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Abstract 

In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits 

employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By 

considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of 

circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. 

Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum 

simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary 

TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for 

the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same 

footprint between the vertical TFETs and the lateral finFETs and the same static power. In spite of the asymmetry 

between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDD lower 

than 0.4V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt 

the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS 

solutions. 
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1. Introduction 

After the initial report in [1], complementary-metal-oxide-semiconductor (CMOS) transistors based on band-to-band-

tunneling (BtBT), usually referred to as Tunnel-FETs (TFETs), have been extensively explored as possible replacements of, or 

complements to, conventional MOSFETs for low-power/low-energy electronic circuits targeting a supply voltage VDD below 0.5 

V [2][3][4][5]. TFETs embody a promising small slope FET concept able to achieve a subthreshold swing (SS) below the 60 
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mV/dec room temperature limit of conventional MOSFETs, as demonstrated by many theoretical works based on simulations 

(see [5] and references therein), and by some recent encouraging experimental results [6][7]. The lower SS compared to a 

conventional MOSFET can be exploited in two ways: if the threshold voltage is the same as in the MOSFET, the TFET will 

have a lower off-current (and thus lower static energy dissipation); if instead the same off-current is set in both devices, the 

TFET will be able to deliver a similar on-current as the MOSFET at a lower supply voltage VDD, thus reducing both static and 

dynamic energy dissipations (which are proportional to VDD and VDD
2, respectively). In this respect, circuit simulations have 

attributed to TFETs the potential to outperform conventional MOSFETs in the ultra-low voltage domain (VDD < 0.4 V) in both 

analog [8][9][10] and digital [11][12][13][14][15][16][17] applications. At higher supply voltages, however, the drive current of 

TFETs is significantly lower than the one of conventional MOSFETs. It is thus clear that TFETs can outperform MOSFETs only 

if they can deliver an SS significantly smaller than 60 mV/dec over a large current range in the subthreshold region. In many 

experiments this target has not been achieved, which may be due to fundamental as well as to material and device design issues 

[18][19][20][21][22][23][24]. As a result, the performance of the fabricated TFETs lags behind the optimistic figures reported in 

simulation studies, but experimental results have been steadily improving along the years. Another intrinsic advantage of TFETs 

over conventional MOSFETs stems from the lower temperature dependence of BtBT compared to thermionic emission [56], 

which may directly translate in less temperature sensitivity of TFET circuits. This has not been observed in early experimental 

reports about TFETs mainly because the conduction at very low current levels was often dominated by Trap-Assisted-Tunneling 

(TAT) and Shockley-Read-Hall (SRH) recombination processes [25]. Nevertheless, the fabrication process for TFETs is also 

getting more and more controlled and encouraging variability analysis are being reported both for statistically meaningful 

experimental samples [26], and for simulation based studies [27][28]. 

Among the possible technological platforms, silicon/silicon-germanium TFETs have the advantage of easy integration with 

mainstream CMOS [25][26][29][30]. However, the achieved performance is not very rewarding, especially for n-type TFETs, 

due to fundamental limit set by the indirect band-gap. As opposite to Si-based devices, TFETs based on heterojunction III-V 

structures are more promising [6][7][31][32] since they take advantage on their direct (and smaller) energy gap, and in fact they 

have shown higher on-current as well as SS below 60 mV/dec in the low current range. In addition, III-Vs provide more degrees 

of freedom for creating hetero-junctions and reduce ambipolar behavior. 

The on-current and SS value are not the only important parameters to assess the possible advantages of TFETs against 

MOSFETs. TFETs are known to have a higher gate-drain capacitance [33], which can result in a switching time penalty 

compared to MOSFETs due to the Miller effect. On the other hand, the output conductance is lower due to the different 

electrostatics compared to MOSFETs [8]. Consequently, it is very important and timely to analyze the possible employment of 

TFETs in relevant benchmarking circuits. The fabrication processes for TFETs are however not as mature as for conventional 

CMOS transistors, and there exist very few reports about fabrication of TFET circuits (inverters in [25][34], current mirrors in 
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[35], half-SRAM cell in [36]), in many cases employing transistors that are not at the state-of-the-art of TFETs and are based on 

silicon platforms. 

To assess the possible advantages of TFETs versus advanced CMOS transistors in realistic circuits, many simulation works 

have been presented. Most of such efforts have been devoted to digital circuits. SRAMs, for example, have been analyzed by 

various authors using different models for the TFETs either calibrated against experimental silicon devices [37] or obtained from 

full-quantum simulations [38]. Various SRAM topologies to circumvent the unidirectional conduction and/or to improve the cell 

stability have been also proposed [39][40][41][42][43][44][45][46]. Full-adders have been analyzed in [47][48][49] using look-

up-tables (LUTs) obtained from TCAD simulations and calibrated against full-quantum results for hetero-junction 

complementary TFETs [50]. Level shifters have been also recently addressed in [50][51]. 

As for analog circuits, an operational transconductance amplifier (OTA) has been studied in [52], while a 6-bit successive 

approximation register (SAR) ADC has been simulated in [53] considering complementary double-gate GaSb-InAs hetero-

junction TFETs. A thorough investigation in [54] analyzed mm-wave low noise amplifiers, oscillators, mixers, rectifiers and 

detectors using Verilog-A models for the hetero- junction GaSb-InAs TFETs presented in [55]. OTAs, current mirrors and track-

and-old circuits based on InAs and GaSb/InAs TFETs have been analyzed in [8] using LUTs built from TCAD simulations 

calibrated on the device characteristics of [28][32]. Basic analog building blocks (current mirrors, differential pairs, diode-

connected transistors) have been simulated in [56] using compact models calibrated on experimental strained silicon TFETs, 

proposing the deployment of TFETs in niche applications exploiting the lower temperature sensitivity. The performance of track 

and hold and comparators based on complementary heterojunction TFETs has been assessed in [9]. Different topologies of 

TFET-based power management circuits for energy harvesting applications have been proposed in [10][57]. Low-dropout linear 

voltage regulators with III-V TFETs have been analyzed in [58]. In most of these works, the characteristics of the p-TFETs are 

obtained by mirroring the ones of the n-TFETs. 

In this paper, we present a comparison between aggressively scaled template heterojunction TFETs and FinFETs considering 

a wide variety of digital and analog/mixed-signal building blocks. The characteristics of the TFETs have been derived from full-

quantum simulations [59], where n-TFETs and p-TFETs have been separately designed and have their own individual 

characteristics. This work reviews and extends previous publications from our group [9][37][47][48][51] by using the same set 

of devices for a large variety of circuits and supply voltages, and drawing more general conclusions. Furthermore, differently 

from the previous papers, the comparison with silicon FinFETs is carried-out at fixed occupied area and absolute off-current, 

hence essentially at the same static power. 

The paper proceeds as follows. The devices and the simulation methodology are described in Section 2. Simulation results 

for digital building blocks such as inverters, full-adders, SRAM cells and level shifters are reported in Section 3. Analog/mixed-
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signal building blocks (op-amps, current mirrors and comparators) are analyzed in Section 4. Conclusions are drawn in Section 

5. 

2. Virtual technology platforms and methodology for simulation and benchmarking 

The geometric structures of the p/n-type nanowire (NW) TFETs and silicon FinFETs considered in the following of this 

work are shown in Figure 1. The considered TFETs belong to a complementary virtual technology in [59], designed and 

characterized by means of full-quantum simulations. In particular, the AlGaSb/InAs NWs TFETs have a square cross section 

with a side LS=7 nm, a gate length LG=20 nm, and an equivalent oxide thickness EOT=1 nm (with a physical oxide thickness of 

2.3 nm by considering Al2O3 gate oxide [59]). The FinFET technology used as a benchmark was obtained via the PTM for 10 

nm node FinFETs, available at [60]. There are two flavors of such a 10 nm node PTM-FinFETs targeting two different 

application domains: high-performance (HP) and low-standby-power (LSTP), the latter being the one selected for our analysis. 

FinFETs have fin height hfin=21 nm, fin width tfin=8 nm, LG=14 nm and EOT= 0.88 nm (physical oxide thickness of 1.2 nm 

[60]). As for the electrical characteristics, at the nominal VDD of 750 mV, the n- and the p-FinFET feature a threshold voltage Vth 

of 425 mV and -428 mV, a saturation on-current ION of 44 µA and -39.5 µA, and an off-current IOFF of 5.13 pA and -5.08 pA, 

respectively. Despite the different geometry, the benchmark is fair since the two architectures occupy almost the same area on 

the wafer under the assumption of having vertical TFET NWs (see for example [7]) and conventional lateral FinFETs. In fact, 

the physical footprint of a vertical TFET is a square with a total side of 11.6 nm (area ~ 135 nm2), considering the semiconductor 

wire and the surrounding Al2O3 gate oxide. As for a FinFET, the resulting footprint area is ~145 nm2, by considering the fin 

cross section side of 10.4 nm (represented by the channel thickness and the wrapped gate oxide) and LG=14 nm. 

As extensively described in [47][48], the TFETs have been simulated using the TCAD tool Sdevice [61], where the model 

parameters have been adjusted to reproduce the full-quantum results in [59], which were performed at room temperature. In fact, 

due to over-simplified models available in commercial TCAD to account for the effects of quantum confinement, the default 

model parameters are not adequate. Thus, the band-gap parameters for the InAs/AlGaSb heterostructure, i.e. the energy-gap (EG) 

and the electron affinity (χ), have been chosen so as to reproduce the same band alignment as in [59]. Then, the dynamic 

nonlocal-path BtBT model parameters for the direct tunneling process (Apath,dir and Bpath,dir, see [61]) were recalculated by using 

the effective masses from bulk GaSb and InAs. Finally, the effective valence and conduction band density of states (NV and NC) 

have been increased compared to the default value for bulk crystals to improve the matching of the I-V curves between TCAD 

and full-quantum results. The calibrated parameters are summarized in Table I; one should note that these parameters may be 

interpreted as a fitting deck allowing to reproduce room temperature full-quantum results, while the TCAD predictivity at 

different temperatures has not been proved due to lack of high temperature simulations in [59]. Our analysis is thus limited to 

room temperature and does not explore possible advantages of TFETs due to better temperature stability. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sse.2018.05.003


© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  

The final publication is available at: https://doi.org/10.1016/j.sse.2018.05.003  
Figure 2 shows the device ID-VGS characteristics. The comparison has been performed by aligning both n- and p-type TFETs 

transfer-characteristics at the same off-current (IOFF ~ 2 pA) as for the FinFETs at |VDS| = 0.3 V (note that all the forthcoming 

figures will be consistent with this shift, if not otherwise stated). This threshold-voltage alignment is possible by assuming a 

metal gate work-function of 4.86 eV and 5.03 eV for the p- and n-TFET, respectively. In real devices, both work-functions 

might be achieved by using a TiN metal gate. This would be possible thanks to the tunability of the TiN work-function [62][63], 

and considering that the tunable range is between 4.85 and 5.2 eV for a TiN/Al2O3 gate stack [64].  Note that we considered the 

same absolute IOFF without normalization because the two architectures have very similar footprint. This ensures similar static 

power for TFETs and FinFETs, although likely different cell layouts when considering lateral and vertical devices may result in 

different circuit areas. 

While the ID-VGS characteristics of p- and n-type FinFET in Figure 2 are essentially symmetric at low voltage levels due to 

similar electrostatics (and SS) and matched IOFF (the electron/hole mobility difference does not imply a mismatch between the n-

/p-type ID in the subthreshold region), the ID-VGS curves of TFETs are strongly asymmetric. In fact, the design of both p- and n-

type TFETs encounters significant criticalities. Due to low density of states (DOS) in the conduction band of III-V materials 

leading to a degeneracy at relatively low doping levels, the source of the p-TFET cannot be heavily doped in order to preserve a 

steep SS, but this tends to limit the corresponding maximum on-current [65]: as a result, the p-type TFET has four times smaller 

on-current compared to the n-type device. As regards to the n-TFET, it suffers from a larger ambipolarity compared to the p-

TFET. This is due to smaller band-gap of the channel/drain material of the n-TFET (InAs) than the one of the p-TFET 

(AlGaSb), see Table I, which is more prone to unwanted BtBT at the drain side. Furthermore, this also favors the kink at low 

VGS in the n-TFET that is due to a direct tunneling path between the source and the drain. This tunneling path is weakly 

controlled by the gate and dominates the current until the source-to-channel tunneling starts to dominate. 

Figure 3 compares the ID-VDS characteristics of the devices (with the same threshold-voltage), showing that both p/n-type 

TFETs have a better saturation compared to FinFETs. This conduction is shown only for VDS>0 (VDS<0), while for the opposite 

polarization a forward biased p-i-n diode-like behaviour takes place (see [36][37] for further details). Figure 4 reports the total 

gate capacitance (CGG), which is the sum of the gate-to-source (CGS) and gate-to-drain (CGD) capacitances. Note that the PTM-

FinFET models include an extrinsic capacitance of about 30 aF equally split between the CGS and CGD contributions. For a fair 

comparison, the same absolute extrinsic CGS and CGD capacitances have been added to the CGD and CGS extracted from TCAD 

simulations of the TFETs. It should be noted that the real parasitic capacitance – which can be estimated only after assuming a 

circuit layout – might be much larger. However, this estimation is beyond the scope of this work since it would require 

technology parameters and design-rules to be predicted (some effort in this sense has been done in [66][67]). Rather, our main 

aim is to consider intrinsic devices to focus on more fundamental aspects. In any case, we believe that including at least the 

contribution already present in the PTM is needed to get not excessively optimistic results. 
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The I-V and C-V curves for the TFETs simulated with the calibrated TCAD simulation deck are then used to generate dense 

LUTs for ID, CGS, and CGD as a function of VGS and VDS. These LUTs are then imported in the Cadence Virtuoso environment by 

means of the Verilog-A description language thus enabling circuit simulations. For the FinFETs instead, we used directly the 

spice models in [60]. 

As a general remark, we want to point out that the device models used in this work do not include traps and other defects 

related to immature fabrication processes, and this means that we are considering a “virtual” technology where small SS can be 

achieved. On the other hand, NEGF simulations in [59] are quite accurate to describe the tunneling mechanisms at the base of 

the TFET behavior. This means that the virtual technology considered here is representative of something that is not available 

today, but that is not unrealistic because it requires an evolutionary improvement to devices which can be fabricated today. Thus, 

we would like to stress that the results reported in the following of this paper are not restricted to the specific template devices 

employed here. In this regard, Figure 5 compares the IV characteristics of the template TFETs used in this work (taken from 

[59]) and the ones used for other benchmarking activities based on simulations [14][65][68]. We see that all nTFETs feature 

quite similar characteristics. The same applies to the pTFETs, except for the one in [68] that appears to be the mirrored version 

of the nTFET. One should also note that the small differences among the reported devices depend on how the normalization of 

the current is performed (e.g. the ID of our devices has been normalized by the nanowire perimeter, while the current of the other 

devices is already normalized since they are obtained by 2D simulations). Furthermore, the ID-VGS for the InAs homojunction 

device in [65] is reported for a lower VDS than the others (|VDS|=100 mV against 300 mV). 

In addition, Figure 5 reports also the experimental IV of the nTFET presented in [7]: the SS and on-current are worse than in the 

idealized TFETs used in this work and in [14][68]. However, a detailed TCAD-based analysis of these experimental results has 

shown that there is still room for material and device optimization [69], which may improve SS and enable a ten times 

improvement of the on-current,  that would make it close to the current of our template devices. This is an indication that TFETs 

with performance similar to the simulated devices of this work may be manufacturable within a reasonable time frame.  

 

3. Analysis of digital circuits 

The circuit-level benchmarking analysis reported in this section focuses on basic digital building blocks implemented with 

TFETs. Starting from simple inverter logic-gates, we delve into the details of the design of TFET digital circuits, with emphasis 

on how the TFET specific characteristics influence the operation and performance of some relevant building blocks. These 

include complementary arithmetic circuits such as the standard 28T full-adder in Section 3.A, access-transistor based memory 

cells, such as the Static-RAM (SRAM) in Section 3.B, and hybrid (i.e. comprising both FinFET and TFET devices) digital 

voltage conversion blocks such as the level shifters in Section 3.C.  
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Independent inverter gates, together with fan-out 4 (FO4) inverters and 5-stage ring oscillators (RO5), are conventionally 

representative benchmarks to assess the static and dynamic performance of emerging device technologies for digital 

applications. In Figure 6a, the voltage transfer characteristics have been reported for both minimum size TFET and FinFET 

inverters at VDD = 300 mV. As suggested by the drain current characteristics of n/p-type devices in Figure 2 and Figure 3, the 

asymmetry is more pronounced for the TFETs, whose inverter logic threshold is below VDD/2 (i.e. 150 mV in this case), because 

the p-TFET is weaker than the n-TFET. This fact is further illustrated by Figure 6b that reports the inverter static noise margins 

as a function of the p-type to n-type device ratio, considering that a ratio close to 4/1 is needed to compensate for the resulting 

asymmetry between the NML and NMH (Noise Margins at the Low and High digital levels, respectively) of the TFET inverter, 

in agreement with the factor of 4 in on-current between n-TFETs and p-TFETs (Figure 2). In any case, the unbalance between 

the on-current in n- and p-type TFETs leads to a much reduced effect in the NML and NMH than in our previous report [47] 

since we consider here VDD = 300 mV instead of 400 mV. At this bias, the current of the p-TFET is closer to the one of the n-

TFET than at 400 mV. In Figure 5a we see that the voltage gain at the logic threshold is larger in TFET inverters thanks to the 

higher output resistance (Figure 3). 

Low-to-high (L→H) and high-to-low (H→L) FO4 delays are plotted as a function of VDD in Figure 7. Unlike FinFETs, 

which have essentially symmetric I-V electrical characteristics for n- and p-type devices and thus symmetric voltage-transfer-

characteristics (VTC), asymmetric electrical characteristics of TFETs result in asymmetric rise and fall transitions. Despite such 

asymmetry, the TFET FO4 delay is shorter than for the FinFET case for VDD below ~370 mV (~410 mV) if we consider the rise 

(fall) edge. Furthermore, one should consider that TFET FO4 suffers from miller effect due to large CGD, but this does not 

impede the TFETs to become faster than FinFETs at reduced VDDs, in accordance with their larger on-current and to the fact that 

the average gain of a logic gate is ~2. Note that CGD also produces significant overshoots in the voltage waveforms [48]. 

As for the ring-oscillator, we have extracted and examined the oscillation frequency (Tosc
-1) and the energy per cycle. Tosc is 

correlated with the critical path delay of a generic logic circuit, representing a limit for its maximum operating frequency, 

whereas the energy per cycle is in turn correlated with the energy per operation (Eop) when the same digital circuit is operated at 

the maximum frequency. In Figure 8, we show in (a) the oscillation period (Tosc) and in (b) the energy per cycle, as a function of 

the inverter p-type/n-type device ratio. From this plot it is clear that, although symmetric TFET drive-currents improve noise 

margins, having a small total capacitance (hence a 1/1 ratio) is preferable from a performance and energy consumption 

perspective. In Figure 9, energy versus Tosc points, as extracted for various VDD in the range 200~600 mV (step 100 mV), are 

plotted for both TFET and FinFET ring-oscillators, showing that for time-relaxed applications, the TFETs offer an energy 

budget saving, which in this case occurs for Tosc > 1.5 ns and for energy below 100 aJ/cycle. If we focus on the ultra-low VDD 

(e.g. close to 200 mV), there is a very large gain in Tosc for a fixed energy (with a factor > 20 at 30 aJ/cycle energy), while the 

advantage in terms on energy per cycle for a given Tosc is less relevant (with a factor of ~2 for a Tosc = 1 ns). The larger current 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sse.2018.05.003


© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  

The final publication is available at: https://doi.org/10.1016/j.sse.2018.05.003  
of TFET at low VDD explains the much smaller propagation delay. On the other hand, the capacitances are quite similar in 

TFETs and FinFETs (slightly larger for TFETs). As a result, the dynamic energy is almost the same for a given VDD, with 

second order differences due to different capacitance and static energy (the same static power gets integrated over different Tosc).  

When considering the maximum clock frequency at which a logic-chip can operate, it should be noted that this could be up 

to 100 times slower than the one extracted for the RO (fosc = Tosc
-1). This means that the frequency range where it would be 

convenient to use TFETs in place of FinFETs is limited to ~MHz levels and below, as it will be discussed in the next sections. In 

conclusion, considering that the low SS of TFETs makes them advantageous in the sub-threshold regime, the target applications 

are the ultra-low-voltage circuits, typical in Internet-of-Things end-nodes [70], which indeed trade the very low power 

dissipation with low speed. 

A. Full-Adder circuits 

Full-adders are fundamental building blocks of many digital systems. To analyze such circuits, transient simulations were 

performed with a dedicated test-bench on both TFET and FinFET single-bit full adder solutions. To provide a simulation 

environment with realistic driving signal and loads, the full-adder under test has been placed in a framework including other full-

adders and inverters as circuital periphery, as extensively discussed in our previous paper [48]. The extracted delays and energy 

characteristics are post-processed and translated into figures-of-merit for multi-bit ripple-carry-adders. Trends related to the 

FinFET and TFET designs are presented and discussed in this section. 

The transistor level schematic of the standard and mirror 28T full-adder topologies are reported in Figure 10 (TFET 

implementations only). In the mirror topology, the pull-up and pull-down networks are identical rather than complementary [71]. 

This reduces the current path from 3 to 2 p-type transistors in the carry, and from 4 to 3 p-type transistors in the sum circuit.  In 

particular, due to the asymmetric current conduction of the TFETs, in complementary logic circuits the TFETs are connected so 

that n-type and p-type devices have respectively a positive and negative VDS. This configuration prevents the forward biasing of 

the p-i-n junctions for both n- and p-TFETs. 

Figure 11 reports the propagation delays of the TFET and FinFET full-adders. The TFET adder shows less speed degradation 

when VDD is reduced compared to the FinFET design; this allows the TFET solutions to become faster than its FinFET 

counterparts for VDD below ~400 mV. Furthermore, by comparing the results for the mirror topology against the standard one, 

we see more advantage in terms of propagation delay for the TFET implementation (around 3.5% improvement), while for 

FinFETs the improvement is around 0.6%. This can be explained considering that the dominant delay is associated to the pull-up 

chain generating 𝐶𝑜̅̅̅̅ , with a higher performance benefit for the TFET adder due to p-/n-device asymmetry. 

Besides the obvious consequence that TFET circuits can operate at a higher clock frequency for such reduced VDD, the 

smaller speed degradation with VDD scaling with respect to FinFETs has also implications from the energy point of view. In fact, 
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in the energy balance of a circuit, both static and dynamic energy components can be relevant. In particular, at high VDD values, 

the dynamic energy per cycle (Edynamic = α·CL,eq·VDD
2, where α is the activity and CL,eq is the equivalent capacitive load of the 

circuit) is dominant. On the other hand, when the VDD is scaled down, a longer TCLK is needed to accommodate the larger delays, 

so that the static energy component (EStatic per cycle = TCLK·VDD·Ileak) can become dominant at lower switching activity. In this 

regard, it appears clear that having a reduced delay degradation with VDD scaling would result in reduced static energy consumed 

per each operation, for the same static power. 

Figure 12 reports the estimated (a) dynamic and (b) static energy per cycle for 32-bit RCAs (each corresponding to 32 blocks 

of the 28T standard topology in Figure 10a, with either TFETs or FinFETs). The total energy per cycle for TFET and FinFET 

32-bit RCAs is reported in Figure 13, by considering various conditions for the activity factor, which is defined as the ratio 

between the effective input/output switching events and the total clock cycles. When a switching activity close to 1 is 

considered, the dynamic energy dominates over the static one. Thus, irrespective of the operating voltage, the energy 

consumption of the FinFET circuit is slightly lower than the one needed for the TFET one. This is due to larger gate capacitance 

of TFET devices (see Figure 4): in fact, although the same extrinsic capacitance has been assumed in this study and the TFET 

has a lower Cox (due to slightly larger EOT), the TFETs have to cope with the intrinsic increase due to Miller effect [33]. On the 

other hand, when we move toward applications requiring a lower activity (i.e. 50% or below), the static energy contribution 

becomes more and more relevant in the balance against the dynamic energy. This means that the reduced static energy at lower 

VDD for the TFET topology, as reported in Figure 12b, directly translates into a better energy efficiency of the TFETs when low 

activity applications are considered. 

B. 6T SRAM cells 

The SRAM cell is widely deployed as on-chip cache in processors, due to its better read and write access times compared to 

other memory types. As a result, a SRAM array can occupy more than 50% of the processor area. From a topology point of 

view, the 6T SRAM cell contains two cross-coupled inverters to store the data, and two access-transistors (ATs), to access the 

data. Thus, the importance of investigating the TFET SRAM cell is twofold: (1) it allows us to benchmark the possible TFET 

deployment in advanced digital circuits; (2) it is an important case-study to investigate the possible shortcoming of TFET due to 

their unidirectional conduction. 

In recent years, many groups have investigated the impact of the TFET drain current unidirectionality, by assuming 

conventional 6-transistor (6T) cells with either inward-faced or outward-faced ATs (the outward configuration is sketched in 

Figure 14), as well as possible alternative topologies. One of the first proposal has been the asymmetric 6T cell based on one 

inward-AT and one outward-AT [39], which uses a kind of write-assist technique to improve the write stability. Various 

conditions for read and write assist protocols have been investigated in [40], with emphasis on a symmetric 6T cell with p-type 
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inward-ATs and read-assist. Afterwards, a 7T cell based on a conventional outward-AT 6T cell and one additional transistor for 

the read has been proposed in [41] (the same topology has been recently re-considered in [46] by simulating a different set of 

TFET templates). Robust topologies with more than 6 transistors have been proposed to improve the cell stability against device 

variations, such as the 10T Schmitt-Trigger cells in [42][43], the 7T driverless cell in [44] and the 8T hybrid TFET/CMOS cell 

in [45]. The most recent proposal is the 7T cell based on unconventional connections of the ATs to the bit-lines (BLs) and word-

line (WL) in [38] (source and drain of the AT connected to the WL and BL, respectively), with the purpose to improve the cell 

stability and reduce the minimum operating VDD. In our previous report [37], we have demonstrated that the simple 6T SRAM 

cell can work without severe performance penalty with respect to more complex cells (e.g. the 8T cell), provided that (1) 

outward-ATs are used and (2) the bit-lines (BLs) are pre-charged to VDD/2 for the read operation. 

The static performance of the 6T SRAM cell is analyzed in Figure 15, which reports the static noise margins in both read 

(RSNM) and write (WSNM) operations, for (a and b) FinFET and (c and d) outward-AT TFET 6T SRAM cells. These static 

noise margins are plotted as a function of the effective width of the AT (x-axis), of the pull-up transistor (different curves in the 

same plot) and of the pull-down transistor (plots on the left against the ones on the right), obtained by assuming multiple parallel 

transistors. When considering symmetric transistors as the FinFETs (Figure 15, a and b), the write-ability of a cell mainly 

improves by decreasing the pull-up ratio, defined as the ratio between the effective width of pull-up transistors and the width of 

the ATs. As for the read-ability, this can be mainly improved by increasing the cell ratio, which is defined as the ratio between 

the effective width of pull-down transistors and the width of the ATs. In a few words, a trade-off between read and write 

operations is required to achieve a correct sizing of an SRAM cell: the larger the ATs, the lower is the RSNM and the larger is 

the WSNM (see for example Figure 15a). On the other hand, when considering unidirectional transistors as the TFETs (Figure 

15, c and d), RSNM results to be independent on the overall AT size. This fact has been already discussed in [37], with the 

conclusion that the read is in fact forbidden due to unidirectional conduction of outward-faced ATs, which prevents the access to 

the cell in read-mode (i.e. despite quite large RSNM, the corresponding read operation is too slow). For this reason, we report 

also the case when read is performed with a pre-charge of the BLs to VDD/2, while keeping the standard write protocol with 

differential voltage levels to 0V and VDD at the two BLs. In this case, at the beginning of the read operation, the BL voltage 

levels are between 0 and VDD, and thus at least one of the AT is operated at positive VDS (i.e. the one at the side where the ‘1’ 

logic value is stored), so that the BL capacitance is charged toward VDD in a reasonable time. In Figure 16, we report the (a) 

write and (b) read delays for both FinFET and TFET SRAM cells as a function of VDD. As regards the write delay, the TFET 

SRAM cell becomes faster than the corresponding FinFET cell at VDD below ~360 mV. A similar trend is also obtained for the 

read delay, where the TFET SRAM cell becomes faster at VDD below ~400 mV. It is important to remark that the read of the 

TFET cell has been performed by pre-charging the BLs to half VDD, and this makes the TFETs competitive with FinFETs at 

such ultra-scaled VDD values, despite the unidirectionality of TFETs. As for the FinFET cell, this pre-charge scheme does not 
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bring any significant improvement to the read delay because FinFETs are bidirectional. Read and write delay transient 

simulations have been performed by assuming a BL parasitic capacitance of 20 fF, to account for interconnect parasitic 

capacitance as well as for input capacitances of ATs belonging to other cells in the same array. 

C. Level shifters 

Level shifter (LS) circuits are required in multi-supply voltage designs to up-convert digital signals from the lower (VDDL) to 

the higher (VDDH) power supply domain. A key requirement of this class of circuits is to perform fast and energy efficient 

conversion for a wide range of input voltages. In this context, a hybrid MOSFET/TFET approach has been proposed in [51] 

showing significant improvement over pure MOSFET and TFET designs. The same hybrid MOSFET/TFET LS application has 

been investigated in [50], with more focus on the layout density reduction (e.g. by using single non complementary input data 

signal, i.e. with a single input-stage inverter). Although the co-integration of such two technologies in the same chip would be 

challenging, due to different device concepts (TFET and CMOS) and different material schemes (III-V materials and silicon), 

some encouraging result has been already shown in the literature, such as the TFET and CMOS devices co-integrated with the 

same process flow in [30], as well as the hybrid integration of III–V and Si(Ge) CMOS devices in [72]. In this context, a lot of 

effort is being devoted to enable heterogeneous integration of very different technologies [73][74], and we may consider the 

further challenge to integrate vertical and lateral device architectures. 

The four LS topologies depicted in Figure 17 (only hybrid FinFET/TFET designs), as proposed in [75][76][77][78], are 

analyzed in terms of energy delay product (EDP) considering different VDDLVDDH signal up-conversions. In particular, the 

pure FinFET LS designs have been sized in order to achieve the minimum EDP for the target conversion 0.25 V  0.75 V (note 

that 0.75 V is the nominal operating voltage of the considered FinFET technology), for 1 MHz input waveform. As regards the 

pure TFET and hybrid designs, similar leakage currents per circuit block are ensured by employing the same number of devices. 

The simulated EDP results as a function of VDDL, for up-conversion to VDDH = 0.75 V, are reported in Figure 18 showing that for 

VDDL below 0.4 V the hybrid FinFET/TFET approach outperforms both pure FinFET and TFET implementations, regardless of 

the considered circuit configuration. Thus, by employing TFETs as the transistors operating at VDDL while keeping the FinFETs 

for the VDDH operation, one can guarantee a sufficient pull-down network strength even at relatively low voltage input signals. 

This allows reduced current contention among pull-up (p-FinFETs) and pull-down (n-TFETs) devices in critical up-conversion 

operations (i.e. when VDDL is extremely low) with a positive impact on the low-to-high delay, on the corresponding short circuit 

current and thus on the energy consumption. This twofold advantage in terms of delay and energy is well highlighted in Figure 

19, which shows the EDP ratio between FinFET and hybrid implementations for VDDL ranging from 0.15 to 0.4 V and VDDH in 

the range from 0.45 to 0.75 V. Similar trends are observed for all the hybrid designs, pointing out that the larger is the voltage 

up-conversion ratio the larger is the EDP improvement compared to the corresponding FinFET counterparts. 
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4. Analog/mixed-signal applications 

This section focuses on benchmarking the same TFET and FinFET technology platforms described above, by moving to 

analog and mixed-signal domains. In fact it is the most common situation in system-on-chips (SoCs) that the dominant digital 

part dictates the device specs and the analog circuit design simply adopts them and tries to use the existing devices at best. The 

circuit-level performances are dictated by the device-level figures-of-merit (FOM), such as the transconductance efficiency 

(gm/ID), output resistance (r0), intrinsic gain (Av) and cut-off frequency and maximum oscillation frequency (fT and fMAX). The 

comparison for n-type devices is reported in Figure 20, the one for p-type devices in Figure 21. TFETs exhibit significant 

advantages over FinFETs for low current level (below 1 μA) in terms of gm/ID with a peak value around ID = 1 nA for n-TFET 

and around 10 pA for p-TFET. The better saturation behavior of TFET devices (Figure 3) results in a significantly higher r0 

compared to FinFETs in the current range 1n~1μA for n-TFET and 10p~100 nA for p-TFET. The output resistance affects also 

the intrinsic gain, which is 100 times or 10 times larger for respectively the n-TFET or p-TFET compared to the corresponding 

FinFET at ID of about 100 nA. TFETs outperform FinFETs also in terms of fT with an improvement of approximately a factor 2 

occurring around 1 nA for n-TFET and around 10 pA for p-TFET. On the other hand, for current levels larger than 80 nA (20 

nA) for the n-type (p-type) devices, the FinFETs reach larger fT peaks, e.g. 100 GHz in the 1μA range. One should however 

consider that these values have been computed for intrinsic devices, while the inclusion of layout parasitics would likely result in 

lower fT peaks. In the same figure, the maximum oscillation frequency fMAX is also reported, with similar trends as for the fT (but 

different absolute values). 

Overall, because of the asymmetric characteristics of TFETs, the n-type device exhibits larger improvements in terms of r0 

and Av (about a factor 10) with respect to the p-type one when compared to FinFET counterpart, with the peak values of the 

gm/ID and fT (and fMAX) curves being shifted at lower current levels for p-type TFET. Based on these key FOMs, the potential of 

conventional topologies for TFET design is investigated and discussed in comparison to more complex CMOS low-voltage 

design topologies, considering some relevant analog/mixed signal building blocks such as Current Mirror in Section 4.A, 

Operational Amplifier in Section 4.B and Comparator in Section 4.C. 

A similar benchmarking study for the main analog FOMs of several building blocks (such as operational transconductance 

amplifier, track-and-hold, current mirror, differential pair, diode connected transistor) has been presented in two recent works 

[8][56]. In [8] two 14-nm node III–V TFETs (homo-junction InAs and hetero-junction GaSb-InAs) with a gate-length of 20 nm 

are compared with a Si MOSFET, while in [56] the 28-nm homo-junction strained-silicon (sSi) double-gate (DG) TFET is 

systematically benchmarked against the 28-nm low-power Fully Depleted Silicon on Insulator (FD-SOI) CMOS node. 

Significant advantages have been shown for low-to-moderate current densities both at device and circuit levels, highlighting the 

potential of conventional topology for TFET design compared to CMOS design which instead requires more complex topologies 

to achieve similar performance in low-voltage design. 
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A. Current Mirror 

In the context of analog design, current mirrors are required to generate a replica of a given current reference, that 

corresponds to the implementation of a current controlled current source. Their most important figure-of-merit is the output 

resistance, which is required to be sufficiently high to deliver an almost constant output current over a wide range of output 

voltages. Several topologies of current mirrors have been proposed and the selection of the most appropriate topology depends 

on the adopted technology [79]. An experimental comparison of TFET and FinFET current mirrors is reported in [35] in which 

the ability of the simple topology in mirroring the reference current is analyzed, showing a reduced sensitivity of TFET design to 

channel length variation compared to FinFET implementation. In the following, we have analysed the simple, the cascode and 

the high-compliance mirror topologies sketched in Figure 22, by considering a reference current (IREF) of 100 nA where the 

TFET r0 is close to highest compared to the FinFET one. Figure 23 reports the ratio between the output current (IOUT) and IREF as 

a function of the output voltage (VOUT). As for the FinFET designs, it can be seen that: (i) the simple circuit has a strong 

sensitivity to VOUT, which practically impedes the proper operation of the mirror; (ii) the cascode solution shows the drawback 

of a high minimum output voltage (VOUTmin); the FinFET high-compliance topology allows to achieve a good performance in 

terms of low sensitivity to VOUT and low VOUTmin, but it requires additional biasing circuitry, resulting in a significant area 

penalty. As for the TFET designs, the significantly higher output resistance makes the simple current mirror have similar 

mirroring performance compared to the FinFET high-compliance architecture. The TFET cascode implementation allows for a 

slight improvement in keeping the IOUT/IREF ratio close to one, but at the expenses of higher VOUTmin because of the delayed onset 

of the saturation region in TFETs compared to FinFETs. The important conclusion is thus that the TFET-based design has the 

potential to significantly reduce the circuit complexity of a low-voltage current mirror, without significantly affecting the 

performance. 

B. Operational Amplifier  

The design of operational amplifier with sub-1V operation poses several challenges, mainly due to the speed-limiting factor 

associated to the reduced current level in sub-threshold operation [80][81]. The circuit performance can be predicted by applying 

the gm/ID design methodology [82] which has been extensively reviewed in [83] for TFET designs. The results obtained from 

current mirrors hint to the potential of TFET implementation for low voltage operational amplifiers. The simple, the telescopic 

cascode and the folded cascode operational amplifier topologies (see Figure 24), implemented with TFETs and FinFETs, are 

compared in terms of DC gain and of the figure-of-merit FOMGBW (defined as 
𝐺𝐵𝑊 × 𝐶𝑙𝑜𝑎𝑑𝐼𝐵𝐼𝐴𝑆 ) [80], which provides a fair 

comparative evaluation of the bandwidth-power consumption trade-off. The circuits are designed for the target unity gain 

frequency of 50 MHz at VDD = 0.5 V and under the same load condition, Cload= 1 fF. Table II reports the DC gain as well as the 

FOMGBW values, which are basically a measure of the power consumption because the circuits are compared for the same GBW 
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and Cload. As a consequence of the combined effect of higher output resistance of the active load and higher gm/Id at lower current 

level, for the simplest topology the TFETs implementation allows to achieve significantly higher performance compared to its 

FinFET counterpart in terms of DC gain and at a lower power consumption. The cascode solutions (folded or telescopic 

cascode) are required for FinFET design in order to compete with the gain of the TFET simple circuit, but at the expense of 

reduced output swing, higher power consumption and increased silicon area. For the same circuit topology, TFETs show 

improvements over FinFETs in the order of a factor of 2 in terms of both performance and power. 

C. Comparators 

In the context of analog-to-digital conversion, dynamic regenerative comparators are required for fast and energy efficient 

operation. Thanks to the higher transconductance efficiency at lower current level, TFET designs could enable significant power 

saving compared to FinFET ones. The conventional and double tail [84] architectures sketched in Figure 25 are compared in 

terms of energy and delay. The FinFET designs have been sized according to a progressive sizing methodology for stacked 

transistors, while TFET designs have been sized in order to keep approximately the same static current consumption as their 

FinFET counterparts. The simulation setup consists of 5 mV differential input (Vd) with an input common mode (VCM) of 70% 

VDD and a load capacitance (CL) of 1 fF, which corresponds approximately to the effective input capacitance of 10 parallel 

minimum-size FinFET inverters. The FinFET-based double tail topology enables a significant boost of the speed in comparison 

to the conventional design at the expense of higher energy per operation (obtained considering the minimum clock period at 

each VDD), as depicted in Figure 26. As for the TFET designs, the conventional architecture has comparable performance to the 

double tail in terms of speed while keeping lower energy per operation (Eop), because of the asymmetric characteristic of p- and 

n-type TFETs. Thus, the TFET-based conventional structure appears to be the best option compared to both the FinFET-based 

designs, also due to the reduced number of devices compared to the more complex double tail structure. Furthermore, 

considering a TFET-base design, a reduced VCM value allows for an extended range of VDD where TFET-based comparators 

outperform their FinFET counterparts as reported in Figure 27, in which the EDP is plotted as a function of VDD for different 

values of VCM ranging from 50% to 90% of VDD. 

5. Conclusions 

This work has provided an overview of TFET circuit applications, along with a detailed benchmark against aggressively 

scaled FinFETs, carried out by touching a large variety of circuit domains including digital, analog and mixed-signal building 

blocks. The virtual TFET technology platform consists of III-V heterojunction NWs, designed through advanced full-quantum 

simulators in [59], while the predictive technology model (PTM) platform of 10 nm node FinFETs was used as representative of 

the CMOS counterpart [60]. For a fair comparison, TFET and FinFET blocks have been operated at approximately the same 
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static power density consumption that is at fixed area occupation and off-current. Unlike FinFETs, the considered TFETs feature 

asymmetric p- versus n-type transistors drain current characteristics, as actually the case in several experimental reports. 

 

Highlights related to the digital domain: 

• Basic blocks (inverters, FO4 and ring-oscillators). Symmetric VTC can be achieved with TFETs at the cost of 

using ~4 p-type parallel devices for each n-type, to implement the pull-up and pull-down network, respectively. 

This is not the case for FinFET inverters, whose VTC is almost symmetric even considering a 1/1 p/n ratio. The 

large capacitance and area occupation compared to FinFETs due to the number of pull-up TFET devices, leads to 

larger energy consumption without providing a real performance advantage. Thus, by considering minimum size 

inverters, 5-stages ring-oscillator benchmark-vehicle demonstrated a better energy efficiency of TFETs only in 

applications with time constants below ~1 ns, e.g.: if FinFETs are replaced by TFETs, the energy per cycle is 

approximately halved for a Tosc of ~10 ns. 

• Arithmetic circuits (full-adders). The standard 28 transistors implementation of 1-bit full-adder has been used as a 

benchmark for the logic/arithmetic domain. The carry-in to carry-out propagation delay has been selected as the 

main performance figure-of-merit: TFET full-adder turned out to be faster than the corresponding FinFET 

implementation for VDD below ~400 mV. When considering multi-bit adders such as the 32-bit ripple carry adder 

implemented with a chain of 32 1-bit full-adder blocks, similar energy consumption is found when TFET and 

FinFET solutions are operated at the same VDD, if a 100% switching activity is assumed. However, when moving 

toward applications featuring a limited switching activity (e.g. <10%), the TFET circuits allow energy saving at low 

VDD (i.e. below 400 mV), which corresponds to the regime where the static energy becomes relevant, and moreover 

they can be operated at a lower minimum energy point. In fact, irrespective of similar active power, in that regime 

the same operation can be performed in a reduced time if TFETs are employed. 

• Memory cells (SRAM). We have considered a standard 6T Static-RAM memory block as a test vehicle for 

memory cells based on TFETs. Due to unidirectional conduction, the TFET access-transistors have been oriented in 

the outward configuration by connecting the source to the BLs. The sizing of the cell transistors has been optimized 

for each VDD in order to enable functional hold, read and write operation for both TFET and FinFET SRAMs. 

Irrespective of the unidirectional limit, the outward-faced access-transistors TFET SRAM leads to competitive read 

and write delays at scaled supply voltage (<400 mV)., when it is operated with a BL pre-charge at VDD/2 during the 

read phase. 

• Voltage up-converters (level-shifter). The potentialities of TFET devices have been exploited in the 

implementation of hybrid TFET/FinFET level-shifters, where TFET devices are introduced in the low supply circuit 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sse.2018.05.003


© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  

The final publication is available at: https://doi.org/10.1016/j.sse.2018.05.003  
sections for efficient voltage up-conversion from the ultralow-voltage regime. The mixed solution exhibits superior 

dynamic performance at the same static power consumption than both pure MOSFET and pure TFET solutions. The 

same behaviour has been found on four different topologies, thus confirming that the mixed TFET–MOSFET 

approach is intrinsically suitable for such application. 

Highlights related to the analog/mixed-signal domain: 

• Basic analog device level figures-of-merit. TFETs exhibit significantly higher maximum values for the trans-

conductance efficiency gm/ID and intrinsic voltage gain AVi = gm·ro (up to almost two decades for n-type and one 

decade for p-type) than FinFETs, mainly due to their higher output resistance at low current levels. The fT of TFETs 

is slightly higher than that of FinFETs at low current levels (a higher advantage is observed for the n-type device), 

while it is significantly lower at high current levels, mainly due to the corresponding transconductance behaviour. 

As regards the TFET output resistance, ro is larger than the one of FinFETs for currents in the A range, while they 

tend to be similar for very low current levels. 

• Current mirrors. The large output resistance of TFETs can be conveniently exploited in the design of current 

mirrors, considering that they require a high output resistance to deliver an almost constant output current against 

output voltage variations. When compared to a FinFET implementation, TFET-based design has the potential to 

significantly reduce the circuit complexity of a low-voltage current mirror, without any significant performance 

loss. 

• Operation Amplifier. The capability of simple TFET design to perform with comparable performance of more 

complicated FinFET implementations has been demonstrated also for the operational amplifiers, where the simple 

TFET operation amplifier shows both DC and AC figures-of-merit comparable with the folded and telescopic 

cascode FinFET operation amplifiers, while featuring a reduced power consumption. 

• Comparators. TFET-based comparators (both conventional and double tail architectures) allow for better energy-

delay-product in the ultra-low voltage regime for a large swing of the common-mode input voltage and VDD, up to 

an EDP better than 200 and 60 times for the conventional and double tail implementations, respectively. 

Furthermore, the TFET-based conventional topology offers similar EDP performance compared to the more 

complex double tail topology, basically because of the lower sensitivity to the asymmetric characteristic of p/n-type 

TFETs, enabling potential area saving. 

 

From a general perspective, the key messages of this study are: 

• the pros (i.e. low subthreshold swing and high output resistance) and cons (i.e. ambipolarity, unidirectionality, p- 

versus n-type asymmetry, large gate-to-drain intrinsic capacitance, higher sensitivity to variability sources) of 
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TFETs with respect to MOSFETs can be balanced at best by adopting new circuit topologies with respect to 

standard CMOS solutions; 

• while research on TFETs focuses mostly on switches for digital circuits, TFETs exhibit potential interesting 

advantages also for analog and mixed-signal applications; these advantages might be emphasized in niche 

applications, by exploiting the low-temperature dependence of TFET operation. 

• the introduction of TFET in mainstream CMOS technologies will likely be limited to electronic systems operating 

at extremely reduced voltage (lower than 400 mV) and by preferentially adopting an hybrid TFET/MOSFET 

implementation, which takes advantage of both transistor options. At such small voltages, (time dependent) 

variability may end up being the most stringent requirement dictating the application window of such technology. 
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Figure 1: Sketch of n- and p-type TFET and FinFET device architectures. The red and blue colors indicate the n- and p-doping 
types, respectively (green: intrinsic semiconductor, transparent-grey: oxide). TFET dimensions are: LG = 20 nm, nanowire 
cross section (LS) = 7 nm, EOT = 1 nm. FinFET dimensions are: LG = 14 nm, tfin = 8 nm, hfin= 21 nm, EOT = 0.88 nm. 

 

 

Figure 2: (a) p-type and (b) n-type transfer-characteristics (ID-VGS) at |VDS|=0.1V and 0.3V of single FinFET (FF) and TFET 
(TF) devices, aligned at Ioff ~ 2 pA at VDD = 300 mV. 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0
  1p

 10p

100p

  1n

 10n

100n

  1u

 10u

V
GS

 (V)

A
B

S
[D

ra
in

 c
u

rr
e

n
t]
 (

A
)

(a) P-type

 

 

pFF(-0.3V)

pFF(-0.1V)

pTF(-0.3V)

pTF(-0.1V)

0 0.1 0.2 0.3 0.4 0.5
  1p

 10p

100p

  1n

 10n

100n

  1u

 10u

V
GS

 (V)

D
ra

in
 c

u
rr

e
n

t 
(A

)

(b) N-type

 

 

Ioff=2pA

nFF(0.3V)

nFF(0.1V)

nTF(0.3V)

nTF(0.1V)

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sse.2018.05.003


© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  

The final publication is available at: https://doi.org/10.1016/j.sse.2018.05.003  

 

Figure 3: (a) p-type and (b) n-type device output-characteristics (ID-VDS) at |VGS| = 0V, 0.1V, 0.2V, 0.3V, 0.4V. 
 

 

Figure 4: (a) p-type and (b) n-type device gate-capacitance characteristics (CGG) as a function of VGS at |VDS| = 0V and 0.3V. 
 
 

 
Figure 5: (a) p-type and (b) n-type transfer-characteristics (ID-VGS) at |VDS|= 300 mV of virtual p-/n-TFETs presented in [59] 
(UniBo, devices used in this work), of the template used in [68] (nanoHUB), the templates in [14] (Intel-HTJ), [] (Intel-HMJ, 
at |VDS| = 100 mV) and of the experimental n-TFET in [7] (Un.Lund). For a fair comparison, the ID-VGS characteristics have 
been normalized by the gate perimeter and aligned at the same Ioff = 1nA/µm. 
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Figure 6: (a) Voltage-transfer-characteristics (VTC) for minimum size FinFET and TFET inverters. (b) Inverter static noise 
margins (NML and NMH) as a function of the inverter p-type/n-type device ratio. 

 

 

Figure 7: Low-to-high and high-to-low delays as a function of VDD for FinFET and TFET Fan-Out 4 (FO4) minimum-size 
inverters. 
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Figure 8: TFET 5-stages Ring-Oscillator (RO5) with fan-out 1 (i.e. all the inverters in the chain are the same): (a) oscillation 
period (Tosc) and (b) Energy per cycle as a function of the inverter p-type/n-type device ratio. 

 

 

Figure 9: FinFET vs TFET benchmark based on the Energy vs. Tosc plot for minimum size 5-stages Ring Oscillators (with fan-

out 1). The single points on the curves are obtained for different VDDs (steps of 100 mV). 
 

 

 

Figure 10: Schematic of a standard (a) and mirror (b) 28T full adder circuits. Source of the TFETs are marked. 
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Figure 11: Propagation delay of 28T (standard and mirror) single-bit full-adders. 
 

 

Figure 12: (a) Dynamic and (b) Static Energies per minimum clock cycle ad a function of VDD for 32-bit Ripple-Carry-Adders 
(RCAs). 
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Figure 13: Total Energy (Static + Dynamic contributions) as a function of VDD for 32-bit Ripple-Carry-Adders, considering a 
switching activity equal to (a) 100%, (b) 10% and (c) 1%. 

 

 

 

Figure 14: Simulated 6T SRAM cell with outward-facing TFET access transistor (TFET implementation only). 
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Figure 15: Read and Write Static-Noise-Margins for (a and b) FinFET and (c and d) outward-AT TFET 6T Static-RAM cells, 
as a function of the number of AT and PU devices, for #PD=1 (a and c) and for #PD=4 (b and d). The read is performed with a 
pre-charge of the BLs at either VDD or VDD/2 for the TFET cell, while for the read of the FinFET cell the BLS are at VDD. The 
write is performed with differential voltage levels applied at the BLs (i.e. either 0V and VDD or VDD and 0 applied at BL and 
BLB, respectively). VDD=300 mV. 

 

 

Figure 16: (a) Write and (b) Read delays as a function of VDD for FinFET and TFET SRAM cells. The read of the TFET cell is 
performed by assuming a BL precharge at VDD/2. #PD=#PU=1. #AT=1 for FinFETs, #AT=3 for TFETs. 
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Figure 17: Hybrid FinFET/TFET design of the level shifter topologies reported in (a) [75], (b) [76], (c) [77] and (d) [78].  
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Figure 18: Energy Delay Product comparison between pure FinFET/TFET design and hybrid solution as a function of VDDL, 
considering the level shifter topologies depicted in Figure 17. Plots a-b-c-d correspond to the topologies in [75], [76], [77] and 
[78] respectively. 

 

 

Figure 19: EDP ratio between pure FinFET design and hybrid solution as a function of VDDH and VDDL, considering the level 
shifter topologies reported in Figure 17. Plots a-b-c-d correspond to the topologies in [75], [76], [77] and [78] respectively. 
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Figure 20: n-type devices: (a) transconductance efficiency (gm/ID), (b) output resistance (ro), (c) intrinsic gain (Avi = gmro) and 
(d) cut-off frequency and max oscillation frequency (fT and fMAX) as a function of ID at |VDS| = 0.3V. In order to estimate fMAX 
for the TFETs, we have considered the same source/drain series resistance as in the FinFET models (i.e.  1.28 kΩ). 
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Figure 21: p-type devices: (a) transconductance efficiency (gm/ID), (b) output resistance (ro), (c) intrinsic gain (Avi = gmro) and 
(d) cut-off frequency and max oscillation frequency (fT and fMAX) as a function of ID at |VDS| = 0.3V. In order to estimate fMAX 
for the TFETs, we have considered the same source/drain series resistance as in the FinFET models (i.e.  1.28 kΩ). 

 

 

Figure 22: Schematic of the current mirrors considered in this work: (a) simple, (b) cascode and (c) high-compliance. 
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Figure 23: IOUT/IREF ratio for (a) p-type and (b) n-type version of current mirrors reported in Figure 22. The circuits are 
compared for the same reference current of 100 nA. 

 

 

 

Figure 24: Schematic of the operational amplifiers considered in this work: (a) simple, (b) telescopic cascode and (c) folded 
cascode. 
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Figure 25: Schematic of (a) conventional and (b) double tail comparators. 
 

 

Figure 26: Energy per operation as a function of the delay for the comparators reported in Figure 25. The different points 
correspond to different VDD values ranging from 100 mV to 600 mV (step 10 mV). 

 

 

Figure 27: EDP ratio between FinFET and TFET design as a function of VDD and VCM for the comparators in Figure 25. 
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Tables: 

 
Parameter Al0.05Ga0.95Sb  InAs 

Band-gap parameters (including quantization effects) 

Energy gap EG (eV) 1.04 0.59 
Electron affinity χ (eV)  4.01 4.9 

Dynamic non-local BtBT model parameters 

Apath (cm−3s−1) 1.51·1020 1.44·1020 
Bpath (V/cm) 9.54·106 2.94·106 

Effective conduction and valence band density of states 
NC (cm−3) 1.26·1018 5.22·1017 
NV (cm−3) 1.8·1019 6.6·1018 

Table I: Calibrated parameters used in the TCAD simulations of the AlGaSb/InAs TFET templates. 
 
 
 
 

  TFET design  FinFET design 

 Simple Telescopic 
cascode 

Folded 
cascode 

Simple Telescopic 
cascode 

Folded 
cascode 

DC gain [dB] 33 50 58 16 36 34 

FOMGBW* 

[MHz·pF/µA] 

6.3 6.3 2.6 2.2 2.3 1.2 

IDD [nA] 7.9 7.9 19.2 22.7 21.7 41.7 

  * VDD = 500 mV, GBW = 50 MHz, CL = 1fF 

Table II: Performance comparison of the operational amplifiers reported in Figure 24 considering a minimum size design. 
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