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Abstract. We are interested in the propagation of light in a random packing of dielectric spheres within the
geometrical optics approximation. Numerical simulations are performed using a ray tracing algorithm. The
effective refractive indexes and the transport mean free path are computed for different refractive indexes
of spheres and intersticial media. The variations of the optical path length under small deformations of the
spheres assembly are also computed and compared to the results of Diffusive Wave Spectroscopy experi-
ments. Finally, we propose a measure of the transport mean free path and a Diffusive Wave Spectroscopy
experiment on a packing of glass spheres. The results of those experiments agree with the predictions of
this ray tracing approach.

PACS. 42.25.Dd Wave propagation in random media – 78.35.+c Brillouin and Rayleigh scattering; other
light scattering – 81.05.Rm Porous materials; granular materials

1 Introduction

Deformations of granular media may occur at very dif-
ferent length scales ranging from the geophysical scale,
down to the individual grain motion [1]. Getting experi-
mental information on the motion of particles is a difficult
task, not only due to this wide spread of scales, but also
because the materials are currently opaque, leading exper-
imentalists to use techniques which do not involve direct
imaging. In order to get different kinds of information on
the heterogeneity of the media [2] or on the dynamics of
the granular media [3], the propagation and the scattering
of acoustic waves traveling in those heterogeneous media
may be used. Light scattering may also be used in or-
der to get information on motions within granular media
at the scale of the optical wavelength [4–8]. However the
relationship between the evolution of the scattered light
and the dynamics of a granular medium has not yet been
considered in details in preceding studies. We discuss in
this paper this relationship with the help of a numeri-
cal algorithm of ray tracing. In Section 2 we first present
the ray tracing algorithm (2.1), discuss some geometrical
properties of the rays (2.2), determine transport mean free
paths as a function of the refractive indexes and we com-
pare the results with some experimental values reported in
the literature (2.3). In Section 3, we consider the deforma-
tions of the granular medium (3.1), and we compute the
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variations of the optical length induced by this deforma-
tion (3.2). The numerical results are then compared to a
simplified analytical model (3.3). In Section 4, we present
two experiments on a packing of glass spheres dispersed
in air. First a transmission experiment (4.1) is presented,
and the transport mean free path is measured. In Sec-
tion 4.2 a Diffusive Wave Spectroscopy experiment on a
packing submitted to thermal dilatation is done and com-
pared to geometrical optics computations. We finish with
concluding remarks and possible experiments in Section 5.

2 Diffusive transport of light

2.1 Numerical algorithm

For this study, I largely use the propagation of a light
ray using a ray-tracing algorithm through a close random
packing of identical spheres. The assembly of identical
spheres of radius R is computed by the repetition of a
10R × 10R × 10R cube with periodic boundaries. I used
for this the algorithm described by Jodrey et al. [9] for
generating a packing with a solid fraction φ ≈ 0.637. Al-
though the sphere packing is indeed periodical, no com-
puted quantity keeps any trace of this periodicity. It was
checked that the results were identical for a periodic as-
sembly with a 5R×5R×5R elementary cube. The results
of the simulation are also similar to a non-periodic configu-
ration in a 200R×200R×200R box generated by free fall of
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granular beads into a box. However, the density obtained
with such an algorithm is significantly lower, and the nu-
merical values of computed quantities like the mean free
path are slightly different. For given refractive indexes of
the sphere nint and of the continuous medium next, a ray
is calculated according to Snell-Descartes laws of reflection
and refraction. The ray is a succession of reflections and re-
fractions, with probabilities given by the Fresnel formulas.

For this, we consider an electric field with a linear
polarization along a unit vector s. The components of s
along the parallel (e‖) and perpendicular (e⊥) unit vec-
tors with respect to the scattering plane are computed as
s = A‖e‖ + A⊥e⊥. The probability p that a reflection oc-
curs is then calculated as p = r2

‖A
2
‖ + r2

⊥A2
⊥, where r‖ and

r⊥ are the reflection coefficients for electric field parallel
and perpendicular to the scattering plane given by Fresnel
formulas. The choice of the scattering event, i.e. reflection
or refraction is randomly done according to this probabil-
ity. The next unit vector s′ of the polarization after the
scattering event is then calculated as

s′ =
r‖A‖e‖ + r⊥A⊥e⊥

‖r‖A‖e‖ + r⊥A⊥e⊥‖
, (1)

if the scattering event is a reflection. If the scattering event
is a refraction, reflection coefficients should be replaced by
transmission coefficients in (1).

The results of the ray-tracing algorithm is checked in
two different ways. First, the results are compared to the
computation of the transmittance of the Christiansen filter
made of glass beads of Hoffmann [10,11]. Secondly, a very
dilute sample of water spheres is simulated, and intensity
and polarizations of the multiples rainbows are compared
to van de Hulst data [12]. In each case the comparisons
with data are excellent.

2.2 Steps lengths

In this geometrical optics description of light propagation
in a glass bead assembly, the photons follow a random walk
consisting in scattering events which are either refractions
or reflections. The directions of the photon before and af-
ter the scattering event are not independent, but fixed by
Snell-Descartes laws, and thus constitute a persistent ran-
dom walk. The walk consists in steps which are inside or
outside the spheres. Due to the geometry of the sphere
packing, the steps inside and outside the spheres are dif-
ferent and must be separated for the analysis.

Figure 1 shows the mean length for steps which are in-
side and outside the spheres. Those behaviors may be eas-
ily understood. We notice first that the average distance
between two points uniformly distributed on a sphere is
4R/3. Thus the mean length of the segment joining two
successive spheres is then 4(1− φ)R/3φ ≈ 0.76R which is
the length for steps outside the sphere 〈lext〉. The distribu-
tion of the step lengths outside the spheres should follow
the interstice radius distribution of sphere packing [13]
and is found nearly exponential at large step lengths. The
steps inside the spheres may not be longer than 2R, and
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Fig. 1. Steps lengths for a ray propagating through the bead
assembly as a function of the refractive index ratio. ◦ are steps
lengths for steps outside spheres 〈lext〉, � are lengths for steps
inside the spheres 〈lint〉, and � are the averaged steps lengths
〈l〉. Dashed lines and solid symbols are expected limiting be-
havior for a close packing of spheres as explained in the text.
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Fig. 2. Fraction ηN of number of steps inside the spheres (�)
and fraction of length ηs of the ray inside the spheres (◦) as
a function of the refractive index ratio. Dashed lines are the
expected limiting behavior for a close packing of spheres.

their length distribution and mean length depend on the
refractive index ratio. If nint < next, the optical rays pene-
trating the spheres may have any orientations with respect
to the normal, and thus the lengths lint are distributed be-
tween 0 and 2R with a distribution P (lint) = lint/(2R)2
and then 〈lint〉 = 4R/3. If nint > next, the rays inside
the spheres are not allowed to make angles greater than
arcsin(next/nint), thus increasing the mean lengths for
steps inside the spheres. In the limit nint � next, steps
inside the spheres are near the spheres diameters, and the
mean length of steps is then 〈lint〉 = 2R.

The number of steps inside and outside the spheres are
not the same. In Figure 2 the fraction of steps inside the
spheres is plotted:

ηN =
Nint

Nint + Next
, (2)
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where Nint (respectively, Next) is the number of steps in-
side spheres (respectively, outside) as a function of the
refractive index ratio. For nint < next, the possibility of
total refraction favors outside paths. This cannot occur
for nint > next, since the incident angle of a ray impact-
ing a sphere should be the same as the angle of the ray
emerging from the sphere, whatever the number of inter-
nal reflections. It follows from the symmetry of the Fresnel
formulas that the number of paths inside and outside the
sphere should be ηN = 1/2.

For a given ray

ηs =
Nint〈lint〉

Nint〈lint〉 + Next〈lext〉
(3)

is the fraction of the length of the ray which is outside
the spheres and is also plotted in Figure 2. If m = 1, this
fraction is evidently φ, and in the limit nint � next, where
〈lint〉 = 2R, we obtain ηs = 3φ/(2+φ) ≈ 0.73. It should be
stressed that when m decreases, the fraction of the length
ηs indicating that the light propagation occurs preferen-
tially outside the spheres. This situation is similar to the
propagation of light through the Plateau borders into a
dry foam [14,15]. The fraction of length inside or outside
the spheres may be also directly measured by considering
media with different absorptions, as has been done in an
aqueous foam [16].

Finally, the mean step length is defined as

〈l〉 = ηN 〈lint〉 + (1 − ηN )〈lext〉. (4)

If nint = next, rays are straight lines with an equal proba-
bility of outside and inside steps, and 〈l〉 = 2R/3φ ≈ 1.05.
If nint � next the average mean free path should be
R(2 + φ)/(3φ) ≈ 1.38R.

2.3 Transport mean free path

A ray propagating in the beads packing follows a persis-
tent random walk governed by a succession of reflections
and refractions. For a large number of scattering events,
this random walk may be described by a diffusion process
with a diffusion coefficient D, or by the transport mean
free path l∗ defined as D = vl∗/3, where v is the speed of
light through the bead packing. The diffusion coefficient
is defined by requiring that the mean square displacement
〈L2

s〉 between two points separated by a distance s along
the ray should be 6Ds/v for long enough distance s [17].
This, with the definition of l∗ leads to

l∗ = lim
s→∞

〈L2
s〉

2s
. (5)

For every refractive index ratio, a ray with 106 scattering
events is computed, 〈L2

s〉 is computed by a moving aver-
aging along the ray, and l∗ is determined using a linear fit
of (5) at large values of s. It has been checked that the
determined values are in agreement with a numerical ex-
periment where the transmittance of a slab as a function

8
1

2

4

6
8

10

2

4

6
8

100

l*
/R

3.02.52.01.51.00.5

nint/next

Fig. 3. Transport mean free path as a function of the refractive
index ratio (◦). The dotted line is 〈l〉/(1− g). The dashed line
is the asymptote at nint = next.

of its thickness is measured and compared to theoretical
expressions [18]. The results are summarized in Figure 3.

The transport mean free path diverges at next = nint

and decreases to non-trivial values for large or small ra-
tio of refractive index. If the scattering events are inde-
pendent, it is well known that l∗ = l/(1 − g), where
g = 〈cos(θ)〉 is the average of the cosine of the scatter-
ing angle. The computed value of l/(1 − g) is plotted in
Figure 3. The difference at large values of the ratio of re-
fractive indexes proves that the scattering events are not
independent in this limit. Indeed, in this limit, rays may
be trapped in a sphere and suffer a succession of scatter-
ing event with the same scattering angle and in the same
scattering plane. The effect of such correlated scattering
events is to slow down the diffusive transport of light, and
then to lower the transport mean free path with respect
to the case of non-correlated scattering events.

The transport mean free path is typically of the order
of a few mean free paths, indicating that a few scatter-
ing events are necessary in order to randomize the ray
orientation. These trends are similar to light propaga-
tion in a dry foam [19,14]. For practical uses, the fol-
lowing numerical expressions may be used for l∗ as a
function of the refractive indexes ratio m = nint/next:
l∗ = R/(−0.33782 + 0.34122m − 0.01368m2) for 1.05 <
m < 3.0 and l∗ = R/(2.3843 − 4.6267m + 2.2416m2) for
0.33 < m < 0.95 with a maximum relative error of 6%. For
glass spheres n = 1.52, l∗ = 6.65R if the spheres are dis-
persed in air, and l∗ = 34R if they are dispersed in water.

We now compare these results with some reported val-
ues of l∗. Considering the granular “gaseous” flow of gran-
ular media in a vertical pipe, Menon et al. [4] determined
l∗ ≈ 15R for glass spheres of radius 47μm dispersed in air.
This measure was done by comparison of the time decay
of the Diffusing Wave Spectroscopy in different geome-
tries. The variation of the density in the flow compared to
the close-packing density is expected to be totally negligi-
ble compared to common experimental errors. The optical
properties of glass beads dispersed in water have been in-
vestigated by Leutz et al. [20]. They found l∗ ranging from
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14R to 16R depending on the optical wavelength for beads
of radius between 80μm to 200μm. Those measures have
been done by analyzing the variation of the optical trans-
mission of a slab as a function of its thickness. Those two
reported measurements led to the same ratio l∗/R, despite
the variation of the dispersing phase. This fact is in dis-
agreement with a visual inspection of glass spheres in air
and in water which look different to the human eye, and
with a rapid check of the transmitted light across a slab.

3 Deformation of the spheres packing

3.1 Dynamic light scattering

We are now interested in the study of the deforma-
tion of the packing of spheres. In light scattering exper-
iments, the motion of the scatterers is probed by mon-
itoring the time autocorrelation function gE(t1, t2) =
〈E(t1)E∗(t2)〉/〈|E(t1)|〉〈|E(t2)|〉, where E(t) is the scat-
tered electric field, t1 and t2 are two different times,
and 〈. . .〉 corresponds to averages over many speckle
spots [21–23]. Within the weak-scattering limit (λ � l),
and in the multiple-scattering regime (L � l, where L is
the dimension of the sample cell), gE(t1, t2) may be ex-
pressed as [24,25]

gE(t1, t2) =
∫

s

P (s)〈expjΔΦs(t1,t2)〉ds, (6)

where ΔΦs(t1, t2) is the phase difference of an optical path
of length s between the times t1 and t2 and contains the
information about the motion of the scatterers; 〈. . .〉 is
an average on all paths of length s, and P (s) is the path
length distribution, and depends on the transport mean
free path and on the geometry of the experiment. Be a
scattering sequence for a photon within the packing of
spheres as shown in Figure 4. We consider a piece of path
joining two points rν and rν+2. In the geometrical op-
tic limit, among all the possible paths joining those two
points, only paths which are near the ray computed ac-
cording to the Snell-Descartes laws must be considered
in order to compute the electric field scattered from rν at
point rν+2. Indeed the interferences of the scattered waves
from all the possible paths cancels, except in the vicinity of
the geometrical optic ray whose optical path length is sta-
tionary. The distance between successive scattering events
being of order ∼ R, the extension of the zone around the
geometrical optic ray which contributes to the scattered
field is of order ∼

√
λ0R, with λ0 the vacuum wavelength.

As long as the displacements of spheres are small com-
pared to this extension, and since the wavelength λ0 is neg-
ligible compared to the distance between scattering events
R, we may calculate the variation of the phase due to the
displacement of the point rν+1 as if this point is light-
ened by a plane wave. In practice, the displacements of
the scattering points measured with Diffusive Wave Scat-
tering are ∼ λ0/

√
N , where N is the number of scattering

events. Since
√

N � 1 in the multiple-scattering limit and
λ0 �

√
λ0R in the geometrical optic limit, this condition

is always fulfilled.

Fig. 4. A scattering sequence of a photon within the packing
of spheres.

The phase shift of a N times scattered photon is then

φs = k0

N∑
ν=1

nν |rν+1 − rν |, (7)

where the points rν are on the rays computed according
to the Snell-Descartes Law, nν is the refractive index cor-
responding to the piece of ray between rν and rν+1 and
k0 = 2π/λ0.

3.2 Deformation of the granular material

We now consider a deformation of a sphere packing be-
tween times t1 and t2. Many different kinds of deforma-
tions may be considered depending on the mechanical
properties of the spheres, on the surrounding medium, and
on the deformation field within the material. In this study,
we restrict ourselves to a totally affine displacement field,
which corresponds to the case where the spheres and the
continuous media are deformed identically. Such a situ-
ation may correspond to experiments where air bubbles
are trapped within a gel which is sheared. This simplifi-
cation of the deformation field does not take into account
some possible non-deterministic motions of the scatterers
as may occur if the material is submitted to mechanical
vibrations, or possible deviations to affine displacement
field as it could occur in deformed granular media.

With this hypothesis, the problem is closely related to
the problem of the fluctuation of the intensity scattered
by a colloidal suspension submitted to a shear flow, which
has been investigated in details by Bicout et al. [26–28]. If
the deformation field varies slowly at the scale of the mean
free path, the variation of the phase given by equation (7)
between times t1 and t2 may be expressed as [27]

ΔΦs(t1, t2) = k0

N∑
ν=1

∑
i,j

nν lνeν,ieν,jUij , (8)

where lν = |rν+1 − rν |, eν,i is the component along direc-
tion i of the unitary vector eν , and Uij = (1/2)(∂Ui/∂xj +
∂Uj/∂xi) is the deformation tensor. For needs of simplic-
ity, in the following we will drop the references to the times
t1 and t2, and simply write ΔΦs

The phase variation involved in equation (7) is the sum
on a large amount of individual phase variations, and thus



J. Crassous: Diffusive Wave Spectroscopy of a random close packing of spheres 5

is a random Gaussian variable. It follows from the central-
limit theorem that the average phase factor involved in
equation (6) is

〈expjΔΦs〉 = expj〈ΔΦs〉 exp−(〈ΔΦ2
s〉−〈ΔΦs〉2)/2 . (9)

The average phase variation may be calculated as [26]

〈ΔΦs〉 = k0N〈lνnν〉〈eν,ieν,j〉Uij

=
1
3
k0s〈n〉

∑
i

Uii , (10)

where 〈n〉 = 〈nν lν〉/〈lν〉. As pointed out by Bicout in the
study of flows of colloidal suspensions by Diffusive Light
Scattering [26], variations of the mean phase shifts are as-
sociated with the variations of the volume of the material.
The evaluation of the mean square of the phase variation,

〈ΔΦ2
s〉 = k2

0

〈
N∑

ν,ν′=1

lν lν′nνnν′

×
∑

i,j,k,l

eν,ieν,jeν′,keν′,lUijUkl

〉
, (11)

involves both geometric quantities which depend on the
disorder inside the system, and quantities depending on
the optical properties through the persistence of the ray
orientation across the interface. We first notice that the
variance of the phase shift should vary quadratically with
the elements of the deformation tensor. In addition the ori-
entation of the rays being isotropic, the variance should
depend on the isotropic invariants of the deformation ten-
sor: (

∑
i Uii)2 and (

∑
i,j U2

ij). Moreover, since the light is
multiply scattered, the phase shift is due to a large num-
ber of scattering events. It follows that the variation of
the phase shift should vary linearly with the number N of
scattering events, as well as linearly with the path length
s. Taking into account these different remarks, we may
postulate that the variance of the phase shift could be
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Fig. 5. Variation of the lengths β (◦) and χ (�) with the
refractive index ratio. Dotted lines are for guidelines. Plain
lines: values of β expected from reference [28].

written as

〈ΔΦ2
s〉 − 〈ΔΦs〉2 = k2

0s(
(β − χ)

(∑
i

Uii

)2

+ 2β
∑
i,j

U2
ij

)
, (12)

where β and χ are two lengths which depend on the ge-
ometric characteristic of the rays, and which scale as the
bead radius.

The analytical form (12) for the variance of the phase
shift has been checked numerically by computing the
phase variation of rays of different path lengths s, after
deformation of different amplitudes and due to different
deformation tensors. Figure 5 shows the variations of the
two lengths β and χ with respect to the ratio between
the two refractive indexes as determined by the numeri-
cal algorithm. Those lengths diverge at next = nint and
show non-trivial variations as the mismatch between the
indexes of spheres and surrounding medium increases.

3.3 Approximate expressions

Further analytical computations of β and χ require more
knowledge of the correlations along a geometric ray, such
as the correlations between the orientations of the succes-
sive rays or correlations between orientations and length.

Such a computation has been derived by Bicout et
al. [28] for colloidal suspensions where there are no corre-
lations of the lengths between successive scattering events,
where the path lengths between two scattering events are
distributed along a negative exponential function, and
where the variations of the orientations along rays are
given by Mie scattering. Under these hypotheses, they
found the expression (12), with a value of β = 2l∗/15.
The value of χ has not been computed since they consider
only incompressible deformations of fluid.

The result of this model is shown as the plain line in
Figure 5, and reproduces qualitatively well the numeri-
cally observed behavior, i.e. the divergence close to the
matching between spheres and surrounding media, with
a reasonable quantitative agreement. However this model
is unable to take into account the numerically observed
behavior as the mismatch between spheres and surround-
ing media increases. Those differences should be taken
into account in a more complex model which would con-
sider not only the correlations between the orientations
of the segments along the rays, but also the correlations
between the scattering angles along the rays. Such cor-
relations are expected to arise from successive correlated
scattering events, as it could occur when a ray is trapped
within a sphere and then suffers well-correlated scatter-
ing events. However, from an experimental point of view,
those effects are of minor importance if the ratio of refrac-
tive indexes is kept in the range 0.7–1.5, as is the case for
common liquid foams, emulsions, or glass beads dispersed
in water or glass.
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Fig. 6. Transmission of glass beads packing as a function of the
thickness cell (◦). Plain line: best fit according to equation (13).

4 An Experimental test

4.1 Experimental set-up

The preceding discussions and developments rely on the
hypothesis that the propagation of the light within the
beads packing may be described within the geometrical
optics framework, and that Diffusing Wave Spectroscopy
experiment may be understood within this framework. We
propose now a static and a dynamic light scattering on a
glass bead packing dispersed in air. Experiments are per-
formed with Silibeads�Soda-Lime glass spheres from Sig-
mund Lindner GmbH. Beads radius are selected by sieving
in a range of radius R = 35μm to R = 45μm. Particles are
then washed with water in order to remove possible dusts,
and then dried. A microscopic inspection of the particles
shows that broken beads or clearly elliptical shaped beads
are present and represent typically 10% of the beads.

4.2 Transmission experiments

The transport mean free path is determined by measuring
the light transmission ratio of beads packing as a func-
tion of its thickness. For this we disposed the beads in
a dihedral cell whose thickness varies from L = 2mm to
L = 10mm, and with an aperture angle α ≈ 60mrad. The
cell is illuminated with a stabilized 633μm laser (Melles
Griot 05STP903), and the scattered light is collected with
microscope objective and focussed on a silicon photodi-
ode. The transmissivities are normalize with the diffuse
intensity transmitted through a reference polyball sample
(monodisperse polystyrene spheres of size 0.73 μm, thick-
ness of sample 3.1mm, volume fraction φ = 0.64%, trans-
port mean free path 430μm).

Figure 6 shows the evolution of the transmission as a
function of the cell thickness. Data are fitted according
to [20]

T (L) =
l∗

La
2(β + γ)

1
1 + 2βl∗/La

exp−(L/La), (13)

where La is the absorption length, γ is the distance ex-
pressed in l∗ from the boundary at which the diffusion

approximation is valid, and which is taken as unity, and
β = (2/3)(1 + R)/(1 − R) is the reflection coefficient of
the diffusing wave, with R the reflection coefficient of the
air/glass/air interface. Best fits leads to La = 805±20μm
and l∗ = 330 ± 40μm, in reasonable agreement with the
value l∗ = 266μm expected from the ray tracing approach.

4.3 Diffusing Wave Spectroscopy experiment

There is, to the knowledge of the author, no clear way to
produce a well-know displacement field within a granular
medium. This is due to the nature of the dry solid contact
which may produce different deviations to affine defor-
mation field, including plastic events. As a consequence,
there is no simple equivalent to Brownian colloidal parti-
cles in order to test Diffusing Wave Spectroscopy for affine
deformation field within solid granular matter.

We propose however to examine and analyze the ther-
mal dilatation of a granular beads within the optical ge-
ometric framework. Experiments are performed with the
same soda lime glass beads which are contained in opti-
cal glass spectrometry cell of thickness L = 5.0mm. The
optical cell is enclosed in a temperature controlled cell
whose temperature is controlled with a stability of few
mK [29]. The material is lightened with the non-extended
laser beam, and the scattered transmitted light is collected
through a 3mm diameter diaphragm aligned with the in-
cident beam. The scattered light is then recorded at a
frame rate of 1Hz with a 8bit monochrome camera (Cohu
4910). The speckle size is fixed to 3 pixels and ∼ 4 · 104

speckle spots are recorded simultaneously. The experimen-
tal contrast of the scattered intensity 〈I2〉/〈I〉2 is typically
0.3. The temperature of the granular material is varied at
the rate 0.01 ◦C/mn around a mean temperature of 32 ◦C,
and the evolution of the scattered light is measured dur-
ing those variations. It as been checked that variations of
a factor two of the cooling or heating rate does not have
visible effects on the experimental results. The correlation
of the scattered intensities are measured as

gI(T1, T2) =
〈Ip(T1)Ip(T2)〉
〈Ip(T1)〉〈Ip(T2)〉

− 1, (14)

where Ip(T ) is the intensity recorded at temperature T
on the pixel p, and 〈. . .〉 corresponds to an average over
the pixels of the camera. Data are corrected from exper-
imental noise and normalized with a procedure described
elsewhere [30].

The plain line in Figure 7 is a plot of the correlation
as a function of the temperature difference. The experi-
mental results are now compared with the numerical re-
sults of the ray-tracing algorithm. In order to do this,
we first compute a large number M of rays propagating
through the sample. Then, for each ray m, the variation of
the phase shift ΔΦ(m) due to the dilatation is calculated
from equation (10) assuming that the deformation tensor
is Uij = δijαΔT as

ΔΦ(m) = kos〈n〉αΔT. (15)
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Fig. 7. Plain line: measured intensity correlation as a func-
tion of the glass beads temperature difference. Dashed line:
intensity correlation function computed from the optical ge-
ometric model assuming a uniform dilatation coefficient of
α = 8.6 · 10−6 K−1. Dotted line: computed intensity correla-
tion function for a glass sphere packing of average radius for a
uniform dilatation coefficient of α = 12 · 10−6 K−1.

In deriving equation (15) we have neglected the vari-
ation of the refractive index of the glass with the tem-
perature. This assumption is justified by the fact that at
the experiment temperature, the thermo-optical effect for
Soda Lime glass (1/n)(∂n/∂T ) ≈ −1.3 · 10−6 K−1 [31]
is small compared to dilatation effect α ≈ 8.6 · 10−6 K−1.
Equation (15) simply states that under a thermal isotropic
dilatation, a path of length s is dilated of αΔTs, whatever
the geometrical aspect of this path.

The normalized correlation function of the scattered
electric field gE is then computed as

gE =
∑M

m=1 exp(jΔΦ(m)) exp(−s/la)∑M
m=1 exp(−s/la)

(16)

with la = 3L2
a/l∗ [16,18]. The exponential damping factor

takes into account the absorption measured in Section 4.2.
The normalized correlation function of the scattering in-
tensity is then computed using the Siegert relation,

gI = |gE |2 . (17)

The dashed lines in Figure 7 is a plot of the computed in-
tensity correlation function for the packing of spheres with
the geometrical parameters R = 40μm, L = 5mm, La =
805μm according to Section 4.2 and α = 8.6 · 10−6 K−1.
This evidences that this optical geometric model is able
to take into account the deformation of the sphere pack-
ing. The discrepancy between the measurement and the
prediction of the optical geometric model may be due to
numerous simplifying assumptions as the use of mono-
disperse spheres or strictly affine displacement field, and
separated studies should be necessary in order to take into

account such effects. It should be stressed that the com-
puted correlation function is very sensitive to the exper-
imental parameters, and especially to the deformation of
the sphere packing. The dotted line in Figure 7 is a plot of
the computed correlation function with the same parame-
ter set, except the dilatation coefficient which is taken to
α = 12 · 10−6 K−1. It appears very plausible that defor-
mation field is not only composed of a strictly affine one,
but also a non-affine deformation takes place, which could
explain an increased of the net displacement compared to
the expected one.

5 Conclusion

We developed a ray-tracing program in order to simulate
the propagation of the light through a random close pack-
ing of dielectric spheres. This allowed us to compute the
geometrical quantities associated with the random walk
of the optical ray through the sample. The effects of the
deformations of the materials may be taken into account
by considering the variance of the variations of the phase
shifts during the motion of particles. The results are found
to be very similar to the problem of the deformation of a
colloidal suspension into a shearing flow. There are how-
ever visible effects due to the correlations of the scattering
events which are not present inside colloidal suspension.
Finally, we performed an experiment on a homogeneous
deformation of the materials, and the results were found
to be in agreement with the description of geometrical
rays propagating through the sample. Different experi-
ments may be considered to test in more details the optical
geometric limit of light propagation. The first one should
be systematic measurement of the transport mean free
path as a function of the ratio of the refractive indexes.
This could be done with the measure of the transmitted
or backscattered intensities, a method which does not rely
on hypotheses on the variations of the phase shifts dur-
ing the motion of the particles. By considering slightly
absorbing glass spheres of interstitial liquid, the predic-
tions on the relative amount of rays within the continuous
phase or the spheres should be also testable. The diffi-
culty of deforming a granular medium in a controllable
way makes experimental tests about the variations of the
phase shifts under deformation difficult. We have in this
paper measured the dilatation of granular materials. An-
other possibility should be to use a sheared wet foam or an
emulsion [32]. At large mismatch between the two phases,
the effects of internal refractions should be visible, as we
may check in Figure 5: at nint/next ≈ 2 there is a factor 5
between predictions which neglect correlations of scatter-
ing events compared to more accurate predictions. Finally,
from an experimental point of view, Diffusive Wave Spec-
troscopy appears as a useful method in order to study
deformations of granular materials.
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