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ABSTRACT: The mechanism of CF2-transfer from TMSCF3 (1), mediated by TBAT (2–12 mol%) or by NaI (5–20 mol%), has been 
investigated by in situ / stopped-flow 19F NMR spectroscopic analysis of the kinetics of alkene difluorocyclopropanation, and com-

peting TFE / c-C3F6 / homologous perfluoroanion generation, 13C/2H KIEs, LFERs, CF2-transfer efficiency and selectivity, the effect 
of inhibitors, and density functional theory (DFT) calculations. The reactions evolve with profoundly different kinetics, undergoing 

auto-inhibition (TBAT) or stochastic auto-acceleration (NaI), and co-generating perfluoroalkene side products. An overarching mech-
anism involving direct and indirect fluoride transfer from a CF3-anionoid to TMSCF3 (1) has been elucidated. It allows rationalization 

of why the NaI-mediated process is more effective for less-reactive alkenes and alkynes, why a large excess of TMSCF3 (1) is required 

in all cases, and why slow-addition protocols can be of benefit. Issues relating to exothermicity, toxicity, and scale-up are also noted.

INTRODUCTION 

The unique properties of cyclopropanes leads to useful effects on 
their fluorination,1 with the application of difluorocyclopropanes 
being especially prominent.1-2 The latter are most commonly pre-
pared by alkene-difluorocyclopropanation,1-3 nominally via in situ 
capture of singlet CF2,4 and over the last 50 years, a very broad 
range of reagents have been developed for this process.5-10 How-
ever, many of these reagents have limitations, inter alia, toxicity, 
the use of strong bases, or the need for high-temperatures. The latter 
aspect is of critical importance for alkynes, where the primary 
difluorocyclopropene product can undergo further difluorocyclo-
propanation and other reactions.11 Thus, there has been much inter-
est in the development of new reagents,9 and major advances have 
been independently made by Dilman and co-workers,3c,9fgh,t and by 
Prakash and Hu and co-workers,8c,10 in the use of TMSCF2X spe-
cies (X = F, Cl, Br, I) for CF2-transfer under mild conditions. 

The Prakash-Hu difluorocyclopropanation, Scheme 1, employing 
commercially-available TMSCF3 (1), and in particular the use of 
NaI in THF (conditions B),10 is now widely-applied,12 e.g. in the 
extensive studies of Grygorenko and co-workers,12i,m,n,p and 
Mykhailiuk and co-workers,12h,l and in a difluorocyclopropanation 
flow-reactor developed by Charette and co-workers.12b Conditions 
analogous to B, Scheme 1, but omitting the alkene, have also been 
applied by Hu and co-workers for the preparation of tetrafluoroeth-
ylene (TFE), and its reactive dissolution in a second vessel.13h This 
allows a range of -CF2CF2- containing species to be generated from 
TMSCF3 (1), without direct, and potentially hazardous, manipula-
tion of TFE.14 

Thus, TMSCF3 (1), a reagent that has been employed for over 30 
years for the nucleophilic transfer of CF3,15 has recently undergone 
a major renaissance, as a 'CF2-surrogate'.10,12,13 There are consider-
able similarities between the conditions employed for CF3-transfer 
from 1 to electrophiles,15c versus those employed for CF2-transfer 
to alkenes/ynes.10,12 However, a prominent disparity is the large ex-
cess of TMSCF3 (2-7 equivalents) used for CF2-transfer. Indeed, 
this issue has prompted Grygorenko and co-workers to develop a 
'slow-addition protocol' allowing substantial improvement in the 
efficiency and substrate diversity of the difluorocyclopropanation 
process.12m,p 

Scheme 1. Prakash-Hu difluorocyclopropanation.a10,12 

 
a. TBAT = [Bu4N]+[Ph3SiF2]–. b. –50 °C to RT. c. Alkyne at 110 °C. 

Despite the major synthetic developments outlined above, the ki-
netic and mechanistic details of CF2-transfer from TMSCF3 (1), not 
just to alkenes and alkynes,10,12 but to a wide range of other spe-
cies,13 remains largely unexplored.3,12m 

RESULTS AND DISCUSSION 

We recently confirmed that CF3-transfer from TMSCF3 (1) to ke-
tones and aldehydes involves liberation of a transient CF3-anionoid, 
rather than direct CF3-transfer from a trifluoromethyl siliconate 
[Me3Si(X)CF3]– (2X; X = alkoxy or CF3).16-18 Herein we describe a 
detailed study of the mechanism of CF2-transfer from TMSCF3 (1) 
to alkenes and alkynes, under the Prakash-Hu difluorocyclopropa-
nation conditions, Scheme 1.10 Extensive in situ 19F NMR spectro-
scopic investigation has allowed us to analyse the reaction kinetics, 
the selectivity, and the side reactions that lead to the requirement 
for a large excess of the TMSCF3 (1) reagent. As with our study on 
CF3-transfer,16 concurrent analysis of numerous intermediates and 
processes using density functional theory (DFT) has been crucial 
in informing and constraining the investigation. 

1. Prior Studies. Common to most proposals for the mechanism 
of the Prakash-Hu difluorocyclopropanation10,12 is the assumption 
that i) the process involves generation of free CF2 from 1, which 
then adds to the alkene,10,12 and ii) that the CF2 arises from direct 
loss of fluoride (ka) from a transient CF3-anionoid,19,20 Mechanisms 
I, II, Scheme 2. In the absence of alkene, the CF2 is suggested to 
spontaneously dimerize to give TFE.13h Fluoride ions have been 
proposed10,13b,f to have two distinct roles in these reactions. Non-
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metallic fluorides, such as [Bu4N]+[Ph3SiF2]– ('TBAT'), are sug-
gested10,13b to initiate a fluoride-mediated chain reaction (Mecha-
nism I). Conversely, metal iodides, such as NaI, are suggested10,13b,f 
to displace a CF3-anionoid from TMSCF3 (1), with the TMSI co-
product trapping the nascent fluoride from the CF2 generation 
(Mechanism II), thus inhibiting Mechanism I. Intriguingly, the pos-
sibility of an a-elimination at silicon21 (kaSi), Mechanism III, X = 
CF3, F, I) has not been discussed, despite the indirect role of sili-
conates [Me3Si(X)CF3]– (2X)17 in CF3-anionoid transfer.16-18 

Scheme 2. Mechanisms I and II, previously proposed10,13b,f for CF2-
generation from TMSCF3 (1), and mechanism III involving a-elim-
ination in a siliconate (2X, X = CF3, F, I). See text for full discussion. 

 
Table 1. Difluorocyclopropanation of alkenes 3i, and E/Z-4 and al-
kyne 5 in THF. The krel

a and r+b values are independent of the 
method: 1 + TBAT (conditions A); 1 + NaI (conditions B),10 or 
thermalization of Ph3PCF2CO2.22 

 
aRelative rates (krel) are for competitive first-order CF2 capture by 
the alkene/yne, not to overall rates of reaction. bValues in parenthe-
sis by DFT.26 See sections S3.7, S3.8 and S6.2 in the SI. 

2. Singlet CF2 as the Reactive Intermediate. We began by 
studying the reaction of TMSCF3 (1) with alkenes 3i, and E/Z-4 and 
alkyne 5, Table 1. All underwent difluorocyclopropanation, to var-
ying degrees of conversion, in the presence of TMSCF3 (1, 1.5 M) 
and 1-5 mol % TBAT, or NaI. Reactions of E/Z-4 proceeded stere-
ospecifically, and with >98 % retention. The difluorocyclopropene 

8, generated in low yield (12%) from alkyne 5, under the TBAT-
mediated conditions, underwent partial decomposition to unidenti-
fied products. In contrast, 8 was quantitatively-generated, and sta-
ble, under NaI-mediated conditions, see section S3.3 in the SI. The 
same difluorocyclopropane products (6, 7) were obtained from 3i 
and E/Z-4 on thermalization with the zwitterionic CF2-source 
Ph3PCF2CO2.22 The relative reactivities (krel) of alkenes 3i, E-4, and 
Z-4, and the LFER correlation for a-methylstyrenes (3i-vii, r+  = –
0.6),23 were independent of the reagent (1 / Ph3PCF2CO2), and ini-
tiator (TBAT / NaI), Table 1,24 within experimental error. 

Scheme 3. Experimentala and calculatedb KIEs for rapid addition 
of transient singlet CF2 to 3i, at 300 K.25 

 

aExperimental (exp.) values in THF; and in PhCl, as solvent.25 bCal-
culated (calc.) values by DFT, at the M06/6-31+G* level in Gauss-
ian09 employing IEF-PCM single points to account for solvation, 
and goodvibes, kinisot and PyQuiver to compute free energy cor-
rections and KIEs, see sections S1.6 and S6.2 in the SI.26 

Kinetic isotope effects for the reaction of p-F-a-methylstyrene 3i 

with TMSCF3 (1) initiated by TBAT were obtained by a series of 
competitions of 13C- and 2H-labelled a-methylstyrenes 3i against 
aryl-D4-3i, monitored by 19F NMR spectroscopy (aryl-DdF = 0.5 
ppm).25 The resulting primary and secondary kinetic isotope ef-
fects, Scheme 3, were consistent with those predicted by DFT cal-
culations,16,26 for the rapid addition of singlet CF2 to 3i, see section 
S6.2 in the SI.4,27 The concerted asynchronous cycloaddition of CF2 
is also consistent with the LFER correlation (r+ –0.64, Table 1), 
and with E-4 being about 5-fold more reactive than Z-4.  

Overall, the preliminary studies above strongly support the conclu-
sion that TMSCF3 (1) functions as an indirect28 source of free sin-
glet CF2.4 However, as is evident from Figure 1, the two sets of 
conditions, Scheme 1,10 evolve with profoundly different kinetics. 
Whilst we ultimately show that the two processes are mechanisti-
cally related, vide infra, we discuss data for the two systems sepa-
rately below, beginning with TBAT-initiation.10 

3. TBAT mediated CF2 Generation from TMSCF3. The ki-
netics of reaction of 3i with TMSCF3 (1) initiated by TBAT in THF 
were analysed in detail by in situ 19F NMR spectroscopy. The pro-
cess afforded simple and reproducible temporal-concentration pro-
files, in which 1 and 3i are consumed, and TMSF and 6i are gener-
ated, Figure 1A. Although the decay in [1] correlates directly with 
the growth in [TMSF], the difluorocyclopropanation product [6i] 
does not. Competing side-reactions consume excess 1, still gener-
ating TMSF, but not 6i, vide infra, making the productive fraction-
ation, f = v6i/vTMSF, a useful mechanistic parameter. 

 

excess TMSCF3 + 3i ® excess TMSF + 6i       f = v6i/vTMSF 
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Figure 1. Examples of reaction of alkene 3i (0.6 M) with 1 (1.5 M), 
mediated by TBAT (Graphs A, 18 mM) and by NaI (Graphs B, 32 
mM), analyzed in situ by 19F NMR spectroscopy. 

 
3.1 Empirical Rate Law and Fractionation, f. Systematic var-
iation of the reactant concentrations led to empirical relationships 
(equations 1 and 2) for the initial rate (v0) and fractionation (f0) for 
conditions A, Figure 2. 

 
Figure 2. Initial rates (v0/M s-1) of TMSF / 6i generation in the 
TBAT-initiated reaction of 3i with 1.a Circles: experimental data. 
Lines: best-fit using kobs = 6.7 ´ 10-2 s-1, Kf  = 8.3 M, eq. 1 and 2. 

 
a. Conditions: THF, 27 °C. Unless stated, [1]0 = 1.5 M; [3i]0 = 0.6 M; 

[TBAT]0 = 0.018 M. Data by in situ 19F NMR spectroscopic analysis. Val-

ues for [1]0 corrected for initial consumption of reagent by trace H2O, as 

estimated from [CF3H]0. 

The side reactions that reduce the productive fractionation,  f < 1, 
also cause inhibition, vide infra, resulting in progressive deviation 
from the initially pseudo zero-order kinetics (eqn. 1). 

3.2 Analysis of Siliconate 2CF3. Variable temperature 19F NMR 
spectroscopic analysis of the reaction of TBAT with a large excess 
of TMSCF3 (1) and alkene (3i) confirms that the TBAT is immedi-
ately consumed, to quantitatively generate siliconate 2CF3 (dF –63.0 
pm),18 plus TMSF (dF –157.1 pm), Ph3SiF (dF –169.7 pm), and 
Ph3SiCF3 (dF –58.4 pm).29 Under the conditions employed for the 
preliminary kinetic analyses at 300 K, Figure 2, the signal for 2CF3 
is not evident in the 19F NMR spectrum due to extensive line-broad-
ening caused by rapid, endergonic, equilibrium (1/KC) with 1 and 
the corresponding CF3-anionoid, Scheme 4.16,17 

Scheme 4. Complexation (KC) of CF3-anionoid with 1 to generate 
siliconate 2CF3, and competing CF2 generation versus electrophilic 
capture of CF3-anionoid. k–C by SF-19F-NMR16 line-shape, see SI. 

 

In the absence of an alkene, siliconate 2CF3 is relatively unstable 
(t0.5 ~1 min at 13 °C), decomposing to TMSF, plus a mixture of 
perfluorinated species, including TFE, TMSCF2CF3, CF3H (see 
section 6), and complex anions, vide infra.18 The rate of decompo-
sition of 2CF3 is substantially attenuated by the presence of alkene 
(3i) which captures the CF2 (to generate 6i).30 Variable temperature 
stopped-flow 19F NMR spectroscopy (VT-SF-19F NMR)16 allowed 
the siliconate 2CF3, and the generation of TMSF, and transfer of 
CF2, to be studied in detail between 2 and 22 °C, see section S1.9 
in the SI. Simulation of the 19F NMR line-width data of siliconate 
2CF3 indicates that CF3-anionoid dissociation (k-C, Scheme 4) is 
rapid (DG300

‡ = 13 kcal mol-1; DS‡ = 23 cal K-1 mol-1). In contrast, 
the overall rate of TMSF generation has a higher barrier (DG298

‡ = 
19 kcal mol-1; DS‡ = 18 cal K-1 mol-1), consistent with the empirical 
rate law for cyclopropanation, kobs = 6.7 ´ 10-2 s-1, Figure 2.  

Addition of competitive electrophilic species (E+), that trap or di-
vert the CF3-anionoid,16,17 inhibit or terminate CF2-transfer from 1 
to p-F-a-methylstyrene 3i, see SI. For example, addition of CO2 
(13 mol%) results in generation of [CF3CO2]– and complete cessa-
tion of CF2 generation. Analogously, hindered ketone 9 is con-
verted to CF3-addition product 10, in advance of the difluorocyclo-
propanation product 6i being generated; section S3.8G in the SI. 

3.3 Mechanism of CF2-generation; TBAT. The experiments 
outlined above support the conclusion that CF2 generation from 1 
under conditions A (TBAT), involves the CF3-anionoid / siliconate 
2CF3 equilibrium, Scheme 4. Prior mechanistic proposals have in-
voked direct a-elimination (ka) from the CF3-anionoid to yield CF2 
+ F–; in other words, a chain-reaction in which the CF3-anionoid 
and F– are the chain carriers (Mechanism I).10,13b However, as was 
analogously shown for the nucleophilic transfer of CF3 from 1 to 
electrophiles,16 exergonic complexation (KC) of the CF3-anionoid 
will result in the TMSCF3 (1) acting as a powerful inhibitor in the 
kinetics of CF2 generation (eqn. 3), which is not observed: see equa-
tion 1, and left hand graph in Figure 2. 
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Moreover, DFT calculations indicate a prohibitively high barrier 
(DG300

‡ ≥ 27.6 kcal mol-1; kobs ≤ 10-7 s-1) for two-step liberation of 
CF2, starting from the dominant anion, i.e. siliconate 2CF3, and pro-
ceeding via a-elimination (ka; Mechanism I). An analogous pro-
cess in which the siliconate 2CF3, rather than the CF3-anionoid, un-
dergoes a-elimination (kaSi; Mechanism III, Scheme 2) was also 
considered. Whilst the process would be consistent with the empir-
ical rate-law (eqn. 1), DFT calculations in search of a TS for an 
intramolecular a-elimination at silicon in 2CF3, (kaSi), failed. In-
stead the DFT optimizations diverted to a process in which silane 
1 acts as an intermolecular acceptor of fluoride, from the CF3-
anionoid (kF, Mechanism IV, Scheme 5). A low barrier is calculated 
for this elementary step (DG300

‡ = 13.4 kcal mol-1). The predicted 
kinetics (eqn. 4; section S5.1 in the SI) are consistent with the em-
pirical rate law (eqn. 1), when KC is large. The overall barrier cal-
culated for two-step CF2-generation from 2CF3, agrees well with ex-
periment (kF/KC, DG300

‡ = 19.1 kcal mol-1; kobs » 7 ´ 10-2 s-1). 

Scheme 5. Mechanism IV: silyl-induced CF2-generation (kF). En-
ergies (DG300 / kcal mol-1) by DFT.26 

 
Equation 5 allows the CF3-anionoid dissociation rate (k-C, deter-
mined by VT-SF-19F NMR, see section S1.9 in the SI) to be used 
to estimate the ratio of fluoride transfer to 1 (kF) versus Si-com-
plexation (kC). Whilst the ratio doubles across the temperature 
range studied (2-22 °C), CF2 is generated only once in every ap-
proximately 105 reactions of 1 with the CF3-anionoid (kF/kC = 1±0.4 
´10-5). At 27 °C the kF/kC ratio corresponds to DDG300

‡ = 7 kcal 
mol-1, consistent with Si-complexation of the CF3-anionoid (kC) be-
ing close to diffusion-controlled. The low kF/kC ratio (10-5) results 
in an excess of CF3-anionoid being present during generation of 
CF2, and thus competing side reactions (kCF3) which lead to 
TMSCF2CF3 and TFE, both of which accumulate in low concen-
trations (2-10 mM). Equation 6, see section S5.2 in the SI, incorpo-
rates the parameters that influence the efficiency of CF2 capture by 
alkene, i.e. kene[3i], and the concentration of the CF3-anionoid, i.e. 
KC, [2CF3] and [1], thus accounting for the empirical fractionation, f 
(eqn. 2, when Kf » kCF3/KC kene).31 

 
3.4 Chain-Termination: the [C11F23]

– anion, 11. Difluorocy-
clopropanation under conditions A suffers progressive inhibition, 
with reactions sometimes stalling prior to complete consumption of 
alkene/yne, despite a large excess of TMSCF3 (1). The lower the 

reactivity of the alkene/yne (kene), or the lower the initial concen-
tration of 1, the more rapid the onset of inhibition.  

Scheme 6. Energies (DG300 / kcal mol-1) calculated by DFT26 for 
perfluoroalkene homologations see section S6.3 in the SI, leading 
to anion sequestration in 11.32,34 Values are discrete, not global. 

 
In situ 19F NMR spectroscopic studies and DFT calculations, see 
sections S1.8C and S6.3 in the SI, suggest the major decomposition 
product (~50%) of siliconate 2CF3 is the tertiary perfluorocarbanion 
[C11F23]–, 11, Scheme 6.32 This species accumulates during the 
difluorocyclopropanation of styrene 3i, Fig. 1A, as the reaction be-
comes progressively inhibited. DFT calculations indicate that per-
fluoroalkene 12,33 a known trimer of perfluoropropene,34a and its 
homologue 13, Scheme 6, are relatively free from steric strain. In 
contrast, 14 (and isomer) is highly strained, making fluoride elimi-
nation from 11, [C11F23]–, disfavored (DG300 +10.0 kcal mol-1). 

Figure 3. Selected simulations (see section S5.2 in the SI) using a 
simplified mechanism IV. I: TBAT 34 mM, [3i]0 0.6 M; II: TBAT 
15mM, [3i]0 0.6 M; III: TBAT 18 mM, [3i]0 0.3 M. k–C = 4 ´103 s-

1, KC = 1.2 ´104 M-1, kCF3/kene = 9 ´104, kT = 0.016 (± 0.004) M s-1. 
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Thus, beginning with C2F4 (TFE), a series of CF3-anion additions, 
1,2-shifts, and then F– eliminations via TMSCF3,34 see section S6.3 
in the SI, results in the generation of a carbanion (11) that is suffi-
ciently stabilized,35 to terminate reaction involving 1. Inclusion of 
a simplified pathway for chain-termination (kT, TFE, Figure 3) in 
an anionic chain-reaction based on Mechanism IV, afforded a basic 
but functional model for the simulation (Figure 3) of the temporal 
evolution of the TBAT-initiated Prakash-Hu difluorocyclopropa-
nation10 of 3i; conditions A.  

4. NaI mediated CF2 Generation from TMSCF3. In contrast 
to TBAT, difluorocyclopropanation under conditions B (NaI)10 ef-
fects complete conversion of alkenes E/Z-4, and alkyne 5 (see sec-
tion S3.2 and S3.3 in the SI, and krel, Table 1), and proceeds without 
progressive inhibition. Exploration of the NaI-mediated reaction of 
1 with 3i, using a wide range of alternative activators, additives, 
and inhibitors, see section S1.10 in the SI, indicated that both the 
sodium and the iodide, are essential components for efficient reac-
tion. For example, whilst an in situ combination of [Hex4N][I] (5.2 
mol %) with NaBAr4 (5 mol %), was as equally effective as NaI, 
neither component was effective in isolation, and addition of 15-
crown-5 to the NaI-mediated reaction resulted in powerful inhibi-
tion. LiI and KI were much less effective than NaI, affording ≤ 10% 
difluorocyclopropane 6i, over 2 days at 65 °C - conditions under 
which NaI effects 100 % conversion of 3i to 6i in minutes to hours.  

Other nucleophilic / reducing species, M+X– (M =  Bu4N, Li, Na, 
K), including MOtBu, MOAr, MO2CR, MOTMS, TEMPO-M, and 
M-naphthalenide, induced TMSF-generation from 1, displaying a 
wide range of efficiencies for CF2-transfer to 3i (f  = 0.01 to 0.95). 
However, most reactions underwent progressive inhibition, all gen-
erated TFE, and none displayed auto-acceleration, vide infra. At-
tempts to induce electrochemically-mediated TMSF + CF2 genera-
tion from 1 were only moderately effective: reactions initially dis-
played high productive fractionation, but quickly stalled, with side 
products and decomposition of 6i, evident, see section S1.10K in 
the SI. 

4.1 In Situ 19F NMR Analysis. Attempts to establish an empiri-
cal rate law for the NaI mediated reaction of 3i with 1 were 
thwarted by large kinetic variations between and within runs, See 
Figure 1B, and sections S2.2DE in the SI. All of the reactions stud-
ied underwent one or more short periods of acute auto-accelera-
tion36 with the rate of TMSF generation increasing by a factor 102-
103 (vmax » 2 ´ 10-2[1]t Ms-1). Whilst the occurrence and duration 
of these periods varied substantially between runs, in general the 
lower the initial concentration, or reactivity (kene, Table 1), of the 
alkene/yne, the earlier the onset of auto-acceleration, see section 
S3.8 in the SI.  

Preceding auto-acceleration is a phase of slow generation of 6i + 
TMSF with very high efficiency (f  ≥ 0.99 under all conditions ex-
amined) and no evident correlation of the rate (3±2 ´ 10-5 M s-1) 
with [NaI]0, [3i]t, or [1]t. During the final auto-acceleration, the pro-
ductive fractionation is substantially reduced (f ≤ 0.1; see sections 
S2.2CD in the SI), initially through generation of TFE, to a maxi-
mum concentration of 0.25±0.1 M, before being depleted by con-
version to perfluorocyclopropane (c-C3F6),12i and a plethora of 
other minor species, including CF3I and further CF3H.  

In situ 19F NMR spectroscopy during the periods of auto-accelera-
tion suggests that the process causes chemical or physicochemical 
inhomogeneity within the NMR sample,36 resulting in broad and 
asymmetric 19F NMR signals in all of the reaction components, in-
cluding the internal standard, section S2.5B in the SI. This line-
broadening hinders identification of transient species generated 
during acute periods of auto-acceleration. As auto-acceleration at-
tenuates, the 19F NMR signals return to normal (sharp, symmet-
ric).36 Prior to auto-acceleration, the only species detected by in situ 
19F NMR spectroscopy (> 0.05 mol%; as referenced against 13C-

satellites) apart from 1, TMSF, alkene 3i, product 6i, and the inter-
nal standard (PhF), were traces of CF3H (see section 6). 

4.2 Intermediacy of NaCF3. A variety of electrophilic additives, 
e.g CO2, which again generated [CF3CO2]–, inhibited difluorocy-
clopropanation, section S2.3 in the SI. However, in contrast to the 
TBAT-initiated process, Scheme 4, co-reaction of alkene 3i and ke-
tone 9 resulted in difluorocyclopropanation without any significant 
CF3-transfer to 9, indicative of a much lower concentration of CF3-
anionoid. With the more reactive aldehyde 15, the CF3-addition 
product 16 is co-generated, Figure 4.  

Analysis of [3i]t/[15]t as a function of net conversion, revealed that 
throughout reaction, i.e. before, during, and after auto-acceleration, 
the two processes {3i + CF2; Scheme 3}, and {15 + NaCF3}17 are 
competitive and synchronized. Moreover, the relative reactivity of 
3i to 15 (krel) is found to vary in proportion to the [NaI] concentra-
tion, see section S3.8I in the SI, with higher concentrations of NaI 
increasing the relative-rate of consumption of 3i over 15. The first-
order dependency of this partitioning on all three components (i.e.  
3i, 15 and NaI) is indicative that the two competing reactive inter-
mediates, CF2 and NaCF3, are in equilibrium, with NaI biasing this 
equilibrium in favor of the CF2, see section S5.3 in the SI, and equa-
tion 7, Krel » 1.7 ´ 101 M-1. 

 

 
 

Figure 4. Difluorocyclopropanation of 3i versus CF3-addition to 
15, mediated by NaI, analyzed by in situ 19F NMR spectroscopy. 
The CF2I-addition product 17 is only detected in the absence of 3i. 
Lines through data are solely a guide to the eye. 

 
 

In the absence of alkene 3i, traces of the CF2I-addition9h product 17 
(0.9 %) were also generated,37 and reactions conducted in the ab-
sence of both 3i and 15 rapidly underwent auto-acceleration, again 
generating TFE (0.25±0.1 M), and white precipitates containing 
NaF. Detailed in situ analyses of this process, see Figure 5 and sec-
tion S2.5 in the SI, revealed that low concentrations of a transient 
species, tentatively identified as TMSCF2CF2CF2I, 18,38 are gener-
ated immediately after TFE begins to appear. The concentration of 
18 (Figure 5B) correlates with the degree of auto-acceleration, 
reaching a maximum concentration at the point of maximum rate 
of TMSCF3 1 consumption (Figure 5C). The decay in TFE, and 18, 
correlate with the growth of c-C3F6. 
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Figure 5. Auto-accelerating decomposition of TMSCF3 (1) medi-
ated by NaI in THF at 65 °C, in the absence of exogenous alkene. 
Analysis by in situ 19F NMR spectroscopy. Lines through data are 
solely a guide to the eye. -d[1]/dt: was estimated from the first-de-
rivative of truncated polynomial fitted between 85-210 s. 

 
4.3. Mechanism of CF2 generation; NaI. The above analysis 
(section 4.2) supports the intermediacy of a CF3-anionoid in an an-
ionic chain reaction that generates CF2 from TMSCF3 (1), as has 
previously been suggested.10,13b,f However, unlike TBAT initiation, 
TMSCF3 is not predicted to inhibit the chain reaction by siliconate 
2CF3 generation (calc. KC ≤ 10-5; Scheme 7), due to a stronger, but 
still predominantly ionic, interaction of Na+ with the CF3 anionoid; 
see section S6.4B in the SI. Moreover, the interaction of the CF3 
anionoid with Na+ raises the barrier of silyl-induced elimination via 
F– anion transfer (compare kF, mechanism IV, Scheme 5) to DG338

‡ 
= +21.4 kcal mol-1; substantially above the barrier for direct a-
elimination, ka, Scheme 7. Indeed, on first-inspection, if the reac-
tion proceeds via an a-elimination pathway (NaCF3 ® CF2 + NaF, 
calc. ka ~ 104 s-1), just micromolar concentrations39 of NaCF3 are 
required to sustain the fastest rates of TMSF-generation observed 
(vmax » 2 ´10-2[1]; see section S2.5B in the SI).39 

Scheme 7. Upper section: disfavored Si-complexation (KC) of 
NaCF3, and rapid, reversible a-elimination (ka). Lower: Highly en-
dergonic routes to NaCF3 from NaI and 1. Interaction of NaI with 
1 at Si is repulsive, see section S6.4B in the SI. Energies by DFT.26 

 
However, initiation of the anionic chain by direct reaction of 1 with 
NaI to generate NaCF3 (Mechanism II)10,13b,f is calculated to be 
strongly disfavored, Scheme 7. Indeed, exogenous TMSI and 

TMSCF2I are both powerful inhibitors of the NaI-mediated reac-
tion of 1 with 3i, see sections S2.3EJ in the SI. In addition, no 
TMSI, or THF ring-opened co-products,41 are detected by in situ 
29Si and 1H NMR spectroscopy. Moreover, there is no direct corre-
lation between [NaI]0 and rate, or an induction period after addition 
of the NaI.  

Initiation must therefore be effected by traces of unidentified si-
laphilic species generated in situ from the NaI, by oxidation,42 re-
action with decomposition products of the TMSCF3,16 co-reaction 
with the Lewis basic THF solvent, or already present in the NaI 
from manufacture.43 Traces of white flocculate are observed in the 
reactions of 1 mediated by NaI (3.5 mol%), in the presence and 
absence of alkene 3i. The precipitates become much more volumi-
nous in the final phases of reaction. Analysis of the precipitate (19F 
NMR in D2O) obtained after 12-16 % conversion of 3i, showed it 
contains NaF (0.005-0.02 mol%); see section S2.2D in the SI. After 
full auto-acceleration, 1.9 mol % NaF had been precipitated. How-
ever, the reactions of 1 with 3i are not initiated by powdered NaF, 
or accelerated by exogenous NaF in the presence of NaI, see section 
S1.10I in the SI. In other words, microcrystalline NaF is insoluble 
and inert under the reaction conditions. Despite extensive efforts, 
we have not yet been able to identify the primary initiation route(s). 

Thus, the primary role of the NaI appears to be to mediate efficient 
difluorocyclopropanation, vide infra, via an anionic chain reaction 
proceeding at very low concentrations of chain-carrier.39 Our anal-
ysis of the role of NaI in mediating the desired difluorocyclopropa-
nation thus centres on the a-elimination step (ka, upper section of 
Scheme 7). Although calculations show this process to be rapid, it 
is also endergonic, see section S6.4B in the SI, with CF2 + NaF 
(monomeric) reverting to NaCF3 at diffusion-control.39 However, 
the equilibrium concentration of CF2 can be raised by coupling the 
endergonic a-elimination (Ka) to an exergonic complexation with 
NaI44 (KNaI), see Scheme 8.  

Scheme 8. Mechanism V: NaI-mediated chain-reaction for the gen-
eration of CF2 from TMSCF3 (1) with auto-acceleration via chain-
branching. NaFsolid precipitation increases substantially during 
auto-acceleration. Primary initiation is by trace unidentified si-
laphilic species (see text). Additional chain-branching processes 
are also possible. Na-intermediates are primarily bound through 
ion-pair interactions, see section S6.4B in the SI, not covalent 
bonds. Energies (DG338 / kcal mol-1) calculated by DFT.26 

 
Analogous dinuclear NaX·NaX complexes (X = F, Cl, Br, I) have 
been characterized in the gas phase,44b and related synergistic al-
kali-metal effects are known.45 Whilst the stoichiometry of com-
plexation (KNaI, to generate NaF·(NaI)x) has not been evaluated di-
rectly, the first-order correlation of [NaI] with krel (equation 7) in 
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the competition of alkene 3i with aldehyde 15, Figure 4, suggests 
that x is close to unity. Chain propagation, by direct or dissociative 
reaction of NaF·NaI with 1, regenerates transient NaCF3 in mi-
cromolar concentrations, Scheme 8, allowing efficient difluorocy-
clopropanation of the alkene/yne (f ≥ 0.99). NaI thus serves at least 
three roles: i) it indirectly generates chain-carrier, ii) it biases the 
endergonic equilibrium with CF2, i.e. (KaKNaI), and in doing so at-
tenuates the undesired reaction of CF2 with NaCF3, and iii) it stabi-
lizes the NaF chain-carrier by inhibiting generation of NaFsolid. 

4.4. Chain-Branching; Auto-acceleration by NaI. In compe-
tition with CF2-capture by the alkene (kene) is the mildly endergonic 
(DG338 = 2.5 kcal mol-1) reversible addition of NaI to CF2 to gener-
ate NaCF2I,9h resulting in generation of 17, when an aldehyde is 
present, Figure 4. Although silylation of NaCF2I is disfavored 
(NaCF2I + 1 ® NaCF3 + TMSCF2I, DG338 = 16.0 kcal mol-1) pri-
marily because of the steric clash between iodine and the TMS in 
the resulting TMSCF2I,9h reaction of NaCF2I with CF2 will gener-
ate TFE (DG338 = –59.5 kcal mol-1); in other words, NaI can cata-
lyze the dimerization of CF2.46 Subsequent exergonic reaction of 
the TFE with NaCF2I (or with NaI, followed by CF2), will generate 
I(CF2)3Na. This can either cyclize, generating c-C3F6, or be revers-
ibly silylated by 1 to generate 18 and NaCF3. The latter process 
facilitates indirect chain-branching, i.e. increases [NaCF3], thus ac-
celerating the chain reaction, and facilitating competing side reac-
tions such as capture of CF2 by NaCF3 to generate further TFE and 
NaF. A number of processes will attenuate branching, or the chain 
reaction itself, including the reverse reaction of NaCF3 with 18 to 
regenerate 1 + I(CF2)3Na (and c-C3F6), CF2-capture by alkene, CF2-
capture by TFE to generate c-C3F6,12i aggregation of (NaF)n leading 
to precipitation of inert, microcrystalline, NaFsolid, and trapping or 
oxidation of NaCF3 by perfluoroalkenes, vide infra, generated from 
TFE. A characteristic of branched chain-reactions is their sensitiv-
ity to small changes in the concentrations of components, hetero-
geneity, and trace inhibitors, in some cases leading to fluctuations 
in active species and irreproducible kinetics,47 as is observed in the 
current system,36 Figure 1B, see also sections S2.2D and S2.5B in 
the SI.  

5. TESCF3 versus TMSCF3. Reactions involving the more ste-
rically hindered reagent TESCF3 (19) were briefly explored, see 
section S3.9 in the SI. Under TBAT-initiation, in the presence of 
alkene 3i, mixtures of TESCF3 (19) and TMSCF3 (1) co-evolved 
TMSF, TESF, and product 6i, with very little apparent selectivity 
for reaction of 1 over 19. This initially confusing result is different 
to our previous studies of TBAT-initiated CF3-transfer to ketones 
and aldehydes,16 where TMSCF3 (1) reacted in advance of TESCF3 

(19). The result can be understood by the intermediacy of fluoro-
siliconates (2F/ 20F) in mechanism IV, which allow equilibration of 
TMSF/TESCF3 with TMSCF3/TESF, calc. DG300 –0.2 kcal mol-1, 
Scheme 9.  

Scheme 9. Differing outcomes of co-reaction of TESCF3 (19) and 
TMSCF3 (1) under conditions A (TBAT) versus B (NaI), with equi-
libration via siliconates (2F, 20F) under conditions A. 

 

In contrast, co-reactions of TESCF3 (19) and TMSCF3 (1) mediated 
by NaI, proceeded selectively (kTMS / kTES ~ 30, see S3.9BC in the 
SI) in both the presence and absence of alkene 3i. This is consistent 
with siliconates (2, 20) being disfavored in the presence of Na+, 
allowing the selective reaction of the more fluorophilic reagent 1. 

6. Fluoroform (CF3H) Generation. There have been conflicting 
reports in the literature about whether a CF3 anionoid is able to 
deprotonate THF to generate CF3H.17a,c In all of the reactions ex-
plored herein, CF3H was detected, see e.g. Fig 1. However, CF3H 
is generated in two distinct phases. Under the standard conditions, 
Table 1, approximately 0.4 mol% CF3H is generated immediately 
after the reaction is assembled. This arises from protonation of the 
CF3 anionoid16,17 by residual H2O (20 ppm, KF-titration) in the 
THF, as confirmed by 2H labelling. Further CF3H (up to 18 mM, 1-
1.2 % of 1) is generated in the later stages of the reaction, either 
progressively (TBAT) or in a final 'burst' (NaI, see Figure 1B). The 
source of H-atom in this distinct second stage of CF3H generation 
is the THF, as confirmed by 2H labelling, section S2.4A in the SI. 
Calculations indicate that deprotonation of THF by the CF3 ani-
onoid is highly endergonic. However, abstraction of an H-atom by 
a CF3 radical48 is favorable,49 and the calculated KIEs are consistent 
with those determined experimentally, Scheme 10, see sections 
S2.4B and S6.7 in the SI.49g 

Scheme 10. CF3H generation from THF; CnF2n = higher perfluoro-
alkene, e.g. 2,3-(CF3)2C4F6, as indicated. Energies (DG338 / kcal 
mol-1) calculated by DFT.26 KIEs at 300 K: exp. 7.2 exp., calc. 7.4. 

 
Computational exploration of single-electron-transfer to perfluoro-
alkenes, see SI, indicates that higher CnF2n species, e.g. Scheme 6, 
can readily generate a CF3 radical48,49 from the CF3 anionoid, thus 
accounting for the differing phases of CF3H evolution under con-
ditions A, and B. In contrast to THF, reactions conducted in MeCN 
develop CF3H throughout their evolution, and comparison of ex-
perimental and calculated KIEs with two alternative tunnelling ap-
proximations, see SI, indicate that this is via deprotonation.50 

CONCLUSIONS 

We have investigated the mechanism by which the commercially-
available reagent TMCF3 (1), widely-applied for CF3-transfer,16-18 
can also function as source of CF2.10-13 Despite co-generation of 
TMSF, and thus a strong Si-F bond, the liberation of CF2 from 
TMSCF3 is endergonic (DG300 + 11.8 kcal mol-1; 1M standard state 
in THF). However, by coupling this to a process that captures the 
CF2, a thermodynamically-favorable, and usually exothermic, re-
action can be established. Thus, in the presence of a suitable initia-
tor / mediator, TMSCF3 can be a highly-effective reagent for 
difluorocyclopropanation10-13 of alkenes/ynes, equation 8. 

 
Two general sets of conditions have been described for this: TBAT-
initiation (conditions A) and NaI-initiation (conditions B), in 
THF,10-13 Scheme 1. Both require an excess of TMSCF3 (1) over 
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the alkene/yne CF2-acceptor.10,11c,12 The NaI-mediated method has 
also been widely applied for CF2-transfer to a range of other spe-
cies, and also for the in situ generation of TFE, equation 9.13  

Analysis of 13C/2H KIEs, LFERs, and alkene competition experi-
ments, confirms that both sets of conditions (A and B) liberate free, 
transient, singlet CF2 (Scheme 3). The transient intermediate CF2 
adds to most alkenes and alkynes via a concerted cycloaddition 
transition state, Scheme 3. 1-Phenylpropyne is more reactive51 than 
beta-methyl styrene towards CF2, Table 1. Trans beta-methyl sty-
rene is more reactive than its cis isomer, due to destabilizing steric 
interactions between cis-substituents that are enhanced on approach 
to the state; see section S6.2 in the SI for further discussion.  

The mechanisms by which carbene CF2 is generated from TMSCF3 
(1) have been investigated in detail using in situ / stopped-flow 19F 
NMR spectroscopy, kinetics and simulation of the difluorocyclo-
propanation of a-methylstyrene 3i, analysis of CF2-transfer effi-
ciency, the effect of inhibitors, and density functional theory (DFT) 
calculations. Having eliminated a wide range of mechanistic possi-
bilities, including radical chain reactions, cationic chain reactions, 
and direct anion-induced liberation of CF2 from TMSCF3, see sec-
tions S1.4, S2.3 and S6.8 in the SI, we conclude that both sets of 
conditions proceed via anionic chain reactions, in which a CF3-
anionoid is a key intermediate, albeit present at very much lower 
concentrations under the NaI-mediated conditions.  

Both processes require a fluoride-acceptor to enable efficient gen-
eration of highly-reactive CF2 from the CF3-anionoid, Scheme 11. 
When loosely ion-paired, e.g. with Bu4N+, the CF3-anionoid under-
goes silyl-induced fluoride elimination by TMSCF3 1 (kF; Mecha-
nism IV, Scheme 5). With the more closely associated cation, Na+, 
an NaI-assisted a-elimination (KaKNaI; Mechanism V, Scheme 8) 
predominates. Key to efficient alkene/yne difluorocyclopropana-
tion is minimizing the competing reaction of the CF3-anionoid with 
the CF2. 

Scheme 11. Pathways to CF2 from CF3-anionoids, generated in situ 
in anionic chain reactions involving TMSCF3 (1) where M+ = 
Bu4N+ (TBAT initiation), or Na+ (NaI-mediation). Autoinhibition 
and auto-acceleration not shown; see Schemes 5 and 8 for more 
detailed chain reaction mechanisms (IV and V). 

 
The TBAT-initiated process (M+ = Bu4N+) proceeds with very re-
producible kinetics, but undergoes progressive inhibition via per-
fluoroalkene homologation, see Scheme 6 and section S6.3 in the 
SI, eventually leading to [C11F23]–, 11, and analogous species that 
are inert for F-anion transfer to 1. Higher concentrations of 1 in-
crease the efficiency of CF2-transfer, f, equation 6, by reducing the 
concentration (via KC) of the CF3-anionoid that leads to non-pro-
ductive consumption of 1. The TBAT procedure is only suitable for 
alkenes/ynes that have sufficient reactivity (kene) towards singlet 
CF2 to compete with the CF3-anionoid and avoid extensive inhibi-
tion. 

In contrast to TBAT, the NaI-mediated process displays non-repro-
ducible kinetics, see Figs. 1B and 5, and sections S2.2D and S2.5 
in the SI, indicative of fluctuations in low concentrations of active 
species, with variable delays before one or more acute auto-accel-

erations, via chain branching, Scheme 8. Under nearly all condi-
tions this leads to rapid and near-complete consumption of the 
TMSCF3 (1), and co-generation of TFE. Counterintuitively, less re-
active alkenes/ynes (kene, Scheme 8, krel, Table 1), can (phenome-
nologically) undergo more rapid difluorocyclopropanation by 1 / 
NaI, due to the earlier onset of auto-acceleration, provided that the 
alkene/yne is sufficiently more-reactive towards CF2 (kene) than the 
accumulating TFE (DG338

‡ = 12.2 kcal mol-1). These counteracting 
effects, may account for the apparently anomalous alkene reactivi-
ties noted in previous studies.12m In the case of alkyne 5, the barrier 
to the first CF2 addition to generate 8 (DG338

‡ = 12.0 kcal mol-1) is 
lower than for TFE, whilst that for second addition (DG338

‡ = 17.4 
kcal mol-1) is higher. The overall result is that double-addition11 of 
CF2 is avoided, i.e. the difluorocyclopropene 8 (Table 1) is selec-
tively generated, see section S3.3 in the SI 

In all cases, the productive fractionation (f) of TMSCF3 into the 
difluorocyclopropanation product, is substantially attenuated dur-
ing NaI-mediated auto-acceleration, and an excess of 1 is still re-
quired. As shown by Grygorenko and co-workers,12m, the slow ad-
dition of a large excess of 1 (up to 10 equiv.) can be used to achieve 
good conversion of a range of electron-deficient alkenes. Slow-ad-
dition can increase the productive fractionation, f, by curtailing, or 
attenuating, auto-acceleration, and allowing TFE to dissipate or de-
cay. For example, sequential additions of TMSCF3 (1) to methyl 
acrylate results in a series of auto-accelerations, and TFE accumu-
lation / partial depletions, with somewhat improved levels of 
difluorocyclopropanation as compared to addition of 1 in a single 
portion, see section S3.4 in the SI.  

Finally, we note two important practical aspects relating to the CF2-
generating reactions investigated herein. Firstly, the conditions al-
ways co-generate a range of perfluoroalkenes, e.g. Scheme 6, many 
of which are volatile and toxic.52 Secondly, the kinetics of reactions 
mediated by NaI can undergo acute and unpredictable auto-accel-
eration, e.g. Figure 1B, resulting in rapid generation of TMSF (b.p 

19 °C),53 and highly-exothermic capture of CF2; equations 8 and 9. 
Appropriate caution12m.p should be exercised in any reactions that 
generate transient singlet CF2 from TMSCF3 (1), or analogous rea-
gents, especially on scale-up.54 In this regard, the application of 
continuous flow technology may be advantageous,12b as may addi-
tives that can trigger and/or control auto-acceleration. 

______________________ 
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