
Digital Bifurcation Analysis

of TCP Dynamics

Nikola Beneš, Luboš Brim, Samuel Pastva(B), and David Šafránek

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbenes3,brim,xpastva,safranek}@fi.muni.cz

Abstract. Digital bifurcation analysis is a new algorithmic method for
exploring how the behaviour of a parameter-dependent computer system
varies with a change in its parameters and, in particular, for identification
of bifurcation points where such variation becomes dramatic. We have
developed the method in an analogy with the traditional bifurcation the-
ory and have it successfully applied to models taken from systems biol-
ogy. In this case study paper, we demonstrate the appropriateness and
usefulness of the digital bifurcation analysis as a push-button alternative
to the classical approaches as traditionally used for analysing the stabil-
ity of TCP/IP protocols. We consider two typical examples (congestion
control and buffer sizes throughput influence) and show that the method
provides the same results as obtained with classical non-automatic ana-
lytical and numerical methods.

1 Introduction

The objective of the bifurcation theory is to study qualitative changes to the
properties of a parameter-dependent system as parameters are varied. The
method is typically applied to continuous-time or discrete-time dynamical sys-
tems. Even a tiny change in parameters may cause a dynamical system to exhibit
entirely different qualitative features. Such dramatic changes in the topology of
the phase space of a dynamical system are known as bifurcations, and the values
of the parameters for which a bifurcation occurs are called bifurcation points.
For a complete global understanding of a complex dynamical system, it is essen-
tial to know the bifurcation points, as well as the parameter ranges in which
there is no fundamental change. A simple example of a real-life bifurcation is
the phase transition of water to ice at the temperature of 0 ◦C. At this critical
temperature, a tiny change in the temperature results in a “sudden” systematic
change in the substance. The two materials are governed by a different set of
parameters and qualitative properties. For example, we can talk about cracking
ice but not water.

Non-linear dynamical systems appearing in physics, biology or economy are
not the only source of bifurcation phenomena. Even computer systems can

This work has been partially supported by the Czech Science Foundation grant No.
18-00178S.

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part II, LNCS 11428, pp. 339–356, 2019.
https://doi.org/10.1007/978-3-030-17465-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17465-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-17465-1_19

340 N. Beneš et al.

suddenly alter the quality of their behaviour. A simple example might be a
significant performance degradation of a computation caused by system swap-
ping. Studying bifurcations in computer systems can provide an additional for-
mal analysis ingredient leading to a better understanding of critical systems
properties, like stability or robustness.

Inspired by the bifurcation theory for dynamical systems, we have developed
an approach that allows analysing how the dynamics (runs, state transitions)
of a discrete computer system changes when its parameters are changed [6,11].
We call the method digital bifurcation analysis. In the approach, the qualitative
changes in the behaviour are represented as changes in the truth-value of tem-
poral formulae defining specific behaviour (portrait) pattern of the system. The
method for computing results of the bifurcation analysis (typically presented as
bifurcation diagrams) uses our novel symbolic parallel parameter synthesis algo-
rithm [3] which itself builds on the model-checking technology. As the approach
employs a hybrid temporal logic for which the algorithm is computationally
demanding we have also developed specialised algorithms dedicated to some
specific formulae/patterns and thus working more efficiently.

Example of such patterns are attractors, which we see as a particular class
of patterns representing the states of the system in which the system’s execu-
tion persists in the long-time horizon, i.e., the so-called invariant subsets of
the state-space towards which the system’s runs are attracted. In computer
systems, the most typical attractors can be observed in the form of terminal
strongly connected components (tSCCs) [38]. We have developed an efficient
parallel algorithm for detecting tSCCs in parametrised graphs in [1], and we use
this algorithm in our two case studies. We have already successfully applied the
digital bifurcation analysis to several models from systems biology [4,5].

In this case-study paper, we report on the application of digital bifurcation
analysis to the Transmission Control Protocol (TCP) which currently facilitates
most of the internet communication. One of the severe problems in practical
applications of TCP is congestion, appearing when the required resources over-
run the capacity of internet communication. Over the past years, many internet
congestion control mechanisms have been developed to ensure the reliable and
efficient exchange of information across the internet, such as Active Queue Man-
agement (AQM). Bifurcation analysis of TCP under various congestion control
mechanisms have been studied by several authors [16,25,30,32,40,41]. All have
used a continuous-time model (e.g., the fluid model) and applied traditional
mathematical methods of bifurcation analysis, including simulations, to detect
parameter values when the system passes through a critical point, the system
loses its stability, and a so-called Hopf bifurcation occurs [22].

Our approach to bifurcation analysis does not require to remodel the given
discrete system in terms of a continuous-time dynamical system. Digital bifur-
cation analysis works directly on discrete models represented as state transi-
tion systems. Furthermore, the method is, unlike mathematical methods, fully
automatic and does not need mathematical skills to be utilised. Another advan-
tage is that the method is scalable to state spaces with tens of variables and
tens of possibly dependent parameters, overcoming thus significantly the limits

Digital Bifurcation Analysis of TCP Dynamics 341

of traditional mathematical methods. Last but not least the method is advan-
tageous in performing global bifurcation analysis, which is harder to compute
than the local analysis where bifurcation points are expected to be approximately
known in advance.

It is important to stress that the purpose of this case-study paper is not to
propose any new congestion control mechanisms or protocols. We aim to provide
a demonstration of the appropriateness and usefulness of the digital bifurcation
analysis as a push-button technique that makes a promising alternative to the
classical approaches when analysing stability and robustness of TCP protocol
specifications and implementations. To that end, we consider two different case
studies targeting TCP. In both of them, we analyse how the structure and qual-
ity of attractors change when the parameters change. The first one deals with
TCP that uses the Random Early Detection (RED) method [14] as an active
queue management mechanism to control congestion. Although the RED mecha-
nism alone is easy to understand, its interaction with TCP connections is rather
complicated and is not well understood. In [33] the authors used a deterministic
non-linear dynamical model of the TCP-RED protocol (together with detailed
simulations) to demonstrate that the model exhibits a transition between a sta-
ble fixed point and an oscillatory or chaotic behaviour as parameters are varied.
In our case study, we were able to achieve the same results fully automatically
using our method. In the second example, we consider TCP itself combined with
essential performance-oriented extensions. We analyse how the sizes of the send
and receive socket buffers influence the throughput; in particular, we identify
the combinations of sizes (bifurcation points) for which we observe a dramatic
drop. The results we have achieved are in accordance with [28].

It is worth noting that bifurcation analysis provides a conceptually very dif-
ferent view of the protocol functionality than what is usually addressed by formal
verification methods. The goal of verification is to prove the correctness of a sys-
tem specification for all initial states and in the case of parametrised verification
also regardless of the number of its components, or the parametrised domain of
variables. On the other hand, the goal of bifurcation analysis of parametrised
systems is to identify parameter values for which the system suddenly changes
its behaviour regardless of its correctness.

Several examples of the TCP protocol verification are in [8,13,18,23,35–37].
As regards parametric verification, the Bounded Retransmission Protocol (BRP)
for manually derived constraints has been checked by parametric model-checking
in [19], the Stop-and-Wait Protocol (SWP) has been targeted in [15] for all
possible values of the maximum sequence number and the maximum number of
retransmissions parameters. We are not aware of any formal verification method
that would address the bifurcations of the protocol behaviour.

Finally, we discuss the approaches related to bifurcation analysis. To the
best of our knowledge, the only related approach to bifurcation analysis that
also employs methods of formal verification has been presented in [20,21]. The
authors address the identification of bifurcation points in non-trivial dynamics
of a numerical cardiac-cell model represented using a hybrid automaton. The
method is based on guided-search-based bounded-time reachability analysis used

342 N. Beneš et al.

to estimate ranges of parameter values displaying two complementary patterns
of systems behaviour. These ranges are computed for bounded-time reachability
and over-approximated up to a particular δ-precision due to the underlying δ-
decision algorithm.

2 Attractor Analysis Workflow

We first describe the standard scenario for digital bifurcation analysis focused on
attractor analysis. The input is a parametrised system and a certain classifica-
tion of stability-based attractor properties that we are interested in. The system
is in the model design phase formalised as a discrete finite-state model and sub-
sequently via the state-space generation procedure turned into a parametrised
graph. How the initial model is obtained and what language the model is writ-
ten in is domain-specific and is explained later when describing the case studies.
The classification of the attractor properties specifies what shapes and forms of
attractors we want to consider distinct enough to express a dramatic change in
the system’s behaviour. In the simplest case, which we call the counting ver-
sion of our problem, we may be merely interested in the number of attractors
and consider two parametrisations of a system non-equivalent if this number
changes. More interesting cases may classify the attractors according to various
stability-related properties, such as oscillations. The core parametric analysis
algorithm then computes the parametric tSCC map. The resulting map is post-
processed, producing e.g. the visualisation of bifurcation diagram, plots, tables,
etc. The workflow of our method for the digital bifurcation analysis of attractors
is summarised in Fig. 1.

system

discrete,
finite-state model

parametrised graph

stability-related
attractor classification

tSCC classification

parametric tSCC map

results visualisation
(bifurcation diagram, tables, plots, . . .)

model design

state-space

generation

formalisation

parametric

analysis

post-processing

Fig. 1. Attractor analysis method workflow.

In general, our digital bifurcation analysis algorithm presupposes that the
state space of the model has the form of a parametrised Kripke structure. In

Digital Bifurcation Analysis of TCP Dynamics 343

this case study, we are interested in attractor properties that are independent
of the atomic proposition valuation. We, therefore, consider a simpler formalism
here, namely that of parametrised graphs which are directed graphs with self-
loops allowed and edges labelled by parameters taken from a given parameter
set.

Definition 1. A graph is a pair (V, E) where V is a finite set of vertices and
E ⊆ V ×V is a set of edges. A parametrised graph is a triple G = (V, E, P) where
P is a set of parametrisations and E : V × V → 2P such that for each p ∈ P,
Gp = (V, Ep = {(u, v) | p ∈ E(u, v)}) is a graph. We call Gp the projection of G

on p.

To be able to investigate the properties of the attractors in the system, we
need to use a notion that is analogous to an attractor in a parametrised graph. In
dynamical systems theory, an attractor [27] is the smallest set of states (points
in the phase space) invariant under the system dynamics. Parametrised graphs
can be regarded as discrete abstractions of a dynamical system in which the
dynamics are represented using paths in the graph. The respective abstraction
of the notion of an attractor thus coincides with the notion of a terminal strongly
connected component (tSCC) of a graph.

Definition 2. Let G = (V, E) be a graph. We say that a vertex t ∈ V is reach-
able from a vertex s ∈ V if (s, t) ∈ E∗ where E∗ denotes the reflexive and
transitive closure of E. A set of vertices C ⊆ V is strongly connected, if v is
reachable from u for any two vertices u, v ∈ C. A strongly connected component
(SCC) is a maximal strongly connected set C ⊆ V , i.e. such that no C ′ with
C � C ′ ⊆ V is strongly connected. A strongly connected component C is called
terminal (tSCC) if (C × (V \ C)) ∩ E = ∅, i.e. there are no edges leaving C.

We are now ready to state the algorithmic problem whose solution forms the
basis of our method.

Terminal SCCs Enumeration Problem. Let G = (V, E, P) be a para-
metrised graph. The goal is to enumerate, for every parametrisation p ∈ P,
all tSCCs in the graph Gp, the projection of G on p.

In this general version of our problem, the output is going to be a mapping
that assigns to each p ∈ P the set of all tSCCs of Gp. We call this the parametric
tSCC map. This map may be then further processed and visualised. We are
mainly interested in the bifurcation diagram of the model. This diagram is a
plot which partitions the parameter space into regions where the behaviour of
the system is qualitatively invariant. In the case of a single parameter, this type
of one-dimensional diagram is typically augmented by a second dimension which
presents the location of the tSCCs with respect to a chosen system variable.

To be able to distinguish between quantitatively different behaviour of the
system, we need to formalise the classification of stability-based attractor prop-
erties in terms of tSCCs. We thus get a classification function that separates

344 N. Beneš et al.

tSCCs into classes. Two parametrisations of a system are then said to be quali-
tatively different if their respective graphs differ in the count of tSCCs belonging
to each class. In the case of the counting version, we thus consider one class of
tSCCs only. Here, parametrisations of a system are considered to be qualita-
tively different if their graphs contain a different number of tSCCs. In the more
detailed cases, we can classify tSCCs according to size (small vs large), density
(sparse vs dense), graph-specific properties (bipartite vs non-bipartite) etc.

For an example of how these classifications relate to the classical bifurca-
tion analysis, we may see bipartite tSCCs as representing oscillatory patterns in
attractors. The change from a small non-bipartite tSCC to a bipartite tSCC can
be thus seen as an analogy of the Hopf bifurcation. In our two case studies, we
distinguish between sinks (single-state tSCCs), bipartite (oscillatory) tSCC, and
other tSCCs, which are further differentiated between small and large, based on
a chosen domain-specific threshold.

The rest of this section gives a brief overview of the parallel algorithm for
solving the tSCCs enumeration problem that we have developed in [1].

2.1 Core Algorithm

First, note that a simple sequential solution to the problem is to use any reason-
able SCC decomposition algorithm (e.g. Tarjan’s [39]) and enumerate the tSCCs
in the residual graph. However, all known optimal sequential SCC decomposi-
tion algorithms use the depth-first search algorithm, which is suspected to be
non-parallelisable [34]. There are known parallel SCC decomposition algorithms;
for a survey, we refer to [2]. Our approach is based on the observation that we
do not have to compute all of the SCCs to enumerate the terminal ones.

Furthermore, instead of scanning through all parametrisations and solving
the problem for every one of them separately our approach deals with sets of
parametrisations directly. This makes our algorithm suitable for use in connec-
tion with various kinds of symbolic set representations. The reason for using a
parallel algorithm is the necessity to deal with the high computational demands
of the method as discussed in [1].

The main idea of the Terminal Component Detection (TCD) algorithm lies in
repeated reachability, which is known to be easily parallelisable. To explain the
method, we start with a non-parametrised version of the algorithm. The following
explication is illustrated in Fig. 2. Let us assume a given (non-parametrised)
graph G = (V, E). We choose an arbitrary vertex v ∈ V (denoted by the double
circle in the illustration) and compute all vertices reachable from v; let us call the
resulting set of vertices F . We further compute the set of all vertices backwards-
reachable from v inside F ; we call the resulting set B. Finally, we compute all
vertices backwards-reachable from any vertex of F ; let us call this set B′.

Clearly, B is an SCC of the graph, and moreover, it is a terminal SCC iff
F \B is empty. Furthermore, B′\F contains no tSCCs: all vertices in B′\F have
a path to a vertex in F . We recursively run the algorithm in F \ B and V \ B′ if
non-empty. Observe that no tSCC may intersect both of these sets and these two
subproblems can be thus dealt with independently (i.e. in parallel). Note that

Digital Bifurcation Analysis of TCP Dynamics 345

F \ B

B

B′ \ F

V \ B′

v

Fig. 2. Illustration of the non-parametrised version of our algorithm.

every time the algorithm is (recursively) started, its input is an induced subgraph
of the original graph that satisfies the precondition that all its tSCCs are tSCCs
of the original graph. These observations together imply the correctness of the
algorithm.

The asymptotic complexity of the algorithm in its non-parametric version is
of the order O(|V |·(|V |+|E|)) as in the worst case, every iteration may eliminate
a single vertex of the graph. The actual performance of the algorithm strongly
depends on the choice of the initial vertex v. If we consistently choose v that
lies close to (or directly in) a tSCC of the graph, the complexity gets linear.
Of course, such choice cannot be made in advance. The paper [1] discusses the
impact of several heuristics that try to approximate this choice.

The algorithm can also be made more efficient using a trimming subprocedure
in the manner of [26], i.e. removing all vertices without incoming edges. In Fig. 2,
the removed vertices are marked in grey; furthermore, the V \B′ part of the graph
contains one vertex that would be removed in the next recursive run.

To extend the basic idea to parametrised graphs, we use a notion of
parametrised sets of vertices. Formally, a parametrised set of vertices Â is a
function Â : V → 2P. To deal with parametrised sets, we use a generalisation
of the standard set operations. All the operations are performed element-wise,
e.g. the union of parametrised sets Â ∪ B̂ is defined as the parametrised set Ĉ

such that Ĉ(v) = Â(v) ∪ B̂(v) for all v. The parametrised set of all vertices and

all parametrisations is given by V̂ such that V̂ (v) = P for all v ∈ V .
The notions of the forward and backward reachable sets can be easily

extended to the parametrised setting. They can be computed by a fixed-point
algorithm which iterates the parametrised successor (or predecessor) operator.

Given a parametrised set of vertices X̂, the successor operator computes the

346 N. Beneš et al.

parametrised set Ŷ such that Ŷ (v) = X̂(v) ∪
⋃

u∈V (X̂(u) ∩ E(u, v)) and simi-
larly for the predecessor operator.

The parametrised algorithm then proceeds as described in the previous,
extended with the parametrised sets. One further key difference is that instead
of choosing one starting vertex, we need to choose a set of starting vertices with
disjoint parametrisation sets that together cover all parametrisations that are
present in the currently explored parametrised subgraph. The reason for this, as
well as a discussion on heuristics that allow choosing such sets efficiently, can be
again found in [1].

In the worst case, when parametrisations are represented explicitly, the
asymptotic complexity of the algorithm is of the order O(|P| · |V | · (|V | + |E|)).
The actual performance of the algorithm depends on various choices and heuris-
tics. It can also be strongly influenced by the usage of a symbolic encoding of
the parametrised sets. In this paper, the sets of parametrisations are represented
symbolically using an interval encoding, similar to the one used in [10]. Other
options for a symbolic representation of parameters include SMT formulae [3].

3 Case Studies

In this section, we present two case studies focusing on discovering bifurcations in
the behaviour of the TCP protocol. Each of them addresses a different essential
aspect of the protocol, namely congestion control and packet flow stability. We
demonstrate how the digital bifurcation analysis can aid in the design, analysis
and control of these discrete reactive systems.

In the first case study, we consider a relatively common setting in the stan-
dard bifurcation theory: A discrete map governing the behaviour of the RED
congestion control mechanism. This mechanism prevents congestion on network
nodes such as routers and is subject to changes in its behaviour due to different
internal and external parameters. We show how different parameters influence
the stability of the mechanism and how a hypothetical system administrator or
an automated controller can use this information to avoid faulty behaviour.

The second case study presents an entirely discrete model of the basic TCP
focusing on the stability of packet flow. We study the influence of the sender
and receiver buffer sizes on the behaviour of the protocol and its ability to
transfer packets in a timely manner. We assume the role of a hypothetical pro-
tocol designer and consider a set of extensions and modifications to the protocol
proposed by various networking experts. We observe that such extensions and
their interplay can introduce bifurcations leading to serious degradation of the
protocol performance.

The case studies are implemented with the help of the tool Pithya [7] which
provides the necessary parametrised graph analysis algorithms. The source code
of this implementation is available at https://github.com/sybila/tcp-bifurcation.
All experiments were performed on a typical 4-core 3 GHz desktop computer with
16 GB of RAM.

https://github.com/sybila/tcp-bifurcation

Digital Bifurcation Analysis of TCP Dynamics 347

3.1 Instabilities in TCP-RED

This case study addresses the congestion control in TCP. The congestion control
mechanism prevents the protocol from overloading the network with too many
packets. The problem has two important aspects. The first aspect is the con-
gestion control on the sender side that has to ensure maximal throughput for
a single flow of packets. The second aspect is the congestion control on other
network nodes, such as routers, where several connections meet.

One of the common approaches to implementing the congestion control on
routers is the Random Early Drop (RED) method proposed in [14]. This tech-
nique explicitly drops packets as the router queue starts to fill up. Consequently,
senders are indirectly notified (by observing the packet loss) that the link is
approaching a congested state before the situation becomes critical.

Model Description. To study the RED mechanism, we use a discrete time
model proposed in [33]. In Fig. 3, we present the model equations and a basic
description of all model variables and constants. Detailed aspects of the model
design are given in the original paper.

pt(qt) =

⎧

⎪

⎨

⎪

⎩

0 qt ∈ [0, ql]
qt−ql

qu−ql
pmax qt ∈ (ql, qu)

1 qt ∈ [qu, B]

(1) qt(pt) =

⎧

⎪

⎨

⎪

⎩

B pt ∈ [0, pl]
n·k√

pt
− c·d

m
pt ∈ (pl, pu)

0 pt ∈ [pu, 1]

(2)

qt+1(qt) = (1 − w) · qt + w · qt(pt(qt)) (3)

maximum buffer size B = 3750

lower queue threshold ql = 250

upper queue threshold qu = 750

packet size m = 4kb

maximum drop rate pmax = 0.1

number of TCP connections n = 250

propagation delay d = 0.1s

link capacity c = 75Mb/s

drop rate pt ∈ [0, 1]

queue size qt ∈ [0, B]

average queue size qt ∈ [0, B]

lower drop threshold pl =

(

n · m · k

dc + Bm

)2

upper drop threshold pu =

(

n · m · k

dc

)2

rate constant k =
√

3/2

averaging weight w = 0.15

Fig. 3. A discrete time model of the RED congestion control behaviour. The individual
constants are stated with basic explanations and default values. The parameters are
selected from the given set of constants and their bounds are specified later with the
corresponding experiments.

The model assumes n connections flowing through a single RED-capable
router. All connections share basic properties, namely the packet size and the

348 N. Beneš et al.

propagation delay. In such a case, the situation can be simplified by considering
only a single combined flow, as the router cannot differentiate between the indi-
vidual flows anyway. The router then maintains the current drop rate pt (Eq. 1)
and the queue size qt (Eq. 2) based on the current exponentially weighted average
queue size qt (Eq. 3).

A typical scenario is that a network administrator takes control over param-
eters such as the averaging weight w or the queue thresholds ql and qu. Fur-
thermore, it is also important to consider the influence of the connection count
n and the propagation delay d, as these numbers will change depending on the
current network load.

Parametrised Graph. To analyse the model, we require a finite parametrised
graph G = (V, E, P). Here, P is the parameter space given by the chosen model
parameters (we specify the chosen parameters for each experiment later). In
Eq. 3, we write qt+1(q, λ) for λ ∈ P to specify the parametrised version of the
model.

We assume s + 1 thresholds t0 < t1 < . . . < ts such that t0 = 0 and ts =
B. These thresholds partition the state space of the variable q into s intervals
[t0, t1], . . . , [ts−1, ts], denoted as I1, . . . , Is. These intervals then represent vertices
of our parametrised graph V = {Ii | i ∈ [1, s]}.

Next, we construct the parametrised edges between our intervals so that they
over-approximate the behaviour of the original discrete map. Let us consider two
intervals Ii and Ij and the edge from Ii to Ij . Clearly, the set of parametrisations
E(Ii, Ij) has to include all parametrisations λ such that for some qt ∈ Ii it holds
that qt+1(qt, λ) ∈ Ij . We compute these sets using interval arithmetic, ensuring
that all such parametrisations are included.

Finally, since our graph over-approximates the original discrete map, each
tSCC over-approximates some attractor(s) of the original system. Furthermore,
the precision of this over-approximation can be refined by introducing additional
thresholds or substituting interval arithmetic for a more sophisticated approxi-
mation method, e.g., Taylor models [24].

Analysis Results. The analysis procedure consists of two scenarios:
Scenario 1: Consider a system designer who studies the effects of parame-

ters to assess correct settings ensuring the stable behaviour of the protocol. In
Fig. 4(a) and (b), the locations and types of attractors are shown for param-
eters w and n, respectively. It can be seen that increasing the parameter w

has a destabilising effect – the small (stable) tSCC (component size ≤0.01 · B)
turns into a bipartite tSCC (representing oscillation) and finally into a large
non-bipartite tSCC. On the other hand, the effect of the connection count n is
complementary: a higher number of connections stabilise the behaviour (Fig. 4b).
Additionally, the protocol behaves as expected in the stable region – w does not
influence the location of the steady state whereas a higher number of connections
require higher queue sizes to accommodate the increased data flow. Using this

Digital Bifurcation Analysis of TCP Dynamics 349

0.1 0.12 0.14 0.16 0.18 0.2
300

320

340

360

380

400

420

440

averaging weight w

av
er

a
g
e

q
u
eu

e
si

ze
q

(a)

200 220 240 260 280 300

300

350

400

450

number of connections n

av
er

a
g
e

q
u
eu

e
si

ze
q

(b)

0.1 0.12 0.14 0.16 0.18 0.2
200

220

240

260

280

300

averaging weight w

n
u
m

b
er

o
f
co

n
n
ec

ti
o
n
s

n

(c)

Fig. 4. Bifurcation diagrams showing the location and character of the tSCC depending
on model parameters in the RED model. The green region indicates a small component
(≤0.01 · B), the blue region shows oscillatory behaviour (bipartite graph), and the red
region corresponds to a large non-bipartite tSCC. (a) w ∈ [0.1, 0.2] and n = 250;
(b) n ∈ [200, 300] and w = 0.15; (c) w ∈ [0.1, 0.2] and n ∈ [200, 300]. (Color figure
online)

kind of analysis, a general overview of the systems behaviour w.r.t. the given
parameters can be directly obtained in a matter of minutes.

Scenario 2: Assume an administrator (or an automated controller) is sup-
posed to adjust the parameter w to preserve the correct functionality of the
system subject to a varying number of connections n. In Fig. 4c, it is shown how
the character of the attractor changes with the controllable parameter w and the
external condition n. This allows the administrator to select optimal values for
the given situation. Note that while this specific type of diagram does not show
the concrete location of components, it is still contained in the method results
and can be used to support the decision further. While this type of analysis is
certainly more computationally challenging, it can still be performed in under
one hour.

3.2 Packet Flow Stability

The TCP specification as defined in RFC 793 [31] provides a fundamental
description of the TCP protocol such as the packet format or the state machine
for event processing. However, many implementation and performance aspects
were not addressed in the original specification. Therefore in the subsequent
years, several extensions and improvements of the protocol functionality have
been introduced [9,12,29].

Nowadays, many well-tested, production ready implementations of TCP
exist. However, as demonstrated in [28], non-standard network configurations
and combinations of various modifications can cause problems even in well-
established implementations. Furthermore, new implementations are still being
developed where such fundamental problems can easily re-appear [17].

In this case study, we assume the role of a hypothetical protocol engineer.
We introduce a basic parametrised model of TCP according to RFC 793 [31]

350 N. Beneš et al.

extended with two performance-oriented modifications, namely delayed acknowl-
edgement and Nagle’s algorithm. We observe that these modifications, while use-
ful in many instances, can introduce unexpected bifurcations in the behaviour
of the protocol. Additionally, we compare our results with [28].

Model Description. We consider a model of TCP based on RFC 793 [31]
extended with Nagle’s algorithm according to RFC 896 [29] and delayed acknowl-
edgement according to RFC 813 [12] and RFC 1122 [9]. We assume a single
sender which sends an uni-directional infinite stream of data to a single receiver
connected by a reliable link with unlimited capacity. As parameters, we assume
a fixed maximal buffer size S for the sender and R for the receiver. Finally, the
size of each packet is limited by the Maximum Segment Size (MSS) set by the
network administrator.

Since we are not interested in the exact values of the transmitted data bytes,
we can model the state of the protocol using the number of bytes in each protocol
phase. This abstraction leads to the following five state variables:

– W – the number of bytes in the send buffer waiting to be sent;
– D – the list of data packet sizes in transit;
– U – the number of bytes in the receive buffer waiting to be acknowledged;
– A – the list of acknowledgement packets in transit;
– ACK – the out-of-order acknowledgement flag.

Furthermore, we use outstanding to denote the number of unacknowledged
bytes (U plus the sum of all elements in D and A). Since the protocol is not
limited by the link capacity, we assume the available window is always equal to
min(S, R) minus outstanding bytes. Notice that all the bytes considered by
the model variables must be stored in the send buffer (the sender must keep
the data until acknowledgement arrives), whereas only the bytes waiting to be
acknowledged are stored in the receive buffer.

The dynamics of the model is governed by a set of discrete asynchronous
events. Each event can be only executed when its preconditions are met. As our
parametrised graph, we consider the graph of the protocol states reachable from
the initial configuration where all channels are empty, and all variables are zero.
The model consists of the following discrete events:

Copy data from the application: Before sending, the data needs to be copied from
the application to the kernel memory where the networking layer operates. This
occurs in 1024-byte chunks such that at least for every four chunks, the copying
is interrupted to send available data right away [28] if possible:

W = W + k · 1024; where k ∈ [1..4] is maximal

such that (k · 1024 + W + outstanding ≤ S)

Send full packet: When MSS unsent bytes are available in the send buffer and
the window capacity is sufficient, a full packet can be constructed and sent:

W = W − MSS; D = append(D,MSS); when (window ≥ MSS ∧ W ≥ MSS)

Digital Bifurcation Analysis of TCP Dynamics 351

Send partial packet: When less than MSS unsent bytes are available, or the
window is not large enough, the protocol can decide to send a partial packet.
This decision is governed by Nagle’s algorithm which dictates that a partial
packet can be sent only when there are no outstanding bytes. This criterion
prevents the sender from sending unnecessary small packets in an unbuffered
stream of data:

W = W − packet; D = append(D, packet); where

(packet = min(window,MSS, W) ∧ outstanding = 0)

Receive and acknowledge packet: The receiver can process and acknowledge any
data packet (we assume the data is immediately handed over to the application).
However, to avoid a large number of small acknowledgement packets, the packet
acknowledgement is often delayed until a sufficient amount of data is received
(RFC 813). In our case, we use the threshold specified in [28] – 35% of R. In
RFC 1122, this rule is further augmented to send an acknowledgement packet
whenever two full segments are received:

A = append(A, U + head(D)); D = tail(D); U = 0; when

(|D| > 0 ∧ U + head(D) ≥ min(0.35 · R, 2 · MSS))

Receive without acknowledgement: When the rules of delayed acknowledgement
are not met, the data bytes are transferred to the receive buffer instead:

U = U + head(D); D = tail(D); when

(|D| > 0 ∧ U + head(D) < min(0.35 · R, 2 · MSS))

Out-of-order acknowledgement: According to RFC 813, when data is received
without immediate acknowledgement, a 200 ms timer should be started to
acknowledge the data if no acknowledgement packet is generated in the mean-
time. However, as discussed in [28], regularly rescheduling such a timer can be
an expensive operation. Therefore a cyclic timer acknowledging all received data
every 200 ms is often used instead. In our model, we include this design deci-
sion by allowing one non-deterministic out-of-order acknowledgement packet to
occur:

A = append(A, U); U = 0; ACK = 1 when (U > 0 ∧ ACK = 0)

Process acknowledgement: The data cannot be removed from the send buffer
until they are acknowledged. Thus whenever there is an acknowledgement packet
in transit, the packet can be processed by the receiver:

A = tail(A); when |A| > 0

352 N. Beneš et al.

10 20 30 40 50 60

10

20

30

40

50

60

receiver buffer size R (KiB)

se
n
d
er

b
u
ff
er

si
ze

S
(K

iB
)

S

=

R

(a)

10 20 30 40 50 60

10

20

30

40

50

60

receiver buffer size R (KiB)

se
n
d
er

b
u
ff
er

si
ze

S
(K

iB
)

S

=

R

(b)

5 10 15 20 25 30

5

10

15

20

25

30

receiver buffer size R (KiB)

se
n
d
er

b
u
ff
er

si
ze

S
(K

iB
)

S

=

R

(c)

Fig. 5. The bifurcation diagrams showing the character of tSCCs depending on the
model parameters in the TCP model. The white space indicates a single large tSCC;
the other colours indicate the regions displaying various types of single state tSCCs.
(a) MSS = 9204, 1KiB increments of S and R; (b) MSS = 9204, 8 KiB increments of
S and R; (c) MSS = 1460, 1 KiB increments of S and R. (Color figure online)

Analysis Results. In our analysis, we assume the buffer sizes S and R ranging
from 1 KiB to 64 KiB in 1 KiB increments. First, we consider MSS to be 9204,
as in [28]. This MSS configuration corresponds to a specific high-performance
network and is not used in typical Ethernet configurations.

The complete results of our analysis are presented in Fig. 5a. In contrary to
the previous case study, we consider the presence of a single large terminal tSCC
as the desired behaviour (depicted in white). In this case, the situation indicates
that the protocol is functioning properly. On the other hand, the presence of
a small, single state tSCC means that the protocol cannot continue transmitting
and is waiting for a time-out to resolve the problematic situation.

Additionally, based on enabling and disabling various extensions of the pro-
tocol model, we can distinguish between different bifurcation causes:

– Delayed acknowledgement (DA): With the delayed acknowledgement
employed exclusively, the parametrisations satisfying S < 0.35 · R ∧ S <

2 · MSS can never trigger the automatic acknowledgement and thus rely on the
acknowledgement time-out instead. The corresponding regions are depicted
in green in Fig. 5.

– Combination of DA and Nagle’s algorithm: A single state tSCC emerges
whenever the amount of data necessary to trigger the next automatic acknowl-
edgement cannot be sent due to Nagle’s condition. The corresponding regions
are depicted in blue in Fig. 5.

– Combination of DA, Nagle’s algorithm, and cyclic timer: The regions depicted
in red in Fig. 5 correspond to single state tSCCs appearing only when all the
three extensions are enabled. The reason is that while delayed acknowledge-
ment and Nagle’s algorithm can coexist well under these parametrisations,
the cyclic timer can cause transmissions of small packets which is not possible
in the cases above.

Digital Bifurcation Analysis of TCP Dynamics 353

In the case of S < R, the achieved results are in line with the findings of [28].
However, in the R > S area, we observe a bifurcation caused by the interplay of
delayed acknowledgement and Nagle’s algorithm which has not been considered
in the original paper. This bifurcation is caused by small packets sent right
after an acknowledgement is received. The small packet is transmitted after the
acknowledgement clears the outstanding bytes (so Nagle’s condition holds), but
before more data is copied into the send buffer (before the acknowledgement was
received, the send buffer was full).

In [28], the situation might have been avoided by some undisclosed imple-
mentation or timing aspects. However, another possible explanation is that this
behaviour has been overlooked because such issues never occurred during the
experiments. In Fig. 5b, we present our reconstruction of the same results, but
in 8 KiB increments. It corresponds exactly to the experimental evaluation pre-
sented in [28]. The described behaviour is absent in this case, since the 8 KiB
increments avoid the problematic region entirely.

Finally, in Fig. 5c, we present the same analysis for the maximal buffer size
of 32 KiB and MSS of 1460 bytes, which is the typical setting on an Ethernet
network. In this case, the red region is completely absent, and while other bifur-
cations are still present, the problematic regions are much smaller due to the
smaller MSS. This puts into perspective the drastic behavioural changes present
for larger MSS values and shows how bifurcations can emerge in unexpected
situations.

4 Discussion and Conclusion

In this paper, we have presented two case studies demonstrating a promising
application of the digital bifurcation analysis in the domain of network protocols.
To that end, we have utilised the methodology developed in our previous work.

The key aspects of the method as applied in this paper are the following.
First, it gives rigorous results concerning the given models of the studied pro-
tocol. Second, it can be performed fully automatically. In general, the only
tasks that have to be done manually are to acquire a suitable model and to
post-process the results (incl. visualisation and interpretation). The crucial step
to be done within the latter task is to classify the studied protocol proper-
ties in terms of attractors. However, this can be easily automated since the
interest of a network administrator (or a designer) is primarily focused on
parameter values for which the stable behaviour (a single simple attractor)
disappears.

Both case studies show that the digital bifurcation analysis provides a
methodologically different view on the protocol analysis than formal verification
or testing. This is allowed by providing a global view of the protocol behaviour
with respect to parameters. Due to the global approach, in the second case study,
we have revealed regions in bifurcation diagrams that were omitted in previous
studies.

354 N. Beneš et al.

The push-button characteristics of the digital bifurcation analysis allow mak-
ing the results easily reproducible. All steps necessary to reconstruct both case
studies are publicly available1.

For future work, our primary intention is to target similar, but not yet fully
explored, problems in network protocols using digital bifurcation analysis that
will allow further fine-tuning (and generalisation) of the presented workflow.

References

1. Barnat, J., et al.: Detecting attractors in biological models with uncertain param-
eters. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 40–56.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 3

2. Barnat, J., Chaloupka, J., Van De Pol, J.: Distributed algorithms for SCC decom-
position. J. Logic Comput. 21(1), 23–44 (2011)

3. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Parallel SMT-based
parameter synthesis with application to piecewise multi-affine systems. In: Artho,
C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 192–208. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 13

4. Beneš, N., et al.: Fully automated attractor analysis of cyanobacteria models. In:
2018 22nd International Conference on System Theory, Control and Computing,
ICSTCC, pp. 354–359, October 2018

5. Beneš, N., Brim, L., Demko, M., Hajnal, M., Pastva, S., Šafránek, D.: Discrete
bifurcation analysis with Pithya. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNBI,
vol. 10545, pp. 319–320. Springer, Heidelberg (2017)

6. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: A model checking app-
roach to discrete bifurcation analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S.,
Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 85–101. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48989-6 6

7. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Pithya: a parallel tool
for parameter synthesis of piecewise multi-affine dynamical systems. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 591–598. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 29

8. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and sockets. SIGCOMM Comput. Commun. Rev. 35(4),
265–276 (2005)

9. Braden, R.: Requirements for Internet Hosts - Communication Layers. RFC 1122,
RFC Editor, October 1989. https://www.rfc-editor.org/rfc/rfc1122.txt

10. Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by
parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB
2015. LNCS, vol. 9308, pp. 251–263. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23401-4 21

11. Brim, L., Demko, M., Pastva, S., Šafránek, D.: High-performance discrete bifur-
cation analysis for piecewise-affine dynamical systems. In: Abate, A., Šafránek, D.
(eds.) HSB 2015. LNCS, vol. 9271, pp. 58–74. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26916-0 4

1 https://github.com/sybila/tcp-bifurcation.

https://doi.org/10.1007/978-3-319-67471-1_3
https://doi.org/10.1007/978-3-319-46520-3_13
https://doi.org/10.1007/978-3-319-48989-6_6
https://doi.org/10.1007/978-3-319-63387-9_29
https://www.rfc-editor.org/rfc/rfc1122.txt
https://doi.org/10.1007/978-3-319-23401-4_21
https://doi.org/10.1007/978-3-319-23401-4_21
https://doi.org/10.1007/978-3-319-26916-0_4
https://doi.org/10.1007/978-3-319-26916-0_4
https://github.com/sybila/tcp-bifurcation

Digital Bifurcation Analysis of TCP Dynamics 355

12. Clark, D.D.: Window and Acknowledgement Strategy in TCP. RFC 813, RFC
Editor, July 1982. https://www.rfc-editor.org/rfc/rfc813.txt

13. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

14. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)

15. Gallasch, G.E., Billington, J.: A parametric state space for the analysis of the infi-
nite class of stop-and-wait protocols. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 201–218. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691617 12

16. Ghosh, D., Jagannathan, K., Raina, G.: Local stability and Hopf bifurcation anal-
ysis for Compound TCP. IEEE Trans. Control Netw. Syst. 5(4), 1668–1681 (2018).
(Early Access)

17. GitHub: TCP flow deadlock: receive window closes and never opens again (2017).
https://github.com/mirage/mirage-tcpip/issues/340

18. Han, B., Billington, J.: Termination properties of TCP’s connection management
procedures. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536,
pp. 228–249. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 14

19. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 189–203. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45319-9 14

20. Islam, M.A., et al.: Bifurcation analysis of cardiac alternans using δ-decidability.
In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp.
132–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45177-0 9

21. Islam, M.A., Cleaveland, R., Fenton, F.H., Grosu, R., Jones, P.L., Smolka, S.A.:
Probabilistic reachability for multi-parameter bifurcation analysis of cardiac alter-
nans. Theoret. Comput. Sci. (2018, in press)

22. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, Hei-
delberg (1998)

23. Lockefeer, L., Williams, D.M., Fokkink, W.: Formal specification and verification
of TCP extended with the Window Scale Option. Sci. Comput. Program. 118,
3–23 (2016)

24. Makino, K., Berz, M.: Verified computations using Taylor models and their appli-
cations. In: Abate, A., Boldo, S. (eds.) NSV 2017. LNCS, vol. 10381, pp. 3–13.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63501-9 1

25. Manjunath, S., Raina, G.: FAST TCP: some fluid models, stability and Hopf bifur-
cation. Perform. Eval. 110, 48–66 (2017)

26. McLendon III, W., Hendrickson, B., Plimpton, S.J., Rauchwerger, L.: Finding
strongly connected components in distributed graphs. J. Parallel Distrib. Com-
put. 65(8), 901–910 (2005)

27. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99(2), 177–195
(1985)

28. Moldeklev, K., Gunningberg, P.: Deadlock situations in TCP over ATM. In: Neu-
field, G., Ito, M. (eds.) Protocols for High Speed Networks IV. IAICT, pp. 243–259.
Springer, Boston, MA (1995). https://doi.org/10.1007/978-0-387-34885-8 15

29. Nagle, J.: Congestion Control in IP/TCP Internetworks. RFC 896, RFC Editor,
January 1984. https://www.rfc-editor.org/rfc/rfc896.txt

https://www.rfc-editor.org/rfc/rfc813.txt
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/11691617_12
https://doi.org/10.1007/11691617_12
https://github.com/mirage/mirage-tcpip/issues/340
https://doi.org/10.1007/11494744_14
https://doi.org/10.1007/3-540-45319-9_14
https://doi.org/10.1007/3-540-45319-9_14
https://doi.org/10.1007/978-3-319-45177-0_9
https://doi.org/10.1007/978-3-319-63501-9_1
https://doi.org/10.1007/978-0-387-34885-8_15
https://www.rfc-editor.org/rfc/rfc896.txt

356 N. Beneš et al.

30. Nga, J., Iu, H., Ling, B., Lam, H.: Analysis and control of bifurcation and chaos in
average queue length in TCP/RED model. Int. J. Bifurc. Chaos 18(8), 2449–2459
(2008)

31. Postel, J.: Transmission Control Protocol. RFC 793, RFC Editor, September 1981.
https://www.rfc-editor.org/rfc/rfc793.txt

32. Raman, S., Mohan, A., Raina, G.: TCP Reno and queue management: local sta-
bility and Hopf bifurcation analysis. In: CDC 2013, pp. 3299–3305. IEEE (2013)

33. Ranjan, P., Abed, E.H., La, R.J.: Nonlinear instabilities in TCP-RED. IEEE/ACM
Trans. Netw. 12(6), 1079–1092 (2004)

34. Reif, J.H.: Depth-first search is inherently sequential. Inf. Process. Lett. 20(5),
229–234 (1985)

35. Schieferdecker, I.: Abruptly terminated connections in TCP - a verification exam-
ple. In: Brezočnik, Z., Kapus, T. (eds.) Proceedings of the COST 247 International
Workshop on Applied Formal Methods in System Design, pp. 136–145. University
of Maribor (1996)

36. Smith, M.A., Ramakrishnan, K.K.: Formal specification and verification of safety
and performance of TCP selective acknowledgment. IEEE/ACM Trans. Netw.
10(2), 193–207 (2002)

37. Smith, M.A.S.: Formal verification of communication protocols. In: Gotzhein, R.,
Bredereke, J. (eds.) Formal Description Techniques IX. IFIPAICT, pp. 129–144.
Springer, Boston (1996). https://doi.org/10.1007/978-0-387-35079-0 8

38. Sullivan, D., Williams, R.: On the homology of attractors. Topology 15(3), 259–262
(1976)

39. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

40. Xu, C., Tang, X., Liao, M.: Local Hopf bifurcation and global existence of periodic
solutions in TCP system. Appl. Math. Mech. 31(6), 775–786 (2010)

41. Xu, C., Li, P.: Dynamical analysis in exponential RED algorithm with communi-
cation delay. Adv. Differ. Equ. 2016(1), 40 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1007/978-0-387-35079-0_8
http://creativecommons.org/licenses/by/4.0/

	Digital Bifurcation Analysis of TCP Dynamics
	1 Introduction
	2 Attractor Analysis Workflow
	2.1 Core Algorithm

	3 Case Studies
	3.1 Instabilities in TCP-RED
	3.2 Packet Flow Stability

	4 Discussion and Conclusion
	References

