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Digital biomarkers for Alzheimer’s disease: the mobile/
wearable devices opportunity
Lampros C. Kourtis1,2,3, Oliver B. Regele3,4, Justin M. Wright3,5 and Graham B. Jones1,5

Alzheimer’s Disease (AD) represents a major and rapidly growing burden to the healthcare ecosystem. A growing body of evidence
indicates that cognitive, behavioral, sensory, and motor changes may precede clinical manifestations of AD by several years.
Existing tests designed to diagnose neurodegenerative diseases, while well-validated, are often less effective in detecting
deviations from normal cognitive decline trajectory in the earliest stages of the disease. In the quest for gold standards for AD
assessment, there is a growing interest in the identification of readily accessible digital biomarkers, which harness advances in
consumer grade mobile and wearable technologies. Topics examined include a review of existing early clinical manifestations of AD
and a path to the respective sensor and mobile/wearable device usage to acquire domain-centric data towards objective, high
frequency and passive digital phenotyping.
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INTRODUCTION
Alzheimer’s Disease (AD) represents a major and rapidly growing
burden to the healthcare ecosystem. In the USA alone, some 5
million people suffer from the disease that costs the managed
healthcare system in excess of $250 billion. Currently the sixth
leading cause of death, AD prevalence has increased by 89% since
2000, underscoring the need for interventive and preventative
measures. Despite enormous capital investments, drug develop-
ment has been problematic. It is generally accepted that the
likelihood of reversing anatomic and physiologic changes (e.g.,
neuronal death) decreases dramatically as the disease advances,
placing increased attention on early cohort discovery and patient
stratification for any future clinical studies. Accordingly, there is an
acute need to detect the disease at prodromal stages. In this quest
for monitoring biomarkers for AD assessment, there is growing
interest in the identification of readily accessible digital biomar-
kers, which leverage widely available mobile and wearable
technologies, and it is these that are the subject of this review
article.
A growing body of evidence indicates that cognitive, sensory

and motor changes may precede clinical manifestations of AD by
several years.1 In particular, sensory and motor (non-cognitive)
changes can help detect a neurological or neurodegenerative
disease 10 or 15 years prior their effective diagnosis. This said,
existing validated neuropsychological/cognitive tests designed to
diagnose neurodegenerative diseases are often less effective in
detecting deviations from normal cognitive trajectory in the
earliest stages of the disease. Furthermore, cognitive tests can
suffer from intrinsic cultural bias, take a relatively long time to
administer, provide only episodic information, show “practice
effect” or “ceiling effect,” and are rater dependent.2 Explorations
into the inclusion of genetic testing, structural MRI imaging and

PET molecular imaging of beta-amyloid and tau protein promise
earlier detection of disease, though these tests are currently
limited to research applications due to their cost and invasive
nature. These limitations preclude repeated and frequent use to
test an individual and specifically in the early pre-symptomatic
stage.
Mobile and wearable digital consumer technology has the

potential to overcome these limitations, and their application in
AD detection has become an area of increased interest.

MOBILE AND WEARABLE DEVICE- DERIVED DATA
Mobile and wearable technologies (such as smart phones, tablets,
smart watches, and rings, smart suits) present a unique
opportunity to massively detect neurodegenerative diseases in a
timely and economical fashion due to:
a) the widespread usage of such technologies
b) the immediate access of information due to the inherent

connectivity
c) the increasing sensitivity and plurality of onboard sensors
d) the nature of these sensors that are uniquely equipped to

study such physical and cognitive abilities or symptoms
e) the extremely low burden on the healthcare system, since

these devices are increasingly in use by large segments of the
population.
Onboard sensors at the heart of these systems are able to

provide metrics by means of active (prompted) or passive
(unnoticed) measurements, offering considerable flexibility in
approach.
Active data collection occurs when a user is prompted to

perform a measurement and/or enter a metric value, e.g., a digital
e-assessment cognitive test that probes memory on a tablet to
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detect AD,3 or a prompted voice test that probes vocal cord
tremor to detect PD.4 These measurements are usually targeted at
addressing specific metrics that have previously been correlated
with the disease.
Passive data collection occurs when metric values are acquired

unbeknownst to the user, e.g, a smartwatch-based step counter
that continuously estimates step symmetry and length or a smart
ring-based continuous heart rate monitor that picks up heart rate
variability (HRV). As such, daily interaction with mobiles/wearables
can result in a rich, high-frequency longitudinal data set that can
be mined for signatures of a disease—while using users as their
own control. Passive data collection has several advantages,
including,

a. high frequency or even continuous data acquisition,
b. objectivity (not influenced by user perspective and learning

effects),
c. low patient burden, which can lead to higher adherence.

On the other hand, passive data collection may

a. be limited to particular metrics that can be collected non-
actively,

b. be expensive computationally and storage wise,
c. requires complex analysis tools to extract useful information.

These issues notwithstanding, given the decline in cognitive
function and memory experienced by AD patients, passive data
collection provides a logical approach for developing methods for
disease forecasting, detection and monitoring. An enormous
opportunity is presented for technology developers and health-
care professionals to ideate on new clinical studies which can
provide insights to both disease detection and symptom
assessment.
This review article considers disease-relevant aspects of sensor

and device design, data collection modalities, and a path to
clinical grade digital phenotyping. A non-exhaustive summary of
available sensors or digital senses on each wearable/mobile device
is presented in Fig. 1.

DISEASE SPECIFIC METRICS AND SENSORS
Sensor signals can individually or collectively provide metrics that
can determine aspects of a domain that is affected by a particular
disease or condition (Table 1)

Movement—gross motor function. Sensors: IMU, geopositioning
A majority of AD patients exhibit pyramidal and extrapyramidal
motor impairments starting at an early stage of the disease, which
precede signs of cognitive impairment by at least a decade.5

Gait speed, stride length and gait symmetry are statistically
reduced and gait speed variability is increased.6 This can be
measured actively, by performing a fixed distance or duration
walking test, or passively, by monitoring a subject using fixed7 or
portable equipment.8 Buracchio and colleagues9 found that there
is an inflection point in longitudinal observations of gait speed
12.1 years before clinical diagnosis of MCI (Mild Cognitive
Impairment) where the annual decline rate in gait speed goes
from −0.005m/s/y to a dramatic −.023 m/s/y. It has also been
shown that central nervous system impairment is related to stance
time variability, whereas sensory impairment is related to step
length variability.10

Although gait metrics alone provide limited specificity for AD
detection, their value could come by incorporation into a
composite scoring system. IMU sensors on smart phones, watches,
rings and patches can estimate such metrics with good accuracy
(step count: −6.7 to 6.2% for smartphone apps; Stride length: <5%
for median values).11 In addition, contact pressure sensors (sock,
shoe) can provide even higher insight on gait characteristics such

as stance/swing ratio (pressure correlation > 95%).12 Further
accuracy improvements can be achieved by fusing geopositioning
information. Longitudinal monitoring of these metrics can help
create composite disease predictors.

Movement—fine motor control. Sensors: touch screen, keyboard
& stylus
Fine motor control and more particularly finger tapping speed and
tracing accuracy have long been probed as potential early signs of
AD. The finger tapping test is an active test where the subject is
asked to tap beat a button as fast and as regularly as they can for a
period of time; the total number of taps is recorded. While tapping
speed normally decreases with age at a rate of −0.03 taps/y, the
speed after the inflection point (2.66 y prior to clinical manifesta-
tion of the disease) dramatically decreased to a rate of −0.15 taps/
y.9 Rabinowitz and colleagues13 showed that the contact time in a
tapping test for subjects having an MMSE < 23 (a cognitive test
used to evaluate AD: 20−24 is considered mild dementia, >24 is
considered Normal) was increased by 38%, suggesting a much
slower reaction speed. Tapping tests have already been imple-
mented in smart phone applications with good patient adher-
ence14 with a primary focus on Parkinson’s disease monitoring.
Moreover, finger tapping speed has been correlated (r= 0.77) to
inter-keystroke interval (typing speed),15 hence the potential for
high frequency data collection from daily computer/tablet
keyboard use. More recently, it has been shown16 that the text
keystrokes per minute (excluding non-text keystrokes) as well as
the number of pauses while typing, can discriminate between
cognitive impairment (128.48 ± 35.03 keystrokes per minute) and
healthy controls (63.65 ± 32.64 keystrokes per minute). Fine motor
control can also be probed by looking at the accuracy of a digital
pen motion, as in a tracing test, administered with a digital pen
and tablet; the standard delineation (RMS distance) from the
actual shape is calculated17 and was found to correlate with
visuomotor performance and age.
Since one of the main means of interaction with mobile

equipment is typing or drawing using a stylus, probing for typing
speed and pauses while typing as well as pen trajectories present an
excellent opportunity to longitudinally evaluate early signs of AD.

Speech and language. Sensor: microphone
Many aspects of language including grammatical and informa-
tional content as well as speech characteristics show deficits with
increased AD progression. Using a combination of metrics such as
periodic and aperiodic segment lengths, vocal reaction time,
relative length (question/response), the amount of insertions/
deletions and other irregularity traits, Konig and colleagues18 were
able to classify between healthy controls, MCI and AD patients
with an success rate of up to 87%. Fraser showed that the use of
semantic, syntactic and acoustic voice features in a short picture-
describing narration test can increase specificity of the disease
and its stage.19 Even the simple metric of quantifying between-
utterance pauses was shown to correlate with episodic memory
that is associated to AD.20 In another simplified metrics study,21

the proportion of spoken words in a discussion (user vs
interlocutor) was shown to positively correlate with transitions
from normal cognition to MCI in the pre-symptomatic phase.
Conversations over mobile phones or between user and digital

assistants are an excellent source of dense speech input. The
available automatic speech recognition technologies (for example
Google Assistant, Apple Siri, Microsoft Cortana, Amazon Alexa)
claim high accuracy and can be used for transcription of subject
discussions to be further analyzed. Another good source of
language metrics is the keyboard-entered text on a mobile phone
or tablet. As such, the syntactic and semantic analysis of spoken or
written language can reveal early signs of the disease in a
longitudinal, passive manner.
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Occulomotor. Sensors: camera, light sensor
Eye movements and pupillary reflex have been used for several
decades in neurological disease research. Careful examination of
both allows to probe the medial temporal lobe memory system,22

the cholinergic neuronal pathways,23 the progressive neuropatho-
logical changes within the newcortex24,25 and the brain dopamine
activity.26

Visual preference. The Visual Paired Comparison active test is
administered by presenting on a screen a series of image pairs to
a subject; these pairs include images that have previously been
shown to the user.27 Healthy control eyes consistently perform
more fixations on the novel image, whereas pre-AD subjects do
not.22 Given the amount of new information we all receive from
our tablets, a passive test that measures the fixation time on each
new or old graphic presented to a user could be devised in order
to quantify the extent of neuronal loss in the medial temporal
lobe.

Pupillary reflex. Pupillary constriction and dilation in response to
light intensity changes is an efficient way to evaluate the central
cholinergic dysfunction and consists a balance of forces exerted
by the iris sphincter and dilator muscles. In an active test
developed previously23,28 where a light flashes while the subject
eyes are recorded using a high speed camera, it was shown that
AD patients had significantly lower pupil constriction velocity and
acceleration. Similarly, it was shown that pupillary reflex caused by
abrupt changes in the illumination in a room were significantly
different between patients with AD and controls.29 Today’s phone
and tablet cameras have enough resolution to capture pupil
diameter at high frame rate, thus providing the potential for a
high frequency, pupillary reflex passive data collection.

Eye movements in reading. Reading is a complex process that
involves optical sensory function, cognitive processing of incom-
ing information and occulomotor functions. Using standard text
and a high speed eye tracker, researchers showed that patients
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Fig. 1 Consumer wearable and mobile devices offer a large personalized, direct, and high frequency sensing potential. Microphones can
sense ambient noise and voice. Touch screens can probe for fine motor skills in swiping and typing. Cameras can register eye movements,
gaze, and pupillary reflexes as well as capture facial expression traits. Altimeters offer useful information with respect to activity and
barometers provide atmospheric pressure readings and weather data. PPG (Photoplethysmography) provides beat-to-beat heart rate
measurements (HRM), heart rate variability (HRV) and oxygen saturation (SpO2). IMU (Inertia Measurement Unit) includes accelerometer,
gyroscope and magnetometer (9 spatial values) and is used by numerous applications to track activity. Geopositioning sensors (GPS and WiFi
localization) provide accurate location information. Light sensors read ambient visible or UV radiation levels. Thermometers on rings, patches
or watches provide body temperature readings. Electromyograph sensors (EMG) found on patches or suits yield muscle group activity signals.
Electrodermograph (EDG) or Galvanic Skin Response (GSR) sensors equip patches and watches to measure the skin conductance and potential
or the skin resistance/impendance. Social interactions can be monitored using proximity to Bluetooth or Wi-Fi enabled devices as well as by
monitoring overall phone use (calls, texts) and social network activity. Finally, wearable/mobile devices are equipped with logic components
that can probe the executive function and memory of a user
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with early AD exhibited reduced number of words per fixation, an
increase in the total number and duration of fixations and and
increase in the number of words skipped.30,42 Given that reading
is one of the basic functions performed on tablets, an on board
high frequency eye movement data collection system while text is
presented can provide insight to the stage of the disease. In
addition, AD subjects show increased latency decreased eye
movement velocity, and also have trouble fixating on a target.31 In

a recent study, AD patients exhibited longer maximum fixation
times compared to controls (2908 vs 1951ms, respectively) as well
as a higher number of large intrusive saccades (2.5 vs 0.7
respectively per test).32

Eye Blink Rate has also been examined26 to be a potential
biomarker of Mild Cognitive Impairment, with MCI participants
having a higher blink rate per minute than healthy controls
(27.60 ± 15.09 versus 20.24 ± 13.24). Given the time spent in front

Table 1. List of sensors and their respective domains and metrics

Sensor Metrics Sense—Domain Reference

Camera Saccades, saccades in reading Occulomotor—eye movements 5,30–32

Novelty preference Occulomotor—eye movements 22,27

Constriction reflex in response to stimuli Occulomotor—pupillary response 12,23,29

Multiple face features Behavior—facial expressions

Microphone Voice power spectrum and tremor Speech and language—voice features

Vocabulary, syntactic and semantic qualities, pauses,
others

Speech and language—cognition 7,18–20

Ambient noise level—dominant frequencies Environment

Accel/gyro Gait metrics, distance, steps, symmetry, etc Movement—gross motor

Other activity metrics (bike, swim, run, etc) 6–10

Overall activity level—energy consumption 79,84

Tremor Movement—fine motor 9,13–17

Barometer Gait/climb information Movement—gross motor

Barometric pressure Environment

Touchscreen Swipe pattern efficiency Movement—fine motor

Keyboard typing/tapping speed 9,13–17

Vocabulary, syntactic, and semantic qualities Speech and Language—written text

Geoposition Location patterns Behavior and movement—mobility and patial
memory

73,78

Driving patterns and navigational efficiency Executive function—reaction time and spatial
memory

82,83

Activity level Movement—actigraphy 79,84

Device use PIN and password attempts, reminders use, and more Executive function—memory 92

Number of apps used, frequency, use patterns Executive function 85–89,93–95

Behavioral disruptions, social circle size, frequency of
interactions

Behavior—social interactions 49,64–69,71,72,74–77

ECG Heart rate (HR) and heart rate variability (HRV) ANS function—heart electric activity

System recovery metrics 36–39,99

Sleep patterns, phases and efficiency

Electrical activity metrics

PPG Heart rate (HR) and heart rate variability (HRV) ANS function—systemic circulation

System recovery metrics 36–39,99

Sleep patterns, phases and efficiency

Oxygen saturation (SpO2)

IR thermometer Skin temperature Metabolic activity and hormonal Cycle

Immune system health, Acute illness

Ballistocardiography* Sleep patterns, sleep phases and efficiency Sleep 34,53–57,100

Galvanic skin response Skin electrical resistance Behavior—emotional stress levels

ANS function—physical stress levels

Ambient light sensor Light intensity at visible wavelength ANS function—circadian rhythm

Environment

UV sensor Light intensity at UV wavelength Environment

Electromyogram (EMG) Activity level Movement—gross and fine motor

Tremor ANS—neuromuscular system health

Seizures

*Ballistocardiography data acquired using a mattress strip, a non wearable
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of a tablet or phone screen, longitudinal blink rate changes can be
picked up by the face camera and can be used in the digital
biomarker arsenal for early disease detection.
Effective eye tracking is possible real time, given the high

resolution of tablet and phone cameras. Numerous programs are
currently active in developing video-based eye tracking solutions
that can be incorporated in future operating systems of mobile
devices, probing continuously for metrics that relate to AD.

Autonomic nervous system function. Sensors: PPG, ECG,
ballistocardiography
A key hallmark of AD is the disruption of the cholinergic system of
the brain; the resulting acetylcholine deficiencies are tied to many
of the higher order cognitive symptoms such as memory loss and
attention deficits21 and are related to severity of dementia.28 This
also results in downstream physical symptoms through the
disruption of the Autonomic Nervous System (ANS), whose
parasympathetic system is heavily dependent on acetylcholine.33

Since both cholinergic34 and autonomic brainstem nuclei35 are
amongst the earliest areas of the brain affected by AD-related tau
aggregation, preceding cognitive symptoms by years, ANS
disruptions represent a compelling opportunity to identify AD
early on.
An important marker of ANS balance is Heart Rate Variability

(HRV), a measure of the time intervals between heartbeats,
resulting from the dual modulation of the heart by the
sympathetic and parasympathetic systems. Due to the bidirec-
tional vagal innervation between the heart and the brain, HRV has
also been put forward as an index of cognitive function and
stress.33 In healthy adults, lower Heart Rate Variability (and thus
suppressed parasympathetic activity) was correlated with cogni-
tive function,36 attention and working memory,33 mental stress37

and social cognition.38 In AD and MCI populations, where
Parasympathetic function is suppressed due to damage to the
cholinergic systems, HRV has been found to be lower than healthy
controls as well as being negatively correlated to the level of
cognitive function.39 Given the ties between HRV and cognition,
the early disruption of the cholinergic and parasympathetic
system as well as its progressive decline in AD, HRV serves as a
compelling marker for AD progression.
The advent and increased prevalence of fitness trackers and

smart watches equipped with photoplethysmography (PPG)
capability set the foundation for widespread passive and
continuous monitoring of users’ heart rate and heart rate
variability.40 Although there are varying levels of validity between
different devices when compared with ECG,41 studies have shown
that in certain conditions (e.g., resting still) and for certain devices,
HRV measurements were accurate enough to be used as detection
tools.42,43 Proof-of-concept studies have used the data from
devices with significant consumer uptake such as Apple Watche
(Apple Inc, Cupertino, CA) and Android Wear (Google Inc.,
Mountain View, CA) to detect conditions passively such as atrial
fibrillation with moderate amounts of accuracy.44,45 Smart rings
equipped with PPG, such as the Oura ring (Oura Health Ltd, Oulu,
Finland), have shown high reliability in measuring HR and HRV
when compared to Electrocardiography (ECG).46 Consumer
Ballistocardiography devices, in the form of sensing pads placed
on the mattress, have also been shown to be capable of passively
measuring HRV47 and detecting arrhythmias48 based on HRV
signals. Another way to probe for the sympathetic nervous system
condition (mainly arousal periods) is to measure skin resistance
that varies with the state of sweat glands using a Galvanic Skin
Response (GSR) sensor.49 A series of wrist-worn devices are
equipped with such sensors, Empatica’s E4 (Empatica, Milan, Italy)
and Verily’s Study Watch (Verily, South San Francisco, CA) have a
validated track record of determining stress/anxiety during
activities. Other emerging heart monitor modalities include the

use of wrist or finger derived ECG from a wristband or a
smartphone (KardiaBand and KardiaMobile, Alivecor, Mountain
View, CA; Apple Watch, Cuppertino, CA), demonstrated to detect
atrial fibrillation and tachycardia.50,51

Sleep patterns. Sensors: PPG, microphone, IMU,
ballistocardiography
A commonly reported feature of AD has been circadian rhythm
disruption in the form of sundowning or sleep fragmentation.
Sleep studies of AD populations have confirmed these phenom-
ena with sleep lab research indicating that patients with AD
experienced more night-time awakenings, less time in REM sleep
and lower sleep efficiency.52,53 Furthermore, the level of sleep
disruption appeared to track with the level of cognitive deficit.53,54

Sleep disruption is corroborated by the biological changes in AD
as the disease attacks the basal forebrain structures of the
cholinergic55 and raphe nuclei of the serotonergic systems34 that
contribute to sleep. Components of these systems are among the
earliest affected brain areas and see changes in the prodromal
stages of AD before cognitive decline.56,57

Indeed, there appears to be a bidirectional relationship between
sleep quality and AD as studies have shown that sleep
fragmentation contributes to developing Tau and AB pathologies,
increasing the risk of developing AD.58 Accordingly, sleep quality
could serve as an important indication of the early stages of AD.
App based and most wrist worn sleep monitors with a few

exceptions, were shown to offer limited reliability at determining
sleep stages when compared to Polysomnography (PSG).59 At the
forefront, the Pulse-On (PulseOn Oy, Espoo, Finland) wearable
device and the Oura Ring, have shown high levels of sleep staging
accuracy,60 and correlation to PSG evaluations.61

Ballistocardiography-based sensing pads can automatically stage
sleep comparatively to PSG or ECG.48,62 Finally, there are consumer
Electroencephalography (EEG) headsets that have similar accuracy
to PSG.63 Implementation of these passive measures to track
abundant amounts of sleep data would allow one to capture the
subtle, long term sleep deviations that could be indicative of AD
related changes long before more blatant cognitive symptoms
manifest.

Neuropsychiatric behavioral disruptions. Sensors: GPS, IMU, Device
Usage Log
Beyond declines in specific cognitive and physiological domains,
Alzheimer’s disease has also been associated with wider-range
disruptions of behavior. Approximately 90% of Alzheimer’s
patients experience at least one neuropsychiatric symptom64 with
a spectrum of resulting behavioral changes such as mood
disruptions, agitation and apathy.65 Apathy is one of the most
common disruptions, affecting up to 90% of patients66 and has
been implicated in patients’ lessened ability to carry out activities
of daily living as well as a decreased motivation to participate in
social activities.64,66 Depressive features are also common with up
to 25% of patients being diagnosed with major depression and
50% experiencing depressive symptoms.67,68 Social withdrawal
and dysphoria can precede diagnosis by years69 and are
commonly seen in MCI populations as an early manifestation of
AD.70 These depressive symptoms are also implicated in the
decreased ability to perform activities of daily living and
disruption of patients’ routines.71 These changes in patient’s life
activities manifest themselves in tangible ways, studies have
shown decreases in the size of patients’ social networks and
frequency of social contact.72 These neuropsychiatric disruptions
cause early impairment to more complex activities of daily living
and can precede the dementia phase.64 Similar decreases in time
spent outside of the house73 and social network sizes72,74 were
seen in MCI populations. While there was some dispute as to the
nature of the relationship between social activity and cognition;
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some studies showing social activity at baseline was a predictor or
risk factor of progression to dementia,72 and that the current level
of social activity was correlated to current level of cognitive
decline.75 Continuously monitoring these complex everyday
activities may demonstrate the behavioral disruptions resulting
from the earliest underlying neurobiological changes.

Depression and anxiety symptomatology. Recently, there has
been increased interest in using passive data from smartphones
and wearables in psychiatry and metal health applications with
depressive symptoms being of key interest.76,77 Mobility features
such as location variance in terms of time and location extracted
from the GPS sensors of smartphones have been shown to
correlate with depressive symptom severity as determined by
questionnaire.78 Actigraphy data from the accelerometers on
wrist-worn wearables were also able to passively distinguish
between subjects with Major Depressive Disorder while passive
actigraphy has also been found to be helpful in establishing an
objective measure of apathy in diminished activity levels.79

Beyond passive measures of physical activity and location, the
smartphone also allows for insight into social activity. Meta-
information on text messages and conversation frequency have
also been correlated with depression severity as well as providing
an objective correlate to the Social Rhythm Metric in Bipolar
Disorder.80 Specific types of smartphone use, non-social (e.g.,
news consumption) and social (e.g., social networking) have been
correlated to anxiety and depressive symptom severity.81 While
more research needs to be performed in the Alzheimer’s space,
these studies indicate the viability of using passive smartphone
use data to provide objective measures of subtle neuropsychiatric
behavioral disruptions.

Driving behavior. AD patients experience spatial confusion and
get lost even when around familiar places, resulting in wandering
behaviors. Although these symptoms present themselves at later
stages of the disease, subtle changes in commuting or executive
function patterns may be detected earlier. For example, driving
pattern features such as reduced speed (at least 10mph slower)
compared to the rest of the traffic, reduced—less than half—
mileage overall and a relative increase in the proportion of
mileage driven close to home was shown in subjects with early
stage dementia.82,83 Other metrics include the repeatability of a
particular commuting pattern, route tortuosity and the consis-
tency of routine locations on a particular day of the week. A
mathematical descriptor of habitual location patterns was
proposed by Eagle and associates, by performing principal
component analysis on the geo-location vectors and extracting
Eigen Behaviors, a digital biomarker of location frequency and
intensity84: longitudinal excursions from these patterns may
indicate an onset of a preclinical manifestation of AD.

Executive function. Sensors: phone usage log, touchscreen
Alzheimer’s Disease has long been defined by its characteristic
decline in cognitive function and thus been evaluated by
neuropsychological measures of the following broad cognitive
domains: Memory, Attention, Executive Function, Language and
Visuospatial Memory.85 Although these impairments have tradi-
tionally been considered a late-stage phenomenon, there is
increasing evidence that cognitive changes in these domains may
occur decades before dementia,86 specifically memory and
executive function,87 and attention.88 Traditionally, these neurop-
sychological evaluations have been performed as test batteries or
active tasks, typically involving an administrator.89 The logistical
burden of administering these tests as well as their susceptibility
to practice effects21 preclude their widespread use in determining
a preclinical individual baseline as well as their use in continuous
sampling to detect longitudinal deviations. In response to these

shortcomings, there has been recent interest in the concept of
digital phenotyping and its applications to mental health and
psychiatry.90

The application of digital phenotyping to neurodegenerative
conditions has already shown promising results. Researchers have
been able to detect users with neurodegenerative conditions such
as Parkinson’s and Alzheimer’s from web search data.91 Research
at digital health company Mindstrong (Palo Alto, CA) has shown
that continuous data from seven days of passive smartphone
interactions can predict performance on traditional assessments
of memory, language, dexterity and executive function.92 How-
ever, digital phenotyping in neurodegenerative conditions is still
in its infancy as groups have yet to establish a clear, functional link
between these passive activities and the cognitive domains of
interest. Nevertheless, there are certain passive digital scenarios
and evolving associated metrics that appear to tie back to
cognitive areas of interest. For example, task-switching or the
ability to shift between multiple goals is a component of executive
function.93 Human Computer Interaction studies have started
examining passive user-specific app re-visitation rates94 as well as
the time-overhead cost from switching between applications95

that can be considered a naturalistic example of task-switching.
Vigilance, or the ability to sustain attention on a task, is a measure
of overall attention70 and studies have been able to correlate level
of alertness to temporal rhythms of application usage.96 While
more work is required to further develop and validate these
measures across different domains of interest, as well as to apply
them in a longitudinal AD study setting, these examples show the
potential of passively interrogating cognitive domains from
continuous user data.

Future work: Alzheimer’s disease forecasting using multiple digital
senses
Each device sensor data stream (e.g., IMU) can be used to define
an overall neurological health metric (e.g., gait symmetry) for a
particular domain (e.g., gross motor control or balance). To date,
there exists a significant amount of individual sensor data→me-
tric→domain→disease validation coming mainly from well-con-
trolled, lab-based clinical observations, some of which are listed in
this review article.
Similar metrics, acquired longitudinally and passively, in-the-

wild (meaning not in a controlled lab setting), using consumer-
grade wearable devices, could produce data that could lead to
domain predictors of AD before the actual clinical manifestation of
the disease. The overall predictor signal is weak, since the changes
in each domain are slow and difficult to separate from normal
decline of ageing. Yet, the promise is to further amplify the signal’s
ability to forecast AD by combining multiple metrics in a
multivariate scoring and, if possible, a detection system. A
multivariate approach was recently used to quantify symptom
severity in Parkinson’s Disease patients based on mobile devices
signals, resulting in a disease severity scoring system.97 Given the
long time required for AD symptoms to fully manifest, a scoring or
classification system could operate by means of anomaly
detection, i.e., between user longitudinal trajectories, or/and by
means of supervised training. Both approaches would require
longitudinal observational studies involving healthy control,
converter (to AD) and confirmed MCI cohorts that allow feature
extraction of metrics, to inform—or train—the scoring or
classification algorithms. In order to establish ground truth in
such studies, validation using existing disease assessment
methods such as cognitive tests, genomic phenotyping, and
ideally longitudinal imaging (volumetric MRI, amyloid PET
imaging, tau PET imaging) would be required.
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DISCUSSION
Given the staggering current and escalating projected costs for
providing care to AD patients, consumer grade technologies able
to detect and monitor, once diagnosed, AD progression represent
an urgent need. When developed to full potential, one can
envision digital phenotyping of AD becoming a digitally
embedded routine practice, triggering a series of interventional
measures.
One of the main questions that emerges with such forecasting

systems is what to do when a signal is detected. While the debate
on the preferred course of action is still on and it involves among
others, regulatory, ethical, legal, data privacy and clinical
considerations, some options involve:
-Notifying the user that there is something out of the normal

with his/her longitudinal rate of progression of neurological
health, so he/she can seek further clinical assessment.
-Providing longitudinal disease-related digital biomarkers to a

healthcare practitioner, to allow for objective and continuous
clinical evaluation of a user.
In parallel, such technologies can be used to establish objective,

personalized baseline reference standards to design innovative
clinical trials that assess the effectiveness of onset delaying or
disease modifying treatment, once available.
An overwhelming amount of work lies ahead before we can

claim forecasting and detection of Alzheimer’s disease especially
in the preclinical phase, using consumer grade devices, passive
data monitoring and analytics. It will require longitudinal, very
large population observational studies, to account for inter and
intra subject variability. It will also require new ways of securely
managing and processing this vast amount of information.
Underscoring the potential for such consumer digital devices to
impact healthcare, the FDA recently issued guidelines98 to provide
a clear path and encourage technology developers in their quest
for efficient digital phenotyping.
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