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Engineering quantumparticle systems, such as quantum simulators
and quantum cellular automata, relies on full coherent control of
quantum paths at the single particle level. Here we present an
atom interferometer operating with single trapped atoms, where
single particle wave packets are controlled through spin-depen-
dent potentials. The interferometer is constructed from a sequence
of discrete operations based on a set of elementary building blocks,
which permit composing arbitrary interferometer geometries in a
digital manner. We use this modularity to devise a space-time
analogue of the well-known spin echo technique, yielding insight
into decoherence mechanisms. We also demonstrate mesoscopic
delocalization of single atoms with a separation-to-localization
ratio exceeding 500; this result suggests their utilization beyond
quantum logic applications as nano-resolution quantum probes in
precision measurements, being able to measure potential gradi-
ents with precision 5 × 10−4 in units of gravitational acceleration g.
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Localized Particles
Particle interferometry has yielded numerous important results
from the advent of quantum mechanics until now; counting only
the most recent ones, they range from precision measurements
(1) and fundamental tests of quantum mechanics (2, 3) to appli-
cations in optical and superconducting magnetometry (4, 5).
Whereas other architectures provide a natural way to engineer,
guide, and confine interfering paths, e.g., by means of optical
waveguides for photons or superconducting circuits for electrons,
one key challenge for atoms consists in realizing a flexible plat-
form that is capable of providing complex interfering geometries
where the atoms remain localized at all times. Unprecedented
control over atomic states has been obtained in optical lattice
potentials; designed to mimic solid state systems they resemble
engineered circuits. To construct interfering paths in these sys-
tems, an additional quantum number is needed—that has to be
decoupled from motional states—for the atomic wave packet’s
motion to be steered in a coherent and state-dependent manner.
This additional control is achieved by leaving the simple scalar
concept of an atom and taking advantage of its vector nature en-
dowed by electronic and nuclear spin. Mediated by the spin-orbit
interaction, optical dipole forces yield a state-dependent force,
offering the right handle for steering atomic paths. Therefore,
an effective magnetic field coupled to the atomic magnetic
moment makes position control of the interfering paths possible,
albeit at the expense of an increased sensitivity to magnetic fields
(6–8). Even though this direct coupling to magnetic fields is not
a fundamental limitation, it represents a technical hurdle that
demands efficient shielding against stray magnetic field fluctua-
tions; accepting this price, digital engineering of atomic paths in
optical potentials can bring atom interferometry to a unique level
of control.

Particle localization and digital reprogrammability of atomic
paths, besides being necessary resources in quantum technologies,
e.g., for quantum cellular automata (9) and multiparticle entan-
glement (10), specify also the application range where trapped-

atom interferometers could outperform other interferometers
in precision measurements. In general, to measure constant
homogeneous potential gradients the figure of merit is the space-
time area enclosed by the atomic paths, and the ultimate precision
is fixed by shot noise as standard quantum limit. Although space-
time areas achieved by free-fall atom interferometers, e.g., of
about 1 mm × 160 ms in ref. 1, are in principle reachable by our
interferometer, and at the moment only technically limited, the
prime advantage in having trapped atoms resides in the nanoscale
spatial resolution, allowing nondestructive probing of microscopic
atomic quantum systems and measuring potential gradients at
ultrashort scale.

Interferometer
Atom interferometers operate by splitting the wavefunction of an
atom onto two spatially separated paths, and measuring their
phase difference (11, 12). As depicted in Fig. 1A, for this purpose,
the atom is prepared in a quantum superposition of states; these
are subsequently delocalized and eventually coherently recom-
bined to probe the phase difference accumulated between the
two paths. Our interferometer uses two long-lived internal states
of cold Caesium atoms, j ↑i ¼ jF ¼ 4; mF ¼ 4i and j ↓i ¼
jF ¼ 3; mF ¼ 3i. Although these internal states are coherently
manipulated by means of microwave pulses, the particle position
is controlled by trapping atoms in a one-dimensional optical lat-
tice with spacing d ¼ 433 nm. The spin-dependent control is rea-
lized through a lin-θ-lin configuration of the optical lattice, which
allows atoms to move in discrete steps in a direction dependent
on the spin state j ↑; xi → j ↑; x� d∕2i, j ↓; xi → j ↓; x∓d∕2i by
ramping the polarization angle θ (see Materials and Methods)
(13, 14). When a superposition of the two spin states is created
by a π∕2 pulse, the trapped atom is delocalized by a single step in
a fully coherent manner. As illustrated in Fig. 1B, shift operations
of alternated direction are interleaved with π pulses to further
separate the paths. Up to 100 block operations can be concate-
nated in one coherent digital chain, eventually achieving coherent
separations larger than 10 μm, as shown in Fig. 1C. The tight con-
finement by the lattice potential ensures that each wavefunction’s
component is axially strongly localized in space, down to 18 nm,
achieving at the same time nanoscale positioning control and
mesoscopic spatial separation.

To extract the interferometric phase difference Φ between the
two paths, we employ a Ramsey probing scheme where the final
merging block maps the phase information onto the two spin
populations by means of a π∕2 pulse of variable phase φ. Scan-
ning the phase varies the probability to detect j ↓i
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pj↓iðφÞ ¼
ð1 − γÞ

2
· ½1þC · cosðΦþ φÞ�; [1]

γ being the probability of an atom escaping from the trap during
the interferometer sequence, and C the Ramsey fringe contrast.
When the interferometer is operated with a single atom, detect-
ing the presence of the atom in, e.g., j ↓i state results in a 0∕1
binary signal at each run of the sequence, as displayed in Fig. 1D.
Unlike with large ensembles of atoms, to measure the underlying
probability distribution in Fig. 1E multiple repetitions are here
averaged in time.

Geometries
The geometry of the interferometer is determined by the pro-
grammed sequence of operation blocks. The elementary diamond
geometry, which resembles the classic Mach–Zehnder interfe-
rometer, maximizes the sensitivity of the interferometric phase
to potential gradients. Varying the size of the diamond reveals
how phase and coherence of the superposition state evolve with
the number of shifts. Fig. 2A shows a strong parabolic phase ac-
cumulation, which we can track over 11π radians. Such a phase

behavior is expected in the presence of a linear potential gradient
∇U, as it can be interpreted as the gradient strength times the
space-time area that the paths enclose. The accumulated phase
will then follow

ΦðnÞ ¼ 1
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2
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�
; [2]

n being the total number of shift operations, τS the duration of a
shift block, and τπ the duration of a π pulse, and xL, xR the
coordinate along the left and right path, respectively. The phase
evolution in Eq. 2 has been fitted to Fig. 2A, indicating a potential
gradient of 2πℏ × ð324.5� 0.8Þ Hz∕d, equivalent in magnitude
to a gravitational acceleration of ð0.2296� 5 · 10−4Þ g. We attri-
bute this gradient to a displacement of the lattice laser focus from
the position of the atoms by ≈600 μm, about a quarter of the
Rayleigh length; the beam’s divergence leads to a reduction of the
optical trap depth further away from the focus, thus creating a
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Fig. 1. Digital single-atom interferometer. (A) Basic diamond geometry. An atom is split in a spin-state superposition, the two spin components are then
coherently shifted according to their state, and eventually merged to extract the phase difference Φ accumulated between them. Shift operations of alter-
nating displacement �d are interleaved with π pulses. (B) Digital representation in elementary operation blocks. Assembling block sequences permits modular
interferometer geometries; idle times can extend the interrogation time. (C) Single-atom images illustrating coherent delocalization at different separations.
The dashed lines separate two independently recorded images; their initial atom positions are overlapped with single-site precision (22). The localization of
18 nm rms is not visible because of diffraction-limited optical resolution. (D) With the sequence in B, detecting j ↓i state by interrogating one atom at a time
for different probe phase φ (defined in text) results in a binary signal. The dotted sine idealizes the underlying probability distribution to guide the eye.
(E) Averaging over almost 2,000 atoms results in a Ramsey interference fringe reflecting the probability to detect j ↓i. The interferometric phase Φ is extracted
by fitting the fringe to Eq. 1. Error bars show one SEM uncertainty.

A B C

Fig. 2. Interferometric phase and contrast vs. paths’ length. (A) The phase accumulation reveals potential gradients (single diamond geometry). The parabolic
behavior indicates a linear potential gradient due to space-time area’s quadratic dependence on the number of shift operations; it is verified to be proportional
to the lattice laser power (Inset). The fit to Eq. 2 determines the local force with precision 5 × 10−4 in units of g corresponding to 104 atoms sequentially
interrogated in 90 min. A geometric analogue of spin echoes suppresses the accumulated phase (double diamond geometry). The recorded gradient is reduced
by a factor of 10, where interferometers with equal maximal separation are compared, e.g., 12 shifts single diamond with 24 shifts double diamond. (B) The
double diamond is composed of two single diamonds interspaced with a π pulse; path crossing in the middle yields a geometric cancellation of the phase.
(C) The fringe contrast decays exponentially with the number of shifts. The dashed line is the exponential fit to the fringe contrast measured with shift opera-
tions replaced by idle blocks; it reflects the spin coherence time. Correcting it for the near-unity shift fidelity yields the dash-dotted line. The increased contrast
in the double diamond is likely due to geometric echo refocusing. Error bars show one SEM uncertainty.
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potential gradient which is nearly linear over the experimental
region of ≈40 μm. This hypothesis is supported by the direct
proportionality measured between the gradient strength and the
trapping laser’s power, as shown in Fig. 2A, Inset.

To cancel the phase caused by such a background gradient, we
consider a double diamond geometry, consisting of two basic dia-
mond interferometers interspaced with a π pulse, see Fig. 2B. By
crossing the paths in the middle of the sequence, the second loop
accumulates a phase opposite to the first loop, and cancellation
occurs akin to a spin echo. This geometric spin echo is effective
for any spin-and time-independent potential. Gradients which
are active only for one half of the sequence are still detected as
described above, making the double diamond interferometer
suitable to measure time-controllable gradients in a differential
scheme. The successful suppression of the parabolic phase is
visible in Fig. 2A.

Decoherence
To mitigate decoherence effects the interferometer block chain is
assembled such that each subsequence of shift, π pulse, shift
operations achieves on its own a spin echo refocusing, compen-
sating spin-dependent inhomogeneous disturbances; such re-
peated spin echoes are reminiscent of dynamical decoupling
(15, 16). Fig. 2C shows an exponential decay of contrast for
increasing interferometer size, which we observed for both inter-
ferometer geometries. This behavior indicates that identically
repeated operation blocks are subject to an invariable decoher-
ence per block, suggesting the number of shifts as the relevant
quantity for contrast.

To isolate the cause of this decay, we repeat the same sequence
replacing all the shift operations by idle blocks, and fit the con-
trast decay with an exponential curve (dashed line) showing a
contrast loss of 0.6% per step. Decoherence in this case is domi-
nated by time-varying differential light shift due to fluctuations
of the lattice laser power; in addition, because spin-dependent
transport excludes the use of clock states, a minor contribution
from magnetic field fluctuations is also expected.

The significantly lower decay rate without delocalization on
the lattice (dark green area) indicates that most decoherence in
the interferometer takes place because of shift operations (light
green area). We hence measure independently the transport ef-
ficiency per single shift step �d∕2 using methods of ref. 17, and,
after preparing atoms in the axial motional ground state (18), we
achieve 99% success probability for shifting the atom in the cor-
rect direction, limited by the efficiency of the microwave pulses.
Accounting for this probability once per shift and per path, the
shift-free decay rate is combined with a further 2% contrast drop
per step to produce the dash-dotted curve in Fig. 2C. We attribute
the residual 1.7% contrast drop per step to polarization jitter dur-
ing shift operations and, to a smaller extent, to spurious motional
excitations.

Hold Times
One distinguished feature of a trapped particle interferometer
is the ability to insert an arbitrary hold time, thold, in between
blocks, where the interferometer is held open at a fixed separa-
tion. This capability becomes relevant when the interferometer is
to be operated near an object of study, with long interaction time
and nanoscale control of distance, e.g., a surface or even a Bose–
Einstein condensate. The natural place to insert a hold time is at
maximum separation of the paths, see Fig. 3A; this situation is
investigated in Fig. 3B for sequences of n ¼ 4, 8, and 12 shifts
where the interferometric phase is measured varying thold. In
the presence of a potential gradient an additional phase Φhold ¼
∇U · ndthold∕ð2ℏÞ arises from the space-time area added by
the hold time, on top of the phase in Eq. 2. A linear fit yields
a potential gradient of 2πℏ × ð324� 7Þ Hz∕d, in full agreement
with the results in Fig. 2.

To protect the superposition state from dephasing during the
hold time two π pulses are applied, realizing a twofold spin echo
refocusing, see Fig. 3A. The fact that the phaseΦhold survives spin
echoes confirms the spin-independent nature of the potential
gradient, as expected from such a light shift gradient. As shown
in Fig. 3C, the contrast as a function of the hold time reveals a
Gaussian decay (19) on a timescale comparable to that of non-
transported atoms.

Inertial Force Measurement
An important application of atom interferometry is the measure-
ment of external forces. To demonstrate this capability, we apply
a controlled inertial force by accelerating the whole lattice poten-
tial during a fixed acceleration time tacc (see Materials and Meth-
ods). As shown in Fig. 4A, the paths are then recombined in the
moving inertial frame, and the effect of the forcema is measured
from the interferometric phase, withm the atomic mass and a the
applied acceleration. We employ the simplest geometry of the
single diamond and find that the phase linearly increases with the
applied acceleration a with a slope proportional to path separa-
tion (Fig. 4B). Calculating the space-time area in this case yields a
phase of Φacc ¼ ma · ndtacc∕ð2ℏÞ for n total shifts, where a is
independently calibrated. The agreement up to 5 g—only techni-
cally limited—together with the achieved precision of 5 × 10−4 g
in Fig. 2 demonstrate the ability of the single-atom interferometer
to measure external fields in real applications, showing a dynamic
range of at least four orders of magnitude.

Conclusions and Outlook
In summary, we have demonstrated an atom interferometer
operating at the single-atom level; we proved its capability to
measure external fields—both the divergence of an optical dipole
trap and an externally controlled inertial force—achieving a re-

A B

Fig. 3. Hold time in a diamond geometry. (A) Digital representation. Two π
pulses during the hold time form a double spin-echo sequence; all idle blocks
have identical duration. (B) The hold time contributes an additional phase
Φhold, increasing linearly with thold with the slopes proportional to path
separation. The intercepts of the fitting lines have been subtracted to set
the phase to zero in the origin. (C) The contrast reveals a Gaussian decay with
hold time. This dependency on the echo duration is characteristic of homo-
geneous dephasing mechanisms which are not compensated by spin echo
pulses (19); it differs from the exponential decay in Fig. 2Cwhere the number
of echo pulses is varied. Error bars show one SEM uncertainty.
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solution which borders precision applications. By exploiting the
block modularity we could precisely identify the decoherence
mechanisms and explain the loss of contrast in terms of decoher-
ence per shift operation. Yet, the full digital control established
here allowed us to suppress decoherence effects by engineering
the interferometer’s paths to effect a geometrical refocussing.

In the quest for quantum devices functioning at the single-
atom level, from Rydberg quantum logic gates (20, 21) to single-
site-resolved optical lattices (22–24), our results lay the base for
digital quantum simulators (25) and quantum cellular automata
(9, 26) based on interacting atoms in lattice potentials (27, 28).
Similarly, scalable arrays of quantum logic gates with single-atom
addressing are also within reach (10). Further, this system pro-
mises to reveal quantum coalescence of massive boson particles
in a two-atom Hong–Ou–Mandel interference (29), with notice-
able implications for sub-shot-noise interferometry (30, 31).

The nanoscale single-atom control evidenced here is particu-
larly suitable for the investigation of surface effects, such as
Casimir–Polder interactions or Yukawa-like gravitational poten-
tials at micrometer distances (32). Reducing technical sources of
dephasing, we expect 10-fold improvement of coherence time,

allowing measurement of Casimir–Polder potential with single
atoms with 5% precision at distances shorter than 4 μm from
a dielectric surface, assuming 24 h integration time (33). Further-
more, an implementation of conveyor belts for spin-dependent
optical lattices is currently underway, with which we expect to
reach coherent splitting distances of the order of 1 mm (34).
Combining this large separation with a hold-time scheme for
interrogation in decoherence-protected clock states, we deem
realistic an improvement of space-time area by a factor 105 over
the present situation, eventually rivaling in precision free-fall
atom interferometers.

Materials and Methods
Lattice. Two counterpropagating linearly polarized laser beams at wave-
length λ ¼ 866 nm, with the polarization of the retroreflected beam rotated
by a variable angle θ (lin-θ-lin configuration), produce an optical lattice
potential with spacing d ¼ λ∕2; the beams are focused to the position of
the atoms with a Rayleigh length of 2.3 mm. The trap frequencies of each
potential well are ωax ¼ 2π × 120 kHz,ωrad ¼ 2π × 2 kHz and the off-reso-
nant scattering rate is 10 Hz. After molasses cooling to T ¼ 10 μK, atoms
are cooled in the lattice to the motional ground state along the axis (18).
The two spin states, j ↑i and j ↓i, experience different light shifts induced
by the left and right circular components of the laser, which allows spin-
dependent shift operations by controlling the angle θ with an electro-optic
modulator (7, 8, 13). The beams’ polarization is controlled with a relative
precision of 10−4, and the shift duration is set depending on ωax to suppress
motional excitations (13).

Detection. The interferometric phase is mapped to spin populations by a π∕2
pulse around the variable axis σ̂x cosφþ σ̂y sinφ. The spin population pj↓iðφÞ is
detected by selectively pushing out the atom when in the state j ↑i, and sub-
sequently detecting the presence of an atom by fluorescence image; atom
losses γ ≈ 5% due to background collisions and light scattering during fluor-
escence imaging cannot be distinguished from state j ↑i.

Coherence Time. The bare spin coherence time is T2 ≈ 200 μs, which is mostly
determined by radial thermal motion causing inhomogeneous variations of
the differential light shift of the two hyperfine states (19). One spin echo
pulse is able to suppress such an inhomogeneous dephasing, resulting in an
extended coherence time T �

2 ≈ 600 μs. Spin echo series as in the interferom-
eter sequence benefit from a dynamical decoupling effect (15, 16), yielding a
longer T �

2 up to 2.3 ms. This time should be compared to the single step dura-
tion of τS ¼ 18 μs per shift plus τπ ¼ 12 μs per π pulse.

Scalability. To increase the acquisition rate several interferometers are exe-
cuted in parallel by loading on average about 30 atoms into the dipole trap
over a region of 40 μm (Figs. 2–4), where each run of the interferometer lasts
about 1.5 s. Because of the weak radial confinement, atom-atom interactions
are negligible.

Inertial Force. An inertial force is created by accelerating the lattice potential;
we apply a parabolic voltage ramp to a piezo actuator holding the retrore-
flecting mirror. The displacement-to-voltage dependence is calibrated with a
Michelson interferometer, producing the mean acceleration ∫ aðtÞdt∕tacc
used in phase calculations. Methods from ref. 35 raise the first piezo reso-
nance to over 50 kHz; maximal acceleration is bounded by electronic limita-
tions. Interband Landau–Zener tunneling is negligible below the critical
acceleration of 50 × 103 m∕s2.
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