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Abstract

Purpose of Review Three-dimensional (3D) data on forest structure have transformed the level of detail and accuracy of forest

information. While these 3D data have primarily been derived from airborne laser scanning (ALS), there has been growing

interest in the use of 3D data derived from digital aerial photogrammetry (DAP) and image-matching algorithms. In particular,

research and operational forestry communities are interested in using DAP data to update existing ALS-derived enhanced forest

inventories. Although DAP depends on accurate terrain information provided by ALS to normalize digital surface models to

heights above ground, in an inventory update scenario, DAP data currently have cost advantages over repeat ALS acquisitions.

Recent Findings Extensive research across a broad range of forest types has demonstrated that DAP data can provide comparable

accuracies to ALS for estimating inventory attributes such as volume, basal area, and height when used in an area-based approach

with co-located ground plot information.

Summary Herein, we review research relevant to the use of DAP for updating area-based forest inventories in subsequent

inventory cycles, highlighting issues and opportunities for DAP data in this context. We examine the use of DAP for area-

based forest inventory applications, comparing data inputs, algorithms, and outcomes across numerous studies and forest

environments. Lastly, we outline outstanding research gaps that require further inquiry including benchmarking of acquisition

parameters and image-matching algorithms.

Keywords Digital aerial photogrammetry . Image-matching . Airborne laser scanning . Forest inventory update . Digital stereo

imagery . Forest structure . Image based point clouds

Introduction

It is well known that forests are highly dynamic ecosystems that

are perpetually undergoing successional changes through

growth and natural disturbance [1, 2]. The provision of accurate

and up-to-date forest inventories is essential to facilitate data-

driven, effective, and well-informed forest management scenar-

ios as well as formulate effective forest policy. High up-front

inventory costs, complexity in data acquisition, and ongoing

uncertainty surrounding the future state and condition of forests

due to climate change are principle motivators for enhancing

and modernizing forest inventory frameworks globally [3–5].

As with other resource management fields, the demand for,

and expectations of, inventory quality and content have

compounded. The inherent complexity of forest ecosystems in-

centivizes the argument that routine data acquisitions to update

inventories are needed to capture and integrate these changes in

order to increase knowledge of forest dynamics, improve forest

stewardship, and ultimately provide data-driven justifications for

forest and environmental policy [6–8].

To enhance inventory data content, the inclusion of struc-

tural characterizations of forests using technologies such as
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airborne laser scanning (ALS) with the goal of linking struc-

ture with standard forest inventory attributes such as height [9],

volume [10], and basal area [11] is becoming widespread in

research and operational forestry [12]. Linking ALS data in the

form of spatial and structural information with traditional forest

inventory plot data in the area-based approach (ABA) has

brought about a paradigm shift in the conceptualization and im-

plementation of forest inventories [13, 14]. Technological inno-

vations such as ALS have been used to enhance forest inventory

value through improvements in measurement and prediction ef-

ficiencies [15•], cost-effectiveness [16], and provision of a di-

verse and ever-increasing compilation of inventory data [17],

model predictions [18], and finalized mapping products [19].

Inventory frameworks incorporating these data sets can be re-

ferred to as enhanced forest inventories (EFI) [20–23]. Alam

et al. [24], who outline the economic impact of an EFI in

Ontario, Canada, found that these data help to maximize the total

value of wood fiber through proper product allocation, reduce

fluctuations in raw wood fiber supply, and minimize inventory

carrying costs and lost sales.

As opposed to traditional forest inventories, EFIs provide an

abundance of advantageous, non-traditional information, such as

structural forest characterizations that can be utilized to better

inform forest management practices. Acquisition of ALS data

with the intention of generating EFIs has become more common

globally as a result of improvement in sensor specifications,

quality of data sets, and innovative forest management research.

ALS data sets are increasingly becoming adopted and utilized in

industrial forest management as a method for enhancing inven-

tory content, as well as bridging gaps between strategic, tactical,

and operational levels [20, 25]. Integrating ALS into inventories

has been demonstrated to provide multi-scale information to im-

prove ecological understanding and guide forest planning and

management activities [15•, 26–28]. Likewise, these data sets

can be joined with existing inventory frameworks to establish

of EFI baselines. These baselines describe the initial state of the

forest for use as inputs for future predictions, as well as a refer-

ence to evaluate management prescriptions [6].

One challenge related to the use of ALS within an EFI

framework is how these data maintain their utility as they age.

McRoberts et al. [16] found that the shelf-life of ALS datasets

used in a model-assisted framework is at least 10 years, helping

to reduce long-term inventory costs, as well as to maintain the

accuracy and applicability of predictive attribute models.

Fekety et al. [29] likewise demonstrated the temporal transfer-

ability of the ABA, and how pooling data across time increases

their availability for improving inventory predictions. This in-

dicates that ALS data can provide lasting value related to the

landscape-level quantification of forest attributes, as well as

immediate cost savings through the provision of high-quality

digital terrain models (DTM).

While these data provide obvious quantifiable benefits to

inventory systems, reliance on a single ALS data acquisition

does not provide information on how forest vegetation is

changing through time, perhaps one of the most critical

long-term forest management directives [30]. Given the cur-

rent unreasonable economics of repeat ALS data acquisitions,

alternate technologies must be integrated to provide a means

of cost-effectively and efficiently updating pre-established

EFIs [20, 31, 32].

A technology that has garnered significant interest due to

its similarities with ALS is digital aerial photogrammetry

(DAP) [33••, 34••] (Fig. 1). The incorporation of DAP data

for enhancing forest inventories is logical for a number of

reasons:

& Stereo-photogrammetry has a long-standing history in forest

management in general [35], enabling characterization of ter-

rain, forest cover, and species data, amongst others [20, 36].

& The use of aerial imagery in forest inventory programs has a

long history [37], extending almost a century in Canada [38].

Manual photo-interpretation of inventory attributes has been

a primary data source for forest inventories since the 1950s

[39, 40]; however, reliance on manual photo-interpretation is

decreasing due to a lack of skilled interpreters and improve-

ments in semi-automated and automated approaches.

& The advent of ALS data in the late 1990s challenged the

utility of aerial photography as the data source of choice

for forest applications [41]; however, renewed interest and

investment in photogrammetry has occurred largely as a

function of new capacity to derive 3D information that is

similar to that of ALS data at a lower cost [42, 43••].

& The historical prominence and ongoing development of

photogrammetry in the field of forestry, and resources

management more generally, provide structural, spatial,

and spectral information for the purposes of enhancing

and updating forest inventories [11].

The relative advantages of ALS and DAP were first summa-

rized byBaltsavias [44••]. For DAP, key strengths continue to be

the ability to acquire data from greater altitudes at faster speeds,

thereby enabling data acquisition over substantially larger areas

relative to that of ALS, for a fixed number of flying hours. As a

result, DAP acquisition costs are estimated to be one-half to one-

third less than that of ALS [33••, 43••]. Ultimately, the cost

differential between DAP and ALS will vary depending on the

size and complexity of the area to be flown and the data acqui-

sition specifications (e.g., point density for ALS, across-track

overlap for DAP). DAP workflows are becoming increasingly

automated [45] and in many jurisdictions, photos are routinely

acquired for other mapping projects (e.g., base mapping up-

dates) [46], further underwriting the costs of data acquisitions.

In addition, there are commonly more service providers for air-

borne imagery than ALS data and increased competition

amongst providers also influences acquisition costs.
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Key considerations are that acquisition and processing

benchmarks have yet to be established, and that DAP is

strongly influenced by shadows and occlusions from objects

that can prevent image-matching. DAP’s major difference

from ALS in the context of EFIs is that it is limited to charac-

terizing the outer canopy envelope (Fig. 1), as opposed to the

vertical distribution of vegetation through the canopy profile

[42]. DAP is however effective for conventional forest inven-

tory processes such as manual interpretation tasks or stand

boundary delineation, although options to automate these

tasks are becoming increasingly viable.

In this review, we outline the role DAP has as a synergistic

technology capable of integration into EFI frameworks. Our ob-

jective is to demonstrate that DAP data provide a viable source of

information for updating EFIs. To do so, we first provide a back-

ground of digital photogrammetric approaches including notable

acquisition parameters, DAP point cloud generation, and conse-

quent point cloud processing. We then outline information needs

for EFIs with a focus on the potential of DAP to be a successful

data source within these frameworks. We then consider the role

of DAP in the ABA [47] in estimating forest inventory attributes.

Specifically, with reference to comparative literature, we outline

the role DAP data sets can have as a tool for updating baseline

ALS EFIs within the ABA framework. This synergistic EFI

framework has the potential to reduce short- and long-term in-

ventory costs, provide accurate and precise multi-scale data, and

most importantly, be used to derive information on forest change

through time to inform progressive socio-economic and environ-

mental policy. It is our intention in this review to outline DAP’s

potential for integration into inventory systems to improve cur-

rent practices, while also having the potential to improve efficien-

cy, value, and the long-term viability of data products.

Digital Aerial Photogrammetry

DAP enables the generation of spatially continuous, 3D

information derived from digital imagery datasets [43••].

Nomenclature for digital photogrammetric techniques and

data have yet to be standardized, although DAP is acknowl-

edged as a technology capable of characterizing certain

components of vegetation structure in a manner analogous

to ALS data [31, 42, 43••, 48]. The implementation of

photogrammetric techniques to generate these 3D data is

often referred to in the scientific literature as image-

matching, 3D vision, or structure from motion, while terms

to describe the 3D data itself have included image-based

point clouds, image point clouds, photogrammetric point

clouds, and digital stereo imagery, amongst others. Using

photogrammetric principles in combination with digital im-

agery and computer vision algorithms, DAP measures the

geometry of objects by projecting rays through stereo or

multiple imagery to derive 3D features [36].

A digital photogrammetric system or framework is com-

prised of computer hardware and software designed to gener-

ate photogrammetric products from digital stereo-imagery

using a combination of manual and automatic techniques.

Rapid technological advancements and cost reductions for

computer/platform hardware components have lowered the

barriers-to-entry to conduct photogrammetric processing rou-

tines at spatial and temporal frequencies that were once cost-

restrictive [49]. Increased availability and cost-effectiveness

of high-quality computer hardware has shifted the competitive

edge of digital photogrammetry systems to being software

driven with a variety of commercial and open source software

available [50].

Fig. 1 Point cloud cross-section comparison of ALS (light green) and DAP (dark blue). ALS points can be seen characterizing internal forest structure

and the ground surface, while DAP is limited to the outer canopy envelope
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Enabling Technologies

Although digital frame scanners (area-array sensors) have

been predominantly used for photogrammetric surveying,

some linear-array architecture sensors, also known as

pushbroom or three-line scanners (e.g., Leica ADS80), have

shown promise for stereo image acquisitions [51, 52]

(Table 1). These sensors incorporate forward-, nadir- and

backward-oriented overlapping panchromatic scenes that al-

low derivation of 3D products [53]. Additional linear arrays

have also been added to provide multispectral, as well as true-

and false-color imagery [54]. Studies such as Haala et al. [55],

which compared the ability of frame and pushbroom sensors

to generate DTMs and ortho-imagery, found that both tech-

nologies are equally capable of generating accurate products

and that the choice of sensor type ismore dependent on overall

hardware and software costs, as well as the performance of

commercially available processing suites. In-depth summaries

and examples of contemporary linear- and area-array sensors

can be found in Lemmens [56] and Pepe et al. [51].

Digital sensors provide improved radiometric perfor-

mance, eliminate film processing costs, physical storage

space requirements, and facilitate highly automated

workflows that greatly reduce the time needed to generate

photogrammetric products [43••, 57]. Digital sensor technol-

ogies have also improved ground sample distances (GSD)

and image capture rates. These technological advancements

have increased the number and quality of images being ac-

quired and consequently improved the potential for in-

creased imagery overlaps. This means that more images

are being acquired at no additional cost [58], improving

rates of successful image matching and survey cost-effec-

tiveness. Increased image overlaps can also reduce the re-

quired intensity of ground control due to reductions in sys-

tematic and pseudo-systematic errors influencing photo-

grammetric measurement accuracy [59]. It must be added

that although increases in along-track overlap can be real-

ized without any added cost to surveying [43••], increasing

across-track overlap would require more flight lines, driving

up cost. This is why a high-overlap/flight efficiency trade-

off exists and must be balanced according to image param-

eter requirements.

Significant advancements in the quality and quantity of

imagery through direct geo-referencing from high-quality on-

board GPS-derived positions and inertial navigation systems

(INS) have led to improved accuracy of photogrammetric pro-

cessing [60]. Unlike frame cameras, linear-array systems must

rely on GPS and INS systems for accurate position informa-

tion. These components add cost to the overall image system

[61, 62]. These technological innovations have provided a

means of generating high-density and accuracy point clouds

for forest surveying [43••], while realized economic efficien-

cies can be attributed to imagery digitization.

Image-Matching Algorithms

Image-matching algorithms are diverse, with a variety of al-

gorithms having been used to generate point clouds for the

purposes of estimating structural attributes of vegetation and

timber [9, 11, 47, 48, 63, 64]. Algorithms can be separated into

two distinct streams, feature- and area-based methods [45,

65–67]. Feature-based methods, the simpler of the two types,

use rudimentary cartographic points and lines to find image

matches, while area-based methods use a moving window

approach that analyzes pixel differences to find matching

points [68]. A thorough history and description of the devel-

opment, testing, and implementation of image-matching algo-

rithms can be found in Remondino et al. [45, 69]. The perfor-

mance of contemporary algorithms has invoked a renewed

interest in aerial photography due to their provision of very-

high-resolution imagery and structural information at a lesser

cost than ALS [50].

Software robustness, reliability, and speed are a rapidly

advancing field, increasing competition amongst software de-

velopers [50, 70, 71]. The proprietary nature of some algo-

rithms, however, raises challenges related to their functional-

ity, where Bblack-box^ transparency restrictions limit knowl-

edge of the assumptions of inner workings of the algorithms

and reduce algorithm-focused reporting [69]. A secondary

challenge in using these algorithms is that they have not been

purposefully developed to reconstruct vegetation for forest

inventory purposes [72], an area where continued research

into algorithm refinement and benchmarking is warranted.

The degree to which software can be parameterized is impor-

tant for forest environments (amongst others). Parameters are

often determined by trial and error and many are software

specific. This poses challenges for large area implementations.

Many software packages implement some form of the

semi-global matching (SGM) algorithm [70, 73]. SGM is a

fast and efficient image-matching algorithm and has been

demonstrated to provide accurate image-matching results with

low processing times [74, 75]. The inter-comparison of select-

ed algorithms for the purposes of producing point clouds for

forest attribute prediction has typically focused on a compar-

ison of two software packages, rather than a systematic eval-

uation. Ullah et al. [48] and Kukkonen et al. [68] compared

software in the context of the ABA for forest attributes, for

canopy cover prediction by Granholm et al. [76], and for mis-

cellaneous targets in Remondino et al. [45]. Both Ullah et al.

[48] and Kukkonen et al. [68] found that data derived from

image-matching techniques were capable of predicting forest

inventory attributes with comparable accuracies to those from

ALS, which is the consensus from other comparative analyses

[42, 58, 77]. In Ullah et al. [48] the SGM algorithm was found

to outperform the enhanced automatic terrain extraction

(eATE) algorithm for generating information layers or themat-

ic map products to aid forest management. SGMwas found to
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be the simpler of the two algorithms, with less user-defined

parameters, produced denser point clouds (SGM= 27.66 m–2,

eATE = 3.29 m–2) at faster processing speeds, and achieved

slightly greater predictive model (multiple linear regression)

accuracies (%RMSE SGM = 28.3; eATE = 29.0), k-NN

(%RMSE SGM = 29.9; eATE = 30.0), and SVM (%RMSE

SGM= 28.3; eATE = 29.0)). Kukkonen et al. [68] compared

SGM to the next-generation automatic terrain extraction

(NGATE) algorithm [78] for predicting a suite of forest attri-

butes. They found negligible differences in generated digital

surface models and indicated that both algorithms were capa-

ble, accurate, and consistent (±~ 2% RMSE for all attributes)

at providing forest attribute predictions with the pre-condition

that an ALS DTM was available. Granholm et al. [76] com-

pared the MATCH-T and SURE algorithms for estimating

vertical canopy cover and found differences in point cloud

outputs, but not in generated metrics. All studies, however,

were cautious in their recommendation of a particular algo-

rithm due to the potential differences that could arise from

software tuning, forest type, and solar illumination.

Digital Photogrammetric Workflow

Prior to image acquisition and consequent photogrammetric

processing, a number of factors must be considered for suc-

cessful imagery acquisitions (Fig. 2). Mission planning in ae-

rial photogrammetric projects is the primary and critical step

to ensure success in consequent acquisition and processing

stages [51]. Flight planning is likely the area that would most

benefit from parameter benchmarking studies as it would help

to improve overall cost-effectiveness and efficiency of acqui-

sitions, while ensuring that consequent point cloud products

are best suited to area-based predictions. Pepe et al. [51] pro-

vide an in-depth review of flight planning considerations for a

variety of platforms and sensors, as well as commercially

available and open source flight planning software.

Similarly, Osborn et al. [79] detail photographic componentry

and settings, imaging sensors and platforms, and flight plan-

ning details with their advantages and disadvantages for pho-

togrammetric mapping to support forest inventories.

Imagery Acquisition

Landscape-level imagery acquisitions for the purposes of for-

est inventory–related photogrammetric analyses have been

proven capable and effective for providing structural and

spectral forest inventory information [33••, 34••, 58, 80, 81].

Aerial imagery acquisitions are often updated on a regular

basis by national or regional mapping entities [46, 82], further

underwriting the costs of using these data in forest inventories,

and making aerial images a dependable data source with tem-

poral depth [83]. Examples of jurisdictions with planned im-

agery acquisitions every 3–10 years include the United States

of America (National Agriculture Inventory Program [84]),

Finland (National Land Survey of Finland [85]), and

Switzerland (Federal Office of Topography [86]). The utiliza-

tion of these datasets, which are often widely available, could

be a useful and cost-effective means for identifying and mon-

itoring forest change, as well as realizing unforeseen inventory

value.

Parameters of importance that have been tested in the litera-

ture that require continued benchmarking are flight altitude and

GSD, across-track overlap, sensor type and model, and light

conditions (Fig. 2). Standardization and benchmarking studies

that focus on these key parameters are therefore crucial to de-

tailing best practice approaches to image acquisition. Given that

the updating of area-based EFIs is generally conducted at a

landscape level, herein, we focus on the use of manned aircraft

for image acquisitions and their capacity to cost-effectively ac-

quire imagery over large spatial extents [43••]. We do however

acknowledge the growing body of research using unmanned

aerial systems (UAS) for imagery acquisition and EFI updates

[87].

Altitude and GSD Bohlin et al. [34••] tested multiple configu-

rations of altitude, image overlap, and GSD: 60%/30% overlap

along- and across-track respectively with GSD = 0.48 m, 80%/

30% with GSD = 0.48 m, and 80%/60% with GSD = 0.12 m

(Fig. 5). The authors found that variation in GSD from lesser

flight altitudes (e.g., 1200 m above ground level (agl) versus

4800 m agl) generated denser point clouds, but did not improve

tree height, basal area, or stem volume estimates. Similarly to

results found in Lim et al. [90] using ALS, Bohlin et al. [34••]

concluded that plot-level variable prediction with DAP is ro-

bust, and that an increase in point density will not affect out-

comes unless changes in forest structure occur. Honkavaara

et al. [91, 92] found that GSDs of 30–40 cm provided surface

models that adequately characterized leading forest cohorts.

This could provide justification for increasing flight altitude to

improve cost-effectiveness [58]. Gobakken et al. [93•], howev-

er, also highlight that the relationship between flight altitude,

camera lens angle, and increasing GSD can result in a reduction

in the accuracy of height predictions. Gobakken et al. [93•] note

that while wide angle lenses provide increased overlap, espe-

cially at greater altitudes, that if image capture proximity is

dispersed, point clouds will suffer from occlusion issues and

become less accurate in estimating tree heights. This point was

confirmed by Tanhuanpää et al. [94], who evaluated high alti-

tude DAP data for individual tree detection. Furthermore, in-

creased amounts of atmospheric noise at greater flight altitudes

could increase error in estimates [93•]. Considerations regard-

ing the need for point cloud completeness and height prediction

accuracy should guide acquisition planning and imagery cap-

ture [95]. Järnstedt et al. [77] conclude that differing require-

ments for ALS and DAP with regard to flying altitudes and

distances between flight lines is potential justification for using
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imagery as a single data source to considerably improve inven-

tory efficiency.

Image Overlap The most commonly used methods for planning

imagery acquisitions involve flying in strips with a pre-

determined amount of along- and across-track overlap. Along-

track overlaps between 60 and 80% are common for photogram-

metric projects [36] (Table 1), with values of 80% and above

being used for improved penetration between objects for more

effective and accurate depth reconstruction [51], as well as to

reduce the impact of shadows on image-matching algorithms

[72]. Given that mission planning has generally focused on the

acquisition of ortho-imagery products and not digital photo-

grammetric analyses, imagery overlap has generally been less

than what is needed for complete point cloud derivation, poten-

tially influencing area-based capabilities. With digital camera

systems, an increase in along-track overlap comes at no cost

[43••]. Several studies have demonstrated that an increase in

along-track overlap from 60 to 80% reduces the relative

RMSE for area-based attribute predictions [34••, 58, 96•]. This

again however must take into account the trade-off that exists

between image overlap, flight time, and increases in acquisition

costs [97]. Pre-planning of the most effective and efficient over-

lap for the desired data quality is therefore of great importance

for utility, efficiency, and budgetary reasons.

Straub et al. [46] concluded that imagery with overlaps of

65% and 30% along- and across-track respectively is suffi-

cient to support stereo image-matching and area-based out-

comes, noting that increased overlap would likely improve

other applications, such as detection of canopy gaps. White

et al. [98] compared the use of DAP and ALS data for canopy

gap detection and mapping, concluding that point clouds gen-

erated from imagery with 60% along-track and 20% across-

track could not provide analogous results to those of ALS for

detecting canopy gaps in coastal rainforests on Vancouver

Island, Canada. Indeed, the majority of imagery used for gen-

erating DAP point clouds for forest inventory applications are

acquired with along-track overlaps of 60% and across-track

overlaps that range between 20 and 35% (Table 1), reducing

the potential for multi-image matching. Further research into

1. Imagery acquisition

Altitude & GSD

Overlap

Illumination

Sensor type

2. Point cloud generation

Image alignment

Key-point generation

Automatic tie-point generation

3D textured mesh & orthomosaic

3. Point cloud processing

.laz compression

Tiling

DTM generation

(Merge ALS ground points)

Normalization

Metric generation

4. Area-based modelling

with co-located point cloud metrics

Establish modelling framework

Apply attribute models

wall-to-wall

Parameter benchmarking

Algorithm benchmarking

& forest type testing 

Establish standardized

processing streams 

Assess model robustness

& transferability

Research gaps
Fig. 2 Flowchart listing the order

of a theoretical digital

photogrammetric workflow with

associated research gaps for each

stage
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multi-imagematching for reducing the influence of occlusions

such as shadows in forest canopies is needed [58, 99••, 100].

UAS could provide a useful tool for benchmarking acquisition

parameters and optimizing overlap scenarios in different forest

types, as their ability to acquire imagery is fast, cost-effective,

and can be parameterized to mimic aerial acquisitions [101].

Imaging Sensors Studies that have assessed the utility of DAP

data for ABA have predominantly used large-format digital

frame sensors (Table 1), although Pitt et al. [52] used a linear-

array system. Nurminen et al. [58] outlined that flight efficien-

cies and significant cost-savings, likely related to greater detail

and larger film surface, can be realized when using large-

format photogrammetric sensors. Straub et al. [46] found that

the frame-array sensors can be used to model inventory attri-

butes in more structurally complex forests. Iqbal et al. [89•]

compared photogrammetric approaches using small- and

medium-format digital camera systems. Their findings indi-

cate that both systems provide similar predictive accuracies to

those of ALS (Fig. 5), enabling forest managers to use data

acquisition solutions that best fit their operational needs.

Conclusions from these studies indicate that forest inventories

supported by an accurate pre-existing ALS DTM can be up-

dated using optical imagery from a variety of sensors.

Illumination Gobakken et al. [93•] indicated that large-area im-

agery acquisitions for the purposes of generating a DAP ABA

inventory may be prone to varying illumination conditions such

as sun angle, which have been shown to influence the geometric

properties of the generated DAP canopy [72]. White et al. [42]

and Rahlf et al. [102•], however, found that sun angle had min-

imal influence on ABA outcomes. Rahlf et al. [102•] found that

including sun inclination as a predictor reduced the relative

RMSE of area-based predictions by ~ 2%. Variation in lighting

conditions during a single flight could also be considered ratio-

nale for not incorporating spectral metrics as explanatory vari-

ables within forest parameter models unless rigorous radiometric

calibration is possible [102•]. Systematic testing of the potential

utility and importance of spectral metrics for estimating species-

specific forest variables and canopy health [103] could enhance

forest management and planning [11, 34••, 68, 80, 96•].

Point Cloud Generation

Following acquisition and compilation, acquired imagery must

be photogrammetrically processed. Images are first optimized

and aligned using meta-data including internal sensor specific

information such as the focal length and field of view, as well as

image specific external data such as GPS location and IMU

orientation. The inclusion of survey grade ground control loca-

tions during processing is also highly desirable [79]. Image key

points, pixels, or areas of interest with high contrast or texture

that are easily identifiable in image sets are then isolated within

each image. The number of key points that are compiled for an

imagery dataset is dependent on the size of the images as well as

its visual content. A landscape largely covered in snow with

little spectral variation will likely yield fewer key point matches

than a spectrally variable landscape.

Key points are then matched amongst the image dataset

and are consequently processed to derive their 3D location,

which are labeled as automatic tie-points. Manual tie-points

can also be added, which are user defined markers that are

often used to assess and improve 3D reconstruction accuracy.

The result of the initial tie-point generation produces a low-

density DAP point cloud.

In order to increase the density of the output point cloud,

automatic tie-point generation continues until pixel matching

has reached a pre-determined limit, or is exhausted. Software

packages generally have differing levels of automatic tie-point

thresholds [104], which depending on available computation-

al power increase the density of the output point cloud. The

product following completion of densification is what will be

exported and used for consequent point cloud analysis

(Fig. 3). Generally, however, the densified point cloud is used

to generate a 3D textured mesh, a structural surface with im-

age inherited spectral data, which is often used for the creation

of orthomosaics to remove perspective distortion from images

and reflectance maps. The 3D textured mesh can also be de-

scribed as a digital surface model (DSM).

Point Cloud Processing

Processing of densified DAP point clouds follows a similar

stream to that of ALS. This is one of a number of reasons why

the integration of DAP is logical for updating ALS-derived

EFIs. Major processing steps can be conducted as follows;

however, no common standards for point cloud processing

have yet been established (Fig. 2).

Exported densified point clouds, which are often stored as

uncompressed .las format files [105] are converted to com-

pressed files (.laz) to improve processing speed and reduce

digital storage requirements. This step is not mandatory; how-

ever, it is advisable as storage requirements can be reduced to

7–20% of original uncompressed file size [106]. Converted

files are then subdivided into tiles with a pre-determined

amount of overlap and processed individually to increase pro-

cessing efficiency. Given that anomalies can occur in point

cloud generation, tiles are filtered for noise that could intro-

duce bias into future processing stages. Points within tiles are

then classified into one of the ASPRS defined LAS classes

[105], which distinguish between ground, vegetation, and wa-

ter amongst others. Points classified as ground are isolated and

can be used to generate DTMs [107].

A fundamental limitation of DAP data is its inability to

produce accurate DTMs over areas of moderate to high cano-

py cover [108, 109]. DAP-derived DTMs from forested areas
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are often inaccurate and are inadvisable as products for nor-

malizing DAP point clouds to heights above ground level

potentially leading to inaccurate area-based estimates

(Fig. 4). Lack of the ability to provide accurate DTMs consid-

erably limits the scenarios where DAP could be used to estab-

lish baseline EFIs. DTMs from other sources such as shuttle

radar topographymission (SRTM) DTM products can be used

[11]; however, these will not provide results with the same

reliability and spatial accuracy as ALSDTMs, which are often

considered best available data products, having the requisite

spatial resolution and accuracy available under canopy.

To remedy the issue of poor DAP-derived DTM quality,

co-located ALS-derived DTMs can be integrated into the

DAP processing stream for point cloud normalization [33••,

34••, 58, 81, 99••]. Moreover, structural metrics derived from

DAP point clouds that use the same terrain information for

normalization to heights above ground readily facilitate multi-

temporal comparisons, while improving the long-term value

of ALS acquisitions [34••, 42, 77, 93•].

Forest Inventory Update: Information Needs

Forest inventories have made significant progress in improv-

ing forest stewardship and sustainable practices and are heavi-

ly relied upon as planning and management tools for effective

forest management operations [8]. Forest management infor-

mation needs are increasingly complex and wide ranging: bio-

diversity, habitat and non-timber values, riparian manage-

ment, evolving forest practices legislation, and climate change

amongst others [110]. These needs place pressure on forest

inventory programs to supply data that is timely, spatially

detailed, accurate, and that characterizes forest composition,

structure, and condition [111].

Globally, forest inventories at various spatial scales are con-

tinuing to shift towardmulti-attribute, spatially-explicit polygon

data derived from photo-interpretation and field measurement

campaigns [30]. Conventional update methods have involved

the acquisition of aerial photography and reconnaissance sketch

mapping missions, satellite imagery, and field surveys [6].

Acquired inventory data and modeling outcomes focus on the

provision of information on the current status, and projected

condition of timber and non-timber resources. Wall-to-wall for-

est parameter estimates such as tree height, volume, basal area,

growth and yield projections, and photo-interpreted imagery

polygons are common [18, 27, 28, 112, 113].

While traditional methods have been effective, there are

opportunities to modernize forest inventory frameworks

[111]. Ensuring completeness and currency, as well as design-

ing adaptable frameworks that facilitate the routine updating

of previously acquired data is essential to enhancing inventory

systems. In order to make the most informed and proactive

management decisions, data being used should be as current

as possible and aid in building on trends such as growth and

yield [32]. The routine updating of inventories for the pur-

poses of improving yield projections is critical to better un-

derstand stand growth and development patterns for formulat-

ing effective economic projections, understanding future

socio-economic reliance on forest ecosystems, and forest pol-

icy. Organized monitoring and scheduled inventory updating

can be used to have profound impacts on the long-term future

projections of forest and timber attributes [6, 114, 115].

According to Gillis and Leckie [6], an inventory update is

defined as the process of detecting, collecting, and adding

Image 1 Image 2 Image 3

20 m

Fig. 3 Simplified visualization example of how DAP point clouds are generated from stereo imagery
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changes to an inventory resulting from disturbances causing

depletions (harvesting, fire, insect defoliation, etc.), as well as

changes to the forest causing accretions (growth, silviculture).

Bonnor and Magnussen [116] added that depletions and ac-

cretions to total forested land from land-use change need also

be included. The two main data sources that facilitate updates

are information that can be observed and mapped such as

harvesting boundaries and fire damage, and those that must

be sampled and/or modeled such as permanent sample plots

detailing growth, health, and compositional change [116]. In

order to perform updates, mapping products and detection of

minimum levels of disturbance/growth must have acceptable

levels of accuracy, and the frequency and timing of data ac-

quisitions must be established.

Studies assessing the capacity for DAP to perform updating

tasks such as Ali-Sisto and Packalen [117] found that DAP

was able to detect clearcuts with 98.6% accuracy, while thin-

ning treatments were 24.1% accurate. Honkavaara et al. [91]

found that DAP was able to detect with 100% accuracy where

more than 10 trees/ha fell as a result of storm conditions.

These studies both indicate that DAP is capable of detecting

major changes in forests, but cannot accurately detect minor

changes such as removal of individual trees from a non-

dominant canopy layer.

Decisions to update are driven by a number of factors,

primarily a need for current information to support manage-

ment planning and decision-making, as well as regulatory

requirements and/or reporting obligations [6]. Herein, we

demonstrate that DAP data can be useful for both aspects of

inventory update: mapping and modeling.

EFI data products are commonly produced at a standard

grid-cell size, providing spatially and temporally explicit attri-

bute predictions. These cell-level predictions have the poten-

tial to be summarized to stand-level information typically used

in forest inventories, while maintaining often unavailable

within-stand variability [15•, 17, 18]. The inclusion of forest

structural data such as height percentiles and crown cover

within inventories also provides a means to characterize and

segment forested landscapes objectively and provide high-

resolution predictions of forest attributes. These data can be

used to guide forest planning and management decisions,

impacting socio-economic and environmental outcomes.

While the currency and spatial completeness of inventories

is critical for establishing inventory reliability, the data content

of these inventories is fundamental. Photo-interpretation and

field measure campaigns are indelible parts of forest inventory

frameworks; however, there is opportunity and substantial

scientific justification for continued technological

Fig. 4 Schematic visualizing how normalization of T1 ALS and T2 DAP

point clouds is conducted. ALS data is normalized using points classified

as ground (top) to remove terrain influence. When the same concept is

applied to DAP data (middle), however using DAP points classified as

ground, data are prone to errors due to lack of ground characterization by

DAP. To solve this issue, ground points from T1 ALS data are merged

with T2 DAP (bottom) and are used for normalization
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modernization within inventory programs [19, 118]. An abun-

dance of remote sensing and forest management research has

shown that the integration of structural characterizations of

forests improves inventory accuracy, precision, and spatial

objectivity [12, 16, 20, 99••, 119, 120]; however, these data

should not be viewed as a panacea. Field measurements and

validation of remote sensing products will always be essential

for ensuring reliability and improving future products [121,

122].

Inventory Update Using DAP Data

A DAP inventory updating framework would begin with

assessing the effectiveness of baseline ALS strata to reflect

stand growth as well as management and disturbance activity.

Assessing the robustness of DAP data to generate similar stra-

ta to ALS should be addressed. Specifically, calibration of

canopy closure estimates is important for reliable change de-

tection [63, 99••].

Following stratification and sample location, field mea-

surement campaigns should be designed to ensure the acqui-

sition of data to support area-based modeling [15•, 18].

Attributes of primary interest have commonly included vol-

ume, basal area, height, stem density, and quadratic mean

diameter [32, 34••, 42, 96•]. Plot-level point cloud metrics

describing height such as height percentiles (e.g., 90th percen-

tile of height), or mean height, and density measures (e.g.,

percent of points between 10 and 20 m) are matched with

corresponding field measurement data and used as predictors

for parametric or non-parametric predictive models. The use

of DAP spectral metrics as predictors, as used in Bohlin et al.

[34••] and Puliti et al. [96•], could also be incorporated; how-

ever, must be conducted with care due to the potential varia-

tion amongst flight imagery, and between successive imagery

acquisitions [97, 102•]. Following generation, models are ap-

plied wall-to-wall to enable landscape-level mapping of key

attributes of interest with known error (Table 1).

DAP Data for Forest Inventory: a Summary
of Quantitative Findings

Preliminary studies looking to determine DAP’s effectiveness

for area-based attribute predictions used scanned analog

photos with GSDs between 0.19 and 0.24 m. Næsset et al.

[47] found that mean stand height underestimated true stand

height by 5.42 m, and that results were not superior to manual

photogrammetric mensuration accuracies. Mean differences

were found to be influenced by image-matching parameters,

stand age, and site quality. Similarly, St-Onge et al. [83] also

found that the accuracy of height estimates were influenced by

image-matching parameters, as well as sun illumination,

viewing geometry, and the complexity of the forest canopy.

Correlations between ALS and DAP in St-Onge et al. [83]

were found to be highest in young forests. Results from these

pioneering studies helped to establish a foundation for further

photogrammetric forest inventory research and highlight how

DAP technology has changed.

EFI attribute predictions generated using an ABA and ALS

data often meet or exceed the accuracy requirements of forest

inventory programs [119]. Furthermore, EFI attribute predic-

tions generated using DAP data in an ABA have been found to

be of comparable accuracy to that of ALS data across a range

of forest environments, although inventory attribute predic-

tions made using ALS data are consistently more accurate

(Table 1). While the studies summarized in Table 1 vary dra-

matically in their design, parameterization, and implementa-

tion, they form a solid basis for recommending the use of DAP

data for updating EFIs in the context where an existing ALS-

derived DTM is available, as well as for continued research

into effective acquisition and processing standards.

Locations for comparing ALS and DAP prediction accura-

cies have predominantly taken place in Scandinavian boreal

forest environments [34••, 58, 93•, 123]. Examples of large

scale studies include Bohlin et al. [124], which compared

DAP and ALS attribute modeling over four 10,000 km2 areas

in Sweden, Rahlf et al. [125], which examined a range of

topographic and positional variables over a 25,000 km2 area

in Norway, and Tuominen et al. [126], which assessed the

potential contribution of 3D DAP metrics to the Finnish

Multi-Source National Forest Inventory (MS-NFI) over

5800 km2. Authors outline the importance of understanding

how well results translate to differing forested ecosystems

[77]. For example, Vastaranta et al. [99••] achieved high pre-

diction accuracies using DAP in southern Finland; however,

they were hesitant to provide recommendations regarding

DAP use in mixed-aged, multi-layered stands such as those

used in White et al. [42]. Their reasoning was that small var-

iations in landscape-level stand structure resulted in low sam-

ple variance, and corresponding strong relationships with

ALS and DAP metrics.

Height

Predictions of variables such as Lorey’s mean height [34••, 42,

93•, 127], mean height [58, 77, 99••], and top height [52]

using DAP were consistent across studies (Fig. 5). Pitt et al.

[52], which was conducted in central Canadian boreal site,

and White et al. [42] in a coastal temperate rainforest found

prediction accuracies similar to those found in less complex

forests in Scandinavia and Germany, indicating that DAP-

based predictions show some robustness to height measure-

ments across forest types. Navarro et al. [88] found that ALS

%RMSE was slightly larger than that of DAP, the only com-

parison where DAP was found to be more accurate than ALS.
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Density and Stem Diameter

The prediction of basal area [42, 46, 52, 68, 77, 99••, 127] and

mean basal area [34••], although larger in%RMSE than height

estimates, were consistent across studies and comparable to

their ALS counterparts. Iqbal et al. [89•] found that both

small- and medium-format sensors were comparable in accu-

racy to each other, as well as ALS (Fig. 5). Their study found

that basal area estimations using DAP (%RMSE = 14.37 and

14.27 for short- and medium-format respectively) had greater

accuracies than ALS (%RMSE = 15.26) at the stand-level.

Greater %RMSE values are expected for attributes such as

basal area, which are dependent on variables such as stem

diameter that, as of yet, cannot be directly measured by ALS

or DAP. Studies using DAP to model mean diameter [58, 77,

99••], quadratic mean diameter [127], and diameter distribu-

tions [128] found similar results between ALS and DAP esti-

mates (Fig. 5).

The accurate prediction of stem number remains a chal-

lenge for both ALS and DAP, especially with low-density

point cloud data. Stem number prediction accuracies are

variable in the literature (e.g., %RMSE = 43.7 for DAP and

35.1 for ALS in Gobakken et al. [93•]; 70.1 for DAP and 63.5

for ALS in Iqbal et al. [89•]; 42.3 for DAP and 31.4 for ALS in

Kukkonen et al. [68]). The use of CHMs and other rasterized

point cloud metrics are common for individual tree detection

approaches [129, 130]; however, there is also growing body of

research directly using 3D point cloud data for individual tree

detection analyses [131, 132]. Studies have outlined the im-

portance of high-density point clouds for improving detection

accuracy [133], predominantly using ALS data [134–136];

however, the advent of very high-density DAP acquired using

UAS data is becoming more prevalent. Methodologies seek-

ing to improve stem number prediction accuracy such as those

presented in Tompalski et al. [137] are promising.

Volume

Comparisons for volume have been most common in the lit-

erature (Fig. 5). Estimates of volume for ALS and DAP pro-

vide promising and consistent results, and although DAP is

shown to have larger %RMSE, differences are generally small

Fig. 5 Result of literature review comparing %RMSE for ALS and DAP

for the prediction of volume, height, basal area, and diameter. Standard

deviation (SD) of ALS and DAP are presented for each attribute. Mean

differences (Diffmean) between ALS and DAP all indicate the average

%RMSE difference for the attribute being predicted. %RMSE for DAP

was greater for all comparisons except for dominant height in Navarro

et al. [88], and basal area in Iqbal et al. [89•]. Blank spaces indicate that a

comparison of ALS and DAP for estimating that particular attribute did

not take place for that study. Bohlin et al. [34••] [A], [B], [C] as well as

Nurminen et al. [58] [A], [B] are separate analyses conducted within the

same study with varying acquisition parameters. Iqbal et al. [89•] com-

pared small- [A] and medium-format [B] digital sensors
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(Fig. 5). Accurate and consistent volume estimates provide the

ability to directly evaluate the economic value of standing

timber resources. This information can improve long-term

forest planning through maximizing revenue from harvesting

operations, and delineating where and when operations should

be conducted [23].

Vertical Complexity and Cover

ALS and DAP characterize forest structure differently,

with DAP data primarily characterizing the outer canopy

envelope, whereas ALS is capable of characterizing the

full vertical distribution of vegetation through the canopy.

Studies analyzing these differences have reported that

DAP height metrics often provide redundant information

resulting from their high degree of correlation. For exam-

ple, White et al. [42] found that the 10th and 90th percen-

tile of ALS heights in coastal temperate forests were not

correlated (r = 0.33), but that the same metrics were high-

ly correlated for DAP data (r = 0.92). Lesser height per-

centiles are generally found to be situated higher in the

canopy for DAP data, as demonstrated by the high level

of correlation found by White et al. [42] for DAP mean

height and both the 10th and 90th percentiles (r = 0.98).

Conversely, the greater percentiles are found to be more

comparable to their ALS counterparts, indicating that

DAP captures the top of canopy well. Nurminen et al.

[58] found that image matching with 80% along-track

overlap provided a very dense surface model, however

only penetrated to the ground if forest gaps were present.

Image matching using 60% forward overlap in the same

study found that matches were predominantly on the outer

forest surface indicating that imagery overlap can influ-

ence point distribution through the canopy. The density of

DAP point clouds (80% overlap = 155 points m–2; 60%

overlap = 44 points m–2) in Nurminen et al. [58] were

greater than those of ALS (7 points m–2), although these

greater point densities do not neccesarily translate into

greater attribution predictions accuracies [138].

Just as DAP characterization of the outer envelope of the

tree canopy limits its ability to provide reliable data on ground

surfaces, it also limits its ability to provide information on the

vertical distribution of vegetation through the canopy. This

limitation could be challenging when considering the transfer-

ability of existing ALS area-based models for use with DAP

data. In these cases, the point cloud predictors generated from

the DAP data may not convey the same structural information

as the ALS point cloud predictors used in model development

[42]. This highlights a need to develop area-based models

with predictor sets that are similar between ALS and DAP

data if model transferability is a consideration for inventory

update [9].

Cost Considerations

It is well established that DAP acquisition is considerably

cheaper than that of ALS [33••, 43••], while prediction

accuracies for basic forest inventory attributes are similar

(Fig. 5). Results reported in Kangas et al. [3] support this

statement, concluding that the differences in prediction ac-

curacy can be considered negligible from a forest manage-

ment perspective, especially if the data will be used for

10 years or less, which is the approximate shelf-life of

ALS data for supporting forest inventories according to

McRoberts et al. [16]. In their study, Kangas et al. [3]

assessed the value of ALS and DAP to support harvest

scheduling. Both data sources were found to be equally

valuable to support decision-making although ALS was

more precise. Given that economic losses and accuracy

for both technologies were similar, it was recommended

that DAP and ALS be considered analogous, and that the

decision to acquire either data type should be dependent on

availability, experience, project constraints and require-

ments, and cost rather than geometric properties, point

density, or resulting prediction accuracy. Notably, this

study did not include the cost of the ALS DTM used to

normalize the DAP data. Given that the provision of the

ALS DTM is of major importance and motivation for data

acquisitions, as well as being critical for DAP normaliza-

tion, future studies should include its value within econom-

ic comparisons. Gobakken et al. [93•] likewise concluded

that in a forest inventory context, accuracy alone should

not be the only factor considered when choosing between

DAP or ALS, but rather the choice must be informed by the

utility of the data to support decision-making. It is impor-

tant to note the substantial computational requirements for

processing large areas of DAP data and the potential costs

that these requirements may entail.

Research Gaps

While motivations for the incorporation of DAP into EFI

frameworks are justified, there are also logistic and scientific

justifications for continued research (Fig. 6).

Acquisition Planning

& Standardization and benchmarking for acquisition param-

eters such as flight altitude and GSD, image overlap

(along- and across-track), sensor types, and illumination

conditions

& Further explore UAS as platforms for cost-effective pa-

rameter benchmarking
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& Investigate capacity of new forms of ALS technology for

characterizing terrain surfaces under forest canopy, includ-

ing single photon systems

An area that requires rigorous sensitivity analysis is under-

standing how differences in acquisition parameters such as

altitude, GSD, and across-track overlap influence the viability

of produced point clouds for forest inventory applications.

Some such studies have been conducted [34••, 58, 81, 104,

139]; however, more research on this topic is required to out-

line best practice approaches for different forested ecosys-

tems. Forests with variable vertical and horizontal structure

could require acquisition parameters that are different from

less complex structures in order to achieve best photogram-

metric processing results. Inquiries into which parameters

should be used for particular forest types are warranted for

the use of DAP as a ubiquitous EFI updating technology.

One of the major inhibitors of conducting parameter

benchmarking experiments is high cost. The use of UAS

for quickly operationalized, cost-effective, and efficient

image acquisition campaigns could help to illuminate

how differences in acquisition and point cloud processing

parameterization impact variation of area-based outcomes

[23, 87]. Studies focusing on how UAS can be used to

establish parametric benchmarking and standardization

will help to improve the utility and value of data acquired

using conventional manned aircraft. Some parameters such

as flight altitude may be more difficult to benchmark due to

regulatory restrictions.

The need for an ALS-derived DTM is fundamental. The

advent of new ALS technologies such as single photon lidar

may enable cost-effective landscape-level characterization of

the ground surface with sufficient accuracy to support DAP

normalization. Single photon systems have the ability to fly at

greater elevations and faster speeds, acquiring ALS data for

less cost than currently standard systems [140]. This raises the

potential for DAP data to be used to support forest inventory

frameworks, especially areas beyond existing EFI boundaries.

This would allow EFIs to be used to update previous conven-

tional photo-based inventories and modernize landscape-level

forest inventory assessments. Further inquiry into the potential

of this technology is needed.

Data Processing

& Optimize parameterization of image-matching software

for varying forest environments

& Establish standardized photogrammetric and point cloud

processing workflows and tools

Image-matching algorithms with a focus on forest vegeta-

tion reconstruction are needed. Current algorithms, although

showing success, could have the potential to be optimized for

vegetated environments, helping to further enhance the capac-

ity for area-based predictions using DAP.

Physical characteristics of forests and the local environ-

ment that pose problems to photogrammetric point cloud gen-

eration also require a greater level of inquiry. Studies have

found that shadowing and solar angle/illumination [50, 83,

92, 99••, 102•], occlusion from neighboring tree canopy

[97], and tree swaying caused by wind [141, 142] have con-

tributed to problems with point cloud generation [104].

Robust analyses into these potential sources of variability in

point cloud generation will help to establish best practice con-

ditions, as well as outline potential sources of error, and how

to manage them effectively prior to image acquisitions.

Studies that describe how photogrammetric algorithm

parameterization can influence point cloud utility for area-

based estimates are needed. Iqbal et al. [104] provided a

detailed description of how processing parameterization
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within Agisoft Photoscan [143] can influence point cloud out-

puts and found that differing levels of key point limits, quality,

and depth filtering parameters were relatively robust to differ-

ences in processing strategies. These results demonstrate that

parameterization differences using this particular software do

not necessarily adversely influence point cloud utility. Given

that processing speed is determined by hardware componentry,

these results suggest that parameters with lower processing

requirements can be used to generate point clouds that are of

utility for area-based outcomes.While promising, analyses that

test parameterization in a range of commercially available and

open source photogrammetric software’s for the purposes of

forest inventory applications such as Probst et al. [144] are

needed to help establish best practice parametrization routines.

Inventory Update and Model Development

& Systematic testing of spectral metrics for estimating

species-specific forest variables

& Assessing the robustness of DAP for segmenting forest

strata relative to ALS

& Calibration of DAP canopy closure estimates to reliably

detect change

& Assess potential for ALS area–based model transferability

to DAP acquisitions

& Investigate how prediction accuracies vary across differ-

ing forest conditions, especially in larger and more com-

plex stands

The provision of spectral information from acquired stereo-

imagery could play an important role in further deriving qual-

itative differences in the forested landscape. Investigations of

the potential to utilize spectral indices in combination with

structural metrics for area-based outcomes should continue.

The integration of these metrics for assessing how well DAP

is able to stratify, or delineate forests of relatively homogenous

stand structures across landscapes could also be important.

Continued assessments of where DAP is successful and limited

in stratifying landscapeswith similar results toALS are important

steps for more seamless inventory integration. Landscape-level

investigations looking to determine DAPs effectiveness for strat-

ifying forest types as well as stand-level assessments to outline

canopy closure are needed. Inquiries into characterizing small

canopy openings and the influence of shadows and occlusions

prevalent in mature forest canopies are of particular importance.

Using DAP to update previously established ALS EFI at-

tributes requires investigation into the potential transferability

of area-based models and their coefficients. Relationships be-

tween DAP and ALS metrics have been well described [42];

however, details on the potential ubiquity of models across

forest types have yet to be conducted in detail. Additionally,

further investigations are required regarding how variations in

acquisition parameters (e.g., point density, flying altitude,

instrumentation, and seasonal effects) could potentially influ-

ence model transferability [145]. Rombouts et al. [146] noted

that protocols and modeling strategies should account for var-

iations in acquisition parameters as a prerequisite to operation-

al deployment of these approaches.

Forest Change and Growth

& Potential to use archival stereo-imagery acquisitions to

inform on forest change

& Capacity for multi-temporal DAP structure data to inform

site index and age

& Synergistic use of ALS and DAP for improving growth

and yield projections

While in-depth summaries of forest change and growth are

beyond the scope of this review, there have been developments

using DAP data to characterize forest change and growth that

are worthy of mention. Synergistic uses of ALS and multi-

temporal DAP acquisitions are showing increasing promise for

accurately estimating growth and yield attributes such as height,

site index, and age. Analyses capitalizing on the availability of

long-term photo archives such as Vastaranta et al. [147], which

developed and tested an approach to estimate stand age, and

Véga and St-Onge [148•, 149], which showed the potential to

estimate and spatially map site index and growth, present prom-

ising analytical frameworks. Stepper et al. [150] assessed forest

height changes using regularly acquired aerial imagery and sug-

gested that CHMs derived from repeat aerial image surveys can

be a viable and cost-effective data source to monitor forest

height changes through time. Studies such as these show that

the prediction of these attributes can be conducted using avail-

able stereo-imagery archives, improving the quality and com-

pleteness of forest inventory databases.

A template matching approach proposed in Tompalski et al.

[151] for integrating area-based inventories with growth and

yield simulators is also promising. Methodologies propose the

use of multiple attributes such as volume, basal area, and height

to define a growth curve for a spatially explicit area. This spa-

tially explicit method could provide improved and more spa-

tially detailed results than using traditional polygon-based ap-

proaches. Adding to this work, Tompalski et al. [32] also

looked to determine whether improved growth curve assign-

ments could be realized with the addition of a secondary DAP

time-step. Other approaches to assimilating remote sensing data

sets such as Nyström et al. [152], which tested the ability to use

a DAP-derived CHM time series in combination with growth

models, showed promising results for incorporating multiple

types of remote sensing data to provide spatial layers of up-

to-date estimates of forest stand predictions. Further research

into data assimilation approaches and multi-temporal modeling

of growth and yield curves using DAP data sets is warranted.
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Summary

DAP data have been proven accurate and cost-effective for the

ABAwhere high accuracy ALS DTMs exist. Analyses com-

paring area-based estimates for DAP and ALS have found that

accuracies can be considered analogous (although ALS data is

generally more accurate), with DAP acquisitions being con-

siderably less expensive relative to ALS. These findings high-

light the potential role DAP can play in strategic, tactical, and

operational forest inventory frameworks in a variety of forest-

ed environments. Although successful, we outline that further

research and development into DAP acquisition parameters,

image-matching algorithms, and point cloud processing

streams are needed. Advances in these areas will help to fur-

ther establish DAP as a logical data source for improving

proactive forest management, and fill a gap for technologies

capable of cost-effective and accurately updating EFIs.
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