties of the maps Fq, namely the existence of a normally hyperbo-

lic manifold that admits an invariant foliation by invariant circles, from which one can
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extract a transition chain (that is a discrete subfamily of heteroclinically connected circles

with minimal rotation). We then make use of that chain to construct drifting points by

a windowing method due to Easton [16]. For each q large enough, we construct a coun-

table family of small balls (B(q,k))k∈Z (the images of the windows) located very near the

heteroclinic points, such that (Fq)
q(B(q,k)) intersects B(q,k+1) in a convenient way, which

will be described below. By Easton’s shadowing lemma, this yields the existence of a

point ζ (q) such that the iterate (Fq)
kq(ζ (q)) belongs to B(q,k) for each integer k ∈ Z. The

distance between two consecutive balls B(q,k) and B(q,k+1) is very close to 1/q, and as a

consequence the number of iterates needed to make the point ζ (q) drift over an interval

of length 1 is approximately q2; this will enable us to estimate the time of instability as

a function of the size of the perturbation in the next section.

2.1 The diffeomorphisms Fq

This paragraph is devoted to a brief description of the form and geometric structure of

the maps Fq.

In the following we fix a positive real number σ, and we measure the C0-norms of

our various functions over the domain Uσ(R2) (see the definition at the beginning of

Section 1.2). The width σ will have to be chosen small enough below, in order to simplify

some technical estimates.

2.1.1 We obtain the diffeomorphisms Fq by composing F∗ with the time-one map of a

small Hamiltonian function. For q ≥ 1, we set

Fq = Φ
1
q
f(q) ◦ F∗ (2.3)

where the function f (q) depends only on the angles θ1 and θ2 and has the product form

f (q)(θ1, θ2) = f
(q)
1 (θ1)f2(θ2), with

f
(q)
1 (θ1) = (sin πθ1)

ν(q;σ), f2(θ2) = − 1
π

(
2 + sin 2π

(
θ2 + 1

6

))
. (2.4)

The exponent ν(q; σ) in the function f
(q)
1 plays a crucial role in the construction. We set

ν(q; σ) = 2
[Log q

4πσ
+ 1

]
, q ≥ qσ, (2.5)

where [x] denotes the integer part of the real number x, and where qσ is the smaller

positive integer such that ν(qσ; σ) = 2, so ν(q; σ) ≥ 2 for q ≥ qσ. Note that since ν(q; σ)

is even f (q) is a well-defined 1-periodic function.

Remark that the function f
(q)
1 has a contact of order ν(q; σ) with 0 at the point θ1 = 0,

and that the perturbative diffeomorphism Φ
1
q
f(q)

admits the following explicit expression

:

Φ
1
q
f(q)(

(θ1, r1), (θ2, r2)
)

=
(
θ1, r1 − 1

q
f2(θ2)(f

(q)
1 )′(θ1), θ2, r2 − 1

q
f

(q)
1 (θ1)f

′
2(θ2)

)
(2.6)
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from which one immediately deduces that the diffeomorphisms F∗ and Fq have a contact

of order ν(q; σ) − 1 ≥ 1 along the submanifold of equation θ1 = 0.

2.1.2 Let us briefly depict the main invariant hyperbolic objects of the maps Fq. First

consider the system F∗, the hyperbolic properties of which come from those of the pen-

dulum map ΦP . We denote by O = (0, 0) the hyperbolic fixed point of ΦP , and focus on

the upper part of its homoclinic loop, that is the curve of equation r1 = 2 |sin πθ1|. With

a slight abuse of notation, we write W+(O,ΦP ) = W−(O,ΦP ) for that upper separatrix.

For the product map F∗, the annulus A = {O}×A is a normally hyperbolic invariant

manifold, which is obviously symplectic for the canonical structure of A2, being identified

with the one-dimensional annulus A by means of the coordinates (θ2, r2). In the following

we are interested only in the part of its invariant manifolds corresponding to the upper

separatrix of O, and we write

W±(A,F∗) = W±(O,ΦP ) × A

for these stable and unstable manifolds, which obviously coincide.

On the invariant annulus A itself, with the previous identification, the restriction of

the map F∗ is the integrable twist map (θ2, r2) 7→ (θ2 + r2, r2). The circles

Cr0
2

= {O} × (T × {r0
2}), r0

2 ∈ R,

are therefore invariant and partially hyperbolic for F∗. As above, we consider only the

part of their invariant manifolds corresponding to the upper separatrix of the pendulum

map, and we set

W±(Cr0
2
,F∗) = W±(O,ΦP ) × (T × {r0

2}).
Again, they obviously coincide.

As for the perturbed diffeomorphisms Fq, the contact of Fq with F∗ along {θ1 = 0}
shows that the annulus A = {O} × A is still invariant and normally hyperbolic, and

that the restriction of Fq to A coincides with that of F∗. Therefore, the circles Cr0
2

are

invariant and partially hyperbolic for Fq. The stable and unstable manifolds of A for Fq

are tangent along A to those obtained for F∗; we denote by W±(A,Fq) the parts of these

manifolds which are tangent to the manifolds W±(A,F∗) defined above, and we define

the invariant manifolds W±(Cr0
2
,Fq) in the same way.

2.1.3 We now add some comments on the functions f
(q)
1 and f2. First note that the

function f
(q)
1 satisfies the inequality

∣∣f (q)
1 (θ1)

∣∣ ≤ (πδ)ν(q;σ) for
∣∣θ1

∣∣ ≤ δ. We will apply this

estimate in small neighborhoods of 0. To be more precise, given a ∈ ]0, 1[ and a positive

integer p, one easily checks that

aν(q;σ) = o (1/qp) when q → ∞ (2.7)

provided that the width satisfies the inequality

σ < σp =
|Log a|
4 π p

. (2.8)
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(q)
1

1
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θ2

−f ′
2

0

2

-2

Fig. 1 Graphs of the functions f
(q)
1 and −f ′

2

It is therefore possible to think of the term aν(q;σ) as “exponentially decreasing to 0”

when q → ∞, implicitly reducing the width σ as much as necessary to obtain the correct

decreasing rate. This proves very useful in the following constructions.

The other important feature of f
(q)
1 is the constant value f

(q)
1 (1

2
) = 1, for all q ≥ qσ.

Moreover, one sees that the function f
(q)
1 converges to the constant 1 uniformly when

q → ∞ on intervals of the form
∣∣θ1 − 1

2

∣∣ < 1/ν(q; σ). The derivatives of f
(q)
1 can also be

uniformly estimated on such intervals.

Roughly speaking, the behaviour of the function f
(q)
1 near the origin enables us to

control the local invariant manifolds in the perturbed system Fq and keep them very

close to those of F∗, while the behaviour near the point θ1 = 1
2

is the main ingredient

for creating a transverse intersection of W+(A,Fq) and W−(A,Fq) in the neighborhood

of {θ1 = 1
2
}. We proved indeed in [27] that the intersection W+(A,Fq) ∩ W−(A,Fq)

contains a two-dimensional annulus Iµ, which itself contains all the interesting homoclinic

and heteroclinic objects of our system.

As for the function f2, apart from the obvious inequality |f2| ≥ 1
π

(in particular f2

does not vanish on T), we will be mainly interested in the properties of the derivative

f ′
2, the zeroes of which correspond to homoclinic points, and of the second derivative f ′′

2 ,

which provides us with lower estimates for the splitting in the θ2-direction. The additional

property f ′
2(0) = −1 allows us to produce and localize heteroclinic points in a very simple

way.

Finally, observe that Fq is indeed an analytic perturbation of F∗ , with the following

inequality ∥∥1
q
f (q)

∥∥
C0(Vσ)

≤ ‖f2‖C0(Vσ)
1√
q
, (2.9)

which shows that Fq → F∗ when q → ∞ with respect to the C0 analytic topology on

Uσ(R2).

2.1.4 For each integer q ≥ qσ we will focus on the sequence of invariant circles (Ck/q)k∈Z.

We proved in [27] that for all k ∈ Z, there exists a heteroclinic point ζ (q,k) which satisfies

ζ (q,k) ∈W−(Ck/q,Fq) ∩W+(C(k+1)/q ,Fq)

and which is moreover located very near the point ̟(q,k) defined by the coordinates

̟(q,k) : (θ1 = 1
2
, r1 = 2, θ2 = 0, r2 = (k + 1)/q).
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θ2

W+(Cr0
2
,Fµ)

W−(Cr0
2
,Fµ)

W+(Cr0
2+µ,Fµ)

r2

Fig. 2 Homoclinic and heteroclinic intersections in the annulus Iµ

To be more precise, there exists a constant d ∈ ]0, 1[ such that
∥∥ζ (q,k) −̟(q,k)

∥∥ ≤ d ν(q;σ),

for q large enough and k ∈ Z.

Our drifting points ζ (q) for Fq will be constructed in such a way that their orbits will

pass successively extremely close to each of the heteroclinic points. The main result of

this section is the following proposition.

Proposition 2.1. There exists a width σ, an integer q and a constant d ∈ ]0, 1[ such

that for each integer q ≥ q the diffeomorphism Fq admits a wandering point ζ (q) which

satisfies
∥∥Fkq

q (ζ (q)) −̟(q,k)
∥∥ ≤ d

ν(q;σ)
, ∀k ∈ Z. (2.10)

The remainder of this section is devoted to the proof of Proposition 2.1, which will

rely on several technical lemmas.

2.2 Windows

We now recall the definition and main properties of windows, following Easton [16]. Let

M be a C1 manifold of dimension d ≥ 2, and let dh, dv be two positive integers such that

dh + dv = d. A (dh, dv)-window with values in M is a C1 diffeomorphism of [−1, 1]d into

M . If D is such a window, its horizontals are the partial maps D(., yv) for yv ∈ [−1, 1]dv ,

and its verticals are the partial maps D(yh, .) for yh ∈ [−1, 1]dh . We denote by C̃ the

image of the window C.

Let C and D be two (dh, dv)-windows with values inM . One says that C is aligned with

D when for each yh ∈ [−1, 1]dh and yv ∈ [−1, 1]dv the vertical C(yh, .) and the horizontal

D(., yv) are transverse, and their images intersect at a unique point a = C(yh, xv) =

D(xh, yv) which satisfies xh ∈ ] − 1, 1[dh and xv ∈ ] − 1, 1[dv .

Let us examine the simple example of affine windows, which will be of interest later.

Consider the two (dh, dv)-windows with values in Rd defined by

C(x) = c+ C x and D(x) = d+Dx

where c, d are two points of Rd and C, D are two linear maps of Rd, that we identify with
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their matrices in the canonical basis. These admit the following block decomposition:

C =



C1 C3

C2 C4


 , D =



D1 D3

D2 D4


 .

Define the intermediate matrices associated with the pair (C,D) by

M [C,D] :=



−D1 C3

−D2 C4


 , N [C,D] :=



−C1 D3

−C2 D4


 .

We denote by ‖ ‖∞ the product norm in Rd, and we equip the various spaces of linear

maps with the induced norm. Then one easily checks that a necessary and sufficient

condition for the window C to be aligned with the window D is that the matrix M is

invertible, and that moreover the following inequality

χ[C,D] := Sup y∈[−1,1]d

∥∥M−1(d− c) +M−1Ny
∥∥
∞ < 1 (2.11)

is satisfied. The previous intersection points then all satisfy ‖a‖∞ ≤ χ[C,D]. We call

µ(C,D) =
∥∥(M [C,D])−1

∥∥ and χ[C,D] the alignment parameters of the pair (C,D) of

affine windows.

For the sake of completeness we state the following easy lemma.

Lemma 2.2. Let d1 and d2 be two integers ≥ 2 and consider the affine windows

Ci(x) = ci + Cix, Di = di = Dix

with values in Rdi for i ∈ {1, 2}. Assume that Ci is aligned with Di, with parameters

µi and χi. Then the product window C = C1 × C2 is aligned with the product window

D = D1 ×D2, with parameters

µ[C,D] = Max (µ1, µ2) and χ[C,D] = Max (χ1, χ2).

The following shadowing lemma was proved by Easton in [16], it will be a main

ingredient for the construction of our drifting points.

Lemma 2.3. Let Φ be a C1-diffeomorphism of a manifold M . Assume that there exists

a sequence (Dk)k∈Z of (dh, dv)-windows with values in M , such that for each k ∈ Z the

window Dk is aligned with the window Dk+1. Then there exists a point z0 such that Φk(z0)

is contained in the image D̃k of the window Dk, for each k ∈ Z.

Observe that if the sequence Dk satisfies the assumptions of Easton’s lemma for the

diffeomorphism Φ, then it is also the case for a small enough C1-perturbation of Φ. One

has indeed to consider only the alignment problem for any two consecutive windows of
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the sequence, which can be done using the next lemma, introduced in [26]. When C is a

C1 function from an open set V ⊂ Rd to Rd, we set

∥∥C
∥∥

C1(V )
= Sup

x∈V
‖C(x)‖∞ + Sup

x∈V
‖DC(x)‖ .

Lemma 2.4. Let C and D be two (dh, dv)-windows with values in Rd, of the following

form

C(x) = c+ C x+ Ĉ(x), D(x) = d+Dx+ D̂(x),

where c, d are two points of Rd, C, D two linear maps of Rd and Ĉ, D̂ two maps of class

C2 from a neighborhood V of [−1, 1]d to R
d. Let Ca and Da be the affine windows defined

by Ca(x) = c + C x and Da(x) = d+Dx.

Assume that the window Ca is aligned with Da, with alignment parameters µ and χ,

and set χ′ = Max (
∥∥Ĉ

∥∥
C1(V )

,
∥∥D̂

∥∥
C1(V )

). Assume moreover that

4µχ′ < 1 and χ+
4µχ′

1 − 4µχ′ < 1. (2.12)

Then the window C is aligned with the window D.

Proof. We first prove that the verticals of C intersect the horizontals of D. Given (yh, yv)

in [−1, 1]d we denote by (xa
h, x

a
v) the unique point satisfying Ca(yh, x

a
v) = Da(xa

h, yv), and

we search for solutions (xh, xv) of the full system

C(yh, xv) = D(xh, yv)

of the form (xh, xv) = (xa
h, x

a
v)+(zh, zv). One easily checks that a necessary and sufficient

condition for (xh, xv) to be a solution is that z = (zh, zv) be a solution of the equation

z = F (z), where

F (z) = M−1
(
D̂(xa

h + zh, yv) − Ĉ(yh, x
a
v + zv)

)
.

Moreover one checks that ‖F‖C1(V ) ≤ 4µχ′, so F is a contracting map by condition (2.12),

and F sends the ball B∞(0, r) into the ball B∞(0, 4µχ′(1 + r)). So Banach fixed point

theorem applies in the ball B∞(0, r) if one sets

r =
4µχ′

1 − 4µχ′

and proves the existence of a unique solution of z = F (z) in the ball of radius r. In order

to ensure that the final point (xa
h, x

a
v)+(zh, zv) belongs to the open ball ]−1, 1[d one only

needs to assume that χ+ r < 1, which is exactly the second part of condition (2.12).

As for transversality, for x ∈ [−1, 1]d consider the matrix M̂(x) = M [DĈ(x), DD̂(x)].

We have to check that the matrix M + M̂(x) is invertible for each solution x of the

previous intersection equation, which is plain since M +M̂(x) = M(Id+M−1M̂(x)) with∥∥M−1M̂(x)
∥∥ ≤ 2µχ′ < 1.
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2.2.1 Proof of Proposition 2.1. It will be an easy corollary of a lemma on the

existence of windows which we are now in a position to state.

Lemma 2.5. There exists a width σ and an integer q such that for each q ≥ q there

exists a sequence (D(q,k))k∈Z of (2, 2)-windows with values in A2, such for each k ∈ Z the

composed window C(q,k) = F q
q ◦D(q,k) is aligned with D(q,k). Moreover there exists d ∈]0, 1[

such that for each q ≥ q and k ∈ Z the image D̃(q,k) is contained in the ball centered at

̟(q,k) of radius d
ν(q;σ)

.

Proposition 2.1 is an immediate consequence of Lemma 2.5 and Lemma 2.3. Indeed,

the former applied to the sequence (D(q,k))k∈Z and the diffeomorphism F q
q yields the

existence of a point ζ (q) satisfying F q
q (ζ (q)) ∈ D̃(q,k) for each k ∈ Z, which by the last

assertion of Lemma 2.5 in turn implies that F q
q (ζ (q)) is in the ball centered at ̟k of radius

d
ν(q;σ)

.

The rest of the section is devoted to the proof of Lemma 2.5. We will first introduce

a sequence (Fq) of approximations of Fq, for which one easily constructs windows and

check their alignment, and we will then deduce the lemma from the closeness of Fq and

Fq.

2.3 The approximate maps F q

To introduce the maps Fq we first take advantage of the form of f
(q)
1 and define a new

function f
(q)

1 : T → R, which satisfies

f
(q)

1 (θ1) = f
(q)
1 (θ1) for

∣∣θ1 − 1
2

∣∣ ≤ 1
8
, f

(q)

1 (θ1) = 0 for |θ1| ≤ 1
8
, (2.13)

and which is continued in the complement so as to be of class C∞ on T. To fix ideas one

can even assume that 0 ≤ f
(q)

1 ≤ f
(q)
1 , although it is not necessary. We then set

Fq = Φ
1
q
f

(q)

◦ F∗ with f
(q)

= f
(q)

1 ⊗ f2. (2.14)

We will show in the rest of this section that it is possible to define domains in which the

iterate F q

q is explicitly determined, along with estimates of the C1-norm of the difference

F q
q −F q

q.

2.3.1 We first need to introduce suitable flow-box coordinates for the pendulum map.

We write P (θ1, r1) = 1
2
r2
1 + cos 2πθ1 and P = ΦP . We will work in the open domain E

located above the upper separatrix defined by

E = {(θ1, r1) ∈ A | 0 < θ1 < 1, r1 > 2 |sin πθ1|}.
Using {θ1 = 1

2
} as a reference section, we define the time-energy coordinates (τ, h) of a

point (θ1, r1) ∈ E as

h(θ1, r1) = 1
2
r2
1 + (cos 2πθ1 − 1), τ(θ1, r1) =

∫ θ1

1
2

dθ
√

2(h(θ1, r1) − V (θ)
,
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with V (θ) = cos 2πθ − 1. It is well-known that these coordinates are symplectic. The

period of motion is given as a (decreasing) function of energy by the formula

T (h) =

∫ 1
2

− 1
2

dθ
√

2(h− V (θ))
, (2.15)

and the range of the coordinate change is the domain

E∗ = {(τ, h) ∈ R
2 | h > 0, |τ | < 1

2
T (h)}.

In the coordinates (τ, h) the flow of P is straightened out, i.e. ΦtP : (τ, h) 7→ (τ + t, h)

for (τ, h) ∈ E∗ and |t| small enough. We write H = T−1 for the inverse function of T .

Given an integer q ≥ 1, we define the strip

S(q) = {(τ, h) ∈ E∗ | |τ | < 1, H(q + 1
2
) < h < H(q − 1

2
)}.

Assume now q ≥ 4. Then the mapping Pq is well-defined in S(q) with values in E∗, with

the following explicit expression

Pq : (τ, h) 7→
(
τ + q − T (h), h

)
. (2.16)

(as usual we do no introduce a new notation for the diffeomorphisms expressed in new

coordinates).

2.3.2 We can now define the domains we were looking for. For each integer q ≥ 3 we

will first be interested in a neighborhood N (q) of the point a(q) with (τ, h) coordinates

(0, H(q)), that is the center of the strip S(q) (in the initial coordinates, the point a(q) is

the intersection of {θ1 = 1
2
} with the unique orbit of the pendulum which has period q

and is located above the upper separatrix).

We want to define the neighborhood N (q) ⊂ S(q) so as to satisfy the conditions

Pk(N (q)) ⊂ {|θ1| < 1
8
}, ∀k ∈ {1, . . . , q − 1}. (2.17)

Let b be the point of the upper separatrix with θ1 = 1
8

in the initial coordinates, therefore

the h-coordinate of b is zero, and one easily checks that τ(b) < 1. Let ̺ = 1 − τ(b), and

set

N (q) = {(τ, h) ∈ S(q) | |τ | < ̺/4, H(q + ̺/4) < h < H(q − ̺/4)}.
It is not difficult to see that N (q) satisfies our requirements (see Figure 3).

Turning back to the diffeomorphism F q, we introduce the domain N (q) = N (q) × A,

in which the qth-iterate F q

q has the following simple expression

Fq

q = Φ
1
q
f
(q)

◦ F q
∗ = Φ

1
q
f(q) ◦ F q

∗ . (2.18)

To see this observe that the function f
(q)

1 vanishes on the strip {|θ1| < 1
8
} and so the

diffeomorphism Φ
1
q
f
(q)

reduces to the identity on that domain. Therefore the conditions
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τ

h

|θ1| = 1
8

τ = −1
2
T (h) τ = +1

2
T (h)

1−1

Fig. 3 The domain E∗ and the limit curves |θ1| = 1
8 .

(2.17) immediately yield the first equality, thanks to the product form of F∗. The second

equality comes from the form of f
(q)

1 and the choice of the neighborhood N (q)

The simple expression (2.18) now enables us to make use of Sternberg’s estimates of

Section 4. This is the only (but crucial) place where we use this conjugacy result, which

brings us back (up to a controlled remainder) to the approximate system Fq, which

is dynamically easier to handle. More precisely we use Theorem E, which yields the

following lemma.

Lemma 2.6. There exist q0 ∈ N and a constant δ0 ∈ ]0, 1[ such that the inequality
∥∥F q

q − F q

q

∥∥
C2(N (q))

≤ δ
ν(q;σ)
0

holds for q ≥ q0.

Proof. By Theorem E there exists an integer q0, a constant c ∈ ]0, 1[, and for each q ≥ q0
two diffeomorphisms χq and ψq of class C2 satisfying

∥∥χq − Id
∥∥

C2(N (q))
≤ c ν ,

∥∥ψq − Id
∥∥

C2(N (q))
≤ c ν ,

such that the intertwining relation

F∗ ◦ F q−1
q ◦ ψq = χq ◦ F q

∗

holds true over the domain N (q). Now over the same domain

F q
q = Φ

1
q
f(q) ◦ (F∗ ◦ F q−1

q ) = Φ
1
q
f(q) ◦ (χq ◦ F q

∗ ◦ ψ−1
q ) = [Φ

1
q
f(q) ◦ χq ◦ (Φ

1
q
f(q)

)−1] ◦ F q

q ◦ ψ−1
q

from which one easily deduces the desired estimate, with a constant δ0 slightly larger

than c, increasing q0 if necessary.

2.4 Construction of the windows and proof of Lemma 2.5

We now introduce the point

ω(q,k) = a(q) × b(q,k) ∈ A
2
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with b(q,k) = (0, k/q) ∈ A. We will go one step further in the simplification and replace

the approximate map Fq

q by its first order jet at the point ω(q,k), which will allow us to

easily construct the windows.

2.4.1 The first order jet J1
ω(q,k)(F

q

q) and affine windows.

Using the explicit expression (2.6) of the perturbative diffeomorphism Φ
1
q
f(q)

one imme-

diately checks that its first order jet at the point ω(q,k) has the following product form

J1
ω(q,k)(Φ

1
q
f(q)

) = J1
a(q)(Φ

1
q
f2(0)f

(q)
1 ) × J1

b(q,k)(Φ
1
q
f
(q)
2 )

Using now Equation (2.18), one sees that the first order jet of F q

q at ω(q,k) has in turn the

product form

J1
ω(q,k)(F q

q) =
(
J1

a(q)

(
Φ

1
q
f2(0)f

(q)
1 ◦ Pq

))
×

(
J1

b(q,k)

(
Sq

))

where

Sq = Φ
1
q
f2 ◦ (Φ

1
2
r2
2)q

has the usual form of a standard map.

Taking advantage of the product form of J1
ω(q,k)(F

q

q) we will first construct (1, 1)-

windows for the two factors of the annulus A, and then make use of Lemma 2.2 to get

the windows we need on A2.

1. Aligned affine windows for the standard map. Here we write S∗ = Φf2 ◦ Φ
1
2
r2
2

for the normalized standard map. The rescaled map Sq is related to the normalized one

by means of the conjucacy relation Sq = σ−1
q ◦ S∗ ◦ σq, where σq(θ2, r2) = (θ2, q r2), which

is also clearly valid at the linearized level

J1
b(q,k)(Sq) = σ−1

q ◦ J1
b(k)(S∗) ◦ σq (2.19)

with b(k) = σq(b
(q,k)) = (0, k).

We first construct a sequence of (1, 1)-windows adapted to the first order jets of

S∗. Note that S∗(0, k) = (0, k + 1) for k ∈ Z. For each k ∈ Z we define an affine

(1, 1)-window D(k)
2 : [−1, 1]2 → A, satisfying D(k)

2 (0, 0) = (0, k), such that the composed

window (J1
b(k)(S∗)) ◦ D(k)

2 is aligned with the window D(k+1)
2 for each k ∈ Z.

One gets by easy computation

Db(k)S∗ =




1 1

−2π
√

3 1 − 2π
√

3


 .

The matrix Db(k)S∗(0, k) is hyperbolic, with eigenvalues λ± = (1−π
√

3)±
√
π(3π − 2

√
3)

(i.e. approximately λ+ ≈ −8.78 and λ− ≈ −0.11), and associated eigenvectors

uh = (1,−(1 − λ−)) ≈ (1, 1.11), uv = (1,−(1 − λ+)) ≈ (1, 9.78).
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1

θ2

r2

0

Fig. 4 Windows for the standard map S∗

Given a positive ̺, we define for each k ∈ Z the affine window

D(k)
2 (x) = b(k) + ̺D2x := (0, k) + ̺(x(h)uh + x(v)uv), x = (x(h), x(v)) ∈ [−1, 1]2.

We then consider the affine window C(k)
2 := J1

b(k)S∗ ◦ D(k)
2 and write

C(k)
2 (x) = b(k+1) + ̺C2x

(note that the linear part is independent of k). Thanks to the choice of the horizontal

and vertical directions one immediately sees that the window C(k)
2 is aligned with D(k+1)

2

for each k ∈ Z. Moreover, the parameter µ2(C(k)
2 ,D(k+1)

2 ) = ̺−1
∥∥(M [C2, D2])

−1
∥∥ is inde-

pendent of k and one checks that the parameter χ(C(k)
2 ,D(k+1)

2 ) := χ2 is independent of k

and ̺.

Now let q ≥ 1 be fixed. Coming back to the rescaled map Sq, we set u
(q)
h = σ−1

q (uh)

and u
(h)
v = σ−1

q (uv). We fix arbitrarily a constant d0 in the interval ]0, 1[ and for each

k ∈ Z we define the window

D(q,k)
2 (x) = (0, k

q
) + d ν

0 (x(h)u
(q)
h + x(v)u(q)

v ) = b(q,k) + d ν
0 (σ−1

q D2) x, (2.20)

for x = (x(h), x(v)) ∈ [−1, 1]2. We will prove the following lemma.

Lemma 2.7. For each k ∈ Z the window C(q,k)
2 = J1

b(q,k)(Sq)◦D(q,k)
2 is aligned with D(q,k+1)

2 ,

with parameters

µ(C(q,k)
2 ,D(q,k)

2 ) ≤ µ d−ν
0 q and χ(C(q,k)

2 ,D(q,k)
2 ) = χ2

with µ =
∥∥(M [C2, D2])

−1
∥∥ and χ2 = χ(C2,D2).

Proof. For the window C(q,k)
2 we write

C(k)
2 (x2) = b(q,k+1) + d ν

0 (σ−1
q · C2) x

so

M
(q)
2 := M [C(q,k)

2 ,D(q,k)
2 ] = d ν

0M [(σ−1
q · C2), (σ

−1
q ·D2)] = d ν

0 σ
−1
q ·M [C2, D2]
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which is invertible. Moreover one gets for the first parameter

µ2(C(q,k)
2 ,D(q,k)

2 ) =
∥∥(M [C2, D2])

−1
∥∥ d−ν

0 q

The second parameter is easily seen to be constant and equal to χ2, which shows the

alignment and concludes the proof.

2. Aligned affine windows for the perturbed pendulum. All the maps we consider

here will be expressed in the (τ, h) coordinates. For q ≥ 1 we set

h(q) = H(q) = T−1(q), T ′
q = T ′(h(q)).

Note that T ′
q < 0. For x = (x(h), x(v)) ∈ [−1, 1]2 we define a first affine window

D(q)
1 (x) :=

(
x(h) d ν

0 , h
(q) + (x(h) − x(v))

d ν
0

T ′
q

)
= a(q) +D

(q)
1 x

with

D
(q)
1 = d ν

0




1 0

− 1

T ′
q

1

T ′
q


 , (2.21)

where d0 is the constant introduced in (2.20) and ν = ν(q; σ). In the (τ, h) coordinates

the image of D(q)
1 is the convex hull of the four points

A1 =
(
− d ν

0 , h
(q) − 2d ν

0 /T
′(h(q))

)
, A2 =

(
d ν

0 , h
(q)

)
,

A3 =
(
d ν

0 , h
(q) + 2d ν

0 /T
′(h(q))

)
, A4 =

(
− d ν

0 , h
(q)

)
.

(see figure 5). Observe that the domain D̃(q)
1 is extremely thin and nearly “horizontal”.

Indeed one has the well-known estimates

T (h) ∼0 − 1
2π

Lnh, h(q) = H(q) ∼∞ e−2πq, (2.22)

from which one easily deduces

T ′(h(q)) ∼∞ − 1
2π
e2πq, T ′′(h(q)) ∼∞ 2π(T ′(h(q)))2. (2.23)

So the images of the horizontals of D(q)
1 are line segments with slope very close to − 1

2π
e−2πq,

and the thickness of the image D̃(q)
1 is about

d ν
0

π
e−2πq.

The previous window has been chosen in order to facilitate the geometric description

of the effect of the various diffeomorphisms at the linearized level. The following lemma

decribes the intersection properties we need.
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A1

A4

A2

A3

h
Φ

1
q
f(q)

(S
(q)
∗ )

R
(q)
∗

S
(q)
∗h

A′
4

A′
3

A′
1

A′
2

Fig. 5 The domains R
(q)
∗ , Φ

1
q

f(q)

(S
(q)
∗ ) and S

(q)
∗

Lemma 2.8. Set κ = f2(0) = −5/2π and define the composed affine window

C(q)
1 (x) = a(q) + C

(q)
1 x := (J1

a(q)(Φ
κ
q
f
(q)
1 ◦ Pq)) ◦ D(q)

1 (x), x ∈ [−1, 1]2.

Then the window C(q)
1 is aligned with D(q)

1 and the parameters µ
(q)
1 =

∥∥M([C1,D1])
−1

∥∥ and

χ
(q)
1 = χ(C1,D1) satisfy the inequalities

µ
(q)
1 ≤ 2

qd−ν
0

κ̄ν
, χ

(q)
1 ≤

4q

κ̄νT ′
q

. (2.24)

Proof. First notice that J1
a(q)(Φ

κ
q
f
(q)
1 ◦ Pq) = J1

a(q)(Φ
κ
q
f
(q)
1 ) ◦ (J1

a(q)(Pq)) with

J1
a(q)(Pq)(τ, h(q) + h) =

(
τ − T ′

q h, h
(q) + h

)
.

The composed window (J1
a(q)(Pq)) ◦ D(q)

1 has the explicit expression

(J1
a(q)(Pq)) ◦ D(q)

1 (x) = a(q) +Q
(q)
1 x,

with

Q
(q)
1 = d ν

0




0 1

1
T ′

q
− 1

T ′

q




for x = (x(h), x(v)) ∈ [−1, 1]2. Its image is the convex hull of the following four points

(See figure 5).

A′
1 =

(
d ν

0 , h
(q) − 2d ν

0 /T
′
q

)
, A′

2 =
(
d ν

0 , h
(q)

)
,

A′
3 =

(
− d ν

0 , h
(q) + 2d ν

0 /T
′
q

)
, A′

4 =
(
− d ν

0 , h
(q)

)
.

Now let us examine the effect of the linearized perturbative map J1
a(q)(Φ

κ
q
f
(q)
1 ). In the

initial (θ1, r1) coordinates,

Φ
κ
q
f
(q)
1 (θ1, r1) =

(
θ1, r1 − κ

q
(f

(q)
1 )′(θ1)

)

so Φ
κ
q
f
(q)
1 (a(q)) = a(q) and

Da(q)Φ
κ
q
f
(q)
1 =




1 0

κπ2 ν
q

1


 .
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Let ϕ be the coordinate change ϕ(τ, h) = (θ1, r1), for which an easy computation yields

Da(q)ϕ =




√
2(h(q) + 2) 0

0
(√

2(h(q) + 2)
)−1


 .

Therefore in the (τ, h) coordinates

Da(q)Φ
κ
q
f
(q)
1 =




1 0

2κπ2ν(h(q) + 2)

q
1


 .

For x ∈ [−1, 1]2, we finally get (J1
a(q)(Φ

κ
q
f
(q)
1 ◦ P(q))) ◦ D(q)

1 (x) = a(q) + C
(q)
1 x with

C
(q)
1 = d ν

0




0 1

κ̄ν

qT ′
q

κ̄ν

q
− 1

T ′
q


 , (2.25)

with κ̄ = 2κπ2(h(q) + 2). We therefore obtain the intermediate matrix

M
(q)
1 = M [C(q)

1 ,D(q)
1 ] = d ν

0




−1 1

1

T ′
q

κ̄ν

q
− 1

T ′
q


 , (M

(q)
1 )−1 =

qd− ν
0

κ̄ν




κ̄ν

q
− 1

T ′
q

−1

− 1

T ′
q

−1


 ,

from which one immediately gets the first part of (2.24). As for the parameter χ
(q)
1 , we

first obtain

N
(q)
1 = d ν

0




0 0

− κ̄ν

qT ′
q

1

T ′
q


 ,

therefore

χ
(q)
1 ≤

∥∥(M
(q)
1 )−1

∥∥∥∥N (q)
1

∥∥ ≤
4q

κ̄νT ′
q

which concludes the proof.

3. Aligned affine windows for J1(Fq

q). Using Lemma 2.2, Lemma 2.8 and Lemma

2.7 we have so far proved the following result.

Lemma 2.9. Denote by D(q,k) the product (2, 2)-window with values in A
2 defined by

(x(h), x(v)) 7→
(
D(q)

1 (x
(h)
1 , x

(v)
1 ),D(q,k)

2 (x
(h)
2 , x

(v)
2 )

)
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for x(h) = (x
(h)
1 , x

(h)
2 ) and x(v) = (x

(v)
1 , x

(v)
2 ). Then the window

C(q,k) = J1
ω(q,k)(Fq

q) ◦ D(q,k) = J1
ω(q,k)(Fq

q ◦ D(q,k))

is aligned with the window D(q,k+1), with parameters

µ(C(q,k),D(q,k)) ≤ µ q d
−ν(q;σ)
0 , χ(C(q,k),D(q,k)) ≤ χ2 (2.26)

where µ and χ2 were defined in Lemma 2.7.

2.4.2 Remainders and proof of Lemma 2.5

The next and last lemma provides us with the necessary estimates on the remainders.

Lemma 2.10. For q ∈ N and k ∈ Z we set

Ĉ(q,k) = F q
q ◦ D(q,k) − J1

ω(q,k)(Fq

q ◦ D(q,k)).

There exists q1 ∈ N, a constant d1 ∈ ]0, 1[ and a neighborhood V of [−1, 1]2 in R
2 such

that the following inequality

∥∥Ĉ(q,k)
∥∥

C1(V )
≤ C d

2ν(q;σ)
1

holds true for all k ∈ Z.

Proof. It is completely elementary and relies on the mean value theorem applied to the

second derivative of Ĉ(q,k), for which we will obtain upper bounds using the following

formula

D2g ◦ f = (D2g ◦Df) ·Df⊗2 + (Dg ◦Df) ·D2f

for the composition of differentiable maps. We first write

Ĉ(q,k) = (F q
q − F q

q) ◦ D(q,k) +
(
Fq

q ◦ D(q,k) − J1
ω(q,k)(Fq

q ◦ D(q,k))
)
.

Since the window D(q,k) is linear with bounded C1-norm, one immediately gets the follo-

wing inequality ∥∥D2(F q
q − Fq

q) ◦ D(q,k)
∥∥

C0(V )
≤ c1 δ

2ν
0 (2.27)

from Lemma 2.6, for a constant c1 > 0 large enough.

As for the second term C(q,k)
= F q

q ◦D(q,k)−J1
ω(q,k)(F

q

q ◦D(q,k)), we now choose d0 > δ0,

and remark that it is enough to find upper bounds for the second derivative of Fq

q ◦D(q,k).

We will make use of the explicit expression Fq

q = Φ
1
q
f(q) ◦ F q

∗ ◦ D(q,k) and begin with the

second derivative of F q
∗ ◦ D(q,k). Since both maps are direct products, their composition

is a product too, and its second factor is affine, so one has to consider only the first one:

Pq ◦ D(q,k)
1 (x) = a(q) +

(
d ν

0 x
(h) − T

(
h(q) +

d ν
0

T ′

q
(x(h) − x(v))

)
,

d ν
0

T ′

q
(x(h) − x(v))

)
.
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The second derivative contains only terms of the form

d ν
0

(T ′
q)

2
T ′′(h(q) +

d ν
0

T ′

q
x(h)),

d ν
0

(T ′
q)

2
T ′′(h(q) +

d ν
0

T ′

q
x(v)),

and usual estimates analogous to (2.23) yield

1

(T ′
q)

2
T ′′(h(q) +

d ν
0

T ′

q
x(h)) ∼

2π(h(q))2

(h(q) +
d ν
0

T ′

q
x(h))2

,

so one immediately obtains the inequality
∥∥D2F q

∗ ◦ D(q,k)
∥∥

C0(V )
≤ c2 d

2ν
0 for c2 large

enough. Now since the perturbative diffeomorphism has bounded derivatives, one gets

the final inequality ∥∥D2C(q,k)∥∥
C0(V )

≤ c3 d
2ν
0 (2.28)

for c3 large enough. Therefore the conclusion follows from the mean value theorem applied

twice to (2.28), together with inequality (2.27), choosing d1 > d0 and q1 large enough.

Proof of Lemma 2.5. It is now an immediate consequence of Lemma 2.9, Lemma 2.4

and Lemma 2.10. One simply has to choose the width σ so as to obtain the inequality

d
ν(q;σ) ≤ 1

q2 for d slightly larger than d1, which is possible thanks to equation (2.8).

3 Proofs of Theorem A and Theorem B

This section is very similar to the corresponding one in [27]. We “add degrees of freedom”

to our family (Fq), in two different and consecutive steps. The first one is based on the

coupling lemma introduced in [28], which applies to discrete systems; it makes it possible

to pass from the initially hyperbolic context on A2 to the initially elliptic one on An,

n ≥ 3, and to prove Theorem A. The second step is an analytic suspension to pass from

discrete systems on An to continuous Hamiltonian systems on An+1 and prove Theorem

B.

3.1 From initially hyperbolic to initially elliptic perturbations

The base of the construction is the coupling lemma introduced in [28]. This lemma

enables us to “embed” the previous family (Fq), or more precisely a subsequence Fqj
, into

an initially elliptic sequence of diffeomorphisms (Ψj) of An which converges to the elliptic

completely integrable diffeomorphism Φ
1
2
(r2

1+···+r2
n) when j tends to +∞.

Troughout this section we split the 2n-dimensional annulus An = A2 ×An−2 into two

factors and adopt the following notation for the variables:

x = (θ1, θ2, r1, r2) ∈ A
2, x̂ = (θ̂, r̂) = (θ3, ..., θn, r3, ..., rn) ∈ A

n−2.
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3.1.1 The coupling lemma

We refer to [28] for the proof of the following coupling lemma, which was already used in

a similar context in [27].

Lemma 3.1. Consider two diffeomorphisms F and G of Am and Am′

respectively, an

integer N ≥ 2, and an N-periodic point a ∈ Am′

for G. Let f : Am → R and g :

Am′ → R be two Hamiltonian functions which generate complete vector fields, and assume

furthermore that g satisfies the following synchronization conditions:

g(a) = 1; g(Gk(a)) = 0, 1 ≤ k ≤ N − 1; dg(Gk(a)) = 0, 0 ≤ k ≤ N. (3.29)

Then, if Ψ = Φf⊗g ◦ (F ×G), the following equality

ΨN(x, a) =
(
Φf ◦ FN(x), a

)
(3.30)

holds for x ∈ Am.

An immediate consequence is that the submanifold V = A × {a} is invariant under

ΨN , and that, canonically identifying V with A, the restriction of ΨN to V is given by

Φ = Φf ◦ FN . As a consequence, the system (V,Φ) may be seen as a subsystem of ΨN .

3.1.2 The family Ψj

We denote by (pj)j≥0 the ordered sequence of prime numbers. As in the previous section,

the diffeomorphisms we now construct will be obtained by composing the time-one map

of a Hamiltonian function by the time-one map of a small perturbation, but this time the

Hamiltonian function is not fixed and converges to the completely integrable Hamiltonian
1
2
r2.

To be more precise, for j ≥ n− 3 we consider the maps

Ψj = ΦS(j) ◦ ΦHj

where

Hj = 1
2
(r2

1 + · · ·+ r2
n) + 1

N2
j

cos 2πθ1 with Nj = pj−(n−3) pj−(n−4) · · ·pj , (3.31)

and where S(j) is an analytic function to be defined below, which will depend only on the

angles, and the norm of which will satisfy the inequality

∥∥S(j)
∥∥

C0(Vσ)
≤ 1

N2
j

(3.32)

where Vσ was defined in Section 1.2, and where σ was introduced in Proposition 2.1.

To obtain the function S(j) we apply the previous coupling lemma to the diffeomor-

phisms

Fj = Φ
1
2
(r2

1+r2
2)+ 1

N2
j

cos 2πθ1

and G = Φ
1
2
(r2

3+···+r2
n)
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of A
2 and A

n−2 respectively. The role of f is played by the function 1
q
f (q) defined in the

previous section, for a suitable q to be defined below. The characteristic period of the

coupling will be the integer Nj defined in (3.31), and we choose the Nj-periodic point

a(j) = (0, r̂(j)) ∈ A
n−2 with r̂(j) = (1/pj−(n−3), · · · , 1/pj),

for the diffeomorphism G.

We then have to find an analytic function g(j) which satifies the conditions (3.29). We

proceed as in [27] and introduce for p ∈ N∗ the analytic function ηp : T → R defined by

ηp(θ) =
(

1
p

∑p−1
ℓ=0 cos 2πℓθ

)2

, which satisfies ηp(0) = 1, ηp(k/p) = 0 for 1 ≤ k ≤ p− 1 and

η′p(k/p) = 0 for 0 ≤ k ≤ p. We set

g(j)(θ3, · · · , θn) = g
(j)
3 (θ3) · · · g(j)

n (θn) with g
(j)
i (θi) = ηpj−(n−i)

(θi) for 3 ≤ i ≤ n.

One easily checks that g(j) satisfies the desired conditions (3.29). Note that g(j) is an

analytic function, the norm of which is easily estimated from above:

∥∥g(j)
∥∥

C0(Vσ)
≤ e4πσ(n−2)pj . (3.33)

Finally, we set

S(j) = 1
qj
f (qj) ⊗ g(j) with qj := N4

j [1 + e8πσ(n−2)pj ]. (3.34)

So, by equations (2.9) and (3.33), the norm of the function S(j) satisfies inequality (3.32).

Now the application of the coupling lemma 3.1 immediately yields the following result.

Lemma 3.2. Let Φj = Φ
1
qj

f(qj )

◦ FNj

j . Then for (x1, x2) ∈ A2,

Ψ
Nj

j

(
(x1, x2), a

(j)
)

= (Φj(x1, x2), a
(j)). (3.35)

The submanifold V(j) = A2 × {a(j)} is thus invariant under Ψ
Nj

j .

Moreover, if σNj

(
θ1, θ2, r1, r2

)
=

(
θ1, θ2, Njr1, Njr2

)
, the conjugacy relation

Φj = (σNj
)−1 ◦ Fqj/Nj

◦ σNj
(3.36)

holds true for all j ∈ N.

Let us introduce the point u(j) = σ−1
Nj

(ζ (qj/Nj)), where the ζ (q) were defined in Propo-

sition 2.1. Using equation (3.36) one checks that Nj(qj/Nj)
2 = q2

j/Nj iterates of Φj make

the r2 action of the point u(j) drift over an interval of length 1. As a consequence, if one

sets

z(j) = (u(j), a(j)) ∈ A
n (3.37)

equation (3.35) shows that q2
j iterates of Ψj make the r2 action of z(j) drift over a length

1.
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3.1.3 Complex analytic estimatesfor Ψj and proof of Theorem A

The following lemma, proved in [27], provides the necessary analytic estimates on the

distance between the perturbed diffeomorphism Ψj and the elliptic system Φ
1
2
r2

. We use

the notation introduced in Section 1.2 for the complex neighborhoods.

Lemma 3.3. Let ̺ = σ/6, where σ were defined in Proposition 2.1 Then there exists

j0 ∈ N and c > 0 such that for j ≥ j0

∥∥Ψj − Φ
1
2
r2∥∥

C0(U̺)
≤

c

N2
j

. (3.38)

Proof of Theorem A. It only remains to gather together Lemma 3.2 and the definition

of the drifting point z(j), the estimate (3.32) for the norm of the function S(j) and the

estimates of Lemma 3.3. The main point is to determine the relation between the para-

meter qj and the size of the perturbation εj =
∥∥Ψj − Φ

1
2
r2∥∥

C0(U̺)
. If j0 is large enough,

the Prime Number Theorem yields the inequality pj−(n−3) ≥ 1
2
pj for j ≥ j0. Therefore,

since εj ≤ c
N2

j

by Lemma 3.3,

pj ≤ 2N
1

n−2

j ≤ 2 c
1

2(n−2)
(

1
εj

) 1
2(n−2) .

On the other hand, by definition

qj = N4
j [1 + e−8πσ(n−2)pj ] ≤ exp

(
κ
(

1
εj

) 1
2(n−2)

)

for κ > 16πc
1

2(n−2)σ(n− 2) and j ≥ j0 large enough. The proof easily follows.

3.2 Analytic suspension and proof of Theorem B

We now want to pass from the discrete case to the continuous one. As in [27] we follow

the approach of Kuksin and Pöschel.

Theorem ([21]). Let D be a convex bounded domain in Rn, n ≥ 1. For j ∈ N let

Fj : Tn ×D → An be an exact-symplectic diffeomorphism, with analytic continuation to

a complex neighborhood U̺, for some ̺ > 0 independent of j. Let h be the Hamiltonian

function defined on An
c by h(r) = 1

2
(r2

1 + · · · + r2
n) and Φh : An

c → An
c its time-one map.

Let εj =
∥∥Fj − Φh

∥∥
C0(U̺)

, and assume that εj → 0 when j → ∞.

Then there exists j0 ∈ N such that for all j ≥ j0 there exists a real analytic 1-periodic

time dependent Hamiltonian Hj defined on Tn ×D× T such that the time-one map ΦHj

is well-defined on Tn ×D and coincides with Fj. Moreover, there exists a constant ρ < ̺

such that each Hj, j ≥ j0, is analytic on Uρ = Vρ(T
n+1) ×Wρ(D) and satisfies

∥∥Hj − h
∥∥

C0(Uρ)
≤ C εj (3.39)



P. Lochak, J.-P. Marco / Central European Journal of Mathematics 3(3) 2005 342–397 371

for some constant C > 0 independent of j.

We can now pass to the proof of Theorem B. Let R > 0 be fixed, and let D be the

ball of radius R centered at 0 in Rn. For j ≥ 0 we consider the restriction Fj = Ψj |Tn×D,

with values in Tn × Rn. As a composition of two Hamiltonian time-one maps, Fj is

exact-symplectic.

Since W̺(D) ⊂ W̺(R
n), Lemma 3.3 shows that Fj admits an analytic continuation

to Uρ, with the same estimate (3.38). So the previous suspension theorem provides us

with a non-autonomous Hamiltonian function Hj : Uρ → C satisfying (3.39). To obtain

an autonomous system we simply have to consider the function Hj defined on Uρ × ×C

by

Hj(θ̄, r̄) = Hj(θ, r, θn+1) + rn+1.

For each energy e ∈ R, the surface H−1
j (e) ∩ {θn+1 = 0} is symplectic, transverse to the

flow, and admits (θ, r) as a coordinate system. In this system, the associated return map

coincides with Ψj. Theorem B immediately follows.

4 Sternberg’s theorem for normally hyperbolic manifolds

In this section we develop a local conjugacy result which we then apply to our construction

of drifting orbits. We found it convenient to make this section essentially self-contained,

including the notation. The application to our case, which yields the crucial Lemma 2.6

above is detailed in §4.5 below.

4.1 Setup and synopsis

Let f0, f1 be two symplectic diffeomorphisms of the symplectic manifold V , which preserve

the submanifold M ⊂ V and are normally hyperbolic along V . All these data, namely V ,

M , f0, f1 are assumed to be analytic. We wish to show that if f0 and f1 have a contact

of large enough order along M , they are Cℓ conjugate in a neighborhood of M , for an

integer ℓ ≥ 1 which we will compute. We first make the setting both more precise and

more restrictive.

1. The maps f0, f1 are hyperbolic transversely to M ; here we will assume a simple

product structure and that their invariant manifolds have been simultaneously straigh-

tened. Namely we take V = M × Es × Eu = M × E with dim(V ) = d, dim(M) = m,

Es ≃ Rns, Eu ≃ Rnu , m + ns + nu = d. We will not assume that M is symplectic from

the start, because it turns out that the proof for a symplectic M actually uses the non

symplectic case. If M is indeed symplectic, a case which is of special interest, one has

nu = ns = n and the vector space E = Es ⊕Eu is endowed with the standard symplectic

structure, Es and Eu being Lagrangian subvector spaces. The manifold V is provided

with the product symplectic structure and we regard M , identified with M × {0}, as a

symplectic submanifold of V . Finally, as mentioned above, we assume that TM is trivial.
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In the applications we have in mind, M = A
m ≃ T ∗

T
m is the m-dimensional infinite ring

(cylinder), a symplectic manifold with trivial tangent bundle.

2. Next we assume that f0 and f1 are isotopic, that is they can be interpolated by a

family fε (0 ≤ ε ≤ 1) and we refer once and for all to [2] for detail on the deformation

method we will use. More precisely we assume that the family fε can be written in the

form fε = ΦFε
ε ◦ f0, where Fε (0 ≤ ε ≤ 1) is a family of analytic Hamiltonians describing

the deformation. In other words fε solves the evolution equation in ε:

d

dε
fε = Fε ◦ fε, (1)

where Fε is the vector field with Hamiltonian Fε.

3. Concerning regularity, we will work with data fε which are analytic in the space

variables and we are interested in retrieving a Cℓ conjugacy g between f0 and f1 in a

neighborhood of M ; ℓ will depend on the data. Regularity in ε is not essential for our

purpose, which is to find and study the conjugating map g. It will turn out that continuity

in ε will suffice (see below for detail).

4. Let us introduce ‘coordinates’: We let xs ∈ Rns (resp. xu ∈ Rnu) describe Es (resp.

Eu) and coordinatize the points of M by means of y. Because the latter variety is not

necessarily compact we will need estimates that are uniform over M , that is w.r.t. y.

We write z = (y, x) = (y, xs, xu) for a point in V . We let |xs|, |xu| and |x| denote the

norm (say Euclidean norm) on Es, Eu and E, with Es and Eu mutually orthogonal. We

will write Dy for y-derivatives, that is derivatives along M and Dx for x-derivatives, that

is transverse derivatives; Ds and Du denote derivative w.r.t. xs and xu respectively. In

trying to keep a manageable notation, we will (almost always implicitly) use a multiindex

notation for the various tensor quantities which appear; the reader should be able to

restore a fully detailed expression if need be (which will in principle not be the case).

5. The diffeomorphisms fε are always assumed to coincide on M together with their

derivatives; the order of contact will in fact be assumed to be much larger. We denote

by A(y) = Dfx(y, 0) the common value of this derivative in the transverse direction.

We assume that W s = M × Es (resp. W u = M × Eu) is the stable (resp. unstable)

invariant manifold of fε (for any ε ∈ (0, 1)). The matrix A(y) is thus block diagonal

and we get a contracting endomorphism As(y) of Es, and a dilating one Au(y) on Eu.

More quantitatively, let Spec(As(y)) denote the spectrum of As(y) (as a finite set) and

|Spec(As(y))| the list of the norms of its eigenvalues. We assume that:

|Spec(As(y))| ⊂ (µs, λs), with 0 < µs ≤ λs < 1, (2)

these bounds being indeed independent of y ∈M . In the same vein, we assume that

|Spec(A−1
u (y))| ⊂ (µu, λu) with 0 < µu ≤ λu < 1. (3)

If M is symplectic, A(y) is a symplectic operator and A−1
u = tAs, so that µu = µs, λu = λs.

Concerning the restriction of the system to M we only assume that the vector field is
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bounded, that is there exists ν > 0 such that for any y ∈M :

|Dyf(y, 0)| ≤ ν, (4)

where f = fε and the restrictions of the fε coincide on M anyway.

Items 1 through 5 above provide our general setting which will be refined below. We

note that although the geometric setting in 1 may seem quite restrictive, one can reduce

seemingly much more general situations to it, using formal constructions (see in particular

[20] and [12], §3.5). We also insist that the assumptions and the conclusions will be local

around M , so that one can actually work on the product M ×Bρ for some ρ > 0, where

Bρ denotes the ball {|x| < ρ} ⊂ E. In particular it is enough in practice to analytically

straighten local invariant manifolds.

Following [2] we will use the so-called deformation method in order to solve the local

conjugacy problem. We refer to the latter article for a concise exposition of the method

with references. Here we will confine ourselves to a bare minimum. We wish to conjugate

f0 and f1 and have connected this pair by a path fε (0 ≤ ε ≤ 1). We will try to achieve

more, and look for a family gε such that g−1
ε ◦ fε ◦ gε = f0 for all ε ∈ (0, 1), so that g = g1

will answer the initial problem.

We also require that gε be regular enough (C1) in ε so that it will satisfy an evolution

equation of the same form as fε, say:

d

dε
gε = Gε ◦ gε, (5)

with the initial condition g0 = 1 (the identity map). Finally we are also looking for a

symplectic conjugacy, that is we want Gε to be a Hamiltonian vector field, with Hamil-

tonian Gε. In order to derive the equation for Gε, hence for Gε, one simply translates

the fact that g−1
ε ◦ fε ◦ gε is a constant map, namely f0, so that the derivative of this

quantity vanishes. Formal computations (see [2], §§2,3) lead to the equation satisfied by

the ‘conjugating Hamiltonian’ Gε, namely:

Gε −Gε ◦ f−1
ε = Fε. (E)

It is useful to write the equivalent equation obtained by composing each term with fε,

which also amounts to changing fε into its inverse:

Gε −Gε ◦ fε = −Fε ◦ fε. (E ′)

The problem of conjugating f0 to f1 has now been reduced to finding a solution of (E) or

equivalently of (E ′), and study its regularity in the space variables. As for regularity in ε,

it is enough for our purpose to be able to solve equation (5) above. By Cauchy-Lipschitz

we should require that Gε be Lipschitz in z and continuous in ε, which is the time-like

variable. In turn the vector field Gε is derived from the Hamiltonian Gε by taking z-

derivatives so that Gε and Gε have the same regularity in ε. Hence we only need Gε to

be continuous in ε, something which will be obvious from the algorithms we use so that
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we will not need to return to this issue. Regularity in ε could of course be discussed if

need be, much as space regularity. Note that the above discussion also applies to Fε and

Fε, that is to equation (1).

We now write down the formal solutions of (E) and (E ′) obtained by iterating these

equations. We get:

Gε =

∞∑

n=0

Fε ◦ f−n
ε (FS)

and

G′
ε = −

∞∑

n=1

Fε ◦ fn
ε , (FS ′)

which will be put to use below.

This completes our description of the setting and the main characters. Let us now

move to a brief exposition of the plot, which may sound a little intricate at first reading.

The case we are interested in displays several specific features which we will try to acco-

modate as best as possible or indeed take advantage of. Namely a) the initial data, say

f0 and the deformation Fε, are analytic, b) there is an invariant manifold M which not

only is not reduced to a point but is also possibly not compact and c) we are working

in a symplectic setting. This last feature has already been incorparted by reducing the

problem to solving the ‘homological equation’ (E) (or equivalently (E ′)). Note that these

are scalar equations which are moreover linear with respect to the perturbation F .

We adopt the classical overall strategy inaugurated by S.Sternberg in [32]. That is

we first treat the contracting case, thus assuming nu = 0, that is V = W s = M × Es;

clearly the expanding case (V = W u) can be treated in the same way, changing the

diffeomorphisms into their inverses. Here we can take full advantage of the analyticity

of the initial data. The problem is local near M and analyticity enables one to get

an analytic conjugacy in a neighborhood of M which can be explicitly determined. In

short analyticity in the contracting case enormously simplifies the problem and yields

an effective analytic solution. However, because of b) above, that is the possible non

compactness of M , we do have to add an assumption of uniform contraction along M .

One then wishes to reduce the general case to the contracting one, applying the results

in the contracting case for the triple (M,V, f) to the triple (W s, V, f−1) in the general

hyperbolic case. Here f stands for fε for some fixed ε ∈ (0, 1); it preserves W s which is an

attracting invariant submanifold for f−1. However to this end one first has to ‘prepare’

the system so that f0 and f1 acquire a contact of high order along W s (and not merely

along M). This can be done by dealing with the jet of the perturbation along W s, so the

traditional ‘preparation lemma’ deals with a contracting problem which is however more

intricate than equation (E). But again, in the case of analytic data, it can be treated

very simply and efficiently, confining oneself however to a neighborhood of M which is

any case unavoidable because the end result, that is the existence of a germ of conjugacy

between f0 and f1 is in essence local around M . So by using the analyticity of the data in

a neighborhood of M on the stable manifold W s, we can simplify a large part of the proof
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and make it more effective, including in the presence of a nontrivial invariant manifold

M .

This is however not the end yet because it is (except in very special cases) not possible

to prepare the system gobally along W s and indeed in a neighborhood of that invariant

manifold. One in fact has to smoothly truncate using functions whith compact support,

thus loosing both analyticity and uniqueness. Indeed in the contracting (not necessarily

analytic) case, one gets a uniqueness result for the (germ of) conjugacy which does not

hold in the general hyperbolic case, and that conjugacy is analytic if the data are analytic,

which also fails in the general hyperbolic case. So after preparing the system along W s,

one has to apply a result in the contracting but not analytic case. This is the reason

why we also have to address the latter issue. We will give a direct treatment of that

contracting but not analytic case, confining ourselves to the case of equation (E) (or

(E ′)) which is the only one we will have to use. Technically speaking we improve in that

case on the results of [2] in a way which will be made precise below. We will also point

out in due time a phenomemon having to do with the regularity of the solution along

M which seems to have passed unnoticed as it has to do with both analyticity and the

presence of a nontrivial invariant manifold.

4.2 The contracting case

In this paragraph we restrict attention to W s or equivalently assume that nu = 0, V =

M × Es. We consequently simplify the notation, writing x instead of xs for a point of

E = Es; similarly we write z = (y, x) ∈ V . As a rule we will in fact omit the subscript or

superscript s altogether in this section. As explained above the dependency on ε will play

essentially no role below, so that in order to clarify notation further we will henceforth

drop the subscript ε at most places. Everything will take place at a fixed value of ε ∈ (0, 1)

and as mentioned above continuity in ε, which is ultimately all we need, will be trivially

satisfied.

For any ρ > 0, we let Bρ ⊂ E denote the ball |x| < ρ and everything will take place

inside a tubular neighborhood of M of the form Mρ = M×Bρ. More precisely we assume

that there exists ρ > 0 such that fε is analytic over Mρ for all ε ∈ (0, 1) or equivalently

that f0 and the deformation Hamiltonian Fε satisfy this assumption. We also assume

that Fε has a zero of order at least k > 2 along M , which can be translated as

Supy∈M,0<|x|<1 |x|−k|Fε(y, x)| <∞. (1)

This entails that f0 and f1 (or any fε, ε ∈ (0, 1)) have a contact of order at least k−1 > 1

along M and can be expressed in the language of weighted conical norms used in [10] and

other papers. This condition already contains a uniformity assumption along M , but we

will actually need somewhat more, namely (3) below.

Next we assume of course that the diffeomorphisms are uniformly contracting along

M . Because k > 2, A(y)(= As(y)) = Dxfε(y, 0), that is the derivative of fε along E = Es,
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does not depend on ε and it is assumed to satisfy (2) of §1, that is:

|A(y)v| ≤ λ|v| for y ∈M, v ∈ E, (2)

and some λ = λs < 1.

Analyticity supplemented by (1) and (2) would suffice in the case of a compact in-

variant manifold M . Here we will need to reinforce these assumptions in order to make

them uniform in a tubular neighborhood of M . We assume first that there is a constant

Kρ > 0 such that for z ∈Mρ one has:

|F (z)| ≤ Kρ|x|k. (3)

Next let us write f(z) = (fy(z), fx(z)) ∈ V = M × E. We assume that for z ∈ Mρ one

has:

|Dxfx(z)| ≤ λρ < 1 (4)

for some λρ (λ ≤ λρ < 1). This should hold of course for all fε, ε ∈ (0, 1). Under the

above assumptions we get the following:

Proposition 4.1 (Analytic contracting case). Assume that f0 and the deformation Fε

are defined and analytic (w.r.t z) over Mρ = M × Bρ for some ρ > 0; assume moreover

that they satisfy (3) and (4) above on that domain. Then there is a unique germ of

continuous conjugacy g between f0 and f1 which is the identity on M . It is actually

defined and analytic over Mρ and it has a contact of order k with the identity along M .

Se we not only get existence and uniqueness but we also have an explicit domain

over which the conjugacy is defined. Using continuation to the complex domain and the

Cauchy formula in a standard way, one can then estimate derivatives. We note again

that if M is compact, (1) and (2) imply that (3) and (4) hold true for some ρ > 0. The

statement above is also purely local, and the existence of the data is actually required

only on Mρ. Proving the above statement is equivalent to showing that (E) and (E ′)

have a unique solution which vanishes on M , that it is actually analytic in Mρ and that

it vanishes on M at order k. We will do just that presently and this is the way in which

we will cast the analogous statements in the sequel.

The proof in the present analytic contracting case is quite straightforward. First note

that (4) implies that for any positive integer n:

|fn
x (z)| ≤ λn

ρ |x|, (5)

where we write fn
x = (fn)x for simplicity. By iterating (E ′) to order N , we find that any

solution G satisfies:

G(z) = −
N∑

n=1

F ◦ fn(z) +G(fN+1(z)). (6)

If we require G to vanish on M , we see using (3) and (5) that the last term goes to 0 as

N increases to infinity and G thus has to coincide with the formal solution (FS ′). The
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convergence of that series, which we now simply call G, is also obvious since by (3) and

(5) the general term is dominated by Kρ(λ
n
ρ |x|)k. We find that there is indeed a unique

solution G of (E) vanishing on M , that it is analytic on Mρ because the convergence is

uniform on that domain. We moreover get the estimate:

|G(z)| ≤
∑

n≥1

Kρ(λ
n
ρ |x|)k ≤ Cρ|x|k, (7)

with Cρ = λk
ρ(1 − λk

ρ)
−1Kρ. This confirms that G vanishes on M at order k.

The ‘preparation lemma’ leading to the general hyperbolic case will require solving an

equation a little more complicated than (E). Let Q = Q(z) be a square matrix depending

on z ∈Mρ. We are now interested in solving:

G(z) −Q(z)G ◦ f(z) = F (z). (8)

Here G is now a vector function (of the same size as Q) and we have denoted the vector

perturbation simply by F (compare (E ′) in §1). It turns out that in the analytic category

it is essentially as easy to study (8) as (E) or (E ′). We have:

Proposition 4.2 (Analytic contracting case with a cocycle). Assume that f , F and Q

are defined and analytic over Mρ, that f and F satisfy (3) and (4) and that the norm

of Q = Q(z) is bounded by µρ ≥ 0 on that domain. Then if λk
ρµρ < 1 there is a unique

solution of (8) which vanishes on M . It is analytic on Mρ and vanishes on M at order

k.

The proof is essentially the same as above. The candidate formal solution vanishing

on M reads:

G(z) =
∑

n≥0

(m=n−1∏

m=0

Q(fm(z))
)
F (fn(z)). (9)

The general term is now dominated on Mρ by Kρµ
n
ρ(λn

ρ |x|)k and one concludes as in the

proof of Proposition 4.1.

Once again the assumptions and the conclusion are local around M . If one assumes

that as ρ decreases to 0, λρ tends to λ = λs and µρ tends to a value µ = µ0, one finds

that provided λkµ < 1, one gets the conclusion on some neighborhood of M . On the

other hand, as soon as λρ < 1, the conclusion will hold true on Mρ for k large enough,

that is in the original problem if one requires a contact of high enough order between the

original diffeomorphisms.

We now turn to the smooth setting and will treat only the case of equation (E). We use

a direct method which enables us to get quite precise results but would be substantially

more difficult to apply in the case of equation (8). More abstract approaches, using

classical fixed point results for contracting maps are naturally less sensitive but also less

precise. We refer to [2] for a sketch of the proof in a similar setting (see Lemma 5.5
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there; we note that we will implement below the Remark at the end of that statement).

So from now on we consider data which are defined and of class Cr (k < r ≤ ∞) on a

tubular neighborhood of M , of the form Mρ = M × Bρ for some ρ. Everything is still

local around M and although it is useful to keep r as a free parameter, the reader may

think primarily of the smooth case r = ∞. We always keep the same letter ρ in the

various assumptions but needless to say, it only implies the existence of a value ρ > 0

such that the assumption at hand is satisfied.

Until now we did not have to mention the nature of the diffeomorphisms when restric-

ted to the invariant manifold M . This is quite remarkable in fact, because that spectrum

(Lyapunov exponents) will indeed play an important role in the sequel. This is the phe-

nomenon we alluded to at the end of §1. In the analytic case one gets an analytic solution

in all variables; but in the smooth case, transverse regularity and regularity along M will

appear to be quite different questions and we will discover the anisotropic character of

the problem. Recall the pieces of notation Dx and Dy, as well as condition (4) in §1,

stating that the Lyapunov exponents of the restricted diffeomorphisms are bounded by

ν on M (for all ε ∈ (0, 1)). Let us reinforce it in the usual way, assuming that in fact,

possibly at the expense of shrinking Mρ, one has:

|Dyf(z)| ≤ νρ, (10)

for z ∈ Mρ and some νρ ≥ ν ≥ 1. The last inequality is by convention; we may increase

ν and replace it by max(1, ν), which we do for convenience.

We will start with a sample statement which will subsequently be generalized. We

include it for illustrative purposes as it displays the seeds of the main phenomena. By (1)

we have that Dj
xF = 0 for j < k; we can take the derivative in y, permute the derivatives

and find that Dj
x(DyF ) = 0 for j < k. Note that here we are using of course the standard

multiindex notation and j < k actually means that the length of j is strictly smaller

than the integer k. We hope that this simplified notation, which we also apply to tensor

quantities will help clarify the text without causing misinterpretations. Let us stick for

the time being to the case j = 1. We now assume the analog of (3) at order 1, namely

that there exists a constant K
(1)
ρ such that for z ∈Mρ one has:

|F (z)| ≤ K(1)
ρ |x|k, |DxF (z)| ≤ K(1)

ρ |x|k−1, |DyF (z)| ≤ K(1)
ρ |x|k. (11)

It is as usual understood that this holds for all Fε; moreover this assumption will auto-

matically be fulfilled if M is compact. Note the fact that the x derivative vanishes on M

at order k − 1, whereas the y derivatives vanishes at order k.

Under these assumptions we have the following:

Proposition 4.3. Assume that f and F are defined over Mρ = M ×Bρ for some ρ > 0

and that they are of class Cr (w.r.t. z) on that domain, for some integer r with 0 < k ≤
r ≤ ∞. Assume that the data satisfy (4), (10) and (11) on Mρ. Then there is a unique

continuous solution G of (E) vanishing on M ; it can be extended to a function on Mρ

which is transversely (i.e. with respect to x) of class C1. It is of class C1 along M (i.e.
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with respect to y) provided the inequality λk
ρνρ < 1 obtains (in which case G is of class

C1 on Mρ) .

The proof begins as that of Proposition 4.1. Following the latter proof quite literally,

it ensures in our case the uniqueness of the solution G and that it exists and is continuous

over Mρ. It remains to investigate its regularity. To start with, let us differentiate the

defining formula (cf. (FS ′) in §1): G = −∑
n≥1 F ◦ fn. We get:

DG(z) = −
∑

n≥1

DF (fn(z))Df(fn−1(z)) . . .Df(f(z))Df(z), (12)

where D stands for either Dx or Dy. We immediately encounter an important difference

between x and y differentiation, that is between transverse and longitudinal regularity.

For D = Dx, the n-th term of the sum in (12) can be estimated on Mρ in the operator

norm using, (5) and (11):

|DxF (fn(z))Dxf(fn−1(z)) . . . Dxf(f(z))Dxf(z)| ≤ K(1)
ρ (λn

ρ |x|)k−1λn
ρ . (13)

This in turn yields:

|DxG(z)| ≤
∑

n≥1

K(1)
ρ |x|k−1λkn

ρ = c|x|k−1, (14)

where the constant c is easily computable (we will use the letter c for the ‘generic’ con-

stants, possibly making comments on their nature). This shows that under the above

assumptions G is C1 w.r.t. x with an explicit estimate on Mρ; moreover DxG vanishes

at order k − 1 on M . Anticipating a little, it will turn out that in fact there is no loss in

x regularity with respect to the data. But regularity along M , that is w.r.t. y, rests on a

different mechanism. In the n-th term of (12) with D = Dy, we get a product of n terms

of the form Dyf(f j(z)) which is asymptotically governed by the Lyapunov exponents of

the restriction of f to M , namely:

|DyF (fn(z))Dyf(fn−1(z)) . . .Dyf(f(z))Dyf(z)| ≤ K(1)
ρ (λn

ρ |x|)kνn
ρ , (15)

and from there:

|DyG(z)| ≤
∑

n≥1

K(1)
ρ |x|k(λk

ρνρ)
n = c|x|k, (16)

with again an easily computable constant c. This finishes the proof of the Proposition

and shows that DxG (resp. DyG) vanishes at order k − 1 (resp. k) on M . Note that

of course this vanishing property does not presuppose the existence of higher derivatives.

We have just seen the first manifestation of the fact that when working along an

invariant submanifold rather than in the neighborhood of a point, and whatever the

characteristics of the induced flow, they can be compensated for by requiring a higher

order contact of the initial diffeomorphisms f0, f1, that is by increasing k. The instructions
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for use of such statements of course depend on which parameters are considered free. One

can for instance look at what happens on M and its normal bundle, that is determine ν

and λ, pick k such that λkν < 1 and find ρ small enough so that one still has λk
ρνρ < 1,

assuming of course that νρ and λρ are continuous functions of ρ (νρ ≥ ν ≥ 1, λ ≤ λρ < 1).

Again if M happens to be compact, global uniformity along M prevails and assumptions

over a tubular neighborhood follow automatically, e.g. (11) is a consequence of (1). We

now explore higher regularity.

Existence and uniqueness of a solution G of (E) and (E ′) vanishing on M are proved

as above, and in fact as in Proposition 4.1, together with the fact that it coincides with

the formal series (FS ′) of §1, and we will use direct differentiation of that expression. We

start from the obvious:

|DℓG| ≤
∑

n≥1

|Dℓ(F ◦ fn)|. (17)

Here ℓ is any multiindex and for the time being we do not distinguish between the

transverse (Dx) and longitudinal (Dy) factors. We will prove as usual the existence of

DℓG by showing that the series converges locally uniformly and indeed uniformly over Mρ

under certain assumptions. We will in fact also obtain fairly explicit estimates for that

quantity. Let us first recall (see e.g. [10], Appendice 1) the formula for the successive

derivative of a composition of maps, namely:

Dℓ(F ◦ h) =
ℓ∑

q=1

∑

m

σm(DqF ◦ h)Dm1h . . .Dmqh. (18)

This is the so-called ‘Faa-di Bruno formula’, whose proof is formal and which is valid for

any composition of maps (here denoted F and h) of Banach spaces. The second sum

runs over the set of indices m = (m1, . . . , mq) such that mj ≥ 1 for any j (1 ≤ j ≤ q)

and m1 + . . .mq = ℓ. The σ’s are integers which can be defined recursively (see [10] or

[3]). We will only retain the obvious fact that they can be bounded with a bound which

depends on ℓ only and so can the number of terms in the sum (18).

Our task now consists in estimating (17) using (18) with h = fn; we are however in

an anisotropic setting, so that we need to distinguish between the x and y derivatives and

study a kind of weighted form of (18). Very roughly speaking, any factor Dxf contributes

a converging factor λ, whereas Dyf contributes a possibly diverging factor ν ≥ 1. Let

ℓ ≤ k; we wish to study the existence and continuity of DℓG, to which end it is enough

to investigate derivatives of the form Dℓ′

xD
ℓ′′

y G, with ℓ′ + ℓ′′ = ℓ. All multiindices will now

be split according to their x and y content, using primes for the first and double primes

for the second set.

For q ≤ k, we have from (1) that |x|q′−kDqF is bounded as |x| goes to 0. Here again

only the number q′ of x derivatives comes in: Taking y derivatives does not let the order

of contact decrease. So for given ℓ ≤ k it is sensible to require the higher order analog

of (11) over Mρ; it is once again a consequence of (1) for compact M . So we assume the

existence of a constant K
(ℓ)
ρ such that for z ∈Mρ and q ≤ ℓ one has the following bound:

|DqF (z)| ≤ K(ℓ)
ρ |x|k−q′. (19)
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We also have to assume that the successive derivatives of f are bounded over Mρ, i.e.

there exists a constant D
(ℓ)
ρ such that for z ∈Mρ and q ≤ ℓ:

|Dqf | ≤ D(ℓ)
ρ . (20)

Under these assumptions, our goal is now to prove the following:

Proposition 4.4 (Smooth contracting case). Assume that f and F are defined over

Mρ = M × Bρ for some ρ > 0 and that they are of class Cr (w.r.t. z) on that domain

for some integer r with 0 < k ≤ r ≤ ∞. Assume that the data satisfy (4), (10) and (19)

on Mρ where ℓ ≤ k and the inequality λk
ρν

ℓ
ρ < 1 is satisfied. Then:

i) If the derivatives of f are bounded on Mρ to order ℓ, that is if (20) holds, there is a

unique solution G of (E) vanishing on M and it can be extended to a function of class

Cℓ on Mρ;

ii) If the derivatives of f of order ≤ r are bounded on Mρ, the function G is transversely

(i.e. with respect to x) of class Cr on Mρ.

If r = ∞ no uniformity with respect to the length of the multiindex is required in the

last boundedness assumption on the derivatives of f . So if M is compact this assumption

is automatically fulfilled (as well as (20) a fortiori). As usual one can then replace (4),

(10) and (19) by the corresponding infinitesimal assumptions: (4) is implied by (2), (10)

follows from (4) in §1 and (19) is a consequence of (1).

We need only prove the regularity assertions. We will show i) and ii) at one go but one

could give a simpler direct proof of ii). It may be useful to briefly explain why. The point

is that when taking transverse derivatives there are two sources of convergence, one being

the contact along M (order of vanishing of F ), and the other being contraction. This is

enough to ensure that the solution G is transversely as smooth as the data, provided the

necessary derivatives are bounded, as recorded in ii). By contrast, as already illustrated

in Proposition 4.3, in the case of i) a high order of contact has to compensate for the

possible divergence originating from the possibly large Lyapunov exponents (ν) of the

flow on M .

First putting (19) and (5) together, we find that:

|DqF (fn(z))| ≤ K(ℓ)
ρ (λn

ρ |x|)k−q′, (21)

still for q ≤ ℓ and z ∈ Mρ. Looking back at (18) with h = fn, we see that the first term

in each factor provides a converging factor λ
(k−q′)n
ρ . It remains to investigate the other

factors, of the form Dmfn for m ≤ ℓ. We may and do assume that m = m′ +m′′ and that

in fact Dm = Dm′

x Dm′′

y . The necessary technical but elementary properties are contained

in the following

Proposition 4.5. For m ≥ 1 and n ≥ 1, Dmfn = Dm′

x Dm′′

y fn satisfies the following

properties:

i) It is a sum of at most (m− 1)!nm−1 terms;



382 P. Lochak, J.-P. Marco / Central European Journal of Mathematics 3(3) 2005 342–397

ii) Each term is a product of at most mn factors of the form Dif ◦ f j, with 1 ≤ i ≤ m,

0 ≤ j ≤ n− 1;

iii) In each term there enter at least n−m factors with i = 1 and at most m with i > 1;

iv) If m′ ≥ 1 and m′′ ≥ 1, there enter in each term at least n−m and at most m′n (resp.

m′′n) factors of the form Dxf ◦ f j (resp. Dyf ◦ f j).

The first three items are isotropic and constitute Lemma 5.4 of [3]. The first two

are proved by a straightforward induction, using the product and chain rules in order

to bound respectively the number of terms and the number of factors in each term (we

corrected a typo in [3]: The number of terms is indeed bounded by (m − 1)!nm−1, not

just m!nm; in particular it is 1 for m = 1. This does not play any role in the sequel).

The third assertion is proved by inspection and we prove iv) much in the same way. The

statement is symmetric in x and y, and because it is formal we may swap the x and y

derivatives in the proof. In other words it is enough to prove it for Dm′

x Dm′′

y fn (in this

order), and the y derivatives.

By ii), there enter at least n−m′′ terms of the form Dyf ◦f j in the expression of each

term of Dm′′

y fn, and at most m′′n terms that are not of this form, that is involve higher

derivatives. One then applies the operator Dm′

x to this expression. The number of terms

of the form Dyf ◦ f j cannot increase, and in fact by the product rule, an application of

Dx to any factor lets the number of such terms decrease by at most 1. So the number of

terms Dyf ◦ f j in the end result is at least n−m′ −m′′ = n−m per factor and is also

at most m′′n. This finishes the proof of iv) and thus of the lemma.

Returning to the proof of i) in Proposition 4.4 we first note that by iii) of the lemma,

the number of terms in each factor involving higher derivatives is at most m. Now for

q > 1 we know nothing about Dqf and can only use the a priori estimate (20). We did

not try to distinguish there between x and y derivatives as it does not seem useful since

we have in general no information in either direction. We can now estimate Dmfn over

Mρ by:

|Dmfn| ≤ cℓn
m−1(D(ℓ)

ρ )mλn−m
ρ νnm′′

ρ , (22)

an estimate which is valid for any m ≥ 1 (including if m′′ = 0). Here we used of course

Lemma 5 and have absorbed the factor (m − 1)! appearing in i) of that lemma in the

combinatorial constant cℓ; the term nm−1 actually plays no role either, being polynomial

in n. The crux of the matter is thatD
(ℓ)
ρ is raised to the power m ≤ ℓ (independently of n)

and that the divergence originating from ν has been controlled in an essentially optimal

way. We note that we have de facto implemented the Remark following Lemma 5.5 in

[2], leading to the perhaps optimal exponents appearing in the inequality connecting k

(the order of contact) and ℓ (the regularity of the conjugacy), which here takes the form

of the condition λk
ρν

ℓ
ρ < 1 occuring in the statement of the proposition (for comparison k

here should be shifted to k + 1 in the notation of [2]).

There remains to return to (17) and (18) and collect estimates. Let us compute the

powers of λρ and νρ appearing in the estimate for each term of (18), with h = fn. By
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(19) the first factor yields a power λ
n(k−q′)
ρ , which originally comes from the high order

contact of f0 and f1 along M and the contracting character of the maps: This is in fact

our only source of convergence here. Then from the product of terms of the form Dmifn

in (18) one gets a factor λa
ρν

b
ρ, where using (22) we can take: a =

∑
i(n−mi) = qn−ℓ and

b =
∑

i nm
′′
i = nm′′. Since q ≥ q′ and using some obvious inequalities we can combine

the above into:

|Dℓ(F ◦ fn)(z)| ≤ cℓK
(ℓ)
ρ |x|k−ℓ′(D(ℓ)

ρ )ℓnℓλ−ℓ
ρ (λk

ρν
ℓ′′

ρ )n, (23)

which is again valid for z ∈ Mρ. In order to evaluate DℓG (or of course any DqG

with q ≤ ℓ) and show the local uniform convergence of its formal expression, it simply

remains to sum over n ≥ 1. By (23) one gets a geometrically convergent series provided

λk
ρν

ℓ′′

ρ < 1 and one finds that convergence is determined by a factor involving ℓ′′ ≤ ℓ,

that is the number of longitudinal derivatives, which proves both i) and ii) (in the latter

case ℓ′′ = 0). It actually yields somewhat more: In particular the derivative DqG (q ≤ ℓ)

actually vanishes to order k − q′ on M , where q′ is the number of transverse derivatives.

It is also plain from the above that one could devise variants of Proposition 4.4 mixing

assertions i) and ii) but we will not go into that.

This completes our study of the contracting case, in particular of the conjugacy pro-

blem on W = W s. Obviously the case of W u is dealt with by changing f into its inverse,

and this will be put to use in order to treat the general hyperbolic case in section 4 below.

4.3 The preparation lemma

A key remark due to S.Sternberg in his original paper ([32]) is that the general hyperbolic

case can be reduced to the contracting case. In order to achieve this, one has to replace

M by W = W s, viewing the latter as a repulsive invariant submanifold. That is one

would like to apply the results of section 2 to the triple (W,V, f−1
ε ) instead of (M,V, fε)

(clearly the roles of W s and W u could be switched all along, replacing as usual f by

f−1). Note that if M is symplectic W is not (being then actually Lagrangian) which is

one of the reasons not to confine oneself to a symplectic M in the contracting case. Now

in order to apply the results of the contracting case, one needs the fε to have a contact

of high order along W , not just along M . In order to achieve this one ‘prepares’ the

original system, that is in our case, performs a preliminary conjugating transform which

will ensure a contact of high order of the transformed diffeomorphisms along W . This

in turn cannot in general be done globally around W in the analytic setting. But a key

point in our case is that we can first take advantage of the fact that the data are analytic

and only then perform a cutoff which destroys analyticity. Let us turn to more specific

matters; we will be a little less detailed than in section 2 and will leave some routine

operations or translations to the good will of the reader. We insist however that no new

technical estimates are needed here.
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So starting from the assumptions of §1 that the fε have a contact of high order (= k−1)

along M , that their stable manifolds coincide and have moreover been straightened (at

least in a neighborhood of M), we should ‘prepare’ the system further in order to ensure a

contact of high enough order along W . The results of the last section applied to W = W s

provide a contact of order 0. This means that if one considers G = Gε as in section 2

and the associated vector field Gε, then solves equation (5) in §1 and conjugates fε by

the solution gε on W s, one gets a family which is constant over M × Bs
ρ = Wρ ⊂ W ,

that is over a neighborhood of M in W ; here Bs
ρ denotes the ball {|xs| < ρ}. We now

have to examine the behaviour of the jets transverse to W and the contracting case can

be seen as the 0-th order of that procedure. We write as in §1 z ∈ V with z = (y, xs, xu)

and introduce ws = (y, xs), parametrizing the points of the stable manifold W s, so that

a point of V can also appear as z = (ws, xu). Everything here is again local around M

and in fact takes place on an infinitesimal neighborhood of Wρ where ρ > 0 will be made

precise later and is related to the assumptions made in §2.

Recall that the ultimate goal, to be achieved in the next section, is to solve (E) in a

neighborhood of M . Here we will solve it in an infinitesimal neighborhood of Wρ, actually

only to a finite order. Let G be a putative solution and expand it formally around W ,

writing:

G(ws, xu) =
∑

i≥0

Gi(ws)x
i
u. (1)

We adopt as usual a simplified system of notation; for instance i is a multiindex, we

make no notational distinction between multiindices and their lengths, we could write

x⊗i
u instead of xi

u etc. As for the diffeomorphisms fε we leave out the index ε as usual

(and ditto for F , G etc.) and write f = (f s, fu) with f s ∈ W s = W and fu ∈ Eu. We

expand these components around W as:

f s,u(ws, xu) =
∑

i≥0

f s,u
i (ws)x

i
u. (2)

We know that fu
0 = 0, that is fu(ws, 0) = 0 for any ws ∈ Wρ simply because W is

invariant under f . We write fu
1 (ws) = Duf

u(ws, 0) = Au(ws) where Du denotes of course

the derivatives w.r.t. xu. This notation extends the one in §1 (cf. item 5 there) which

was introduced for z ∈M , that is xs = 0 (ws = (y, 0)).

We write out equation (E ′), expanding both sides around W (xu = 0). So we need

to expand the composition G ◦ f (as well as F ◦ f), which is no more and no less than

the Taylor expansion of a composition of maps. One can of course spell out explicit

expressions but we will not actually make use of them. We simply write:

G ◦ f(z) =
∑

i

Gi(f
s(ws, xu))(f

u(ws, xu))
i =

∑

i≥0

Hi(ws)x
i. (3)

Let us say a word again about notation which may become a little misleading. What

we actually want to do is simply solve (E ′) recursively, order by order. To that end we

regroup the terms of the same order, corresponding to multiindices of the same length.
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From now on Gi (resp. Hi) with integer i will accordingly denote the operators which

correspond to the terms of order i, that is to the multilinear map Di
uG (resp. Di

u(G ◦ f))

(this same shift of notation occurs implicitly in [2], Lemma 5.4). The first two terms

read:

H0 = G0 ◦ f s
0 , H1 = G1 ◦ f s

0 · fu
1 + ((DwG0) ◦ f s

0 ) · f s
1 , (4)

where the argument is ws and if a quantity φ is defined near W we write φ(ws) for

the restriction φ(ws, 0). In particular, in the formula above fu
1 = Au. We expand the

perturbation F ◦ f in a similar way and for integer i ≥ 0 we denote by Ei(ws) the i-th

order term of the expansion. A little contemplation yields the following two pieces of

information about the Hi and Ei, which are defined in a neighborhood Wρ of M inside

W :

i) Hi can be decomposed as Hi = Gi ◦ f s
0 · Ai

u + H ′
i, where H ′

i involves only the Gj for

j < i;

ii) Ei is analytic and vanishes on M at order k − i.

We can now rewrite (E ′) along W as an infinite system:

Gi(ws) −Gi ◦ f s
0 (ws) · Ai

u = −Ei −H ′
i (5)

which we wish to solve to a finite order ℓ ≤ k, to be determined below. The important

point is that we are now in a position to apply Proposition 4.2 in §1 recursively, with

Q = Ai
u. We apologize at this point that the matrix Q in that proposition stands to

the left of the unknown whereas here it stands to the right. It made the writing easier

in both cases but it should be plain that this does not actually alter the statement or

proof. Here we fully benefit from the analyticity of the data, which enables us to give

a much shorter proof and get a much more effective statement than in the smooth case.

The latter does not seem to have been treated in the presence of a nontrivial invariant

manifold. Again we encounter the fact that the dynamics on M will not play any role in

our present analytic setting as it certainly would in the smooth case, via its Lyapunov

exponents. In other words no quantity of the type ν or νρ occurs in this section, as it did

in Propositions 3,4 and will again in the next section.

Let us make sure that the assumptions in Proposition 4.2 can be met and that it

applies recursively to yield the Gi’s for 0 ≤ i ≤ ℓ. Looking back at the statement we

find that we now have f = f s
0 describing the dynamics on the stable manifold near M .

We write Dsf
s
0 (ws) = Dsf

s(ws, 0) = As(ws) (with Ds the derivative w.r.t. xs) thus

again extending the notation As(y) of §1 to a neighborhood of M inside W s (As(y) =

As(y, 0)). By assumptions (2) and (3) of §1, As(y, xs) = Dsf
s(y, xs, 0) and Au(y, xs) =

Duf
u(y, xs, 0) are bounded on M , that is for xs = 0, by λs < 1 and µ−1

u ≥ 1 respectively.

We can now strengthen these assumptions as in the statement of Proposition 4.2, assuming

the existence of ρ > 0 such that:

|As(y, xs)| ≤ λs,ρ < 1, |Au(y, xs)| ≤ µ−1
u,ρ, (6)

for ws = (y, xs) ∈ W s
ρ , that is simply for |xs| < ρ. Here of course µ−1

u,ρ ≥ µ−1
u ≥ 1 and

λs ≤ λs,ρ < 1 and there always exists such a ρ > 0 if M is compact. We remark that
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these assumptions can be expressed either in terms of spectral radiuses or of norms of

matrices because even in the not necessarily semisimple case one can adapt the norm on

the space so that the norm of the relevant matrix is arbitrarily close to its spectral radius.

Finally we can leave the assumptions on the perturbation in Proposition 4.2 as is, that

is we assume that there exists Kρ > 0 such that on Wρ:

|F (ws)| ≤ Kρ|xs|k, (7)

with F (ws) = F (ws, 0). We may now state the following:

Proposition 4.6 (Analytic preparation lemma). Assume that f and F are defined and

analytic over Wρ = M × Bs
ρ (Bs

ρ = {|xs| < ρ} ⊂ Es), that they satisfy (6) and (7) and

that λk−ℓ
s,ρ µ

−ℓ
u,ρ < 1 for an integer ℓ ≥ 0.

Then the homological equation (E) can be solved uniquely for the jet of order ℓ of G

on Wρ. The solution is analytic on Wρ and vanishes on M at order k.

In other words there exists a unique G(ℓ)(z) which is analytic in ws ∈ Wρ and poly-

nomial of degree ℓ in xu such that:

Dj
u

(
G(ℓ) −G(ℓ) ◦ f + F ◦ f

)
= 0 for 0 ≤ j ≤ ℓ. (8)

In shorthand one can write G(ℓ)(z) =
∑ℓ

i=0Gi(ws)x
i
u where i denotes here again a mul-

tiindex and the Gi’s we have worked and will be working with regroup these for a given

length i of the multiindex.

The proof consists indeed in an iterative application of Proposition 4.2 where at the

i-th step we apply it with k − i instead of k, f s
0 (the restriction of f to W s) G = Gi,

Q = Ai
u and the right-hand side Di = −Ei − H ′

i which depends on F and the Gj ’s for

j < i. Step 0 is just Proposition 4.2 or actually Proposition 4.1 and yields the initial term

G(0) = G0(ws). The assumptions are readily seen to carry over by induction, namely Gi

and Ei are analytic over Wρ, they vanish at order k − i on M and Ei satisfies the analog

of (7). Finally the inequality λk−i
s,ρ µ

−i
u,ρ < 1 holds true since i ≤ ℓ. One uses essentially the

fact that Ei is analytic on Wρ and vanishes on M at order k− i and that Proposition 4.2

provides a solution which is also analytic over Wρ and vanishes on M at order k (which

is replaced by k− i at step i). The fact that Hi also vanishes at order k− i on M is then

purely formal.

If M is compact the existence of ρ > 0 such that the inequality λk−ℓ
s,ρ µ

−ℓ
u,ρ < 1 is satisfied

results from the corresponding condition on M itself, that is λk−ℓ
s µ−ℓ

u < 1. If moreover

M is symplectic, one has λs = λu = λ, µs = µu = µ (cf. §1) and this can be rewritten as

λk−ℓ < µℓ.

Technical Note: We corrected above what seems to be an overly optimistic assertion in [2],

Lemma 5.4. One finds there a short sketch of proof in the smooth case with an invariant

manifold reduced to a point. However the contact with M at step i is taken to be k and

not k − i (see also [13], Lemma 4.1 on that point). This results in an overestimate of ℓ,
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replacing k − ℓ by just k in the defining inequality: λk−ℓ
s,ρ µ

−ℓ
u,ρ < 1. We also point out that

this factor k− ℓ is of a quite different nature from the one appearing in the statement of

Lemma 5.5, still in [2]. The latter factor can indeed be improved to k as suggested by

the remark there, and this is precisely what we did in Proposition 4.4 above. Although

these observations may look quite technical they actually reflect rather simple geometric

phenomena.

4.4 The general analytic normally hyperbolic case

We now explain how to use the above ‘preparation lemma’ in order to bring back the

general hyperbolic case to the contracting case. This is where we will lose both analyticity

and uniqueness by using arbitrary smooth cut-off functions. This cannot be avoided:

In the hyperbolic but non contracting case there is in general no (germ of) analytic

conjugacy for analytic data. So there is no solution to the conjugacy problem in the

analytic category. By contrast one can find solutions which are differentiable to a high

order (as we will proceed to demonstrate presently) but they are far from being unique:

Germs of hyperbolic analytic diffeomorphisms usually have huge centralizers (cf. [10]).

Note finally that linearization results requiring diophantine arithmetic conditions in the

style of the celebrated Siegel theorem and its variants are not really relevant in our setting,

if only because of the presence of an invariant manifold.

In this section we will again favor readability in the sense that we will prove a fairly

simple istotropic statement without insisting on explicit estimates. The reader who fol-

lows the by now simple proof will immediately perceive that we show actually slightly

more than what is stated and that most steps can be made fairly explicit. In this field

statements cannot usually be applied as stated and the potential user may find it easier

to modify the statement rather than the proof.

The general setting is as in Section 4.1. We start from a family (fε) (0 ≤ ε ≤
1) of analytic diffeomorphisms which are obtained from f0 by a deformation using the

Hamiltonian Fε. The fε have a contact of large order (= k− 1) along M ; equivalently Fε

vanishes on M at order k. We are looking for a germ of conjugacy gε between f0 and fε;

gε will be defined and differentiable to some order m in a tubular neighborhood of M .

Equivalently we are looking for a solution Gε of the homological equation (E) of class Cm

in a neighborhood of M . The diffeomorphism g1, obtained by integrating (5) of Section

4.1 gives the answer to the original conjugacy problem between f0 and f1. From now on

we drop again the index ε for the most part; as usual everything will be continuous (and

in fact much more) in ε which suffices for our needs. Note also that ε varies over the

closed unit interval so that all estimates are de facto uniform in ε.

We take up the notation of the last section. For ρ > 0 we write Bs
ρ = {|xs| < ρ} ⊂ Es,

Bu
ρ = {|xu| < ρ} ⊂ Eu. For x = (xs, xu) ∈ E we use the norm |x| = max(|xs|, |xu|) for

convenience. In particular Bρ = {|x| < ρ} = Bs
ρ × Bu

ρ ⊂ E. We denote by W s
ρ =

M × Bs
ρ ⊂ W s the local stable manifold and we now write Mρ = M × Bρ ⊂ V for a

tubular neighborhood of M in V . The data and the conclusions are all local near M , that
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is over Mρ for some ρ > 0. We will not try to really keep track of an explicit value but

the reader can check that a (ridiculously small) explicit value could be extracted from

the procedure described below.

We write z = (y, xs, xu) = (ws, xu) and decompose f as f(z) = (f i, f s, fu) ∈ M ×
Es × Eu. We remark –better late than never– that we do not notationally distinguish

strongly stable from stable manifolds (and ditto for unstable) but this should not cause

confusion. Here f i described the M-component, that is the motion along the invariant

manifold (f i(y, 0, 0) = f(y) ∈ M is the induced dynamics). For z ∈ Mρ we define

As,u(z) = Ds,uf
s,u(z), extending to a neighborhood of M in V the notation of the last

section where attention was confined to W s
ρ . On M (z = (y, 0, 0)) this again extends

the notation of §1. We reintroduce the quantities λs,u and µs,u of §1 and will need to

control the spectrum of f−1 on M (which is independent of ε). So we introduce ν as

in (4) of §1: |Dyf(y)| < ν and also define ν̄ such that |Dyf
−1(y)| < ν̄. Equivalently:

ν̄−1 < |Dyf(y)| < ν for y ∈ M . As usual if M is compact these quantities are known to

exist and if not we assume that they do. As usual again we actually assume more, that is

that these quantities λs,u, µs,u and ν, ν̄ can be continued to a tubular neighborhood Mρ

of M into quantities which we denote as before with an index ρ (λs,ρ etc.) which bound

the spectra of As,u and Dyf
i respectively over Mρ. Again if M is compact this is not an

assumption but just a matter of notation.

Let us now gather together our assumptions on the family fε. We assume that there

exists ρ > 0 such that:

i) All fε and Fε are analytic over Mρ and indeed can be continued into the complex

domain to a strip of constant width in all variables;

ii) The quantities λs,ρ, etc. bounding the derivatives of fε exist over Mρ with λs, ρ < 1

and λu,ρ < 1;

iii) Fε satisfies the inequality: |Fε(z)| ≤ Kρ|x|k for z ∈Mρ and a constant Kρ > 0.

We remark that all these assumptions reduce to the existence and analyticity of fε

and Fε in a neighborhood of M if the latter is compact. Because of i) Cauchy formula

estimates ensure that the higher derivatives of the fε and of the perturbation Fε satisfy

the assumptions of Proposition 4.4, that is (19) and (20) of §3. We now state a rough

version of our final result:

Theorem C. Assume that fε and Fε satisfy i), ii) and iii) above and that k > 0 is large

enough. Then the homological equation (E) has a solution G of class Cm in a tubular

neighborhood Mr = M × Br of the invariant manifold M for some r > 0. One can take

m = [ck] ([x] is the integral part of x) for some constant c > 0; G vanishes at order m on

M .

As mentioned above we actually show more than what is stated above and will gather

part of that information after the proof. Returning to the original conjugacy problem,

the above ensures the existence of a Cm conjugacy between f0 and f1 in a tubular neigh-

borhood of M (of constant width), whose jet of order m − 1 coincides with that of the
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identity along M .

As explained at the end of §4.1, because we cannot control what happens globally

along the invariant manifolds, we now have to modify the original data using a smooth

truncation, thereby giving up analyticity. We first modify the family fε so as to make

it constant (w.r.t. ε) and linear hyperbolic at infinity. Namely denote by A the dyna-

mics on the tangent bundle of M , that is: A(z) = (f(y), As(y), Au(y)) where of course

f(y) = f(y, 0, 0) describes the induced dynamics. The diffeomorphism A is analytic and

independent of ε as we assume k > 2. Let χ : R+ → R+ denote a truncating function:

χ ∈ C∞ is monotone decreasing, χ(r) = 1 for r ≤ 1 and χ(r) = 0 for r ≥ 2 (say). The

precise shape of χ is immaterial for our purpose. For R > 0, χR will denote the rescaled

function: χR(r) = χ(r/R).

We now replace fε with f̃ε which interpolates between fε and A. Specifically and

dropping the subscript ε, we define f̃ = (f̃ i, f̃ s, f̃u) by:

f̃ i(y, x) = f i(y, χR(|x|)x); f̃ s,u(z)) = χR(|x|)f s,u(z) + (1 − χR(|x|))As,u(y),

so that f̃ε coincides with fε on MR and with A outside of M2R. We pick R < ρ/2

where ρ is the value occuring in assumptions i), ii), iii) above. This implies that for the

new quantities f̃ and F̃ assumptions ii) and iii) still obtain and that indeed the higher

derivatives of f̃ and F̃ still satisfy estimates of type (19) and (20) in §3, simply because of

their definition and the smoothness of χ. We drop the tildes from now on but remember

the crucial fact that the new data coincide with the old ones over MR, so in particular

are analytic there. It should perhaps be noticed at this point that in a practical case one

can start from a local situation in some Mρ and the above can be used in order to extend

the situation to the whole of M ×E.

We now apply Proposition 4.6 on W s
R. We note that the values of λs,ρ and µs,ρ

occuring there refer to W s
ρ but for simplicity we can a fortiori use the values that occur

in assumption ii) above (using also that R < ρ). This is one of the several places where

our present assumptions could be weakened if necessary. So we solve (E) for the jet along

W s
R of order ℓ satisfying:

λk−ℓ
s,ρ µ

−ℓ
u,ρ < 1, (1)

the values of the constants being as in assumption ii) above. We then extend that solution

G(ℓ) to the whole of W s = M ×Es using the functional equation it satisfies, namely (E)

(More precisely we are actually extending the Gi(ws), i = 0, . . . , ℓ; cf. (1) in §3). Recall

that G(ℓ) is actually the unique solution vanishing on M ; it is also analytic onW s
R. Finally

all fε coincide with A outside of M2R, so that Fε is in fact constant outside that ball and

the extension there is completely explicit (this will not be needed in the sequel).

Let us now replace G(ℓ) with G1(z) = χR(|xu|)G(ℓ), that is localize around W s (this

explicit truncation is not really necessary and is more a matter of psychological comfort).

The function G1 solves near W s an equation of type (E) with a right-hand side F1 such

that the order ℓ jets of F and F1 coincide on W s. Consequently the function G−G1 in the

strip W s×Bu
R solves an equation with right-hand side F−F1 which vanishes at order ℓ on

W s. One can actually say more: Because of the analyticity of the original perturbation
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and the way it was truncated we are now in a position to apply Proposition 4.4. We

should replace there f with f−1 (V.Arnold once remarked that the ‘stable manifold’

derives its name from the fact that it is unstable), M with W s, k with ℓ. We also set

r = ∞ and the derivatives of f are bounded to all orders (in other words the assumption

of the second statement are satisfied). As for the constants λρ and νρ occuring in the

statement of Proposition 4.4, they should now be interpreted as follows. First λρ is to

be replaced simply by λu,ρ < 1 as in assumption ii) of the Theorem. This can be seen

easily, recalling that we patched the original f with its linear part A along M , which has

unstable exponents (µu, λu) in the notation of (3), §1. Second, we should replace νρ with

µ−1
W,s = max(µ−1

s,ρ, ν̄ρ). This number indeed controls the expansion for f−1 inside the strip

W s × Bu
R. Note that this is the first and last time here where we need to worry about

the dynamics on M because we used the analytic preparation lemma, in which it does

not appear (nor does it appear in Propositions 1 and 2). The integer m in the statement

should thus be small enough so as to satisfy the inequality:

λℓ
u,ρµ

−m
W,ρ < 1. (2)

Under this condition we can apply Proposition 4.4 and find a solution G as in the state-

ment of the theorem.

Let us finish with some elucidations and complements, first repeating one last time

that if M is compact the only assumption becomes the existence and analyticity of the

data, say f0 and the deformation Hamiltonian Fε in the vicinity of M . Given k, which

is defined by the fact that the diffeomorphisms fε have a contact of order k − 1 along

M , we get a Cm conjugacy with m controlled by (1) and (2) (concerning the exponent

k − ℓ in (1), see the technical note at the end of §3). If M is symplectic λu = λs = λ,

µu = µs = µ ≤ λ < 1, ν̄ = ν ≥ 1. So the best possible value of m, possibly at the

expense of a very small ρ is given by the inequalities: λk−ℓ < µℓ, λℓ < µm
W . If moreover

the dynamics on M is elliptic, that is if ν = ν̄ = 1, one has µW = µ and one gets the

inequalities λk−ℓ < µℓ, λℓ < µm (recall that µ ≤ λ < 1).

Concerning the order of contact along M of the conjugating diffeomorphism with the

identity, or what amounts to the same the order of vanishing of the solution G of the

homological equation onM , one can say more. It is indeed to be expected that G vanishes

at order k but we only proved that it is Cm, vanishing on M at order m < k. However

we note that we first applied the analytic preparation lemma which yields a solution

G(ℓ) which is analytic near M and remains so after truncation. Moreover it does vanish

on M along W s at order k, according to Proposition 4.6. We then applied Proposition

4.4, which leaves untouched the restriction of G to W s. According to the second part of

Proposition 4.4, which we may apply with r = ∞ as noted above, the solution G is C∞

with respect to xu and does vanish to order k on M in that direction. In other words we

actually showed that the higher order derivatives Dq
sG and Dq

uG exist for all q and do

vanish for q ≤ k. We did not however study the existence and vanishing of the mixed

Ds/Du transverse derivatives along M of orders between m and k.
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4.5 Application to the case at hand

We will now check that the above result does apply to the system which is the subject

matter of the present paper. Indeed, after some notational translation Theorem D below

will be a direct application of Theorem C above. So we are again interested in the family

Fq of symplectic diffeomorphisms of A2 introduced in §2. We write F∗ for the unperturbed

diffeomorphism (that is when q = ∞), again as in that paragraph. Explicitly we have:

F∗ = Φ
1
2
(r2

1+r2
2)+cos 2πθ1 = Φ

1
2
r2
1+cos 2πθ1 × Φ

1
2
r2
2

The diffeomorphism Fq is the perturbation of F∗ explicitly given by (2.3). Implicit is the

choice of a width σ as in (2.8) which will play no role whatsoever in what follows. Finally

recall that Fq is 1√
q
-close to F∗ for large q (see (2.9)).

As for the conjugacy problem, we proceed as follows: Fixing q large enough, we regard

Fq as given by the (ε) time-one map of the autonomous (i.e. ε-independent) Hamiltonian
ε
q
f (q). In other words we deform along a straight line in the space of Hamiltonian functions.

It is then easily checked that the analog of Theorem C above is valid uniformly for q large

enough. In fact, in view of the expression of f (q) and especially f
(q)
1 (f2 is independent of

q; cf. (2.4)) we find that (writing z for θ1) the q-dependence enters through the sequence

of functions (z 7→ zν) on a small disc near the origin (see (2.5); ν = ν(q; σ)). It is as

well-behaved as can be; in particular for any given N it converges to 0 in the CN -topology

as q increases to infinity. The reader can then easily check that all the constructions of

the previous sections are uniform with respect to this added parameter.

The annulus A which is invariant and normally hyperbolic for Fq will play the role

of M . Recall that A = {O} × A ≃ A where O denotes the hyperbolic fixed point of the

pendulum P , with coordinates θ1 = r1 = 0. Let Bρ denote, for ρ > 0, the neighborhood

of O in A defined by: Bρ = {(θ1, r1) ∈ A, |θ1|+ |r1| < ρ}. We let Aρ = Bρ ×A denote the

corresponding tubular neighborhood of A in A2. Our first and main goal is to prove the

following local conjugacy statement:

Theorem D (Local conjugacy around the invariant annulus). For q0 large enough, there

exist ρ, ρ′, with 0 < ρ′ < ρ such that for q ≥ q0, Fq(A2ρ′) ⊂ Aρ and the following holds:

There exists a Ck diffeomorphism φq (k ≥ 1) defined on Aρ with Aρ′ ⊂ φq(A2ρ′) ⊂ Aρ

and such that on Aρ′ :

φq ◦ F∗ = Fq ◦ φq.

Moreover there is a constant a (0 < a < 1) such that:

||φ±1
q − Id|| ≤ aν(q),

for the Ck norm on Aρ′ .

Here and below we abbreviate ν(q; σ) (cf. (2.5)) to ν(q). The above estimates are

uniform in q in the sense that the constants ρ, ρ′ and a are independent of q ≥ q0. The

regularity index k can in fact be taken to be large as q goes to infinity and indeed one
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can ensure k = k(q) = [cν(q)] (of order Log q) for some constant c > 0. This fact, that

the local conjugacy actually gets smoother as q approaches infinity will not be needed in

the sequel.

Let us now see how Theorem C implies Theorem D. The annulus A is symplectic

and the map induced by Fq is elliptic, actually an integrable twist so that in the notation

of the previous sections we have ν = ν̄ = 1. We also have λu = λs = λ, µu = µs = µ

and there is only one transverse exponent, so that λ = µ. Finally this number is nothing

but the stable exponent of the time-one map of the pendulum at the point O, namely

λ = e−2π, the exact value being however irrelevant for our present purpose. Because A
is not compact we will have to check some uniformity property w.r.t. to the variable r2
which comes readily from the fact that the perturbation depends on the angles only (see

below).

Before we do that however we go on with a few simple reductions. The main para-

meters in the statement are ρ and a, which are independent of q. Once we have found ρ,

ρ′ is determined by the condition that Fq(Aρ′) ⊂ Aρ. Roughly speaking we should take

2ρ′ ∼ λρ (λ = e−2π as above), so that for q large enough we may actually set ρ′ = λρ/4.

We also note that, if ||φq − Id|| ≤ aν(q) the same estimate holds for φ−1
q , perhaps at the

expense of increasing a slightly. Below we will not deal in detail with domain and in-

version problems. They involve as usual the effective application of the classical implicit

function theorem and in our context this has been detailed in [27] (see especially §5.2

there).

We first need to dispose of a preliminary step, namely the straightening of the stable

and unstable manifolds. We are working locally around A and uniformly in q for q large

enough on a domain Aρ. We wish to symplectically conjugate Fq to a diffeomorphism

Fq near A so that the local manifolds W±
loc(A,Fq) of Fq coincide with the planes of our

coordinate system, thus providing the product structure which is required in the setting

of §1 above. In order to achieve this, the main ingredient is the result of [27] (§5) which

asserts that the local manifolds W±
loc(A,Fq) can be represented as graphs of analytic

functions v±q on suitable domains, after having performed a linear transformation on the

first factor in order to let the axes coincide with the eigendirections at the hyperbolic point

O. We refer to [27] for details and the proof. Given the existence of this analytic graph

parametrization, one constructs a local conjugacy hq between Fq and F q, as explained in

[23], §1.9. Moreover, Proposition 4.5.1 of [27] provides an estimate of the form: ||v±q −
v0|| ≤ cν(q); here c < 1 is a constant and the norm is the sup-norm over a complex domain

which contains a thickening of Aρ for some ρ > 0 (v0 = v+
0 = v−0 ). As a result we get the

estimate: ||h±q − h0|| < cν(q) after slightly increasing c if necessary.

We wish to apply Theorem C to the family Fq; this will provide us with a local

conjugacy φ̄q between F q and F∗: F q = φ̄q ◦F∗ ◦ φ̄−1
q . Given that Fq = hq ◦Fq ◦ h−1

q , we

will get φq as: φq = hq ◦ φ̄q ◦ h−1
0 . In view of the exponential estimate of the difference

h±q − h0 recalled above, this shows that in order to secure the estimate in the statement

of Theorem D, it is enough to get one of the same form for φ̄q.

We are now reduced to applying Theorem C to F q for fixed large enough q, considering



P. Lochak, J.-P. Marco / Central European Journal of Mathematics 3(3) 2005 342–397 393

that it is obtained from F∗ by a straight line deformation governed by the Hamiltonian
1
q
h∗q(f

(q)). Looking back at conditions i), ii) and iii) before the statement of Theorem C,

we find that i) is clearly fullfilled. Turning to ii), we have seen above that on A the only

parameters are ν = ν̄ = 1 and λ = µ < 1. In order to extend this to Aρ, for ρ small

enough, into estimates of the needed kind, we must check that the deformation is uniform

w.r.t. the variable r2, that is in the noncompact direction along the invariant manifold

A. But this is clear, because firstly the initial deformation f (q) is independent of r2 and

secondly the straightening diffeomorphism hq is uniformly close to h0, the latter being

in turn independent of r2 because F∗ has a simple product structure. Finally iii) holds

with k tending to infinity as q goes to infinity, with a value of ρ which is uniform in q

for q large enough. This yields Theorem D and slightly more; namely first as mentioned

above the regularity index k can be made to tend to infinity as q approaches infinity and

second if one considers the constant a as a function of the radius ρ, one may in fact pick

a = a(ρ) = ρc for ρ small enough and a (possibly very small) constant c > 0.

Having obtained a local conjugacy in a tubular neighborhood of the annulus A, we

now would like to extend it along the invariant manifolds of A, much as in [27], §5.2.

We use the pieces of notation Bρ and Aρ as above and we choose ρ and ρ′ as given by

Theorem D. Let Q be the midpoint of the separatix of the pendulum, with coordinates

Q = (r1, θ1) = (2, 1/2). We let Qσ denote the ball with center Q and radius σ (i.e. the

tubular neighborhood of Q with thickness σ) in the pendulum plane (or annulus) (θ1, r1).

Let Ã denote the annulus Q × A where A denotes as usual the (θ2, r2) annulus. Finally

let Ãσ = Qσ × A denote the tubular neighborhood of Ã with thickness σ.

If ΦP is as usual the time-one map associated with the flow of the pendulum, we let

m be a positive integer such that (ΦP )m(Q) ∈ Bρ′ , that is the point Q enters Bρ′ after m

iterations (or less; we do not require thatm be minimal). By symmetry the same property

holds if we iterate backward, that is we also get that (ΦP )−m(Q) ∈ Bρ′ . Although the

numbers ρ (and ρ′) as well as m will be kept fixed in what follows we note that for small

ρ the integer m is on the order of 1
2π

ln(1/ρ). We now remark that for fixed ρ and m we

can choose σ small enough so that for q large enough F±m
q (Ãσ) ⊂ Aρ′. Indeed for q = 0

this comes simply from the continuity of Fm
∗ with respect to the initial conditions and we

can extend this to large enough q’s because the difference Fq −F∗ vanishes as q tends to

infinity, being actually of order 1√
q
. Again σ will be held fixed in what follows (one may

think of σ as being on the order of λmρ).

Let n ≥ 2m be a positive integer, to be thought of as ‘large’, actually much larger

than m. For a point ̟ ∈ A2, let us write the following formal equality, of which we will

subsequently make sense for ̟ in a certain domain:

Fn
q (̟) = Fm

q ◦Fn−2m
q ◦Fm

q (̟) = Fm
q ◦φq ◦Fn−2m

∗ ◦φ−1
q ◦Fm

q (̟) = ϕq ◦Fn
∗ ◦ψ−1

q (̟), (1)

with ϕq = Fm
q ◦ φq ◦ F−m

∗ and ψq = F−m
q ◦ φq ◦ Fm

∗ ; here φq denotes of course the local

conjugacy whose existence is asserted by Theorem D. The maps ϕq and ψq are well-

defined Ck diffeomorphisms on Ãσ, with k as in Theorem D. They are also 1√
q
-close to
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the identity map, so that we can find σ′, with 0 < σ′ < σ such that Ãσ′ ⊂ ϕq(Ã2σ′) ⊂ Aσ

and ditto for ψq (see again §5.2 of [27] for quantitative estimates in a similar setting).

The following statement is now within easy reach:

Proposition 4.7. Let m, ρ, ρ′, σ and σ′ be as above (0 < σ′ < σ < ρ′ < ρ). For q

large enough (i.e. q ≥ q0) there exist two Ck diffeomorphisms ϕq and ψq (with k as in

Theorem D) which are defined on Ãσ and are 1√
q
-close to the identity map as q tends

to infinity, such that for any integer n ≥ 2m and any point ̟ ∈ Ãσ′ ∩ F−n
∗ (Ãσ′) the

following intertwining relation holds:

Fn
q ◦ ψq(̟) = ϕq ◦ Fn

∗ (̟).

Indeed assume that ̟ ∈ Ãσ′ ∩ F−n
∗ (Ãσ′), i.e. it is a point whose first projection is

very close to Q and whose unperturbed orbit returns there at time n. Equation (1) now

makes good sense for ̟. The main point is that if ̟m = Fm
∗ (̟), we find that ̟m ∈

Aρ and Fn−2m
∗ (̟m) ∈ Aρ′, the latter property coming from the fact that Fn−m

∗ (̟) =

Fn−2m
∗ (̟m) ∈ F−m

∗ (Ãσ′) ⊂ Aρ′. We also note that since m is kept fixed Fm
q (̟) and

Fm
∗ (̟) are 1√

q
-close and we may pick q large enough so that Fn−2m

∗ ◦ Fm
q (̟) ∈ Aρ.

Proposition 4.7 yieds a nice intertwining relation but the intertwining maps are a priori

only 1√
q
-close to the identity map. Our final result, which was applied in §2, provides a

slighly less natural intertwining relation, but ensures that the intertwing maps are very

close to identity. As will be apparent from the proof it is an immediate consequence of

Proposition 4.7 supplemented by an easy observation. We first state:

Theorem E. Let m, ρ, ρ′, σ and σ′ be as above (0 < σ′ < σ < ρ′ < ρ) and set

χq = F∗ ◦ Fm−1
q ◦ φq ◦ F−m

∗ , ψq = F−m
q ◦ φq ◦ Fm

∗ .

For q large enough (i.e. q ≥ q0) χq and ψq are two Ck diffeomorphisms (with k as in

Theorem D) which are defined on Ãσ and are cν-close to the identity map as q tends to

infinity, for some constant c (0 < c < 1).

Moreover for any integer n ≥ 2m and any point ̟ ∈ Ãσ′ ∩ F−n
∗ (Ãσ′) the following

intertwining relation holds:

F∗ ◦ Fn−1
q ◦ ψq(̟) = χq ◦ Fn

∗ (̟).

In order to prove this statement, let us analyze the maps ϕq and ψq a little more

closely, first recalling their respective definitions, namely ϕq = Fm
q ◦ φq ◦ F−m

∗ and ψq =

F−m
q ◦ φq ◦ Fm

∗ . By Theorem D we have that φq is actually cν-close to identity, where

here and below we use the letter c to denote a generic constant satisfying 0 < c < 1 and

ν = ν(q). Moreover the difference Fq − F∗ is of order 1√
q

on the whole of A2, but it is in

fact of order cν outside of Ãσ for any fixed σ > 0.
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Upon examining the definition of ϕq and ψq we find that the only place where the

perturbed map Fq is applied in a region where the perturbation is significant occurs in

the very last factor of ϕq (reading of course from right to left). So we modify this by

simply replacing Fq with F∗ in that factor. This leads to the definition of χq and finishes

the proof because now in the definition of χq and ψq the factors Fq are all applied outside

of Ãσ, which yields an ‘exponential’ estimate as in the statement.

As a final remark, we emphasize that the threshold of validity q0 in Theorem E (as

well as in Proposition 4.7) is independent of n, an important uniformity feature which is

actually used in our application of the result.
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