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DIFFUSIONS WITH A NONLINEAR IRREGULAR DRIFT

COEFFICIENT AND PROBABILISTIC INTERPRETATION

OF GENERALIZED BURGERS� EQUATIONS

B� JOURDAIN

Abstract� We prove existence and uniqueness for two classes of mar�
tingale problems involving a nonlinear but bounded drift coe�cient� In
the �rst class� this coe�cient depends on the time t� the position x and
the marginal of the solution at time t� In the second� it depends on t� x
and p�t� x�� the density of the time marginal w�r�t� Lebesgue measure�
As far as the dependence on t and x is concerned� no continuity assump�
tion is made� The results� �rst proved for the identity di	usion matrix�
are extended to bounded� uniformly elliptic and Lipschitz continuous
matrices� As an application� we show that within each class� a partic�
ular choice of the coe�cients leads to a probabilistic interpretation of
generalizations of Burgers
 equation�

�� Introduction

In this paper� we are interested in di�usions given by two nonlinear mar�
tingale problems� Each problem is closely linked to the nonlinear partial
di�erential equation satis�ed by the time marginals of any solution� Un�
der our assumptions on the di�usion and the drift coe�cients� the time
marginals are absolutely continuous �for t � 	
 and the partial di�erential
equation provides a nice evolution equation for the densities� Our proofs for
existence and uniqueness are based on �xed�point methods for this evolution
equation�

The �rst section is devoted to a mean �eld martingale problem� For F a
bounded measurable Rd valued function on �	���
�Rd�P�Rd
� Lipschitz
continuous in its last variable for the total variation metric� we say that
P � P�C��	���
�Rd

 with time marginals �Pt
t�� solves the nonlinear
martingale problem �MP
 starting at m � P�Rd
 if P� � m and for any
� � C�

b �R
d
�

��Xt
� ��X�
�
Z t

�

�


�
���Xs
 � F �s�Xs� Ps
�r��Xs


�
ds

is a P �martingale where X denotes the canonical process on C��	���
�Rd
�
We prove existence and uniqueness for �MP
�
If the drift coe�cient F was Lipschitz continuous in its second and last
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variables for the sum of the Fortet�Mourier metric on P�Rd


���� ��
 � supf
Z
� d��

Z
� d��� j��x
� ��y
j � jx� yj � g

and the Euclidian metric on R
d� we could apply classical existence and

uniqueness results for nonlinear di�usions� which are proved by sample�
path couplings �see for example Graham ����

� But our assumptions are
much weaker since we do not suppose any continuity in the second variable
and the Fortet�Mourier metric is obviously smaller than the total variation
metric� The counterpart is that the di�usion coe�cient is linear and the
drift coe�cient F is bounded� By a �xed�point method� we prove that the
evolution equation satis�ed by the densities of the time marginals of any
solution of �MP
 admits a unique solution� The results for the martingale
problem itself follow quite immediately�
By our theorem� for d �  and F �s� x� �
 �

�R
R
H�x� y
��dy


�q
where

q �  andH denotes the Heaviside function �H�x
 � fx��g
� the martingale
problem �MP
 starting at m admits a unique solution P � Let V �t� x
 and
v�x
 be the distribution functions of Pt and m� Generalizing results given
by Bossy et al ����
 for Burgers� equation �q � 
� we prove that V is a
weak solution of

�u

�t
�



�

��u

�x�
� 

q � 

��uq��


�x

with initial condition v and obtain P as the propagation of chaos limit of a
sequence of weakly interacting particle systems� Our propagation of chaos
result is trajectorial and stronger than the one proved by Bossy and Talay�

The second section deals with a moderate martingale problem in which
the drift coe�cient depends on the densities of the time marginals� Thus
the nonlinearity is more ticklish� For F a bounded measurable Rd valued
function on �	���
�Rd�R� satisfying

�s � 	� �x � Rd� �y� y� � R� jyF �s� x� y
� y�F �s� x� y�
j � KF jy � y�j�
we say that P � P�C��	���
�Rd

 with time marginals �Pt
t�� absolutely
continuous with respect to Lebesgue measure for t � 	 solves the nonlinear
martingale problem �MP�
 starting at m � P�Rd
 if P� � m and for any
� � C�

b �R
d
�

��Xt
� ��X�
�
Z t

�

�


�
���Xs
 � F �s�Xs� p�s�Xs

�r��Xs


�
ds

is a P �martingale where for any t � 	� p�t� �
 is a density of Pt�
We prove existence and uniqueness for �MP�
� This generalizes a result
given by M�el�eard et al ����
 for F � Rd�R	 R

d bounded and satisfying
a stronger Lipschitz continuity property� �x� x� � Rd� �y� y� � R�
jF �x� y
� F �x�� y�
j� jyF �x� y
� y�F �x�� y�
j � KF �jx� x�j� jy � y�j
�

They obtain existence for the corresponding martingale problem �MP�
 as
a consequence of a propagation of chaos result for a sequence of moderately
interacting particle systems� As for us� we give a direct proof again based
on a �xed�point method for the evolution equation satis�ed by p�
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Thanks to this result� we show how it is possible to associate a probabilis�
tic representation with some classical solutions of Burgers� equation� as it
was sketched by Oelschl�ager ����
� The initial conditions concerned are
bounded probability densities on R�

In the last section we generalize the previous existence and uniqueness
results to similar martingale problems with a Lipschitz continuous� bounded
and uniformly elliptic di�usion coe�cient�

Notations� Let � � C��	���
�Rd
 endowed with the topology of uniform
convergence on compact sets and with the corresponding Borel 	��eld� �T �
C��	� T ��Rd
 endowed with the topology of uniform convergence� X be the
canonical process� For a Borel space E� P�E
 is the space of probability
measures on E endowed with the topology of weak convergence� We also
de�ne the metric of total variation on P�E


V ��� ��
 � sup

�Z
� d� �

Z
� d�� � k�kL��E	 � 

�
�

If Z is a random variable with values in E let L�Z
 � P�E
 denote its law�
If P � P��
� �Pt
t�� is the set of time marginals of P �

�P��
 � fP � P��
� �t � 	� Pt is absolutely continuous

with respect to Lebesgue measureg�
If P � �P��
� there is a measurable function p�s� x
 on �	���
�Rd such that
for any s � 	� p�s� �
 is a density of Ps with respect to Lebesgue measure�
See for example Meyer ����
 �pp� �����
� Such a function is called a
measurable version of the densities�
For x � Rd� let jxj be the Euclidian norm of x�

For t � 	� Gt denotes the heat kernel on Rd� Gt�x
 � ��
t
�
d
� exp�� jxj�

�t 
�
The following estimate will be very useful�

for any  � i � d�

�����Gt

�xi

����
L�
� p

t
� ��


�� The mean field martingale problem

��� Existence and uniqueness

Let F be a measurable Rd valued function on �	���
 � Rd � P�Rd

bounded by MF which satis�es the following Lipschitz continuity property

�s � 	� �x � Rd� ��� �� � P�Rd
� jF �s� x� �
� F �s� x� ��
j � KFV ��� ��
�

Definition ���� Let m � P�Rd
� We say that P � P��
 with time
marginals �Pt
t�� solves the nonlinear martingale problem �MP
 starting
at m if P� � m and for any � � C�

b �R
d
�

��Xt
� ��X�
�
Z t

�

�


�
���Xs
 � F �s�Xs� Ps
�r��Xs


�
ds ���


is a P �martingale�

Theorem ���� For any m � P�Rd
� the nonlinear problem �MP�� starting
at m admits a unique solution�
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The following lemma gives an integral equation satis�ed by any measur�
able version of the densities of the solution of a linear martingale problem�
The proof of Theorem ��� which is based on this equation� is postponed
after the proof of the lemma�

Lemma ���� Let m � P�Rd
� g be a measurable Rd valued function on
�	���
�Rd bounded by Mg and P be the unique solution of the martingale
problem� P� � m and for any � � C�

b �R
d
�

��Xt
� ��X�
�
Z t

�

�


�
���Xs
 � g�s�Xs
�r��Xs


�
ds is a P �martingale�

Then P � �P ��
� Any measurable version of the densities p�s� x
 satis	es
the evolution equation�

�t � 	� p�t� x
 � Gt 
m�x
�
dX
i
�

Z t

�

�Gt�s
�xi


 ��pgi
�s� �

�x
ds a�e� ����


Moreover� if q is a measurable function on �	���
 � Rd which satis	es
�
�
� and

�T � 	� sup
t����T �

kq�t� �
kL� � ��

then q is a measurable version of the densities for P �

Proof� Existence and uniqueness for the martingale problem is a consequence
of Girsanov�s theorem� Let us prove that the solution P belongs to �P ��
�

Under P � by Paul Levy�s characterization� Xt � X� �
R t
� g�s�Xs
ds is a

Brownian motion� We introduce the exponential martingale

Zs � exp

�
�
Z s

�
g�r�Xr
�dXr �



�

Z s

�
jg�r�Xr
j�dr

�
�

Let t � 	� We set Q � Zt�P � By Girsanov�s theorem� ��s � Xs�X�
s����t�
is a Brownian motion under Q� Let f be a continuous function with compact
support in Rd�

E�jf�Xt
j
 � E
Q�



Zt
jf�Xt
j
 �

s
EQ

�


Z�
t

�q
EQ�f��Xt

� ����


E
Q�f��Xt

 �

Z
Rd

f��x
Gt 
m�x
dx � 

��
t

d
�

kfk�L� � ����




Z�
t

� exp

�Z t

�
�g�s�Xs
�d�s � 

�

Z t

�
j�g�s�Xs
j�ds�

Z t

�
jg�s�Xs
j�ds

�
�

The last equation implies

E
Q

�


Z�
t

�
� exp�M�

g t
� ����


With equations ����
� ����
 and ����
� we conclude

jE�f�Xt

j � E�jf�Xt
j
 � 

��
t

d
�

exp

	
M�

g t

�



kfkL� � ����


Hence Pt is absolutely continuous with respect to Lebesgue measure and
P � �P��
�
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Let p�s� x
 be a measurable version of the densities for P �  be a C�

function with compact support in Rd and t � 	� We set ��s� x
 � Gt�s
�x

for s � �	� t
 and ��t� x
 � �x
� The function � belongs to C���

b ��	� t��Rd

and satis�es

��s� x
 � �	� t��Rd�
��

�s
�s� x
 �



�
���s� x
 � 	� ����


Since Xt�X��
R t
� g�s�Xs
ds is a P �Brownian motion� It o�s formula implies

E ���t� Xt

 � E

�
��	� X�
 �

Z t

�

�
��

�s
�



�
��� g�r�

�
�s�Xs
ds

�
�

By ����
� we get rid of ��
�s �

�
���� Applying Fubini�s theorem� we obtainZ

Rd

�x
p�t� x
dx�

Z
Rd

Gt 
 �x
m�dx


�

Z
���t��Rd

dX
i
�

Z
Rd

�Gt�s
�xi

�x� y
�y
dy�gip
�s� x
dxds

�

Z
Rd

�x
Gt 
m�x
dx

�
Z
Rd

dX
i
�

Z t

�

�Gt�s
�xi


 ��gip
�s� �

�y
ds �y
dy�

Hence p satis�es ����
�
To conclude the proof� we consider q satisfying ����
 and

�T � 	� sup
t����T �

kq�t� �
kL� � ���

kp�t� �
� q�t� �
kL� �
dX
i
�

Z t

�

�����Gt�s
�xi

����
L�
kgi�s� �
�p�s� �
� q�s� �

kL�ds

�Mg

p
d

Z t

�

kp�s� �
� q�s� �
kL�p
t� s

ds�

After an iteration� we get

kp�t� �
� q�t� �
kL� �M�
g d

Z t

�

p
t� s

Z s

�

kp�r� �
� q�r� �
kL�p
s� r

drds

�M�
g d

Z t

�
kp�r� �
� q�r� �
kL�

Z t

r

p
t � s

p
s � r

dsdr

� 
M�
gd

Z t

�
kp�r� �
� q�r� �
kL�dr�

Gronwall�s lemma implies �t � 	� kp�t� �
� q�t� �
kL� � 	 which proves that
q is a measurable version of the densities for P �

We are now ready to show Theorem ����

Proof� The key idea is the following� If �Q�t

t�� � C��	���
�P�Rd

� by
Girsanov�s theorem� the martingale problem in which the nonlinearity Ps
in ���
 is replaced by Q�s
 admits a unique solution PQ� We consider the
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correspondence between �Q�t

t�� and the time marginals �PQ
t 
t�� of the

solution� If P solves the nonlinear problem �MP
� then �Pt
t�� is a �xed�
point of this map� Conversely� if �Q�t

t�� is a �xed�point� then PQ solves
the nonlinear problem �MP
�
Let T � 	� We de�ne

Am�T � fQ � C��	� T ��P�Rd

� Q�	
 � m and �t � �	� T �� Q�t


is absolutely continuous with respect to Lebesgue measureg�
If Q � Am�T � let ��Q
 denote a measurable version of the densities for Q�
Am�T is complete for the metric

D�Q�Q�
 � sup
t����T �

V �Q�t
� Q��t

 � sup
t����T �

k��Q
�t
� ��Q�
�t
kL� �

Let t� � 	� ForQ � Am�T we de�ne �t��m�Q
�t

t����T � as the time marginals
of the unique solution of the martingale problem���
��
P � P��T
� P� � m and �� � C�

b �R
d
�

��Xt
� ��X�
�
R t
�

�
�
����Xs
 � F �t� � s�Xs� Qs
�r��Xs


�
ds

is a P �martingale�

Lemma ��� implies that for any t � �	� T �� t��m�Q
�t
 is absolutely contin�
uous with respect to Lebesgue measure� Hence t��m�Q
 � Am�T � We are
going to prove that if T is small enough� t��m is a contraction on Am�T �
Using equation ����
 given by Lemma ���� we obtain for Q�Q� � Am�T and
t � �	� T ��

k��t��m�Q

�t
� ��t��m�Q
�

�t
kL�

�
dX
i
�

Z t

�

�����Gt�s
�xi

����
L�
k��t��m�Q

�s
Fi�t� � s� �� Q�s



� ��t��m�Q
�

�s
Fi�t� � s� �� Q��s

kL�ds

�
Z t

�

�
k��t��m�Q

�s
kL�k

dX
i
�

jFi�t� � s� �� Q�s

� Fi�t� � s� �� Q��s

jkL�

� k��t��m�Q

�s
� ��t��m�Q
�

�s
kL� �

k
dX
i
�

jFi�t� � s� �� Q��s

jkL�
�

dsp
t� s

� �
p
dT �KFD�Q�Q�
 �MFD�t��m�Q
� t��m�Q

�


�

Hence

�� �
p
dTMF 
D�t��m�Q
� t��m�Q�

 � �

p
dTKFD�Q�Q�
�

We set T � �
�d�MF��KF 	�

� Then D�t��m�Q
� t��m�Q�

 � �
�D�Q�Q�
� Pi�

card�s �xed�point theorem implies that t��m admits a unique �xed�point in
Am�T �

Existence for the martingale problem �MP��� Let Q� denote the
�xed�point of ��m in Am�T � If Q

n is constructed� let Qn�� be the �xed�point
of �n��	T�Qn�T 	 in AQn�T 	�T �
We set Q�t
 � Qn�t�nT 
 if t � �nT� �n�
T 
� Let P be the solution of the
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martingale problem in which the nonlinearity in ���
 is replaced by Q�s
�
For any � � C�

b �R
d
�

��XnT�t
� ��XnT 
�
Z t

�

�
F �nT � s�XnT�s� Q

n�s


�r��XnT�s


�


�
���XnT�s


�
ds is a P �martingale�

Hence� by induction� �n � N� �t � �	� T �� PnT�t � Qn�t
 � Q�nT � t
� And
P solves the problem �MP
�

Uniqueness for the martingale problem �MP��� If P is a solution�
Lemma ��� implies that for any t � 	� Pt is absolutely continuous with
respect to Lebesgue measure� For any n � N� �PnT�t
t����T � is the �xed�
point of nT�PnT in APnT �T � By induction� uniqueness for the �xed�points
implies uniqueness for the time marginals �Pt
t��� Since the nonlinearity in
the de�nition of �MP
 is limited to the dependence of the drift coe�cient
on the time marginals� uniqueness for this problem follows immediately�

���� Application

Theorem ��� implies existence and uniqueness for martingale problems
associated with a class of partial di�erential equations which includes Burg�
ers� equation�
We set q � � m � P�R
� Let f � �x� �
 � R�P�R
	 �R

R
H�x� y
��dy


�q
where H�x
 � fx��g� As f is the pointwise limit of the continuous functions

�x� �
	 �R
R
Hn�x� y
��dy


�q
with

Hn�x
 � n�x� �n
f���n�x��g � fx��g�

this function is measurable� Moreover� since f takes its values in �	� ����f�x� �
� f�x� ��

�� � q

����
Z
R

H�x� y
��dy
�
Z
R

H�x� y
���dy

����

� qV ��� ��
�

By Theorem ���� the martingale problem �MP
 corresponding to the par�
ticular choice F �s� x� �
 � f�x� �
 admits a unique solution P starting at m�
Let V �t� x
 and v�x
 be the distribution functions of Pt and m�

Bossy et al ����
 deal with the case q � � They prove that V is a weak
solution of Burgers� equation

�u

�t
�



�

��u

�x�
� 

�

��u�


�x
with initial condition v and obtain P as the propagation of chaos limit
of a sequence of weakly interacting particle systems� Indeed they de�ne
�X��n� � � � � Xn�n
 as the unique weak solution of the stochastic di�erential
equation

X i�n
t � X i�n

� � Bi�n
t �

Z t

�



n

nX
j
�

H�X i�n
s �Xj�n

s 
ds�  � i � n�

where L��X��n
� � � � � � Xn�n

� 

 � m�n and �B��n� � � � � Bn�n
 is aRn�valued Brow�
nian motion� They prove that for any k � N�� L��X��n� � � � � Xk�n

 converges
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weakly to P�k when n	 ���
We generalize their results to any q �  in Proposition ���� In fact� we fol�
low the idea of M�el�eard et al ����
 and prove a trajectorial propagation of
chaos result� To obtain this result� we introduce a coupling between the par�
ticle systems and the limit processes with law P that we de�ne on the same
probability space� Let Bi� i � N

� be a sequence of independent R�valued
Brownian motions and X i

�� i � N
� be a sequence of random variables IID

with law m independent of the Brownian motions� According to Karatzas
et al ����
 �Proposition ��� p���
� the one�dimensional stochastic di�er�
ential equation

Y i
t � X i

� �Bi
t �

Z t

�
�H 
 Ps�Y i

s 


qds

admits a unique strong solution� Moreover� considering the linear martingale
problem associated with this equation� by the existence part of the proof of
Theorem ���� we obtain that the law of the solution is P � The process Yi
is nonlinear in the following sense� the drift coe�cient of the stochastic
di�erential equation that it satis�es depends on the time marginals of its
law�
Unlike in the one�dimensional case� to obtain a strong solution for a n�
dimensional stochastic di�erential equation with n � � it is necessary to
assume that the coe�cients are locally Lipschitz continuous� That is why
we replace H by Hn �Hn�x
 � n�x� �n
f���n�x��g � fx��g
 and de�ne
the weakly interacting particle system as the unique strong solution of the
stochastic di�erential equation

X
i�n
t � X i

� � Bi
t �

Z t

�

�


n

nX
j
�

Hn�X
i�n
s �Xj�n

s 


�q
ds�  � i � n�

Proposition ���� For any q � �
�i
 The function V is a weak solution of the generalized Burgers� equation

�u

�t
�



�

��u

�x�
� 

q � 

��uq��


�x
with initial condition v�

�ii
 If  P denotes the image of P by the mapping X � �	 �X�X
 � ��� for

any k � N�� L���X��n� Y �
� � � � � �Xk�n� Y k


 converges weakly to  P�k as n
goes to ���

To understand the trajectorial nature of the propagation of chaos re�
sult �ii
� remark for instance that� unlike the classical result� �k � N��
L��X��n� � � � � Xk�n

 converges weakly to P�k � it implies�

�T � 	� lim
n	�
 E� � sup

��t�T
j�X��n

t � � � � � Xk�n
t 
� �Y �

t � � � � � Y
n
t 
j
 � 	�

Proof� �i
 Our proof is a generalization of the one given by Bossy et al

����
� Under P � by Paul Levy�s characterization� Xt�X��
R t
� V

q�s�Xs
ds
is a Brownian motion� Let p be a measurable version of the densities for P
and � � D��	���
�R
� Applying It o�s formula and taking expectations�
we getZ �


�

Z
R

p�t� x


�
��

�t
�t� x
 �



�

���

�x�
�t� x
 �

��

�x
�t� x
V q�t� x


�
dxdt � 	�
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Hence p is a solution in D���	���
 � R
 of the equation �p
�t � �

�
��p
�x�

�
�
�x �pV

q
� Clearly� �V
�x � p in D���	���
� R
� Moreover� approximating

p�t� �
 in L��R
 by continuous functions� we obtain that the distribution
function of the bounded measure p�t� x
V q�t� x
dx is �

q��V
q���t� x
� Hence

�

�x

�
�V

�t
� 

�

��V

�x�
�



q � 

��V q��


�x

�
� 	�

The spatial derivative of the distribution �V
�t � �

�
��V
�x�

� �
q��

��V q��	
�x is zero�

which implies that the distribution is invariant by translation�
If � � D��	���
�R
 and z 	 ���Z
����
	�R

V �t� x� z


�
��

�t
�t� x
 �



�

���

�x�
�t� x
 �

V q�t� x� z


q � 

��

�x
�t� x


�
dxdt

goes to 	 by Lebesgue�s theorem� Therefore for any � � D��	���
�R
�Z
����
	�R

V �t� x


�
��

�t
�t� x
 �



�

���

�x�
�t� x
 �

V q�t� x


q � 

��

�x
�t� x


�
dxdt � 	�

����


We conclude by proving that the initial condition is v� By density� equation
����
 still holds if � is C��� with compact support in �	���
�R�
Let  be C��� with compact support in �	���
 � R� For n � N

�� we
introduce the C� functions

gn�s
 �

��
��
	 if s � �	� �

�n ��

�n��s� �
�n


� � �n��s� �
�n


� if s � � ��n �
�
n ��

 if s � �
n �

The function �n � gn is C��� with compact support in �	���
�R� Using
����
 for �n we getZ
����
	�R

�
�

�t
�



�

��

�x�
�

V q

q � 

�

�x

�
�t� x
V �t� x
dtdx

�

Z
��� �

n
��R

�� gn�t



�
�

�t
�



�

��

�x�
�

V q

q � 

�

�x

�
�t� x
V �t� x
dtdx

�
Z
��� �

n
��R

dgn
dt

�t
�t� x
V �t� x
dtdx� ����


Since P � P��
� the map t 	 Pt is continuous and limt	� V �t� x
 � v�x

for any x such that v is continuous at x� Hence by Lebesgue�s theorem�

lim
t	�

Z
R

�t� x
V �t� x
dx �

Z
R

�	� x
v�x
dx�

When n	 �� in ����
� we getZ
����
	�R

�
�

�t
�



�

��

�x�
�

V q

q � 

�

�x

�
�t� x
V �t� x
dtdx

� �
Z
R

�	� x
v�x
dx�
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Therefore V is a weak solution of the generalized Burgers� equation with
initial condition v�

�ii
 We now prove the propagation of chaos result� In the sequel� � and
�X� Y 
 denote the canonical variables on P���
 and ��� We set !�r � ��X��

r �
The couples �X i�n� Y i
�  � i � n are exchangeable� Therefore the prop�
agation of chaos result is equivalent to the convergence in distribution of
the empirical measures �n � �

n

Pn
i
� ��Xi�n�Y i	 considered as P���
�valued

random variables to � �P �see Sznitman ���
 and the references cited in it
�
Let 
n denote the law of �n�

According to Sznitman ���
� since the variables �X i�n� Y i
 are exchange�
able� the tightness of the sequence �
n
n is equivalent to the tightness of
�L�X��n� Y �

n which is equivalent to the tightness of �L�X��n

n� These
probability measures are tight since for any T � 	 their images by the
canonical restriction from � to �T are tight �the drift coe�cient is bounded
by  uniformly in t and n
�

Let 

 denote the limit of a convergent subsequence of �
n
n that we
still index by n for simplicity� To prove that 

 � � �P � we set p � N��
	 � s� � s� � � � � � sp � s � t� � � C�

b �R
�
� g � Cb�R�p
� and de�ne G��


to be equal to

� ��

�
��Xt� Yt
� ��Xs� Ys
�

Z t

s



�

�
���

�x�
� �

���

�x�y
�
���

�y�

�
�Xr� Yr
dr

�
Z t

s

�
��

�x
�Xr� Yr
�H 
 !�r�Xr



q �
��

�y
�Xr� Yr
�H 
 Pr�Yr

q

�
dr

�
g�Xs�� Ys� � � � � � Xsp � Ysp
 � �

For k � N�� we de�ne Gk��
 like G with Hk replacing H in �H 
 !�r�Xr


q but

not in �H 
 Pr�Yr

q� If �n 	 � � the weak convergence of !�nr to !�r implies
that Hk 
 !�nr�x
 converges to Hk 
 !�r�x
 uniformly for x � R� Moreover�
for any r � 	� Pr is absolutely continuous with respect to Lebesgue measure
and y 	 H 
 Pr�y
 is continuous� Hence Gk is continuous�
We are going to prove that E�� �G���

 � 	� By the continuity and bound�
edness of Gk� we have

E
�� �G���

 � � lim sup

k	�


�
E
�� ��G�Gk


���

 � lim
n	�
 E�G

�
k��

n



�
� � lim sup

k	�

E
�� ��G� Gk


���

 � � lim sup
n	�


E�G�
n��

n



� � lim sup
k	�


lim sup
n	�


E��Gk � Gn

���n

� ���	


Let us show that each term of the right�hand�side of ���	
 is equal to 	�
For the �rst term� it is a consequence of the convergence of jH�Hkj
!�r�x


to 	 for any � � P���
� x � R and r � 	 as k 	 ��� Indeed� by the

boundedness of G� Gk� g and ��
�x and the Lipschitz continuity of x	 xq for

	 � x � � we have

E
�� ��G� Gk


���

 � CE�� jG��
�Gk��
j

� CE��
�
� ��

Z t

s
jH �Hk j 
 !�r�Xr
dr �

�
�
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The second term is easy to deal with� Applying It o�s formula� we get

Gn��
n
 �



n

nX
i
�

g�X i�n
s� � Y

i
s� � � � � � X

i�n
sp � Y

i
sp


Z t

s

�
��

�x
�
��

�y

�
�X i�n

r � Y i
r 
dB

i
r�

Hence E�G�
n��

n

 � C�n and we conclude limn	�
 E�G�
n��

n

 � 	�
The third term is the most ticklish� By a calculation similar to the one

carried out for the �rst term� we get

E��Gk �Gn

���n

 � CE

�
� �n�

Z t

s
jHn �Hkj 
 !�nr�Xr
dr �

�
�

Hence if �X� Y� Z�W 
 denotes the canonical variable on ���

E��Gk �Gn

���n

 � CE

�
� �n � �n�

Z t

s
fjXr�Zr j� �

n�k
gdr �

�
� ���


By the exchangeability of the couples �X i�n� Y i
�  � i � n�

lim sup
n	�


E

�
� �n � �n�

Z t

s
fjXr�Zrj� �

n�k
gdr �

�

� lim sup
n	�


E

�Z t

s
fjX��n

r �X��n
r j� �

n�k
gdr
�

� lim sup
n	�


E

�Z t

s
fjX��n

r �X��n
r j� �

k
gfjX��n

r j�pkgdr
�

� lim sup
n	�


Z t

s
P �jX��n

r j �
p
k
dr� ����


Since P �jX��n
r j �

p
k
 � P �jB�

r j �
p
k�r
� 
 � P �jX�

� j �
p
k�r
� 
� the second

term of the right�hand�side of ����
 has a limit equal to 	 when k 	 ���
To prove that the same is true for the �rst term� we bound the L� norm of
the density of L��X��n

r � X��n
r 

 �r � 	
 uniformly in n� Like in the beginning

of the proof of Lemma ���� we obtain an estimate similar to ����
�

�f � L��R�
� �n � �� �r � 	� E�f�X��n
r � X��n

r 

 � p
�
r

exp�r
kfkL��

Hence �n � �� E
�R t

s fjX��n
r �X��n

r j� �

k
gfjX��n

r j�pkgdr
�
� C

k
�
�

which implies

lim
k	�


lim sup
n	�


E

�Z t

s
fjX��n

r �X��n
r j� �

k
gfjX��n

r j�
p
kgdr

�
� 	�

By ���
 and ����
 we get limk	�
 lim supn	�
 E��Gk �Gn
���n

 � 	�
As we have proved that each term of the right�hand�side of ���	
 is equal

to 	� E�� �G���

 � 	� Restricting �� g� s�� � � � � sp� s� t to countable subsets
then taking limits by Lebesgue�s theorem� we obtain that 

 a�s�� � solves

ESAIM� P�S� November ����� Vol� �� pp� ���	�





�� B� JOURDAIN

the martingale problem�������
�������

�� � m�m and �� � C�
b �R

�
�

��Xt� Yt
� ��X�� Y�
�
R t
�
�
�

�
���
�x� � � ���

�x�y �
���
�y�

�
�Xs� Ys
ds

� R t�
�
��
�x�Xs� Ys
�H 
 !�s�Xs



q � ��
�y �Xs� Ys
�H 
 Ps�Ys

q

�
ds

is a ��martingale�

Let us now suppose that � is a solution of this problem�
Choosing ��x� y
 � �x
 with  � C�

b �R
� we check that � � X�� solves
the nonlinear martingale problem starting at m� By uniqueness for this
problem� � �X�� � P and !�s � Ps� Moreover� it is easy to see that

��t � Xt�X��
Z t

�
�H 
Ps�Xs



qds and ��t � Yt�Y��
Z t

�
�H 
Ps�Ys

qds

are ��Brownian motions and next that �� � ��� As � a�s�� Y� � X�� by
trajectorial uniqueness for the stochastic di�erential equation satis�ed by
both X and Y � � a�s�� X � Y � Hence � �  P �

We conclude that 

 � � �P which puts an end to the proof�

�� The moderate martingale problem

��� Existence and uniqueness

Let F be a measurable Rd valued function on �	���
�Rd�R bounded
by MF which satis�es the following Lipschitz continuity property

�s � 	� �x � Rd� �y� y� � R� jyF �s� x� y
� y�F �s� x� y�
j � KF jy � y�j�
Definition ���� Let m � P�Rd
� We say that P � �P��
 solves the non�
linear martingale problem �MP�
 starting at m if P� � m and for any
� � C�

b �R
d


��Xt
� ��X�
�
Z t

�

�


�
���Xs
 � F �s�Xs� p�s�Xs

�r��Xs


�
ds ���


is a P �martingale where p is a measurable version of the densities for P �

This de�nition does not depend on the choice of the measurable version�
Indeed� if p��s� x
 is another such version then P a�s�� �t � 	�Z t

�
F �s�Xs� p�s�Xs

�r��Xs
ds �

Z t

�
F �s�Xs� p

��s�Xs

�r��Xs
ds�

Theorem ���� For any m � P�Rd
� the nonlinear problem �MP
� admits
a unique solution P starting at m�

Proof� Uniqueness� It is an easy consequence of the Lipschitz continuity
assumption made on F � The proof was given by M�el�eard et al ����
�
Let P and Q be two solutions of �MP�
 starting at m and p�s� x
� q�s� x

denote measurable versions of the densities for P and Q� Using equation
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����
 given by Lemma ���� inequality ��
 and the Lipschitz continuity
property satis�ed by F � we get

kp�t� �
� q�t� �
kL� �
p
dKF

Z t

�

kp�s� �
� q�s� �
kL�p
t� s

ds� ����


By Gronwall�s lemma� we conclude that for any t � 	� kp�t� �
�q�t� �
kL� � 	�
Hence both P and Q solve the martingale problem in which the nonlinearity
in ���
 is replaced by q�s�Xs
� By uniqueness for this problem� P � Q�

Existence� In the sequel� if I is a real interval and v � C�I� L��Rd

 let
v�t� x
 denote a measurable function on I �Rd such that for any t � I the
class of v�t� �
 in L��Rd
 is v�t
�
Let T � 	 and AT � fv � C��	� T �� L��Rd

� supt����T � kv�t
kL� � ��g�
For the metric D�v� v�
 � supt����T � kv�t
� v��t
kL� � AT is complete�

Let m � P�Rd
� For v � AT � we set

�t � �	� T �� m�v
�t
 � Gt 
m�
dX
i
�

Z t

�

�Gt�s
�xi


 �v�s� �
Fi�s� �� v�s� �


ds�

By the continuity of the map t 	 Gt � L��Rd
� t 	 Gt 
m � L��Rd
 is
continuous for t � 	� Since

sup
s����T �

kv�s� �
Fi�s� �� v�s� �

kL� �
p
dMF sup

s����T �
kv�s� �
kL� � ���

it is quite easy to deduce that m�v
 � AT � Let us �nd T such that m is
a contraction� For v� v� � AT and t � �	� T �� we get an estimate similar to
����


km�v
�t
� m�v
�
�t
kL� �

p
dKF

Z t

�

kv�s
� v��s
kL�p
t � s

ds

� �KF

p
dtD�v� v�
�

Hence D�m�v
� m�v
�

 � �KF

p
dTD�v� v�
� From now on� T � �

��dK�
F

� By

Picard�s �xed�point theorem� m admits a unique �xed�point in AT �
Let t� � 	 and f � L��Rd
� For v � C��	� T �� L��Rd

 we de�ne

�t��f�v
�t
 � Gt 
 f �
dX
i
�

Z t

�

�Gt�s
�xi


 �v�s� �
Fi�t� � s� �� v�s� �


ds�

The same estimates as above imply that �t��f admits a unique �xed�point

in C��	� T �� L��Rd

�
Let v� denote the �xed�point of m in AT � If v

n is constructed� let vn�� be
the �xed�point of ��n��	T�vn�T 	 in C��	� T �� L��Rd

� We set v�t
 � vn�t�nT 

if t � �nT� �n�
T �� The map v belongs to C��	���
� L��Rd

 and satis�es

�t� � 	� sup
t����t��

kv�t
kL� � ��� ����
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Let t � �	� T �� We compute v�T � t
 thanks to Fubini�s theorem�

v�T � t
 � Gt 
 v�T 


�
dX
i
�

Z t

�

�Gt�s
�xi


 �v�T � s� �
Fi�T � s� �� v�T � s� �


ds

� Gt 

	
GT 
m�

dX
i
�

Z T

�

�GT�s
�xi


 �v�s� �
Fi�s� �� v�s� �


ds



�
dX
i
�

Z t

�

�Gt�s
�xi


 �v�T � s� �
Fi�T � s� �� v�T � s� �


ds

� GT�t 
m�
dX
i
�

Z T�t

�

�GT�t�s
�xi


 �v�s� �
Fi�s� �� v�s� �


ds�

By induction� we conclude that for any t � 	�

v�t� x
 � Gt 
m�x
�
dX
i
�

Z t

�

�Gt�s
�xi


 �v�s� �
Fi�s� �� v�s� �


�x
ds a�s�

����


Let P be the solution of the martingale problem in which the nonlinearity
in ���
 is replaced by v�s�Xs
� Equations ����
� ����
 and Lemma ��� imply
that v�s� x
 is a measurable version of the densities for P � Hence P solves
�MP�
�

���� Application

Theorem ��� allows us to associate a probabilistic representation with
some classical solutions of Burgers� equation� The initial conditions con�
cerned are not distribution functions like in Proposition ��� but bounded
probability densities�
We take up the approach of Oelschl�ager ����
 �pp� �	���	�
� Let u� be
a probability density on R bounded by M � The Cole�Hopf transformation
�Cole ���
� Hopf ���	



u�	� x
 � u��x
 and u�t� x
 �

R
R
Gt�x� y
 exp

�
� R y�
 u��z
dz

�
u��y
dyR

R
Gt�x� y
 exp

�
� R y�
 u��z
dz

�
dy

provides a classical solution of Burgers� equation� u � C�����	���
 � R

and

�t � 	� �x � R� �u
�t

�t� x
 �


�

��u

�x�
�t� x
� u�t� x


�u

�x
�t� x
� ����


It is easy to check that �t � 	� �x � R� ju�t� x
j � M � This boundedness
property is essential for the sequel� We set f�y
 � �

��	  y �M
� The func�
tions f and y 	 yf�y
 are respectively bounded and Lipschitz continuous�
By Theorem ���� the martingale problem �MP�
 corresponding to the partic�
ular choice F �s� x� y
 � f�y
 admits a unique solution P starting at u��x
dx�
Let us prove that u is a measurable version of the densities for P � Since
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clearly �t � 	� ku�t� �
kL� � e� according to the proof of uniqueness for
�MP�
 �Theorem ���
� it is enough to establish

�t � 	� �x � R� u�t� x
 � Gt 
 u��x
�
Z t

�

�Gt�s
�x


 �u�s� �
f�u�s� �


�x
ds�
����


Let t � 	� � be a C��� function with compact support in �	� t� � R and

� � �	� t
� As �u
�s �

��u
�x�

and �
�x�uf�u

 � u�u�x are bounded on the intersection

of the support of � with ��� t� � R� using the integration by parts formula�
Fubini�s theorem and ����
 we getZ
R

u�t� x
��t� x
dx�

Z
R

u��� x
���� x
dx

�

Z
���t��R

u�s� x


�
��

�s
�



�

���

�x�
� f�u


��

�x

�
�s� x
dxds�

����


We have lims	� ku�s� �
�u�kL� � 	� Indeed for U�x
 � exp
�
�R x�
 u��z
dz

�
�

ku�s� �
� u�kL� �
���� 

Gs 
 U

����
L�

kGs 
 �Uu�
� �Gs 
U
u�kL�
� ekGs 
 �Uu�
� Uu�kL� � ek�Gs 
 U � U
u�kL� �

Since Uu� � L��R
� the �rst term of the right hand side converges to 	
when s	 	� The continuity and the boundedness of U imply that Gs 
U is
bounded uniformly in s and converges pointwise to U � Hence� by Lebesgue�s
theorem� the second term also goes to 	�
Thus lims	�

R
R
u�s� x
��s� x
dx �

R
R
u��x
��	� x
dx and taking the limit

�	 	 in ����
� we getZ
R

u�t� x
��t� x
dx �

Z
R

u��x
��	� x
dx

�

Z
���t��R

u�s� x


�
��

�s
�



�

���

�x�
� f�u


��

�x

�
�s� x
dxds�

By spatial truncation� this equation still holds if � � C���
b ��	� t��R
� For the

particular choice ��s� x
 � Gt�s
�x
 with  C� with compact support in R�
we conclude like in the proof of Lemma ��� that ����
 holds� Therefore u�t� x

is a measurable version of the densities for P and P provides a probabilistic
representation of u�

�� Extension of the results to martingale problems with

a non�constant diffusion coefficient

Let a be a Lipschitz continuous map on R
d with values in the set of

symmetric non�negative d� d matrices such that

�Ma � ma � 	� �x� y � Rd� majyj� � y�a�x
y �Majyj�

and L be the operator L��x
 � �
�

Pd
i�j
� ai�j�x


���
�xi�xj

�x
�

Let 	 denote the square�root of a� By the assumptions made on a� the map
x	 	�x
 is bounded and Lipschitz continuous�
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According to Friedman ����
 �pp� ����	
� there is a transition density
"s�x� y
� s � 	� x� y � Rd associated with the time�homogeneous stochastic
di�erential equation dXt � 	�Xt
dBt�
Moreover� for any t � 	 and any continuous function  with compact support
in R

d� the function ��s� x
 �
R
Rd

"t�s�x� y
�y
dy de�ned on �	� t
 � R
d

satis�es

�s � �	� t
� �x � Rd� L��s� x
 �
��

�s
�s� x
 � 	�

�x � R� lim
s�t

��s� x
 � �x
� ���


Lastly� for any M � Ma� there is a constant C�t
 such that�

�s � �	� t�� �x� y � Rd� "s�x� y
 � C�t


s
d
�

exp

�
� jx� yj�

�Ms

�
� ����


�s � �	� t�� �x� y � Rd� � � i � d�

�����"s�x� y
�xi

���� � C�t


s
d��
�

exp

�
� jx� yj�

�Ms

�
�

����


Integrating ����
� we obtain the following estimate

�t � 	� �K�t
 � 	� �s � �	� t�� �x � Rd� � � i � d�

�����"s�x� y
�xi

����
L�y

� K�t
p
s
�

����


Theorem ���� �m � P�Rd
� the martingale problem �MP�� �resp� �MP
��
in which �

����Xs
 is replaced by L��Xs
 in �
��� �resp� in ������ admits a
unique solution starting at m�

The proofs of Theorem ��� and Theorem ��� are based on Lemma ����
Therefore we explain how to adapt the conclusions and the proof of this
lemma� As 	 is Lipschitz continuous and bounded� for any m � P�Rd
� the
martingale problem� P� � m and

�� � C�
b �R

d
� ��Xt
� ��X�
�
Z t

�
L��Xs
ds is a P �martingale

admits a unique solution P � Moreover� by the existence of "� for t � 	�
Pt has a density equal to

R
Rd "t�x� y
m�dx
� For g like in Lemma ����

by Girsanov�s theorem� as 	��g is bounded� the martingale problem with
L��Xs
 � g�s�Xs
�r��Xs
 replacing L��Xs
 admits a unique solution and

this solution belongs to �P��
� Let p�s� x
 be a measurable version of the
densities for the solution� If  is a continuous function with compact sup�
port on Rd and ��s� x
 �

R
Rd

"t�s�x� y
�y
dy� by the uniform continuity of

 and ����
� the convergence of ��s� x
 to �x
 in ���
 is uniform in x � Rd�
By ����
� we upper�bound r��s� x
� These two remarks allow to transpose
the proof of ����
 and obtain that for any t � 	�

p�t� y
 �

Z
Rd

"t�x� y
m�dx
 �

Z t

�

Z
Rd

rx"t�s�x� y
�g�s� x
p�s� x
dxds a�s�

With this equation and ����
 instead of ����
 and ��
� we easily adapt the
proofs of Theorem ��� and Theorem ����
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