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To investigate whether and how CRISPR-Cas9 on-target and off-target activities are affected by chromatin in eukaryotic

cells, we first identified a series of identical endogenous DNA sequences present in both open and closed chromatin regions

and then measured mutation frequencies at these sites in human cells using Cas9 complexed with matched or mismatched

sgRNAs. Unlike matched sgRNAs, mismatched sgRNAs were highly sensitive to chromatin states, suggesting that off-target

but not on-target DNA cleavage is hindered by chromatin. We next performed Digenome-seq using cell-free chromatin

DNA (now termed DIG-seq) and histone-free genomic DNA in parallel and found that only a subset of sites, cleaved in his-

tone-free DNA, were cut in chromatin DNA, suggesting that chromatin can inhibit Cas9 off-target effects in favor of its

genome-wide specificity in cells.

[Supplemental material is available for this article.]

The type II CRISPR-Cas9 system, a form of adaptive immunity in

eubacteria and archaea against foreign DNA elements, has been

successfully repurposed for genome editing in higher eukaryotic

cells (Cho et al. 2013; Cong et al. 2013; Mali et al. 2013), in which

chromosomal DNA is wrapped around histones and packaged into

chromatin. Although it has been shown that chromatin can im-

pede Cas9–DNA interactions in vitro under cell-free conditions

(Hinz et al. 2016; Horlbeck et al. 2016; Isaac et al. 2016), it remains

unknown whether and how chromatin structure can affect Cas9

on-target and off-target activities in cells. Previous studies relied

on statistical analyses of numerous single-guide RNAs (sgRNAs)

that were targeted to different sequences and sites in the genome

(Moreno-Mateos et al. 2015; Jensen et al. 2017), comparing apples

with oranges, or reporter sequences randomly integrated at geno-

mic sites (Chen et al. 2016; Daer et al. 2017; Kim et al. 2017), which

can alter chromatin states. Wu et al. (2014) and Kuscu et al. (2014)

independently showed, using chromatin immunoprecipitation

and high-throughput sequencing (ChIP-seq), that genome-wide

off-target sites bound by catalytically deficient Cas9 (dCas9) are

enriched in open chromatin regions, hinting at chromatin effects

on off-target binding in cells. We and others found, however, that

dCas9 off-target binding sites rarely overlap with Cas9 off-target

cleavage sites (Tsai et al. 2015; Kim et al. 2016), calling for further

studies.

In this study, we sought to investigate whether Cas9 nuclease

activities in human cells can be affected by differential chromatin

states, and to improve Digenome-seq, an in vitro method for pro-

filing genome-wide CRISPR off-target sites using whole-genome

sequencing (WGS) of digested genomic DNA, to account for chro-

matin states.

Results

Chromatin effects on CRISPR-Cas9 editing efficiency

We first identified 12 proto-spacer sequences found in both open

and closed chromatin regions in the humangenome,which can be

targeted by Streptococcus pyogenes Cas9 (SpCas), using ENCODE

DNase-seq data (Fig. 1A,B; The ENCODE Project Consortium.

2012) and performed DNase I digestion assays and quantitative

PCR (qPCR) to confirm chromatin states in two widely different

human cell lines, HeLa andHEK 293T. As expected, DNA sequenc-

es in open chromatin regions weremore sensitive to DNase I diges-

tion than those in closed chromatin regions (Fig. 1C;

Supplemental Fig. 1). Next, we measured frequencies of small in-

sertions and deletions (indels) induced, via error-prone nonho-

mologous end-joining (NHEJ) repair of DNA double-strand

breaks (DSBs) at these 12 pairs of Cas9 target sites that were present

in both open and closed chromatin regions (Fig. 1D; Supplemental

Table 1). Because indel frequencies were highly variable among

sgRNAs, there was no statistically significant difference between

average indel frequencies in open chromatin regions and those

in closed chromatin regions (unpaired t-test, P=0.07 or 0.21 in

HEK 293T or HeLa cells). A pair-wise comparison of each sgRNA,

however, clearly showed that Cas9 induced indels with higher fre-

quencies at sites in open chromatin regions than it did at respec-

tive sites with the same DNA sequence in closed chromatin

regions (paired t-test, P= 0.007 or 0.001 in HEK 293T or HeLa cells,

respectively) (Fig. 1D), suggesting that Cas9 cleaves target sites in

open chromatin regions more efficiently than those in closed

chromatin regions. On average, indel frequencies at open chroma-

tin sites were higher than those at closed chromatin sites by a fac-

tor of 1.6 ± 0.2 or 1.3 ±0.2 in HEK 293T or HeLa cells, respectively.

These results show that on-target sites in open chromatin regions

are marginally more accessible to Cas9 than are those in closed

chromatin regions with the same DNA sequences.
3Present address: Center for Genome Engineering, Institute for Basic
Science, Seoul 08826, Republic of Korea
Corresponding author: jskim01@snu.ac.kr
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.236620.118.
Freely available online through the Genome Research Open Access option.

© 2018 Kim and Kim This article, published inGenomeResearch, is available un-
der a Creative Commons License (Attribution-NonCommercial 4.0 Internation-
al), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

1894 Genome Research 28:1894–1900 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/18; www.genome.org
www.genome.org

 Cold Spring Harbor Laboratory Press on April 21, 2020 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.236620.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.236620.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.236620.118/-/DC1
mailto:jskim01@snu.ac.kr
mailto:jskim01@snu.ac.kr
mailto:jskim01@snu.ac.kr
http://www.genome.org/cgi/doi/10.1101/gr.236620.118
http://www.genome.org/cgi/doi/10.1101/gr.236620.118
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


Chromatin effects on CRISPR-Cas9 off-target activity

Next, we investigated whether and how chromatin states affect

Cas9 off-target effects using a series of mismatched sgRNAs. We

chose two on-target sequences and measured indel frequencies

at these sites in open and closed chromatin regions (Fig. 2A;

Supplemental Fig. 2). The fully matched sgRNA specific to a

proto-spacer sequence termed T1 was marginally more efficient

at the open chromatin site than at the closed chromatin site by a

factor of 1.3 (=44%/33%) in HEK 293T cells or 1.1 (=59%/48%)

in HeLa cells. Interestingly, sgRNAs with 1- or 2-nucleotide (nt)

mismatches were poorly active at the closed chromatin site but

were still quite active at the open chromatin site. Thus, indel fre-

quencies obtained with these mismatched sgRNAs at the open

chromatin site were higher than at the closed chromatin sites by

up to 530-fold in HEK 293T cells and 1100-fold in HeLa cells

(Fig. 2A).We also tested a series ofmismatched sgRNAs at the other

on-target sequences present in open and closed chromatin regions

and observed similar trends (Supplemental Fig. 2). These results

show that mismatched sgRNAs, unlike matched sgRNAs, cannot

efficiently guideCas9 to sites in closed chromatin regions, and sug-

gest that off-target effects are hindered by a closed chromatin

structure.

To confirm that Cas9 access to off-target sites is more severely

limited by chromatin states than Cas9 access to on-target sites, we

tested sgRNAs matching prevalidated off-target sites at on-target

sites in open and closed chromatin states (Fig. 2B; Supplemental

Fig. 3). Unlike on-target specific sgRNAs,

off-target specific sgRNAs with 2-nt mis-

matches efficiently discriminated open

chromatin sites from closed chromatin

sites in both HeLa and HEK 293T cells.

For example, two off-target–specific

sgRNAs designed to match prevalidated

off-target sites were quite active at the

open chromatin site with an indel fre-

quency of 3.4% or 1.3% in HeLa cells

but were inactive at the closed chromatin

site with an indel frequency of 0.05% or

0.03%, respectively, discriminating the

two sites with the same DNA sequence

by a factor of 68 or 43, respectively (Fig.

2B). In contrast, the on-target–specific

sgRNA was almost equally efficient at

the open chromatin site and the closed

chromatin site with an indel frequency

of 52% and 33%, respectively. We also

tested off-target–specific sgRNAs at other

target sites and obtained similar results in

HEK 293T cells and HeLa cells (Supple-

mental Fig. 3). We conclude that Cas9

on-target interactions are strong enough

to cause DNA cleavage and targeted mu-

tagenesis at genomic sites regardless of

thechromatin state,whereasCas9off-tar-

get interactions are in general much

weaker and, thereby, are hindered by

closed chromatin. This means that chro-

matin accessibility is in favor of ge-

nome-wide CRISPR-Cas9 specificity in

human and other higher eukaryotic cells.

DIG-seq: Digenome-seq using native chromatin DNA

Having learned that chromatin is a barrier to Cas9 off-target DNA

cleavage in cells, we sought to identify genome-wide Cas9 off-tar-

get sites in a chromatin context by using native chromatin DNA

rather than histone-free genomic DNA in a digested genome se-

quencing (Digenome-seq) analysis (Kim et al. 2015). Native chro-

matin DNA isolated from HeLa and HEK 293T cells was

incubated with the preassembled Cas9 protein (300 nM) and

sgRNA (900 nM) ribonucleoprotein (RNP) complex for ∼12 h

and subjected to WGS (Fig. 3A; Kim et al. 2015). After aligning se-

quence reads to the human reference genome (hg19), an unusual

pattern of vertical alignments, rather than staggered alignments,

of sequence reads, caused byCas9-catalyzedDNA cleavage,was ob-

served using the Integrative Genomics Viewer (IGV) at the on-tar-

get site (Fig. 3B).We then identified genome-wide in vitro cleavage

sites after assigning a DNA cleavage score, a measure of vertical

alignments of sequence reads, to each nucleotide position in the

entire human genome. With a cutoff score of 2.5 (Digenome

v. 1.0) or 0.1 (Digenome v. 2.0) (Kim et al. 2016), we identified

15 and 44 in vitro cleavage sites, respectively, using Cas9 com-

plexed to an sgRNA targeted to HBB (Fig. 3C,D; Supplemental

Table 2). We obtained the same results when sequence reads

were aligned to GRCh38 as to hg19 (Supplemental Table 3).

We also carried out DIG-seq using nuclei pellets rather than

chromatin DNA. A vast majority (77%) of DIG-seq–positive sites

identified using chromatin DNA were also cleaved using nuclei

BA

C

D

Figure 1. Effects of chromatin structure onCas9 editing efficiency. (A) Schematic overviewof themeth-
od for investigating the effects of chromatin structure on Cas9 editing efficiency. (B) Representative IGV
images obtained using ENCODE DNase-seq data at two on-target sites with the same Cas9 target se-
quence present in both open and closed chromatin regions. (C) Relative fractions of intact genomic
DNA not cleaved by DNase I measured using real-time quantitative PCR at the Cas9 target site in HeLa
cells. The range 0–32U denotes the concentration of DNase I. Error bars, SEM from at least three indepen-
dent experiments. (D) SpCas9-induced mutation frequencies at 12 pairs of endogenous target sites with
the same DNA sequence present in both open and closed chromatin regions in HEK 293T or HeLa cells.
Indel frequencies weremeasured using targeted deep sequencing. Pairs of Cas9 target sites are represent-
ed with dots with different colors. Mean indel frequencies ± SEM are shown (n=12 target sites).
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pellets. Thus, we observed a strong correlation (Pearson’s correla-

tion coefficient R2 =0.93) between DNA cleavage scores obtained

usingnuclei pellets and thoseobtainedusingchromatinDNA(Sup-

plemental Fig. 4).

We next performed DIG-seq using chromatin DNA isolated

from K562 cells, T cells, and H9 human embryonic stem cells.

Most of the in vitro cleavage sites, especially those with high

DNA cleavage scores, were commonly identified, regardless of

cell type (Supplemental Table 2), suggesting that chromatin ef-

fects on Cas9 off-target DNA cleavage, at least with the

sgRNA used in this study, were not much different in these cell

lines.

A

B

Figure 2. Effects of chromatin structure on Cas9 activity at off-target sites. (A) Mismatched sgRNAs that differed from the Cas9 target sequence by 1 or 2
nt were targeted to sites in both open (blue) and closed (red) chromatin regions in HEK 293T and HeLa cells. Indel frequencies were measured using tar-
geted deep sequencing. Error bars, SEM (n=3). (B) Indel frequencies at the on-target sites in open and closed chromatin states using on-/off-target specific
sgRNAs in HeLa cells. Indel frequencies were measured using targeted deep sequencing. Error bars, SEM (n=3).
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We compared in vitro cleavage sites obtained using native

chromatin DNA with those obtained using histone-free DNA. Use

of histone-free DNA in a Digenome-seq analysis yielded many ad-

ditional in vitro cleavage sites. Thus, with Digenome v. 1.0, 15 or

48 sites were cleaved using native chromatin DNA and histone-

free DNA, respectively. Fourteen out of 15 (=93%) sites captured

by DIG-seq were also identified by Digenome-seq using histone-

free DNA.With Digenome v. 2.0, 44 or 97 sites were cleaved using

native chromatin DNA and histone-free DNA, respectively. Forty-

three out of 44 (=98%) sites captured using chromatin DNA were

also identified using histone-free DNA. We found, however, that

DNA cleavage scores at these in vitro cleavage sites obtained using

native chromatinwere poorly correlatedwith those obtainedusing

histone-free genomic DNA (R2=0.22

[Digenome v. 1.0] or 0.19 [Digenome

2.0]) (Fig. 3E; Supplemental Fig. 5A).

Validating off-target effects

at Digenome-identified sites

Wenext investigated the relationship be-

tween DNA cleavage scores and indel fre-

quencies at off-target sites validated by

next-generation sequencing (NGS). We

measured indel frequencies at all of the

49 in vitro cleavage sites revealed with

Digenome v. 1.0 in HeLa cells (Supple-

mental Fig. 5B; Supplemental Table 4)

and identified four bona fide off-target

sites at which indel frequencies were

greater than background sequencing er-

ror rates. No indels were detectably in-

duced at 34 in vitro cleavage sites

detected by Digenome-seq using his-

tone-free DNA butmissed by DIG-seq us-

ing chromatin DNA (Supplemental Fig.

5B; Supplemental Table 5). There was es-

sentially no correlation between DNA

cleavage scores obtained using his-

tone-free DNA and indel frequencies at

these validated off-target sites (R2=

0.07) (Supplemental Fig. 5C). Interest-

ingly, however, we observed a strong cor-

relation between DNA cleavage scores

obtained using chromatin DNA and

indel frequencies (R2= 0.72) (Fig. 3F).

We next performed DIG-seq with

seven additional sgRNAs individually

(Supplemental Table 4) and compared

the results with those obtained using his-

tone-free DNA. As expected, fewer sites

were cleaved in chromatin DNA than in

histone-free DNA by Cas9. Thus, a total

of eight sgRNAs in complex with Cas9

cleaved chromatin DNA and histone-

free DNA at 18±6 and 85± 19 sites, on

average, respectively. Most sites (66%–

100%, on average 91%) cleaved in chro-

matin DNA were also cleaved in his-

tone-free DNA (Fig. 3C; Supplemental

Fig. 6; Supplemental Table 6).

We measured indel frequencies at

these in vitro cleavage sites identified by DIG-seq using chromatin

DNA to validate Cas9 off-target effects in cells. Forty-nine out of

138 sites tested in this study were validated to be bona fide off-tar-

get sites. Indel frequencies at these validated off-target sites ranged

from 0.07% (FANCF-5 in Supplemental Table 4) to 39% (EMX1-4

in Supplemental Table 4). Validation rates of DIG-seq were higher

than those of Digenome-seq. Thus, among 15 DIG-seq–positive

sites identified using theHBB sgRNAviaDigenome v. 1.0, four sites

were validated using deep sequencing, resulting in a validation rate

of 27%, whereas among 48 Digenome-seq–positive sites via

Digenome v. 1.0, the same four sites were validated, resulting in

a validation rate of 8.3%. Likewise, the DIG-seq validation rate

was 100% (=1/1) using the RNF2 sgRNA, whereas the Digenome-

A

D

C

B E

F

G

Figure 3. DIG-seq using native chromatin DNA. (A) Overview of DIG-seq to identify genome-wide
Cas9 in vitro cleavage sites using native chromatin DNA. (B) A representative IGV image showing a stag-
gered alignment (top) and a straight alignment (bottom) of whole-genome sequence reads at the on-tar-
get site. (C) A Venn diagram showing the number of in vitro cleavage sites identified by Digenome-seq
using histone-free DNA or by DIG-seq using chromatin DNA with the HBB-targeted CRISPR-Cas9.
(D) Sequence logos obtained via WebLogo using in vitro cleavage sites captured by Digenome-seq or
DIG-seq. (E) Scatterplot of DNA cleavage scores at sites captured by Digenome-seq versus DIG-seq.
(F) Scatterplot of indel frequencies versus DNA cleavage scores at sites captured by DIG-seq using
HeLa chromatin DNA. (G) Pearson’s correlation coefficients (R-square values) obtained with indel fre-
quencies versus DNA cleavage scores at off-target sites identified by Digenome-seq using chromatin
or histone-free DNA. Error bars, SEM (n=5). The P-value was calculated by Student’s t-test.
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seq validation rate was 23% (=3/13). The sites detected exclusively

by DIG-seq (one site for the HBB sgRNA, 10 sites for the FANCF

sgRNA, and one site for the EMX1 sgRNA) were not validated

by targeted deep sequencing. It is possible that these sites were

mutated at frequencies below detection limits of targeted ampli-

con sequencing. This means that DIG-seq using chromatin DNA

is as sensitive and comprehensive as Digenome-seq using his-

tone-free DNA. Again, we observed a strong correlation between

DNA cleavage scores obtained using chromatin DNA and indel fre-

quencies determined using NGS at validated off-target sites (Fig.

3G; Supplemental Fig. 7). In contrast, DNA cleavage scores ob-

tained using histone-free DNA were poorly correlated with indel

frequencies. This result suggests that a DNA cleavage score ob-

tained using chromatin DNA rather than histone-free DNA could

serve as an estimate of genome editing efficiency in cells. It is often

impractical to validate off-target effects in cells usingNGS at all the

candidate sites cleaved in vitro because the number of such sites

can reach hundreds to thousands, depending on the sgRNAs

(Tsai et al. 2015; Kim et al. 2016). In these cases, one could choose

the sites with the top cleavage scores obtained using chromatin

DNA for validating off-target effects via NGS.

We also found DIG-seq–positive sites were more likely to fall

within open-chromatin regions than were Digenome-seq–positive

sites. Among 139 DIG-seq–positive sites identified using the other

seven sgRNAs, seven sites (=5.0%) were found in DNase I hyper-

sensitive regions,whereas among358Digenome-seq–positive sites

identified using the same seven sgRNAs, just four sites (=1.1%)

were found in DNase I hypersensitive regions (Supplemental

Tables 4, 7).

Digenome-seq and other methods

We also compared our new method with CIRCLE-seq (Tsai et al.

2017) and SITE-seq (Cameron et al. 2017), recently reported cell-

free methods for characterizing CRISPR off-target effects in vitro.

Among the eight sgRNAs we analyzed in this study, two sgRNAs,

namely those targeted to the VEGFA site and the FANCF site,

had also been tested by Tsai et al. (2017) and Cameron et al.

(2017), although they used genomic DNA isolated from different

cell lines. We found that none of these methods, including

Digenome-seq with histone-free DNA, were comprehensive (Fig.

4). SITE-seq produced the most outputs: 996 sites and 162 sites

were identified using the VEGFA-specific sgRNA and the FANCF-

specific sgRNA, respectively (Cameron et al. 2017). DIG-seq yield-

ed by far the fewest sites, 31 and 36, respectively, even with the

more comprehensive Digenome v. 2.0 program (Kim et al. 2016).

Among these sites, 29 out of 31 (94%) and 21 out of 36 (58%), re-

spectively, were also captured by both CIRCLE-seq and SITE-seq.

We validated off-target effects in cells at the 29 sites commonly

identified via the four different methods using the VEGFA-specific

sgRNA and found that 16 sites were bona fide off-targets, resulting

in a validation rate of 62% (=18/29). Because CIRCLE-seq and

SITE-seq, in general, yield more outputs than Digenome-seq using

histone-free DNA, validation rates with sites identified using these

cell-free methods are much lower, ranging from 10% (SITE-seq)

(Cameron et al. 2017) to 29% (CIRCLE-seq) (Tsai et al. 2017).

Discussion

Genome-wideCRISPRoff-target sites canbe identified byanumber

of unbiased cell-free or cell-based methods (Koo et al. 2015; Tsai

and Joung 2016). Each of these methods has its own pros and

cons. DIG-seq is unique in that it is an in vitro (cell-free) method

but nevertheless accounts for chromatin structure in eukaryotic

cells.ChromatinDNAcanbeeasilyprepared fromanycells of inter-

est by lysis and centrifugation and used for digestion with Cas9 or

other nucleases in vitro. In contrast, GUIDE-seq, awidely used cell-

based method, requires transfection of double-stranded oligonu-

cleotides into cells (Tsai et al. 2015). GUIDE-seq cannot be used

incertaincells that are refractory to transfection. Furthermore, dou-

ble-stranded oligonucleotides are cytotoxic to many primary cells.

DIG-seqdoesnot relyon transfectionand is thereby free fromthese

limitations. In addition, DIG-seq retains all of the advantages of

Digenome-seq over other cell-free or cell-basedmethods,which in-

clude no adapter ligation or DNA amplification prior to deep se-

quencing, no need for homology searches (Digenome v. 1.0) to

identify potential off-target sites, and no DNA resection in vitro

by cellular repair enzymes, making it possible to pinpoint DSB

ends precisely.

Cell-freemethodsprovidea listofpotential off-target sites that

are cleaved invitro.Nomutations are, however, detectably induced

at most of these sites in cells (Kim et al. 2015, 2016). According to

our Digenome analysis using chromatin DNA, most of these in vi-

tro cleavage sites are not cleaved in a chromatin context. NGS

validation is an essential step for confirming and measuring ge-

nome-wide off-target effects but is time-consuming, expensive,

and labor-intensive. In this regard, DIG-seq is advantageous over

Figure 4. Comparison of DIG-seq with other in vitro methods. Venn diagrams showing the number of in vitro cleavage sites identified by DIG-seq,
Digenome-seq, CIRCLE-seq, and SITE-seq.
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other cell-freemethods because it provides a list ofmuch fewer sites

that are cleaved in a chromatin context than do other methods.

We note that there were several off-target candidate sites (e.g.,

HBB-3, HBB-5, HBB-6, etc., in Supplemental Table 4) captured by

DIG-seq with relatively high DNA cleavage scores that were not

validated by targeted deep sequencing. It is possible that these sites

were mutated in cells at frequencies blow detection limits of deep

sequencing, which range from 0.001%–1% (0.1% on average).

Another possibility is that these sites were cleaved in cells efficient-

ly but repaired seamlessly either via error-free NHEJ or HDR.

In conclusion, we found that CRISPR-Cas9 access to on-target

and off-target sites is limited by chromatin structure in cells and

that Cas9 interactions with sgRNA-mismatched sites are much

more sensitive to the chromatin state than are those withmatched

sites, suggesting that chromatin enhances genome-wide CRISPR

specificity in human and other eukaryotic cells. These results

prompted us to develop DIG-seq using chromatin DNA rather

than histone-free DNA in vitro for characterizing genome-wide

CRISPR off-target effects in a chromatin context. We expect that

DIG-seqwill bewidely used for identifying CRISPR-Cas9 and other

nuclease off-target sites sensitively and comprehensively to facili-

tate therapeutic genome editing.

Methods

Cas9 protein purification and in vitro sgRNA transcription

Recombinant Cas9 protein was purchased from ToolGen. sgRNAs

were synthesized by in vitro transcription using T7 RNA polymer-

ase as described previously (Kim et al. 2016). Briefly, sgRNA tem-

plates were incubated with T7 RNA polymerase in reaction buffer

(40 mM Tris-HCl, 6 mM MgCl2, 10 mM DTT, 10 mM NaCl,

2 mM spermidine, NTPs, and RNase inhibitor, at pH 7.9) for 8 h

at 37°C and mixed with DNase I to remove sgRNA template

DNA. Transcribed sgRNAs were purified using PCR purification

kits (Macrogen).

Cell culture and transfection conditions

HEK 293T cells (ATCC CRL-11268) and HeLa cells (ATCC CCL-2)

were cultured in DMEM media supplemented with 10% FBS and

1% penicillin/streptomycin (Welgene). HEK 293T cells (1.5 × 105)

or HeLa cells (8 × 104) were seeded on 24-well plates and co-

transfected with the Cas9 expression plasmid (500 ng) and the

sgRNA-encoding plasmid (500 ng) using Lipofectamine 2000

(Life Technologies). K562 cells (ATCC) were maintained in RPMI

medium supplemented with 10% FBS and 1% penicillin/strepto-

mycin (Welgene).

DNase I digestion assays and qPCR

We washed 2×107 cells twice with PBS and incubated them with

DNase I (4–32 units) in a reaction volume of 120 µL (10 mM

NaCl, 10 mM Tris-HCl, 3 mM MgCl2, and 0.1% NP-40, at pH

7.4) for 30 min at 37°C. One hundred sixty microliters of 50 mM

EDTA was added to stop the reaction. DNase I–digested DNA was

purified with a DNeasy tissue kit (Qiagen). Digested DNA was

mixed with KAPA SYBR FAST qPCR master mix (Kapa Biosystems)

and analyzed by real-time qPCR. The fraction of intact genomic

DNA was measured using the comparative CT method; 2−ΔΔCT=

[(CT site of interest of DNase I untreated or treated sample−CT in-

ternal control of DNase I untreated or treated sample)− (CT site of

interest of DNase I untreated sample−CT internal control of

DNase I untreated sample)] (Schmittgen and Livak 2008).

Identification of identical Cas9 target sequences that are present

in both open and closed chromatin regions

To find Cas9 target sequences present in both open and closed

chromatin regions, we first identified Cas9 target sequences that

occur twice in the genome. By using ENCODE DNase-seq data ob-

tained fromHEK293T andHeLa cells, wemanually identified Cas9

target sequences with a high sequencing depth at one site and a

low depth at the other site, corresponding to an open chromatin

site and a closed chromatin site, respectively.

In vitro cleavage of native chromatin DNA

We lysed 5×105 cells with lysis buffer (1× PBS, 0.4% NP-40, and 3

mMMgCl2) and centrifuged them at 500g for 5min. After removal

of supernatant, nuclei pellets were mixed with Nuc-lysis solution

(10mMEDTA, 0.5mMEGTA, 0.1% Triton X-100) and centrifuged

at 500g for 5min. Nuclei pellets or native chromatin were incubat-

ed with 300 nM of Cas9 and 900 nM of sgRNA for 8 h in reaction

buffer (100mMNaCl, 50mMTris-HCl, 10mMMgCl2, and 100µg/

mL BSA, at pH 7.9). Digested genomicDNAwas treatedwith RNase

A (50 µg/mL) to degrade sgRNAs and was purified again with a

DNeasy tissue kit (Qiagen).

WGS and Digenome sequencing

One microgram of genomic DNA was sonicated to 400- to 500-bp

fragments using the Covaris system (Life Technologies), and over-

hangs were removed using the end repair mix. Fragmented DNA

was ligated with adapters to produce libraries, which were then

subjected to WGS using an Illumina HiSeq X Ten Sequencer at

Macrogen. WGS was performed at a sequencing depth of 30–40×

with the following mapping program and parameters: Isaac align-

er, ver. 01.14.03.12; human genome reference, hg19 or GRCh38;

base quality cutoff, 15; keep duplicate reads, yes; variable read

length support, yes; realign gaps, no; and adapter clipping, yes

(adapter: AGATCGGAAGAGC∗,∗GCTCTTCCGATCT). DNA cleav-

age scores at the DNA target sites were calculated using the

Digenome 1.0 and Digenome 2.0 programs (https://github.com/

chizksh/digenome-toolkit2). As described in our previous paper

(Kim et al. 2017), the cutoff value was determined experimentally.

Briefly, we counted the number of sites whoseDNA cleavage scores

were over a cutoff value that ranged from 0.0001 to 10 and the

number of PAM-containing sites with 10 or fewer mismatches

among the sites with scores over the cutoff value (Supplemental

Fig. 8). We chose a cutoff value of 0.1 because WGS data obtained

using intact genomic DNA, which served as a negative control, did

not yield any false-positive sites with this cutoff score (Digenome

v. 2.0).

Targeted deep sequencing

Genomic DNA segments spanning the on-target and potential off-

target sites were amplified by Phusion polymerase (New England

Biolabs), and PCR amplicons were subjected to paired-end se-

quencing using Illumina MiSeq. The resulting sequencing files

were subjected to Cas-Analyzer (http://www.rgenome.net/cas-

analyzer/) to calculate indel frequencies (Park et al. 2017).

Data access

The next-generation sequencing data from this study have been

submitted to the NCBI Sequence Read Archive (SRA; https://www

.ncbi.nlm.nih.gov/sra) under accession numbers SRP067307 and

SRP158339.
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