
DIGIPAPER: A VERSATILE COLOR DOCUMENT IMAGE REPRESENTATION

Daniel Huttenlocher and Pedro Felzenszwalb

Dept. of Computer Science
Cornell University

Ithaca, NY 14853
�dph,pff�@cs.cornell.edu

William Rucklidge

Xerox Palo Alto Research Center
3333 Coyote Hill Rd

Palo Alto, CA 94304
rucklidge@parc.xerox.com

ABSTRACT

We describe a segmentation method and associated file for-

mat for storing images of color documents. We separate

each page of the document into three layers, containing the

background (usually one or more photographic images), the

text, and the color of the text. Each of these layers has dif-

ferent properties, making it desirable to use different com-

pression methods to represent the three layers. The back-

ground layers are compressed using any method designed

for photographic images, the text layers are compressed us-

ing a token-based representation, and the text color layers

are compressed by augmenting the representation used for

the text layers. We also describe an algorithm for segment-

ing images into these three layers. This representation and

algorithm can produce very highly-compressed document

files that nonetheless retain excellent image quality.

1. INTRODUCTION

In this paper, we describe the DigiPaper document image

representation, with an emphasis on using it to store images

of full-color documents. A page from a typical document

might have a photograph making up a background image,

overlaid by some colored text and other graphical elements

such as line-art. Storing such a compound image is compli-

cated by this intermingling of different types of data: a pixel

representing the color of a text character can be adjacent to

a pixel representing a part of the background photograph.

This mixing poses a difficult problem for compression: dif-

ferent types of data are intimately mixed together, and com-

pression methods designed for one type do not work well for

other types, expanding the file size or introducing unaccept-

able loss. For example, using a compression method such

as JPEG that is based on the discrete cosine transform will

not work well for this sort of image (but see [1]). The sharp

transitions between background and foreground generate a

lot of high-intensity high-frequency components, which are

then severely quantized. On decompression, ringing arti-

facts around the edges of text characters are clearly visible.

Alternately, the quantization can be made more fine, but this

greatly increases the file size.

DigiPaper uses three techniques to improve both the im-

age quality and file size for compressed document images.

These are

� Mixed Raster Content (MRC),

� Token compression, and

� Color tags.

The following section describes these in more detail.

2. IMAGE REPRESENTATION IN DIGIPAPER

2.1. Mixed Raster Content

DigiPaper uses the Mixed Raster Content imaging model,

where a page image is represented as a full-color continu-

ous tone (contone) background layer, a full-color or limited-

color (palettized) foreground layer, and a binary selector

layer. Typically, the background layer represents the con-

tone parts of the page, the foreground layer represents the

colors of the text and line-art parts of the page, and the se-

lector layer represents the shapes and positions of the text.

The page image is reconstructed by merging the background

and foreground layers, using the selector to choose between

them.

The background, selector and foreground layers are each

compressed separately, using different compression meth-

ods. In DigiPaper the background is compressed with JPEG,

the selector with token compression, and the foreground

with color tags. Also, the three layers can be stored at dif-

ferent resolutions. For example, the background layer might

be reduced to 100dpi (dots per inch) before compression. In

background color images, this resolution reduction is often

not apparent, whereas it would be unacceptable to reduce

the selector layer (containing the text) to 100dpi.

Since the text has been removed, the background layer

no longer contains foreign step edges, and so it is a much

more suitable candidate for standard photographic image

compression techniques.

Figure 1 shows an image and its decomposition into

these three layers. Wherever the selector layer is black, the



�
�
���

�

�
�
���

Figure 1: Illustration of MRC

color from the foreground is drawn; wherever the selector

layer is white, the color from the background is drawn. One

special case of MRC is of interest: if no image is supplied

for the background, it defaults to white; if no image is sup-

plied for the foreground, it defaults to black. Thus, a page

in a DigiPaper file that has no images supplied for the fore-

ground or background is simply a black and white bi-level

image.

The MRC model has recently been adopted for fax as

Recommendation T.44 [2] by the International Telecommu-

nications Union (ITU), and for Internet fax as RFC 2301 by

the Internet Engineering Task Force (IETF) [3].

2.2. Token compression

A key aspect of the DigiPaper representation is the use of to-

ken compression, wherein a binary document image is rep-

resented using a dictionary of token shapes, together with

position information indicating where each token should be

drawn. This representation is both compact, storing just a

single image of each token, and provides a structured repre-

sentation for interactive document viewing operations such

as cut and paste. Such a scheme was first described by As-

cher and Nagy [4] and is the basis of the forthcoming JBIG2

binary image compression standard [5].

Figure 2 shows the effects of performing token com-

pression on the selector layer from Figure 1. The 11 dis-

�
� �� �

(4,30) (25,30)

(55,30)

(43,29) (75,29) (89,30)

(15,80)

(107,30) (4,80)

(54,80)

(33,80)

Figure 2: Illustration of token compression

tinct shapes from the selector layer are segmented (using

connected components analysis), and then classified into 8

equivalence classes. Exemplars for these equivalence classes

are shown, together with the locations of the members of

those classes. The exemplars form a token dictionary, and

this dictionary plus the numerical locations can then be rep-

resented in less space than would have been required to rep-

resent the original bitmap.

DigiPaper shares the token dictionaries between multi-

ple pages of a document; this greatly improves compression

as most tokens occur on many pages. It also allows the fore-

ground layer to share contone images between pages; this

can help compression of documents where every page con-

tains a logo, as is common in slide presentations.

Loss can be introduced during token compression, by

allowing shapes in the original image that are slightly differ-

ent to be called the “same” (placed in the same equivalence

class). The decompressed image is not identical to the orig-

inal image, but if the choice of these substitutions is made

well, the differences are not noticeable. The shape compar-

ison algorithm we use is described in [6], and is based on a

modified Hausdorff distance [7].

2.3. Color tags

DigiPaper uses a novel extension of token compression to

represent color images, where each instance of a token spec-

ifies not only a location on the page but also color informa-

tion for drawing that token. The color information may be

a single color value, or may specify an image to be masked.

We refer to this as a tagged token representation, because

each instance is tagged with color information. The tagged

token representation extends the MRC model because a fore-

ground layer and the corresponding selector layer are rep-



�
� �� �

(4,30, ) (25,30, )

(55,30, )

(43,29, )(75,29, )(89,30, )

(15,80, )

(107,30, )(4,80, )

(54,80, )

(33,80, )

Figure 3: Illustration of color-tagged token compression

resented together, rather than as separate binary and color

images. Each position is augmented with information about

the color of that instance of that token (the color tag).

Figure 3 shows the effect of applying color-tagged token

compression to the text in Figure 1. The token compres-

sion proceeds as in Subsection 2.2, identifying connected

regions of the same color. The only difference is that each

of the 11 regions now is identified by four values: its equiv-

alence class, its � and � position, and its color. Note that

the selector layer’s image can be reconstructed by simply

ignoring the color tags. In fact, since characters of the same

color often occur near each other, separating the color tags

from the rest of the data and run-length compressing them

yields very good results.

The tagged token color representation used in DigiPaper

allows colored text, such as that used in magazines and slide

presentations, to be represented in nearly the same space as

is required to represent simple black text. The tagged to-

ken approach is also well suited to the drawing models of

PostScript and PDF, enabling efficient embedding of Digi-

Paper data in these formats. This provides a means of cre-

ating highly space efficient “print ready” files, that render

quickly and always produce the same raster image regard-

less of the rendering environment (e.g., there are no fonts,

layout or other differences).

3. SEGMENTATION OF PAGE IMAGES

Creating DigiPaper representations of scanned color docu-

ments is a difficult task: each page must be segmented into

the foreground, background and selector layers. Getting the

segmentation right improves the compression and visual ap-

pearance of the document. Our segmentation algorithm uses

the tokenized representation to help with the segmentation.

We rely on a number of attributes of text:

� The text shapes have a high contrast with the sur-

rounding area

� Text shapes occur in groups (isolated letters are rare)

� The same shapes occur repeatedly

� Text shapes close to each other tend to have the same

color

� The interior color of any given text shape tends to be

smooth.

Our method uses these attributes to determine which

parts of the scanned document image is text and which is

contone background. It proceeds as follows.

1. Convert the page image to a binary image using adap-

tive thresholding. This uses the high contrast neces-

sary for the text to be readable to segment it from the

background. Of course, the thresholding algorithm

also picks up a large number of non-text features from

high-contrast regions of the background.

2. Find both black and white connected components in

the thresholded image. These should include all the

text characters, both light-on-dark or dark-on-light.

3. Determine the original color of each component; re-

ject any components with large color variance as these

are unlikely to be text.

4. Reject any components with no cohesive shape, as

they are probably noise.

5. Find components that are close to other components

of about the same size. These are initial guesses for

text characters.

6. Feed these initial guesses into the token comparison

engine, which groups together things that have the

same, or nearly the same, shape.

7. Any component that matches another component is

likely to be text, as shapes reoccur frequently within

text and infrequently in photographs.

8. Additional components that are aligned with these text

components, and are of about the same size and color,

are also likely to be text.

9. Finally, select certain components that are close to,

but considerably smaller than something marked as

text. This picks up textual elements such as periods,

commas, “i” dots, and so on.

Once this procedure has finished, the algorithm has a

list of shapes that it believes are text. These shapes have al-

ready been grouped into equivalence classes. The algorithm

then constructs the tokenized selector layer from the list and

the equivalence classes. It also constructs the color-tagged

foreground layer by annotating each shape on the list with

its original color (recovered in step 3).

Figure 4 illustrates the result of applying this algorithm.

It shows two regions of the same page. Figure 4(a) shows



the original regions. Figure 4(b) shows the result of adap-

tive thresholding (step 1). Figure 4(c) shows the selector

layer extracted from that thresholded image. Finally, Fig-

ure 4(d) shows the results of decompressing the final Digi-

Paper image. The original image is ��������� pixels, and

is approximately 23 megabytes of uncompressed data. The

DigiPaper file is approximately 100 kilobytes.

Another example is shown in Figure 5. The original

image is ���� � ���� pixels, and is approximately 21.5

megabytes of uncompressed data. The DigiPaper file is ap-

proximately 260 kilobytes. This file is larger because the

background is more complex, and thus takes more space to

encode. In both of these examples, the background is repre-

sented at 100dpi.

Note that the pixels in the background and foreground

layers that are not selected by the selector layer are “don’t

care”s, and so their values can be chosen arbitrarily. The

values of these unselected “don’t care” pixels are usually

chosen in such a way as to optimize compression of the pix-

els that are selected. Methods for filling in these holes are

described in [8, 9].

4. DECOMPRESSION

DigiPaper files can be decompressed extremely quickly: sim-

ple black and white DigiPaper files can be decompressed at

over 30 pages per second, and complex color files can be

decompressed at about 1 page per second.

Decompressing a black and white DigiPaper page re-

duces to decompressing one or more token dictionaries, de-

compressing the page’s selector layer data, and then per-

forming a series of “bit-blit” drawing operations, drawing

the page’s tokens into their final locations. The format for

the compressed dictionary and selector data has been de-

signed so as to make it easy to decompress, so this whole

process takes very little time.

Decompressing a color DigiPaper page is not much dif-

ferent: first, the background is decompressed, scaled up to

the selector’s resolution, and drawn into the output buffer.

Next, the selector data (plus any dictionaries it might use)

is decompressed, along with the color tag data representing

the foreground. Finally, the colored tokens are drawn on

top of the background image. Because the images involved

here are larger (usually 24 bits per pixel rather than 1 bit

per pixel) than in the black and white case, this process is

slower than decoding a black and white image. However,

the tagged representation of the foreground layer eases the

burden considerably: it is much easier to draw a series of

colored shapes than it is to produce an entire image for the

foreground layer and then mask it through the selector.

Furthermore, DigiPaper files can be printed easily: the

imaging operations used to reconstruct the page images map

well onto the primitive operations of most common page

description languages, such as PostScript. This means that

DigiPaper files can be converted to fast, compact PostScript.

Again, the tagged representation of the foreground layer is

crucial: it allows use of the font-definition and text-drawing

PostScript primitives, which are likely to have been heavily

optimized by the printer manufacturer.

5. CONCLUSIONS

The DigiPaper image file format uses token compression

(embodied in JBIG2) and Mixed Raster Content in order to

acheive very compact representation of document images.

One of the problems with MRC is the segmentation of input

images into the background, foreground, and selector lay-

ers. We have presented a method for performing this seg-

mentation, which synergistically uses token compression to

improve the quality of the segmentation. We have also pre-

sented the color tagging extension to MRC, which again

makes synergistic use of token compression to represent the

foreground in a manner that improves compression and ease

of display. Color tagging also resolves one of the problems

confronting MRC by allowing easy mapping of MRC im-

ages into printer-friendly formats.

6. REFERENCES

[1] R. de Queiroz. Processing JPEG-compressed images and

documents. IEEE Transactions on Image Processing,

7(12):1661–1672, December 1999.

[2] International Telecommunication Union — Telecommunica-

tion Standardisation Sector. Mixed Raster Content (MRC).

Recommendation T.44.

[3] L. McIntyre, S. Zilles, R. Buckley, D. Venable, G. Parsons,

and J. Rafferty. File format

for internet fax. IETF Request for Comments 2301, March

1998. http://www.ietf.org/rfc/rfc2301.txt.

[4] R. N. Ascher and G. Nagy. A means for achieving a

high degree of compaction on scan-digitized printed text.

IEEE Transactions on Computers, C-23:1174–1179, Novem-

ber 1974.

[5] P.G. Howard, F. Kossentini, B. Martins, S. Forchhammer,

and W.J. Rucklidge. The emerging JBIG2 standard. IEEE

Transactions on Circuits and Systems for Video Technology,

8(7):838–848, November 1998.

[6] W.J. Rucklidge, D.P. Huttenlocher, and E.W. Jaquith. Method

and apparatus for comparing symbols extracted from binary

images of text using topology preserved dilated representa-

tions of the symbols. US patent 5835638, November 1998.

[7] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge.

Comparing images using the Hausdorff distance. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

15(9):850–863, September 1993.

[8] L. Vincent. Morphological algorithms. Technical Report 91-

12, Harvard Robotics Laboratory, 1991.

[9] Leon Bottou and Steven Pigeon. Lossy compression of par-

tially masked still images. In J. Storer and M. Cohn, edi-

tors, Proc. Data Compression Conference, page 528, Snow-

bird, Utah, 1998.



(a) (b) (c) (d)

Figure 4: Segmentation example 1

(a) (b) (c) (d)

Figure 5: Segmentation example 2


