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Abstract— CCD and CMOS imaging technologies can be ap-
plied to thin tissue Autoradiography as potential imaging alter-
natives to using conventional film. In this work, we compare two
particular devices; a CCD operating in slow scan mode and a
CMOS-based Active Pixel sensor, operating at near video rates.
Both imaging sensors have been operated at room temperature
with images produced from calibrated microscales and radio-
labelled tissue samples. We also compare these digital imaging
technologies with the use of conventional film. We show first
comparative results obtained with 14C calibrated microscales and
35S radiolabelled tissue sections. We also present first results of
3H images produced under direct irradiation of a CCD sensor
operating at room temperature. Compared to film, silicon-based
imaging technologies exhibit enhanced sensitivity, dynamic range
and linearity.

Index Terms— Digital Autoradiography, CCD, CMOS, APS,
tissue imaging, high resolution.

I. INTRODUCTION

Autoradiography (AR) is a widely used technique in biology
to map the two dimensional bio-distribution of radiolabelled
molecules within thin (∼10 μm) ex-vivo tissue sections. The
aim of this technique is to qualitatively observe the relative
distribution of the tracer, or, in many cases, to quantify specific
areas of uptake (using simultaneous imaging of calibrated
microscales). Traditionally, photographic film has been used as
the imaging technology for AR. This exhibits excellent spatial
resolution (∼few μm) for low cost (∼$3 per sheet for standard
film and ∼$50 per sheet for 3H imaging). But this technique
presents a number of undesirable qualities, particularly with
respect to image quantification. These include poor linearity,
limited dynamic range (∼102) and low sensitivity, producing
long (typically ∼days, ∼months) exposure times. Alternative
techniques based on digital imaging technology have been pro-
posed to replace film. Whilst many authors have claimed that
digital imaging technologies have superior sensitivity compared
with film, we are not aware of any systematic study. In this
work we attempt to make a first comparison between film and
two exemplar imaging sensors.
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Some of the more important techniques proposed as al-
ternatives to film in AR include phosphor plates [1], [2],
microchannel plates [3], [4] a Beta Camera [5] based on plate
technology, multiwire proportional chamber systems [6] and
solid state detectors [7], [8]. Our work presented here is focused
in the latter area. Within solid state detectors several different
technologies can be distinguished including CCD technology
[8], CMOS technology [9] and hybrid detector technology [7].
In this work we examine two solid state alternatives to film:
a commercial CCD sensor and a CMOS Monolithic Active
Pixel sensor, both under direct irradiation from a radiola-
belled sample. From an engineering perspective, CCD sensor
technology has traditionally provided the ”gold standard” in
digital image performance in terms of high fill factor, quantum
efficiency, small pixel size, dynamic range and low noise floor.
However, CMOS imaging technology has made great strides
in performance, and offers a potentially lower cost alternative
additionally providing low power consumption, high level of
integration, radiation hardness and high-speed operation.

The application of CCD technology for AR under cooled
conditions has been clearly demonstrated previously [8]. Pre-
liminary work at room temperature using CCDs under direct
irradiation has also been reported [10]. In this new work
we further examine the potential of these solid state imaging
technologies operating at room temperature.

II. MATERIALS AND METHODS

The most common radioisotopes used in AR are 32P, 33P,
35S, 14C and 3H, shown in TABLE I.

TABLE I

COMMON RADIOISOTOPES USED IN AR

Radioisotope Average energy Maximum energy Half life
32P 0.7 MeV 1.71 MeV 14.3 days
33P 76 keV 249 keV 25.3 days
35S 48-53 keV 167 keV 87.4 days
14C 49 keV 156 keV 5730 years
3H 5.7 keV 18.6 keV 12.26 years

Tritium, or 3H, in particular, can label many sites on most
biomolecules and provides the highest resolution due to its
low energy (and hence low particle range, e.g. ∼0.2 μm and
∼2.5 μm for mean and maximum energy betas respectively
in silicon) and therefore is one of the most common labels in
molecular AR imaging studies.
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A. Imaging System Description

We have used, in our initial experiments, a CCD55-20
inverted mode sensor (e2v) [11] and a StarTracker active pixel
sensor (APS) [9] to detect 14C and 35S. A back-illuminated
CCD55-20 sensor has also been used to make the first demon-
strated 3H imaging at room temperature using a CCD under
direct irradiation.

The CCD is a 770 x 1152 array of pixels on a 22.5 μm pitch
with a depletion region of 7 μm and a sensitive field free region
of 13 μm. The charge to voltage conversion is 3 μV/electron
as quoted by the manufacturer [11]. The CCD has a 3-phase
structure and is read out in full frame slow scan mode at a rate
of 10 s/frame using correlated double sampling. The passivation
layers, comprised of the electrodes layer and oxide layers, is
∼1.5 μm.

The CMOS StarTracker APS is a 525 x 525 array of pixels on
a 25 μm pitch with 5 μm of overlying passivation layers and a
depletion region of 4 μm. Each APS pixel has a structure made
of 3 transistors (a reset MOSFET, a source follower MOSFET,
which converts signal charge to voltage, and a row-select
MOSFET) and four n-well/p-substrate photodiodes placed on a
12.5 μm pitch. This architecture optimizes the charge collection
having, at the same time, low node capacitance (∼18 fF)
in order to give better charge to voltage conversion (∼8.9
μV/electron). The readout is column-parallel with an adjustable
gain amplifier and a 10-bit ramp ADC per column that reads
out at near video rates (10 frames s−1).

In order to correct for dark current and inter-pixel non-
uniformities, every image acquired on each system is processed
using Matlab-based software. For the case of the CCD, first a
post-acquisition dynamic Fixed Pattern Noise (FPN) correction
is applied to every image. For the case of the APS, a set of
blank frames is previously acquired and used to compute the
mean of each pixel, referred to as a static FPN correction. The
mean of each blank pixel is subtracted from each observed
pixel intensity in the acquired image. After this first step,
the subsequent processing is the same for both sensors. A
statistical threshold is then applied to each pixel defined as
the mean (in absence of signal) of each pixel plus k standard
deviations of each pixel, using prior knowledge of the mean and
variance of each pixel acquired under dark level conditions. The
resulting binary images are then labelled using 8-connectivity
analysis and the size and intensity of each event cluster is saved.
To obtain a useful composite image the thresholded images,
described above, were accumulated and summed.

The result of this correction is shown in the fig. 1. Note the
scale of each image.

In the case of the CMOS sensor the images were acquired
with an integration time of 100 msecs. A static blank back-
ground was subtracted from each acquired image. Posterior
thresholding then applied to every corrected image is sufficient
to obtain a largely ”clean” composite image. See fig. 2.

B. Calibration

In order to compare sensor performance it was necessary to
calibrate the energy response of both imaging systems, so that

(a) Raw image (b) Corrected image (c) Thresholded
image

Fig. 1. Raw, corrected and thresholded images of the front illuminated CCD
sensor, showing the stages used to correct for pattern noise.

(a) Raw image (b) Corrected image (c) Thresholded
image

Fig. 2. Raw, corrected and thresholded images of the front illuminated CMOS
sensor.

a comparative event threshold in calibrated keV units could be
used. The CCD sensor was exposed to a point source of 241Am
(activity of 41 kBq) situated around 30 mm from the CCD with
a layer of insulating tape to absorb the associated α particles.

Peaks corresponding to the 241Am photon energies of 11.9
keV, 13.9 keV, 17.5 keV, 22 keV and 26 keV were observed.

Exposing the CCD sensor to a 14C source also provided
a reference mean energy of 49 keV from the associated beta
energy deposited spectrum. From these data, a fitted line is
shown in fig. 3 with a slope of 0.36 keV/ADC unit, from which
1 keV corresponds to 9.72 ADC units. Assuming 3.6 eV is
required to liberate 1 electron in silicon, then this yields a slope
of 100 electrons/ADC unit.

Expressing the threshold applied to the corrected images
acquired with the CCD sensor in keV, a mean threshold of
6.7 keV is obtained with an approximately Gaussian variation
of width σ=1.9 keV. This width represents the variation in
effective pixel threshold used, due to inter-pixel variations in
performance.

In the case of the APS sensor, it was not possible to calibrate
with a beta or x-ray source because of the thin epi layer of the
sensor (4 μm). This therefore calibration was undertaken using
the Photon Transfer Technique. Using corresponding values
taken from [12] the resulting calibration plot is shown in fig.
4.
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Fig. 3. Energy calibration curve for CCD sensor. X axis represents the signal
in ADC units and Y axis represents the signal in electrons.

Expressing the threshold applied to the corrected images in
keV, in the case of the APS, a mean threshold of 8.5 keV is
obtained with an approximately Gaussian variation of width σ
< 1 keV.
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Fig. 4. PTC curve for CMOS sensor. X axis represents the signal (mean) in
ADC units and Y axis represents the noise (variance) in ADC units.

C. Image Acquisition

Preliminary results obtained using calibrated microscales of
14C and 3H are presented below. These microscales consist of
known amounts of radioactivity homogeneously distributed in
a plastic tissue equivalent polymer of 5-10 μm thickness. Each
microscale has 8 cells or varying activity; for 3H the range is
0.11-4.04 kBq/mg and for 14C is 1.11-31.89 kBq/g [13]. The
experiments were set up placing each sensor in a light proof
box and placing the microscale in direct contact with the surface
of the sensor. The exposure time of the experiments with 14C
for the CCD (fig. 5) and the APS (fig. 6) was 1 hour and 40
minutes. For 3H experiments using the CCD, the exposure time
was 11 hours with the microscales (fig. 14), and 16 hours for
the tissue specimen with 35S (figs. 12 and 13).

III. PRELIMINARY RESULTS & DISCUSSION

A. Sensitivity

In fig. 5 we present a composite image of calibrated 14C
microscales using the CCD sensor. Fig. 6 demonstrates the
corresponding image obtained from the APS sensor with 14C,
representing the first use of this particular APS imaging device
for AR. Computing the number of events per band and dividing
by the activity of each band, the sensitivity for each band

Fig. 5. Composite image with 14C obtained with the CCD sensor after 100
minutes exposure

Fig. 6. Composite image with 14C obtained with the CMOS sensor after 100
minutes exposure

is calculated. The mean of the sensitivity of each band is
233 counts/kBq/g for the CCD and 175 counts/kBq/g for the
APS (1.33 times lower). Although both images appear visually
similar this demonstrates the lower sensitivity of the CMOS
sensor which is to be expected due to the higher fill factor
of the CCD technology and the thinner epi layer of this APS
sensor. This is also shown in fig. 8 that shows the number of
detected events per mm2 in each band. This plot shows that
the slope of the CMOS sensor (36.2 counts / kBq/g mm2) is
lower than that of the CCD sensor (43.3 counts / kBq/g mm2)
meaning, again, that the sensitivity of the CCD sensor is higher
than that of the APS.

From the ROI analysis described in Section I.A. the density
of events in the background for the CCD was estimated at
20 events/mm2 and for the APS at 9 events/mm2 (2.22
times lower). This shows us that the APS sensor exhibits lower
sensitivity but also lower background pixel noise than the CCD.

For comparison, we have also exposed a Biomax MR film
to the same calibrated source for 100 minutes. The resulting
image is shown in fig. 7. Clearly, the level of contrast against
background fogging makes image quantification impossible at
such a short exposure time.

Fig. 7. Exemplar image produced using 14C microscale after exposure to
Biomax MR film for 100 minutes.

ROI analysis has been undertaken demonstrating excellent
linear response for both sensors. In fig. 8 we present the number
of detected events per mm2 for the CCD sensor (squares) and
the CMOS sensor (crosses) as a function of source activity.

B. Energy Spectra

In fig. 9 we show the deposited energy spectrum of 14C
obtained with the CCD and the APS sensors. These spectra
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Fig. 8. Number of events/mm2 for each band of the microscale of 14C taken
with the CCD sensor (squares) and the CMOS sensor (crosses).

were obtained computing the histogram of the intensity of every
event from the data mentioned in the subsection I.A.
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Fig. 9. Deposited energy spectrum of 14C obtained with the CCD (fig. 9(a))
and the CMOS (fig. 9(b)) sensor. Note that in the case of 9(a), below 50 keV
the pattern noise correction has difficulties in correctly identify genuine events
from the background pattern noise artifacts. 9(b) compared to 9(a) suggests the
the CMOS sensor only partially samples the incident energy.

Note that the spectrum obtained with the CCD is similar to
the expected continuous spectrum of 14C, in contrast to that
exhibited by the CMOS APS sensor. This is attributed to the
thickness of the epitaxial layer: in the CCD this is 20 μm
whereas in the CMOS sensor, it is 4 μm. The range of the beta
particles from 14C in silicon is 16 μm for the mean energy and
121 μm for the maximum energy. This means that in the thin
epitaxial layer of the CMOS device, we believe that the sensor
behaves as a thin dE/dx detector, partially sampling the particle
energy, compared to the CCD, where there is a relatively high
chance of observing the full beta energy deposition.

C. Size of Events

In fig. 10 we show the histograms of different cluster sizes of
the detected events from 14C. This was obtained computing the
histograms of the size of every event from the arrays mentioned
in the subsection I.A. This shows that, in both sensors, most of
the detected events are 1-2 pixels in size and those events over
4-5 pixels are not normally detected. Note the CCD, with its
thicker sensitive region, produces relatively more of the larger
(>2 pixels) events.
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Fig. 10. Size of events with 14C obtained with the CCD (fig. 10(a)) and with
the CMOS (fig. 10(b)).

D. Tissue Imaging

To examine the imaging system performance under realistic
conditions various tissue sections were prepared. Several mouse
tissue sections were preincubated with 1 mM GDP1 and then
incubated for 2 hours with 35SGTPγS2 (0.04 nM) and 1 mM
GDP [14]. These sections shown are from the level of the
Caudate (Bregma 1.00mm) (fig. 11 left) and from the level of
the Hippocampus (Bregma 2.56 mm) (fig. 11 right) bonded with
35SGTPγS. The physical size of these sections was measured
as 10.4 mm x 6.8 mm. After this preparation the sections were
placed within a film cassette, in direct contact with film, for
∼4 days for 35S.

To demonstrate the comparative biological imaging potential
of CCD and APS technology compared to film, exemplar im-
ages produced using direct irradiation of the same radiolabelled
biological mouse samples are presented in figs. 11, 12 and 13.
This shows a comparison of images taken with film (fig. 11) for
four days (5760 minutes, the usual exposure time used in our
laboratory for these studies) and with the CCD (fig. 12) and
with the APS sensor (fig. 13) exposed for 103 minutes (∼6
times shorter). These images were then smoothed with a 3x3
block filter applied twice.

Fig. 11. Film-based AR images from coronal mouse sections, from the level
of the Caudate (Bregma 1.00mm) (left) and from the level of the Hippocampus
(Bregma 2.56 mm) (right), bonded with 35SGTPγS exposed to film for four
days

E. 3H Imaging

As mentioned above, the most common radioisotope in AR
is 3H. The energy of this isotope is so low that in a front-
illuminated device, the beta particles would be stopped in the
overlying passivation layers. Therefore a back-thinned CCD55-
20 device was substituted for 3H imaging to demonstrate the

1Guanosine 5’-Diphosphate binding
2Gamma-thio-triphosphate gamma S binding bonded with 35S
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Fig. 12. Coronal mouse sections, from the level of the Caudate (Bregma
1.00mm) (left) and from the level of the Hippocampus (Bregma 2.56 mm)
(right), bonded with 35SGTPγS exposed to CCD for 16 hours

Fig. 13. Coronal mouse sections, from the level of the Caudate (Bregma
1.00mm) (left) and from the level of the Hippocampus (Bregma 2.56 mm)
(right), bonded with 35SGTPγS exposed to CMOS for 16 hours

potential of pixelated detectors operating at room temperature
and using direct irradiation.

Despite the sub-optimized read-out system used, in fig. 14
we show the first 3H image obtained with a CCD at room
temperature under direct irradiation.

Fig. 14. Composite image with 3H obtained with the CCD after 11 hours.

Undertaking the same ROI analysis as undertaken with 14C,
in figs. 15 and 16 we show the energy spectrum of 3H and
the number of events per mm2 of this radioisotope with the
back-illuminated CCD. From fig. 14, the sensitivity measured is
0.56 counts/kBq/g and the density of events in the background
is 64 events/mm2. From fig. 16 the slope measured is 0.15
counts / kBq/g mm2 which in comparison with that of 14C,
shows an expected lower sensitivity to 3H beta-particles. The
high number of events in the background is explained by the
sub-optimized read-out electronics and Fixed Pattern Noise
correction. Using the same calibration procedure as undertaken
for the front-illuminated CCD sensor, the back-thinned device
was found to use a threshold of 3.46 keV with an inter-pixel
variation of 0.3 keV.

For comparison with film, in fig. 17, we present an image
obtained from digitizing a sheet of tritiated hypersensitive
hyperfilm exposed to a 3H microscales for two weeks.

To make a comparative assessment against using conven-
tional film we repeated this experiment for exposure periods of
100 minutes, one, two and four weeks, and applied a similar
ROI analysis as described previously. To compare the sensitivity
we initially exposed a microscale of 3H to a sheet of tritiated
hypersensitive hyperfilm for 11 hours, the same length of time
used with the CCD sensor. The result was a completely blank
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Fig. 15. Deposited energy spectrum of 3H obtained with a back-thinned CCD.
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Fig. 16. Number of events/mm2 for each band of the microscale of 3H taken
with the CCD sensor.

image discarding the typical background fogging. As can be
seen in fig. 18 the resulting data can not be fitted with a straight
line. This demonstrates the expected non linear response of film
imaging compared to that of the digital devices. Note that for
the two weeks exposure, the weakest band from the calibrated
microscales is not detected and for the experiment, taken for
one week exposure, the two weakest bands are not detected.

Fig. 17. Exemplar image produced using 3H microscale after exposure to
tritiated hypersensitive hyperfilm for two weeks.

IV. CONCLUSIONS

We have demonstrated thus far that it is possible to use CCD
and APS sensors operating at room temperature for AR, reduc-
ing exposure, thus improving sensitivity, and linearity, easing
image quantification, and reducing exposure time compared to
using traditional film. We have in addition demonstrated that the
CMOS APS sensor shows lower sensitivity but it also presents a
lower background noise floor, compared to the slow-scan CCD
device. This makes this technology a serious choice to bare in
mind for future digital AR.

We have also demonstrated that it is possible to detect 3H
radiation with a backthinned CCD operating at room tempera-
ture.
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