Digging For Worms, Fishing For Answers

The CERIAS Intrusion Detection Research Group*
Center for Education and Research in Information Assurance and Security
Purdue University
West Lafayette, IN

Abstract

Worms continue to be a leading security threat on the In-
ternet. This paper analyzes several of the more widespread
worms and develops a general life-cycle for them. The life-
cycle, from the point of view of the victim host, consists
of four stages: target selection, exploitation, infection, and
propagation. While not all worms fall into this framework
perfectly, by understanding them in this way, it becomes ap-
parent that the majority of detection techniques used today
focus on the first three stages. This paper presents a tech-
nique that is used in the fourth stage to detect the class of
worms that use a horizontal scan to propagate. An argu-
ment is also made that detection in the fourth stage is a
viable, but under-used technique.

1. Introduction

Worms continue to be a serious threat to the Internet as a
whole. A worm is an “Independent program that replicates
from machine to machine across network connections often
clogging networks and information systems as it spreads”
[19]. To date, the worms that have become widespread have
been relatively benign. However, as worm writers become
more sophisticated, the potential damage caused by worms
becomes incalculable. Warhol and Flash worms [18] illus-
trate ways in which worms can become more sophisticated
and rapidly spread. In fact, more recent worms such as Slap-
per [4] have set up Distributed Denial of Service (DDoS)
networks as they spread.

To model how worms behave and propagate, a four stage
life-cycle was developed. Our life-cycle is constructed from
the point of view of an uninfected host. First, the host is
selected as a target by the worm from a remote machine.
The host is then compromised through some sort of exploit.

*Florian Buchholz, Thomas E. Daniels, James P. Early, Rajeev
Gopalakrishna, R. Patrick Gorman, Bejamin A. Kuperman, Sofie Nystrom,
Addam Schroll, and Andrew Smith. This paper was partially funded by the
sponsors of CERIAS

After being compromised, the worm then infects the host.
Finally, the worm propagates by choosing other targets to
infect. Not all worms fit perfectly within this framework;
however, from a conceptual standpoint, the actions in each
stage are present in a worm’s behavior and can be success-
fully applied to most of the worms in the past few years.

As worms have been identified as a significant security
threat, a number of techniques have been developed to de-
fend against them. However, the majority of the focus has
been on the first three stages of a worm’s life-cycle. For ex-
ample, signature based network intrusion detection systems
are used to detect exploits and host based intrusion detection
systems are used to detect infections based upon modified,
deleted, or added files.

This paper focuses on techniques that can be used to de-
tect and contain worms in the fourth stage, propagation. A
class of worms that behave similarly in the fourth stage is
also identified. By watching outbound network traffic from
an infected host, it is possible to detect these worms as they
attempt to propagate. There are a number of advantages
in this form of detection, including being notified of an in-
fected host and containing any further infection on the local
network or in other domains (potentially protecting one’s
reputation). Furthermore, even if a worm is not detected
when it enters the network, it may be possible to detect it
on its way out.

The next section describes the four stage life-cycle of a
worm in greater detail. Section 3 discusses the techniques
currently being used to detect worms in the context of the
four stage life-cycle. Section 4 looks at the different tech-
niques that can be used to detect a worm in the fourth stage.
Finally, a preliminary implementation, future work and con-
clusions are presented.

2 The Four Stage Life-cycle

By analyzing the behavior of several worms, it becomes
apparent that they exhibit many similar activities. By group-
ing their common actions, a four stage life-cycle emerges
that characterizes worms’ behavior.

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)

1063-9527/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

1. Target Selection

2. Exploit

Victim 3. Infect
Host <

Network

4. Propogate

y — —|

Source ——> Target

Figure 1. The Four Stage Life-cycle of a Worm

The four stage life-cycle, as shown in Figure 1, is from
the point of view of a host that is about to become infected.
The arrows represent the source of each stage, but are not
necessarily indicative of separate network traffic or connec-
tions.

The four stages in the life-cycle are:

1. Target selection
2. Exploitation
3. Infection

4. Propagation

In practice, the actions in the first and fourth stages are
the same. However, from the point of view of the attacked
host, they appear differently. This will become clear as each
of these stages is described in more detail. The Lion worm,
described in both [2] and [5], will be used as an example to
illustrate the actual actions of a worm in each stage.

2.1 Target Selection

The target selection stage is the phase when an unin-
fected host is chosen to be attacked. This is where the worm
performs reconnaissance to determine other potential vic-
tims.

From the point of view of the host that is about to be in-
fected, this may be as simple as a single network probe. For
example, the Lion worm simply probes a potential victim to
see if it is running a service on port 53. If there is indeed a
service running, then the worm moves into the second stage
to attempt to exploit the victim.

2.2 Exploitation

The exploitation phase is when the worm compromises
the target by exploiting a particular vulnerability. Often-
times, worms use well known vulnerabilities and published
exploits to compromise their target.

In the Lion example, a BIND exploit [1] is used to com-
promise the host and obtain root privileges. If the victim is
successfully compromised, then the worm moves into the
third stage, infection.

2.3 Infection

The infection stage is the most broad in the life-cycle, as
the worm copies itself on to the victim machine and then
performs any number of different actions. The line between
the infection and exploitation stage is sometimes blurred.
For example, the Code Red worm [3] actually loads itself
into the victim’s memory as part of the exploit used to com-
promise the victim. The infection stage is understood to
be the time when the worm “sets up shop” on the newly
infected machine. For example, the worm can open back-
doors, change system files, or attempt to hide its presence
by replacing system utilities with trojan horses.

The Lion worm connects to a predetermined website to
download itself to the newly infected host, mails several
system files (including /et c/shadow) to a predetermined
email address, and adds an entry to /etc/inetd.conf
to allow attackers to connect to port 10008 with root access.

After the worm has set itself up on the newly infected
host, it then moves into the fourth stage of the life-cycle,
propagation.

2.4 Propagation

In the propagation stage, the worm attempts to spread
by choosing new targets. The difference between this stage
and rarget selection is simply the point of view from which
the actions take place. In target selection, a remotely in-
fected host chooses the local host as a target, often in the
form of a probe coming in through inbound network traffic.
In the propagation stage, the infected local host is the one
choosing a new target, using probes going out in outbound

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

network traffic. This is an important distinction and allows
new techniques to be used in worm detection.

The Lion worm begins its propagation by randomly
choosing an IP address as a base. Then, starting with this
base address, it uses a TCP SYN scan to probe on port 53.
It repeatedly increments the address by one to get the next
target it will probe. It scans well over a hundred hosts per
second.

2.5 Four Stage Life-cycle Summary

Looking at the entire life-cycle for the Lion worm, a vic-
tim host would see:

e Stage One - A connection attempt on port 53
e Stage Two - A BIND exploit on port 53

e Stage Three - An outbound connection to a website
to download the worm, filesystem changes to open a
backdoor, and outbound email transferring sensitive
system files

o Stage Four - A series of rapid outbound scans probing
port 53 on randomly selected hosts

In Table 1, included at the end of the paper, several of
the more prolific worms are broken into the described four
stage life-cycle. Every worm in the table scans to find po-
tential victims. The Network Probe category illustrates this,
and lists the port numbers of any scanned ports. In addition,
some worms use email in order to spread themselves. This
category was included for completeness, but is not other-
wise addressed. The Exploit category gives the targeted ser-
vice and the CERT Advisory that describes the vulnerabil-
ity. The Infection category includes columns for filesystem
modifications, backdoors, and other activity. A filesystem
modification includes everything from a copy of the worm
being placed on the system to changing system files. A
backdoor includes techniques such as adding new users to
the system and opening a root shell server (in which case the
port is listed). The Other column contains activities that do
not fall into the first two, such as emailing out system files,
connecting to a server to download the worm, or setting up a
DDoS client. The Propagation category includes an Other
column, which accounts for different spreading techniques
such as a web server infecting a client.

This table gives the intuition behind how each worm can
be detected or prevented in its different stages.

3 Detection Techniques in the First Three
Stages

Having described the four stage life-cycle of a worm, it
becomes apparent that the majority of tools used to combat

worms focus on the first three stages. This section will look
at the different techniques being used today in each stage,
as well as the limitations that these tools face.

3.1 Detecting Target Selection

As discussed, from the point of view of the victim host,
the target selection phase typically involves an inbound net-
work probe on a particular port. Firewalls are designed to
block this type of probe. If a remote machine is attempting
to access a service it does not have permission to access, the
firewall can block it. However, worms often target services
that are available to the public, such as a web server. In this
case, detection in this phase can be reduced to the detection
of an inbound portscan.

The standard technique used to detect a port scan is “test-
ing for X events of interest across a Y-sized time window
[11].” For example, one can test for the same source ad-
dress accessing 10 different ports on the same destination
machine within a two second interval. This claim is sup-
ported by a survey of a number of different network intru-
sion detection systems that use slight variations of the afore-
mentioned technique to detect portscans [17].

This technique is viable if the scanning host actually trig-
gers X events; however, as noted earlier, the scanning host
may only send one probe into a network. It does not need
to scan multiple ports, or multiple hosts.

In the case where a target can be selected with one probe,
such as a connection to a web server on port 80, very little
can be done to detect the worm at this stage in the life-cycle.

3.2 Detecting Exploits

Because of the difficulty of detecting the scans described
in the prior stage, much of the work that has been done to
detect and prevent worms falls into detecting attempts to
exploit vulnerabilities.

The first, and most effective line of defense against
worms and any other network attack is to keep servers up-
to-date with the latest patches. Many of the worms in circu-
lation today exploit well known vulnerabilities for which
patches exist (and existed even before the worms began
spreading). Furthermore, many worms simply copy their
predecessors and exploit the same vulnerabilities. Using Ta-
ble 1, it can be seen that Code Red v1 and Code Red II both
exploit the same vulnerability. Similarly, Adore exploits the
same vulnerabilities that Lion and Ramen exploit.

Detecting exploits as they cross the network is the main
goal of a Network Intrusion Detection System (NIDS).
While many worms attack well known vulnerabilities, they
also use well known exploits for which signatures have been
written. In these cases, an up-to-date ruleset on a NIDS will

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

generate an alert when a worm attempts to attack a host on
the network.

The limitations of network intrusion detection systems
and patches are well known. If a new vulnerability is at-
tacked, and the exploit has never been seen in the wild,
patches will probably not have been released and signatures
will not have been written to detect it. Consequently, a host
will be vulnerable, and a signature based NIDS will miss
the exploit. Furthermore, there are several techniques that
can be used to avoid detection by a NIDS, with varying de-
grees of success depending upon the actual NIDS that is
deployed. These include techniques such as slightly vary-
ing the signature of the worm, overlapping fragmentation
attacks, and others [14].

3.3 Detecting Infection

Due to the number of different actions a worm can take
in this stage, there are many different techniques that may
be used to detect infection. A few of them will be discussed
here.

Oftentimes, once a worm has been captured on the In-
ternet, antivirus products are quickly updated to detect it.
Thus, if a particular file is suspected of being a worm, an
up-to-date antivirus product may be able to detect it.

If a worm modifies important system files, such as re-
placing utilities with trojan horses or adding services in
/etc/inetd.conf, a file integrity program such as
Tripwire [9] can be used to detect these changes. Every
worm in Table 1 makes a filesystem change of some kind.
If monitored system files are changed, a tool like Tripwire
can easily detect it.

If a worm starts a server on particular port, perhaps to
open a backdoor into the system, combining the use of a
network scanner [7] and system utilities such as netstat
can detect it. For example, these tools could detect the root-
shell servers set up by both the Sadmind and Lion worms.

Because of the number of different actions a worm can
take, there is no single answer to detection in this stage.
Instead, a number of different techniques may be of use that
depend upon the particular worm. At the same time, it is
easy to envision a worm with little noticeable footprint on
the host system. For example, the worm could load itself
into memory, and then remove any trace of its presence on
the filesystem. In this case, detection in this stage becomes
difficult.

Using the detection techniques from the first three stages
of the life-cycle, administrators have a variety of tools that
can protect their networks. However, if a worm were re-
leased that carefully targeted its victims, exploited a new
vulnerability, and left a small footprint on the system, more
would need to be done to detect its presence. That detection
can take place in the fourth stage of the life-cycle.

4 Detecting Propagation

As described, a new, properly designed worm may evade
detection in the first three stages. However, it can still be
possible to detect its presence when it attempts to propa-
gate. As much of the focus in the security community is in
protecting the network from attack, a motivation for the im-
portance of tools that can be used after a successful attack
will also be discussed.

All the worms analyzed in this paper have one charac-
teristic in common: they rapidly scan randomly selected IP
addresses to find new victims. Thus, with this type of worm,
detection reduces to a type of outbound scan detection.

4.1 Prior Work In Detecting Scans

GrIDS [16] is an intrusion detection system designed to
detect large scale attacks on a network. It does so by build-
ing activity graphs of network traffic and analyzing them
in relation to graphs that model different attacks. GrIDS
has been used to detect the spread of a worm by looking
for a tree-like connection graph resulting from the worm as
it branches out to newly infected hosts. It can also detect
sweeps, which occur when a host connects to many other
hosts in succession.

Other intrusion detection systems can have outbound
scan detection built in by using modules or the rule descrip-
tion language. The Bro IDS’s policy scripting language can
be used to detect scans. Essentially, it can be told to watch
for the number of connections to cross a particular threshold
[12], where a connection consists of a single source address
and either a destination address or port. No timing mecha-
nism is used.

A Snort Portscan preprocessor' [15] has also been de-
veloped. The preprocessor allows the specification of the
network to monitor for portscans, the threshold number of
ports that are accessed, the period of time the threshold must
be exceeded in, and a log file for the results. A limitation
of this preprocessor is that only the scan’s destination net-
work can be specified, thus it cannot be configured to only
watch outbound scans. That is, one cannot specify a range
of addresses to watch for originating scans.

While the tools and techniques exist to detect scan activ-
ity, the main focus has been on detecting inbound scans. At
the same time, the goal has been to detect general port scan
activity, as opposed to focusing solely on the more special-
ized type of scanning used by worms. While existing IDSs
allow outbound scan detection to be built in, the prevalence
of worms in the past few years suggests that this is not be-
ing done. Thus, the next section will narrow the classic X
events in Y period of time technique to detect the outbound
scans that are frequently used by worms.

'Written by Patrick Mullen

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

4.2 Revisiting the X Events in Y Period of Time
Technique

Outbound scan detection has advantages over its coun-
terpart — inbound scan detection. One such advantage is the
ability to see all of the scans leaving the scanning host. As
discussed in Section 3.1, the most widely used technique to
detect a scan is to look for a certain number of events that
occur within a set period of time. This technique is limited
when watching inbound traffic, as a scan may only probe
one host on any given network, and thus consist of only
one event. However, watching outbound traffic may trigger
enough events to detect the worm, even if it probes several
different networks.

Many types of scans exist [6], and any detection mech-
anism would have to take this into account. Instead of fo-
cusing on particular scan types, the TCP SYN scan with a
horizontal scan footprint [17] will be examined.

A horizontal scan occurs when a worm is only probing
a particular port on a set of different hosts. The Lion worm
uses a horizontal scan to probe port 53 on randomly selected
IP addresses. In this case, the source IP address (src_ip)
and the destination port (dst_prt) are the same across ev-
ery probe, while the destination IP address (dst_ip) and
the (src_prt) will change.

The worms in Table 1 represent a class of worms that use
a horizontal scan to find potential victims. Thus, a technique
that can detect a horizontal scan would also detect all of the
worms in this table.

It will be assumed that detection is not performed on the
infected host, but rather at a network sensor that can see
all of the traffic generated by the infected host. At the same
time, it should be noted that where a sensor should be placed
on the network has been widely debated in the security com-
munity and is not always as straight-forward as it might first
appear.

To detect this type of scan, the following C-like pseu-
docode can be used:

typedef (src_ip, dst _prt) conn;

/* Called for every outbound packet */
process conn(conn) {
if (conn.exists) { /* We have seen */
conn.counter++;
if (conn.counter > THRESHOLD) ({
generate alert () ;
}
}

else if (src_ip in specified range) {

/* Create a new pair */
add (conn) ;
conn.counter = 1;

/* Period of time to count events */
conn.timer = QUANTUM;

}
}

/* Called every second */
timer ()
foreach(conn) {
conn.timer--;
if(conn.timer == 0)
remove (conn) ;

A key to this approach is determining the appropri-
ate QUANTUM and THRESHOLD values. Or, deter-
mining what window should be used such that if we ob-
serve THRESHOLD repeated (src-ip, dst_prt) pairs,
an alert is generated. These numbers will vary based on
the characteristics of a particular network’s traffic, and will
need to be experimented with to find effective values.

While this technique is similar to what has been used in
the past, the fundamental difference is that it is designed to
watch outbound traffic for horizontal scans. It does this by
making sure the source IP address originates from within
the local network (the specified range). This technique is
a viable one for worms that are designed to spread rapidly,
such as the worms in Table 1 and Warhol worms [18].

This type of monitoring — watching outbound traffic to
detect a worm after it has already infected the network — has
additional advantages over standard inbound traffic moni-
toring, several of which are enumerated in [8]. A few of
these advantages will be discussed next.

4.3 Increased Confidence in Alerts

Portscans in general are highly prevalent on the Inter-
net, and though often used as a first step in an attack, by
themselves they pose little threat. They are so common that
administrators often do not have time to follow up on them,
and thus consider them part of the background noise of the
Internet.

While detection of an inbound portscan may be accept-
able, a local host scanning out to the Internet is likely to
violate a network’s usage policy. In addition, detected out-
bound portscans should be much less frequent.

Pulling this together, an alert generated by an outbound
portscan should carry more importance than an inbound
scan. Thus, an administrator will have more incentive to in-
vestigate such alerts, and may discover a misbehaving user
or a worm.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

4.4 Containing the Damage

A potentially devastating characteristic of a worm is its
ability to spread quickly across the Internet. Once a worm
has been designed to automatically compromise a machine
and then spread, authors can incorporate any other behavior
they desire. Thus, the ability to contain a worm is important.

One tool that has been written to slow down worms and
portscans is LaBrea [10]. Essentially, LaBrea allows a TCP
connection to be opened to a nonexistent host, and then sim-
ply sits on the connection. Thus, when a worm attempts to
connect to nonexistent IP addresses on one’s network, it is
tricked into believing that a machine is indeed there.

By watching outbound traffic, an administrator should be
alerted when it appears that a worm is attempting to propa-
gate from an infected local host. This gives an administrator
the opportunity to go to the host, investigate, and take cor-
rective action. Furthermore, as many worms target the local
network in addition to remote machines, by detecting the
worm’s presence, the machines on the local network may
be protected.

By containing the damage a worm does, and limiting its
ability to spread, there is also the benefit of protecting one’s
public relations.

4.5 Public Relations

The widespread discovery that one has been infected
with a worm can be a public relations nightmare. The reluc-
tance to admit to suffering a security breach is well known.
A recent study in [13] shows that in 2001, only 36% of those
who were seriously attacked reported it to law enforcement.
This number is actually up from a low of 17% in 1998.
While there are a number of reasons for this low number,
one reason is the potential damage to one’s reputation. This
is supported by the web pages that were set up listing net-
works that were infected during the height of the Code Red
worm’s spread. A number of these networks pulled them-
selves off-line to contain the worm and protect their image.

Once a worm’s scanning behavior or exploit signature
has been determined, administrators can easily tell when
their network is being scanned by a worm and where the
worm is coming from. Furthermore, once the scanning host
is identified, it is easy to determine the entity (company,
University, etc.) that is infected by a particular worm.

If the public finds out that an Internet security company,
financial institution, or retail company has been infected by
a worm, public confidence may be shaken. It can lead to
questions such as: “If this security company cannot defend
itself against a worm, how can it defend me?” or “If this
bank has been infected by a worm, are my personal files
and accounts safe?” Thus, it makes sense to do everything
possible to contain a worm once it has infected the network.

5 Limitations

The technique described in this paper is a step in the right
direction, but it does have limitations.

Just as one can envision a worm that evades detection in
the first three stages, it is easy to envision one that evades
detection in the fourth stage as well. For example, if the
worm is content to spread slowly, an outbound scan will
not be detected. Despite this, attempted detection in this
stage succeeds in raising the bar in some way. Furthermore,
a slow moving worm may work against its ultimate goals,
as administrators will have more time to detect and remove
it while notifying the general public. To date, the worms
discovered in the wild have attempted to spread as quickly
as possible, but there is no guarantee that future evolutions
will do the same.

While the described technique attempts to detect out-
bound scans, worms may evolve to employ other techniques
to spread in the future. Such examples may include em-
bedding themselves into standard client/server HT'TP traffic
or taking advantage of the prevalent peer-to-peer networks
[18].

6 Current Implementation and Future Work

Thus far, experimentation is still in the early stages. A
prototype is in the development stage as a Snort preproces-
sor [15], based on the pseudo code in Section 4.2. Develop-
ing it as a preprocessor allows it run anywhere that Snort can
run. It is currently designed to watch for TCP SYN scans,
but will be augmented to handle other scans as described in
[6].

While preliminary tests on an isolated network can de-
tect rapid horizontal scans, the next step is to deploy it on
a production network. This will allow it to be fine-tuned to
determine if THRESHOLD and QUANTUM values can be
found that are capable of detecting the propagation stage of
a worm, while not generating excessive false positives.

Techniques to detect other types of outbound scans are
also going to be investigated. One such scan is the verti-
cal scan. This occurs when a scanning host probes several
ports on the same target. For example, the default setting in
Nmap can be used to determine the services a host is run-
ning between ports 1 and 1024.

Another area of investigation will be in coordinating dif-
ferent detection mechanisms in the four stages of the life-
cycle. For example, it may be possible to correlate inbound
traffic that may be indicative of a worm with outbound traf-
fic that looks like a worm attempting to propagate. If both
of these observations occur together, there is a higher likeli-
hood of an infection than if just one observation were made
alone.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

7 Conclusions

The majority of the effort being put into stopping worms
today focuses on the first three stages of their life-cycle:
target selection, exploitation, and infection. Firewalls can
block network probes, network intrusion detection systems
can detect attempts to exploit vulnerabilities, and host based
intrusion detection systems can detect modified, added, and
removed files. Despite these efforts, worms can still be de-
signed to avoid detection by these different tools.

Little has been done to detect worms in the fourth stage
of their life-cycle, propagation. This paper discusses using
the standard paradigm of watching for a particular number
of events to occur in a given period of time. However, in-
stead of applying this technique to inbound traffic, it is ap-
plied to horizontal scans in outbound traffic. This has the
distinct advantage of being able to see all the network traf-
fic associated with a particular host. Consequently, worms
that were not detected in the first three stages can potentially
be detected here.

As the fourth stage occurs after infection, techniques in
this area do not explicitly protect the network. Thus, moti-
vations for the use of tools that work in this stage are dis-
cussed. These motivations include containing the worm, in-
creased confidence in alerts, and protecting public relations.

More attention should be paid to this phase of the worm’s
life-cycle, and this paper takes steps in this direction.

References

[1] CERT. Advisory CA-2001-02, Multiple Vulnerabilities
in BIND. http://www.cert.org/advisories/
CA-2001-02.html, January 2001.

[2] CERT. Incident Note IN-2001-03, Exploitation of BIND
Vulnerabilities. http://www.cert.org/incident
notes/IN-2001-03.html, March 2001.

[3] CERT. Incident Note IN-2001-08, Code Red Worm
Exploiting Buffer Overflow in IIS Indexing Service
DLL. http://www.cert.org/incident notes/
IN-2001-08.html, July 2001.

[4] CERT. Advisory CA-2002-27, Apache/mod_ssl
Worm. http://www.cert.org/advisories/
CA-2002-27.html, September 2002.

[5] M. Fearnow and W. Stearns. SANS Global Incident Anal-
ysis Center - Lion Worm Version 0.12. http://www.
sans.org/y2k/lion.htm, April 2001.

[6] Fyodor. The Art of Port Scanning. http://www.
insecure.org/nmap/nmap_doc.html, September
1997.

[7]1 Fyodor. Nmap. http://www.insecure.org/nmap,
2001.

[8] R. P. Gorman and E. H. Spafford. Reversing the Network
Intrusion Detection Paradigm: The Advantages of Outbound
Misuse Detection. CERIAS Technical Report, March 2002.

(9]

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

G. H. Kim and E. H. Spafford. The design and imple-
mentation of tripwire: A file system integrity checker. In
ACM Conference on Computer and Communications Secu-
rity, pages 18-29, 1994.

T. Liston. LaBrea: The Tarpit.
hackbusters.net/LaBrea/,2002.
S. Northcutt, D. McLachlan, and J. Novak. Network Intru-
sion Detection: An Analyst’s Handbook. New Riders Pub-
lishing, second edition, September 2000.

V. Paxson. Bro: A system for detecting network intruders
in real-time. Computer Networks, 31(23-24), pages 2435—
2463, December 1999.

R. Power. Computer Security Issues & Trends. Computer
Security Institute, Spring 2001.

T. H. Ptacek and T. N. Newsham. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection. Se-
cure Networks, Inc., January 1998.

M. Roesch. Snort: The Open Source Network Intrusion De-
tection System. http://snort.sourcefire.com/,
2002.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.
Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D. Zerkle.
Grids—a graph based intrusion detection system for large
networks. The 19th National Information Systems Security
Conference, 1996.

S. Staniford, J. A. Hoagland, and J. M. McAlerney. Prac-
tical Automated Detection of Stealthy Portscans. 7o
appear in the Journal of Computer Security, 2002.
Available at http://www.silicondefense.com/
research/pubs.htm.

S. Staniford, V. Paxson, and N. Weaver. How to Own the
Internet in Your Spare Time. To Appear in the Proceedings
of the 11th USENIX Security Symposium, August 2002.

G. Stocksdale. NSA Glossary of Terms Used in Secu-
rity and Intrusion Detection. http://www.sans.org/
newlook/resources/glossary.htm, April 1998.

http://www.

YF]',F.

COMPUTER
SOCIETY

Table 1. Worms’ Behavior in the Four Stage Life-Cycle

Target Selection (inbound) Exploitation Infection Propagation (outbound)
File-
Worm Email | Network Targeted Vulner. - EX- | & om | Backdoor | Other | Email | Ne™O™X | Other
Probe (port#) | Service ploited Mod Probe
IIS, Code Yes (open net-
. Red II and work shares,
Nimda Yes Yes (80,600) Sadmind CA-2001-06 Yes No Yes Yes Yes (80,600) embedded
Backdoors javascript)
IIS 4.0/5.0,
Code Red Cisco Series
vl No Yes (80) 600 DSL CA-2001-13 Yes No No No Yes (80) No
routers
IS 4.0/5.0,
Code Red Cisco Series | CA-2001-13,
I No Yes (80) 600 DSL | IN-2001-09 Yes Yes No No Yes (80) No
routers
BIND,
Yes LPRng, CA-2001-02, Yes (21,53,
Adore No (21,53,111,515) | rpe.statd, IN-2001-01 | Yo Yes Yes No 111,515) No
wu-ftpd
. IIS, Solstice | CA-2001-1T1, Yes (port
Sadmind No Yes (80,111) Sadmind MS00-078 Yes 600) No No Yes (80,111) | No
Lion No Yes (53) BIND CA-2001-02 | Yes TSSOS()"O“ Yes No Yes (53) No
wu-ftp,
Yes Yes
Ramen No (21.111.515) rpc.statd, IN-2001-01 Yes Yes Yes No (21.111.515) No
LPRng
Cheese No Yes (10008) I&é‘(’)‘; Back- T 1N2001:05 | ves No No No Yes (10008) | No
... Microsoft
Digispid.B || No Yes (1433) SQL Server IN-2002-04 Yes Yes Yes No Yes (1433) No
OpenSSL Yes (port
Slapper No Yes (80,443) (with Apache | CA-2002-27 Yes 2002) p Yes No Yes (80,443) | No
running)

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC’02)
1063-9527/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

