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The gene networks that comprise the circadian clock
modulate biological function across a range of scales,
from gene expression to performance and adaptive
behaviour. The clock functions by generating endogenous
rhythms that can be entrained to the external 24-h day–
night cycle, enabling organisms to optimally time
biochemical processes relative to dawn and dusk. In
recent years, computational models based on differential
equations havebecomeuseful tools for dissecting andquan-
tifying the complex regulatory relationships underlying
the clock’s oscillatory dynamics. However, optimizing the
large parameter sets characteristic of these models places
intense demands on both computational and experimen-
tal resources, limiting the scope of in silico studies. Here,
we develop an approach based on Boolean logic that
dramatically reduces the parametrization, making the
state and parameter spaces finite and tractable. We intro-
duce efficient methods for fitting Boolean models to
molecular data, successfully demonstrating their appli-
cation to synthetic time courses generated by a number
of established clock models, as well as experimental
expression levels measured using luciferase imaging. Our
results indicate that despite their relative simplicity, logic
models can (i) simulate circadian oscillations with the

correct, experimentally observed phase relationships
among genes and (ii) flexibly entrain to light stimuli,
reproducing the complex responses to variations in day-
length generated by more detailed differential equation
formulations. Our work also demonstrates that logic
models have sufficient predictive power to identify optimal
regulatory structures from experimental data. By present-
ing the first Boolean models of circadian circuits together
with general techniques for their optimization, we hope
to establish a new framework for the systematic modelling
of more complex clocks, as well as other circuits with dif-
ferent qualitative dynamics. In particular, we anticipate
that the ability of logic models to provide a computa-
tionally efficient representation of system behaviour could
greatly facilitate the reverse-engineering of large-scale
biochemical networks.
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1. INTRODUCTION

Circadian rhythms are the fundamental daily oscillations
in metabolism, physiology and behaviour that occur in
almost all organisms, ranging from cyanobacteria to
humans [1]. The gene regulatory networks (GRNs), or
clocks, that generate these rhythms regulate the expression
of associated genes in roughly 24-h cycles. Circadian net-
works have been studied in a variety of experimentally
tractablemodel systems, revealing that different organisms
share structurally similar circuits based around inter-
locking sets of positive and negative gene–protein
feedback loops [2–4]. In mammals, circadian rhythms are
being increasingly recognized as important to healthy
phenotypes, playing a role in ageing [5], cancer [6], vascular
disease [7] and psychiatric disorders [8], as well as
modulating innate immunity [9–11].

Clocks synchronize to their environment by using light
and temperature to regulate the levels of one or more com-
ponents of the feedback loops. This ensures that key
biological processes are optimized relative to dawn and
dusk, benefiting growth and survival [12,13]. For the
clock to provide such an adaptive advantage, the phase
must change appropriately when the clock is subject to
regular perturbations—particularly seasonal changes
in daylength (the photoperiod ). However, as well as
exhibiting flexible responses to variations in the input
light signal, the clock must also exhibit robustness to ir-
regular perturbations, such as genetic mutations and the
intrinsically stochastic environment of the cell.

Temperature also plays a critical role as an environ-
mental time cue. Across different species, the clock is
relatively insensitive to temperature in that the period
of free-running oscillations typically has a Q10 value
close to 1 [14–16]. This latter phenomenon, known as
temperature compensation, is generally considered to
be one of the defining properties of the circadian clock
and has been suggested to be a key requirement for
stability of the clock’s phase relationship under seasonal
temperature variations [17,18].

The ability of ordinary and delay differential
equations (DEs) to reproduce the underlying continuous
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dynamics of biochemical networks, and to parametrize
individual reactions has led to the construction of DE
models in a number of circadian organisms. These
include the fungus Neurospora crassa [19–25], the fly
Drosophila melanogaster [26–29], the mammal Mus
musculus [30–33] and the higher plant Arabidopsis
thaliana [34–38]. Such models have proved useful in
uncovering the general design principles of circadian
oscillators, as well as providing a quantitative framework
within which to interpret experimental results [4,38]. In
particular, novel insights have been gained into the
mechanisms promoting robustness with respect to photo-
period changes [25], temperature fluctuations [18,23] and
molecular noise [39–41]. The DE models have also
yielded experimentally testable predictions that have
led to the discovery of novel circadian regulators [36].

However, a significant drawback of the DE approach
is that the values of the kinetic parameters controlling
each individual reaction have to be specified, and for
clocks these are typically unknown. When constructing
a DE model, it is therefore necessary to calculate the
particular combination of parameter values giving an
optimal fit to experimental data [18,25,34–37]. For
realistic systems involving large numbers of reac-
tions, this optimization procedure is computationally
very expensive making exhaustive parameter searches
intractable. With increasing parameter numbers also
comes a need for data with which to constrain the
optimization, placing a greater demand on experiment
in terms of finance, time and ethics. These concerns
mean that there is a pressing need for modelling
approaches that minimize the number of parameters
required, while adequately capturing the essential
dynamical behaviour of the system of interest.

Here, we develop just such an approach, based on
Boolean logic. In Boolean models, the activity of each
gene is described with a two-state variable taking the
value ON (1) or OFF (0), meaning that its products
are present or absent, respectively. Biochemical inter-
actions are represented by simple, binary functions
that calculate the state of a gene from the activation
state of its upstream components [42–50]. This approxi-
mation dramatically reduces the state–space of the
system, mapping the infinite number of different con-
tinuous system states in a DE model to a finite
number of discrete states in the Boolean equivalent.

An additional important advantage of using a logic
approach is that the total number of parameters is
substantially reduced. For a given gene, the full set of
reactions determining its state through a particular
interaction is parametrized by a single signalling
delay, representing the net time taken for these
reactions to cause a change in state. Fitting to exper-
imental data introduces an associated discretization
threshold, with expression levels above the threshold
taken to correspond to the ON state of the gene and
levels below it to the OFF state [46–48,50]. In fitting
a particular experimental dataset, each delay becomes
a multiple of the sampling interval, while only a
bounded subset of thresholds will yield distinct Boolean
expression patterns. This means that the total number
of parameter combinations is finite and can be enumer-
ated. Thus, by building a logic version of a DE model,

an infinite model can be converted into a finite one
with fewer parameters to be optimized. This extends
the scale and complexity of GRNs that can be studied
by Boolean models far beyond the practical scope
of DEs.

In this work, we introduce the first Boolean models of
circadian networks. By constructing logic analogues of a
number of established DE clock models, we demonstrate
that in each case the Boolean models are capable of
accurately reproducing the higher-order properties—
particularly photoperiod responses—of their DE
counterparts. This suggests that the complex, biological
signal transduction simulated by the DE models can be
captured in Boolean equivalents possessing significantly
smaller parameter sets. We introduce a general method
for optimizing Boolean models that avoids the qualitat-
ive and often subjective terms characteristic of the cost
functions used to fit the parameters of large DE clock
models. Furthermore, we show that our fitting algorithm
is capable of determining the optimal Boolean model
configuration associated with a given circuit topology
and experimental dataset. In particular, our algorithm
successfully predicts the recently discovered repressive
action of the circadian gene TOC1 on LHY in the central
feedback loop of the Arabidopsis clock [51].

Taken together, our results show that Boolean
models can quantitatively distinguish between a range
of putative regulatory structures on the basis of the
system dynamics. This identifies Boolean logic as a
viable technique for reverse-engineering circadian
networks, complementing approaches based on DEs.
Moreover, our work also suggests novel hybrid model-
ling approaches based on employing Boolean models
as a first step towards the construction of more detailed
DE formulations. More generally, we propose that our
methodology provides an efficient way of systematically
modelling complex signalling pathways, including
other oscillatory circuits and systems characterized by
steady-state dynamics.

2. RESULTS

2.1. Logic models employ significantly fewer

parameters

We selected four recent circadian oscillator models of
increasing complexity with which to assess the
suitability of a Boolean formulation. The simplest of
these was a Neurospora model based on a single
negative feedback loop with a single light input [19]
(figure 1a). This is represented by three DEs para-
metrized by 13 kinetic constants. The second model
was a modified version of the 1-loop Neurospora circuit
in which there is a pair of negative feedback loops
associated with different isoforms of the active protein
[18] (figure 1b). The extra feedback loop results in five
DEs parametrized by 18 kinetic constants. The third
model was an Arabidopsis circuit based on a pair of
interlocking feedback loops with three light inputs [35]
(figure 1c). It is described by 13 DEs together with
64 kinetic constants. The final model considered was a
3-loop Arabidopsis circuit obtained by adding an extra
feedback loop and light input to the 2-loop system [36]
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(figure 1d). This yields 16 DEs parametrized by
80 kinetic constants.

In a Boolean model, an interaction, j, between two
components Xi and Xk is quantified by the corresponding
signalling delay tj. This is the time taken for the bio-
chemical processes represented by j to convert a change
in the state of Xi into a change in the state of Xk

(electronic supplementary material, figure S1). The sig-
nalling delays are thus parameters that determine the
dynamics of the model, with different combinations of
delays yielding different attractor states (e.g. steady-
states or limit cycles) [43,44,52,53]. In order to relate
the discrete dynamics to the continuous variations in
expression level observed experimentally, it is necessary
to introduce a discretization process. A hypothetical

time course is shown in the electronic supplementary
material, figure S2a; and the result of applying a particu-
lar discretization threshold is shown in the electronic
supplementary material, figure S2b. In the general case,
the choice of threshold is dependent on the effective
range of activity and expression that is critical for
signal propagation. As a result, each threshold also
becomes a parameter of the logic model [46,47,50].

For logic descriptions of the circadian networks
shown in figure 2, each edge is parametrized by a signal-
ling delay tj, and each vertex by a threshold Ti. Thus, a
network is characterized by the vectors t ¼ (tj) and
T ¼ (Ti). In figure 3, we compare the total number of
parameters in the logic and DE versions of each net-
work (see also the electronic supplementary material,
table S1). We can see that dramatically fewer par-
ameters are required in a logic description compared
with the corresponding DE formulation. Indeed for
the largest network considered, 3-loop Arabidopsis,
the Boolean description reduces the number of
parameters by a factor of 4.

2.2. Logic model configurations consistent with

differential equation models are optimal

In identifying the logic models that best reproduce the
corresponding DE dynamics, we considered variations
to the structures of the networks shown in figure 1.
Starting from the abstract topologies of figure 2, each
edge is activating or inhibiting, and where two or
more edges lead into a vertex, the corresponding inhi-
bition/activation signals are combined to determine
the state of the gene.

In the Boolean formalism, the manner in which regu-
latory signals affect a gene’s expression level is
represented by the corresponding logic gate. This is a
binary function that specifies the current state of the
gene, ON (1) or OFF (0), for each possible combination
of input states [46,54]. For genes with a single input,
there are two possible functions for which the output
varies with the input: the identity gate, in which the
output follows the input (0 ! 0 and 1 ! 1); and the
NOT gate, in which the input is inverted (0 ! 1 and
1! 0). These represent activation and repression of
the gene by its regulator, respectively. Genes with two
inputs are commonly modelled using either an AND
or an OR gate [46,49,54]. For simplicity, we considered
each multi-input gate to be a composition of ANDs and
ORs (see §4 for further details). The particular combi-
nation of logic gates used to model a network is
referred to here as its logic configuration (LC ): this
encodes the regulatory structure of the network in a
compact fashion.

It follows that each abstract topology of figure 2 gives
rise to 2EþM possible LCs, where E is the number of
edges, and M is the number of vertices with more
than one input. The total number of possible LCs is 4
for 1-loop Neurospora, 32 for 2-loop Neurospora, 256
for 2-loop Arabidopsis and 2048 for 3-loop Arabidopsis.
In each case, a subset of these LCs is consistent with the
pattern of activation and inhibition in the correspond-
ing DE model. That there can be more than one such
LC in each case is due to the choice of AND or OR

FRQ
(a) (b)

(c)
(d )

FRQ2

FRQ1

FRQ FRQ

L1

L1

L4

L1

L1

L2 L3 L2 L3

LHY

PRR

LHY

TOC1
TOC1

X

X

Y
Y

Figure 1. Circuit diagrams for the clock models. Genes are
boxed and arrows denote regulatory interactions. Diamonds
represent light inputs. (a) The single-loop Neurospora model
[19]. FRQ protein represses production of frq transcript.
Light acts on the network by upregulating frq transcription.
(b) The two-loop Neurospora model [18]. Two isoforms of
FRQ are produced which both repress frq transcription.
Light upregulates frq as in diagram (a). (c) The two-loop
Arabidopsis model [35]. TOC1 activates its repressor LHY
(combining LHY and CCA1) indirectly through a hypotheti-
cal gene X, forming the central negative feedback loop of the
circuit. LHY is directly upregulated by light while light
indirectly activates TOC1 via a second hypothetical gene Y,
posited to have two distinct light inputs. Y activates TOC1
transcription and TOC1 represses Y, forming a second, inter-
locked feedback loop. (d) The three-loop Arabidopsis model
[36]. The additional PRR gene (combining PRR7 and
PRR9) is light-activated and represses LHY transcription.
LHY upregulates PRR, creating a third feedback loop.
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where a vertex has multiple edges leading into it. For
Neurospora, the 1-loop circuit has a unique LC consist-
ent with the DE model, whereas for the 2-loop circuit,
there are two DE LCs. The 2- and 3-loop Arabidopsis
networks yield four and eight DE LCs, respectively.

For a given logic model, we would expect the DE LCs
to most closely reproduce the DE dynamics. To test this
hypothesis, we optimized LCs to synthetic experimental
data obtained from the DE system, and then compared
their predictive performance. For each LC, the match to
the continuous dynamics was quantified by finding the
combinations of parameters (signalling delays and dis-
cretization thresholds) that minimized a quantitative
cost function. In order to be able to objectively compare
the ability of the Boolean models to reproduce

experimental time courses against that of their DE
counterparts, we employed a cost function that closely
mirrored those commonly used to optimize continuous
models [18,25,34–36,38]. The cost function we used
measured the goodness-of-fit of each logic model to syn-
thetic data generated in both 24 h light–dark (LD)
cycles and the appropriate free-running light regime
(continuous dark, DD, for Neurospora; continuous
light, LL, for Arabidopsis). At each vertex, the cost
score was calculated as the correlation between the dis-
cretized time series for the downstream species and the
time-delayed predicted output calculated from the dis-
cretized data for the upstream species. Scores were
summed across all vertices and light regimes to give
the final cost value (see §4 for details).
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Figure 2. The abstract topologies for the logic representations of the clock circuits shown in figure 1. Genes are boxed and arrows
denote regulatory interactions. (a) The single-loop Neurospora model. (b) The 2-loop Neurospora model. (c) The 2-loop Arabi-

dopsis model. (d) The 3-loop Arabidopsis model. Numerals l index logic gates gl [ f0,1g that can be varied to generate different
regulatory structures. Numerals at the end of an arrow index the single-input gate defining that interaction. Numerals within
boxes index logic gates governing double-input interactions. Diamonds represent light inputs, with the corresponding fixed
gates in ovals indicating how these affect the target species (e.g. in (c), L2 and L3 are combined with an OR gate after which
the resulting bitstring is combined with the output of Y through an AND gate; see §4 for full details). tjs represent the circuit
delays and Tis the discretization thresholds used to fit continuous data.
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After ranking the optimized LCs by score, we then
assessed whether the top-ranking LCs comprised
viable clock circuits by checking that they were capable
of (i) generating self-sustained oscillations with a circa-
dian period in constant conditions and (ii) entraining to
LD cycles over a realistic range of photoperiods [55].

For the Neurospora and 2-loop Arabidopsis logic
models, the full set of LCs was fitted to synthetic
data. The best-performing LCs for these networks are
shown in figures 4 and 5a. It can be seen that the optim-
ization method produces a clear separation of the LCs
by score. Moreover, for each network, one of the DE
LCs is uniquely identified as the optimal circuit yielding
a viable clock. In the case of 3-loop Arabidopsis, we con-
sidered the subset of configurations obtained by setting
the gates common with the 2-loop Arabidopsis circuit to
their optimized values. This mirrored the construction
of the 3-loop DE model which was derived from the
2-loop system by adding an additional feedback loop
while fixing all other interactions, and then optimizing
the parameters of the new loop [36]. Constraining the
structure of the circuit in this fashion yielded eight poss-
ible LCs (the two edges in the LHY–PRR loop
described as activation or inhibition and the AND/
OR interaction at LHY; figure 2d). Figure 5b shows
that in this system, as for the other models, a DE LC
emerges as the optimal circuit.

2.3. Optimal Boolean models have biological

time-series characteristics

The time series generated by the optimal configurations
in LD cycles are shown in figure 6. The corresponding
DE simulations are also plotted for comparison.

In each case, it is clear that the Booleanmodels capture
the same qualitative dynamics as their DE counterparts.
Different species are switched on and off relative to one
another with phases that match the patterns of rising
and falling expression in the corresponding continuous
time series. Moreover, the delays between the switching

times are similar to the phase differences between the
peaks and troughs of the DE solutions.

It should be noted that both Boolean Arabidopsis
models reproduce the acute light response in the Y
gene, as well as the circadian response in Y around
dusk (cf. figure 6e–h). This demonstrates the ability
of the Boolean circuits to simulate biochemical pro-
cesses that occur on different time scales within the
same system.

The optimal LCs give equally good matches to the DE
dynamics in simulated free-running conditions, as can be
seen in the electronic supplementary material, figure S3.

2.4. Optimal Boolean models have biological

photoperiodic behaviour

In order to assess the extent to which the Boolean
models reproduce the DE dynamics in a more global

90

80

70

60

50

40

30

n
u
m

b
er

 o
f 

p
ar

am
et

er
s

20

10

0

1
-l

o
o
p

N
eu

ro
sp

o
ra

2
-l

o
o
p

N
eu

ro
sp

o
ra

2
-l

o
o
p

A
ra

b
id

o
p
si

s

3
-l

o
o
p

A
ra

b
id

o
p
si

s
Figure 3. The number of parameters required for each
clock configuration as DE models (white bars) and logic
models (black bars).

1.0
(a)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 3 0 2

co
st

 f
u

n
ct

io
n

 s
co

re
, 
C

N
c

co
st

 f
u

n
ct

io
n

 s
co

re
, 
C

N
c

(b)

logic configuration (LC), G

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1

5
1

1
3

1
1

3 7
1

4 3 9 5
2

0
2

1
2

3
1

0 0 6
2

9 4
2

2
3

0 2
1

2 1

Figure 4. The results of exploring the logic configurations (LCs)
belonging to the abstract topologies of the (a) 1-loop and (b) 2-
loop Neurospora models. Cost scores are shown for the optimal
fit of each LC to synthetic data. The LCs are indexed by their
decimal representations for brevity (see §4 for details). Here, a
score of 0 indicates the best fit and a score of 1 the worst fit. Tri-
angles indicate LCs for which the Boolean model yields a viable
clock. LCs mirroring the activation and inhibition pattern of the
correspondingDEmodels in figure 1a,b are plotted in red. In (a),
one such LCmirrors the correspondingDEmodel,G ¼ (01), and
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G ¼ (00111), is identified as the optimal configuration giving a
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FRQ isoforms can independently inhibit transcription (the
corresponding two-input gate is of the AND type).
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and quantitative fashion, we compared phase changes
over a range of biologically realistic photoperiods. In
the Boolean framework, the times at which solutions
switch between 0 and 1 emerge as natural phase
measures. For continuous time courses—such as those
generated by DE models—the point in the circadian
cycle at which the expression level of a molecular species
decreases below a set threshold can be employed as a
phase marker [25,56,57]. This suggested using the
time at which each species decreases below its discreti-
zation threshold as a phase measure for the DE

simulations, and the time of the 1 ! 0 transition as
the equivalent marker in the Boolean models.

The phase–photoperiod relationships computed in
this fashion are shown for the Neurospora models in
figure 7a,b. For both networks, the photoperiodic be-
haviour of the Boolean and DE models is very close:
indeed for the 1-loop network, they are exactly equival-
ent. Figure 7c,d plots the photoperiod simulations
obtained with the Arabidopsis circuits. Here too, the
phase–photoperiod profiles are very similar, with the
addition of the LHY–PRR loop to the 2-loop model
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causing a transition from a predominately dusk-locked
system to a dawn-locked one [57]. In particular, the
Boolean 2-loop Arabidopsis circuit exactly reproduces
the dual light response in the Y gene, in which the
acute peak tracks dawn, and the circadian peak tracks
dusk. This suggests that the logic circuits possess suffi-
cient dynamic flexibility to perform the complex
integration of environmental signals that is a central
property of circadian systems.

2.5. Boolean models can determine circadian

network structure from experimental data

The success of the logic models in recovering the
correct DE configurations from synthetic data suggested
that for a fixed abstract topology, our optimization pro-
cedure has the capacity to determine the logic network
most consistent with a given dataset. We tested this

finding further by optimizing the 3-loop Arabidopsis
logic circuit to highly sampled experimental time series
recorded using luciferase (LUC) imaging in constant
light from a wild-type strain [57]. All possible LCs were
considered, corresponding to a network inference carried
out assuming no prior biological knowledge. The cost
function optimized was the same as that used for fitting
to synthetic LL data. As previously, viable clock circuits
were taken to be those yielding autonomous limit cycles
with circadian periods.

The results of fitting to experimental data are pre-
sented in figure 8a. It can be seen that the second
highest-ranking LC giving a viable circuit is a DE con-
figuration. This configuration, GDE, is in fact the same
as that previously determined to be optimal from the
synthetic Arabidopsis datasets. Moreover, figure 8b
shows that GDE emerges as the top-ranking clock con-
figuration if the regulatory structure is constrained to
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incorporate the central LHY–TOC1 negative feedback
loop of the corresponding continuous model. Interest-
ingly, the optimal configuration, GOPT, differs from
GDE in the sign of the TOC1–LHY interaction, with
TOC1 repressing LHY in GOPT as opposed to activat-
ing it (compare electronic supplementary material,
figure S4a,b). This result is consistent with the recent
experimental characterization of the LHY–TOC1 cir-
cuit as a double-negative feedback loop, rather than
the single-negative loop assumed in the 2- and 3-loop
DE models [51].

Figure 9b,c shows the simulations of the free-running
clock obtained from the optimal and DE configurations,
respectively. For both LCs, the simulated oscillation
period and timing of gene expression are close to that
of the natural system (cf. figure 9a). This can be seen
clearly by comparing the durations for which each

gene is ON in the two Boolean models with the
corresponding peaks in the continuous data.

3. DISCUSSION

3.1. A new approach to quantitative circadian

modelling based on Boolean logic

Circadian clocks have become popular systems for study-
ing the relationship between gene–protein dynamics and
phenotype. The molecular machinery underlying these
networks has been relatively well characterized, and this
has led to great interest in developing predictive compu-
tational models of the clock. Such models are usually
formulated as sets of DEs. The high level of biochemical
detail afforded by this approach has allowed DE models
to successfully address a range of issues regarding
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the functional relationship between the architecture of the
clock and circadian homeostasis. One homeostatic mech-
anism that has been comprehensively investigated from
a theoretical perspective is temperature compensation.
By assuming that certain subsets of a circuit’s kinetic par-
ameters are temperature-dependent, temperature has
been incorporated into a number of circadian DE
models, ranging from minimal circuits built on the
Goodwin oscillator [15,23,58] to more detailed formu-
lations that explicitly model the underlying biochemical
reactions [18,24]. These models have provided new
insights into the possible mechanisms that lead to circa-
dian mutants with altered compensation properties, as
well as suggesting generic motifs that may facilitate the
tuning of the phase–temperature relationship.

However, clock models based on DEs are character-
ized by large numbers of kinetic parameters, the
values of which are typically unknown. Optimizing
these to experimental data is a major computational
bottleneck, which imposes a hard bound on the maxi-
mum system size that can be studied. In addition, as
the fitting problem is typically highly underdetermined

and involves noisy, undersampled experimental data,
robust optimization can require the construction of
cost functions targeting specific qualitative features of
the data, introducing a degree of arbitrariness to the
fitting procedure [18,25,34–36].

The need for minimal clock parametrizations to
address these issues has been recognized elsewhere in
the literature. For example, recent Neurospora work
has shown that it is possible to use a simple two-
parameter function to represent all the intermediate
processes between the expression of a clock gene and
its action on a downstream target, while still maintain-
ing sufficient flexibility to accurately simulate biological
temperature and photoperiod responses [18,25].

An alternative technique for modelling GRNs is pro-
vided by Boolean logic. By assuming discrete expression
levels, Boolean models provide an even greater
reduction in complexity, albeit at the cost of reduced
biochemical precision. Previous studies have exploited
this reduction to study GRN state–space structures
[48,59,60], and to introduce probabilistic models that
parametrize statistical transitions between states
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[45,61]. The different limit cycles enumerable by a single
Boolean GRN have been interpreted in some models as
examples of cell differentiation [62,63], making limit
cycle properties of special interest. Elsewhere, Boolean
studies have focused on the regulatory logic underlying
transcription [64–66], the immune response [44,53] and
apoptosis [49].

Here, we have presented the first models of biological
clocks based on the Boolean formalism. We constructed
logic versions of four DE models simulating circadian
rhythms in the organisms N. crassa and A. thaliana.
To derive the best logic representations, both regulatory
structure (LC) and parameters (signalling delays and dis-
cretization thresholds) were optimized to synthetic
experimental data generated from the DEs. In each
case, we found that the LC yielding the best fit to data
was consistent with that of the corresponding DE
system. This suggested that the Boolean models were
capable of identifying the particular combination of acti-
vating and inhibiting elements best able to account for a

set of experimental expression patterns (figures 4 and 5).
We confirmed this hypothesis by successfully applying
our optimization algorithm to real Arabidopsis LUC
data (figure 8). These results demonstrate that the
logic models possess sufficient predictive power to per-
form biological network inference, despite their relative
simplicity. Moreover, the optimization to LUC data high-
lights the importance of network structure in determining
dynamic behaviour [67,68]. This optimization gave rise to
a pair of putative 3-loop network architectures with
distinct parameter values that generated very similar
expression time series (cf. figure 9b,c and electronic
supplementary material, figure S4). One of these architec-
tures matched the 3-loop Arabidopsis DE model. It
therefore contains theDEmodel’s core LHY–TOC1nega-
tive feedback loop, which was based on an experimental
study that demonstrated the repression of TOC1 by
LHY while also inferring the activation of LHY by
TOC1 [69]. Significantly, the other architecture—which
gave the best fit to data—agreed with more recent bio-
chemical work showing that TOC1 is in fact a repressor
of LHY [51]. This optimal architecture is also consistent
with a complementary computational study showing
that an expanded version of the 3-loop DE model
incorporating a negative TOC1–LHY interaction yields
more accurate simulations of TOC1 knockout and
overexpression mutants [70].

We also found that although the cost function used
to fit synthetic data only assessed goodness-of-fit in
simulated 12:12 LD cycles, the logic models gave very
good fits to the DEs in long and short days
also, closely reproducing the relationships between
photoperiod and expression phase (figure 7). The
coordination of biochemical activity with the timing
of dawn and dusk is a key system-level property that
can be used to assess the relationship between the
structure of a circadian network and its evolutionary
flexibility [57]. Our photoperiod simulations indicate,
somewhat surprisingly, that this property can be
accounted for by significantly reduced dynamic models
possessing much smaller parameter sets. In particular,
the combined dawn- and dusk-tracking observed in
the 2-loop Arabidopsis DE model (figure 7c) is accu-
rately replicated by its logic formulation which has less
than one-quarter the number of parameters. A similar
reduction was observed for 3-loop Arabidopsis, with
the 80 parameters describing the DE models decreasing
to 20 in its Boolean equivalent (electronic supplemen-
tary material, table S1). The ability of simple, discrete
models to simulate biologically realistic photoen-
traiment may also have important implications for
the nature of circadian signal processing, in addition to
being interesting from a modelling perspective. Speci-
fically, it is consistent with hypotheses based on
experimental data suggesting that the mechanism by
which daylength and light intensity information is trans-
mitted to output pathways may be partly digital in
nature [71].

It should be noted that despite the success of the
logic models in reproducing light responses, the coarser
representation of network dynamics they provide means
that the reproduction of certain circadian properties
poses problems for the Boolean approach. A particular
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Figure 9. Simulations generated by the optimal fits of the
3-loop Arabidopsis model to experimental data. (a) Exper-
imental expression profiles for the genes CCA1, TOC1, GI
and PRR9 in free-running conditions (LL). Expression levels
were determined using LUC reporter gene imaging constructs
and have been normalized to lie between 0 and 1. (b) The
equivalent Boolean time series generated by the logic con-
figuration GOPT yielding the best fit to data. (c) Boolean
expression profiles for the highest-ranked configuration GDE

incorporating the central LHY–CCA1 negative feedback
loop of the DE model. In all plots, different components are
slightly offset from one another so they can be distinguished
more easily. The time step used for solving the logic model
was 1.5 h, equal to the data sampling interval.
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restriction of note relates to the modelling of tem-
perature compensation. Temperature can be readily
introduced into any DE model by following the method-
ology originally introduced by Ruoff [72,73]. In this
scheme, the temperature dependence of a kinetic par-
ameter is assumed to be governed by the Arrhenius
relation. This leads to a simple balance equation for
the corresponding activation energies and control coef-
ficients which, when satisfied, guarantees a near-zero
period-temperature derivative at the balance point. In
a Boolean model, the parameters that determine the
free-running period tFR are the discrete delays tj, and
so simple balance equations can be derived from the
form of the function determining the dependence of
tFR on the tjs. For example, in the 2-loop Neurospora
model, it can be shown that tFR ¼ t1 þ t2 þ t3 þ t4.
Thus, compensation can be achieved simply by choos-
ing the temperature dependence of each delay tj, so
that their sum is constant at each point over the
range of interest. However, as the tjs are generic par-
ameters which in each instance summarize several
biochemical processes, any balance equation derived
in this manner will not in general be grounded in
physical chemistry, reducing its biological relevance.

3.2. Computational advantages of the

Boolean formulation

In addition to providing a more compact parametriza-
tion, a significant strength of the logic modelling
approach is that it greatly reduces the complexity of
the optimization procedure itself. This enables optimal
configurations and delay–threshold combinations to be
distinguished with a greater objectivity. The critical
simplification afforded by the Boolean formulation is
that the cost score is computed from bitstrings, which
take the value 0 or 1, rather than data that vary over
a much broader range of values. This removes the
need for ad hoc cost function terms for normalizing
the data and robustly computing period and phase.
Indeed, the cost function we employed in this work
was extremely simple, computing the correlation
between the predictions of the model and the corre-
sponding discretized experimental data at each vertex.

A second important simplification relates to the
structure of the parameter space. In DE models, each
interaction delay is dependent on processes that occur
over a range of time scales (e.g. transcription, trans-
lation, degradation, etc.). This means that as well as
being uncountably infinite, the parameter space can
cover several different orders of magnitude, making it
difficult to establish a priori bounds. In contrast, each
signalling delay in a logic model is constrained to be a
multiple of the data sampling interval tS, and is
bounded above by the maximum possible time tMAX

over which the corresponding interaction can occur.
tMAX is itself bounded by the duration of the experimen-
tal measurements and can be further restricted on the
basis of biological knowledge (here, the free-running
period was used to bound all delays—see §4 for details).
The set of possible signalling delays is thus finite. The
set of possible discretization thresholds is also finite as
varying the threshold for a given species will generate

a set number of different binary time series, meaning
it is only necessary to consider thresholds for which
distinct bitstrings are obtained.

For logic models, the parameter space as a whole is
therefore finite, and can be objectively bounded. Fur-
thermore, for a fixed abstract topology, the set of all
possible LCs is also finite; it is simply equal to the set
of possible Boolean functions. This means that it is, in
principle, possible to comprehensively search across all
possible regulatory structures and parameter combi-
nations to determine the best fit to data. Such a
search is impossible with DE systems. Furthermore,
searching across different patterns of activation and
inhibition for a DE model is often problematic as it
requires some a priori assumptions to be made regard-
ing the underlying biochemical mechanisms; e.g.
specification of which reactions may be cooperative
and the ranges of the corresponding Hill coefficients
[18,25,34–36]. In practice, however, the number of poss-
ible network and parameter combinations in a Boolean
formulation can become too large for a complete search
with the computational resources available, making it
necessary to constrain the optimization.

3.3. Refining the optimization protocol

Here, in order to ensure computational tractability, we
subsampled the delay–threshold space, while also fixing
the parameters controlling the impulse light inputs. In
addition, we restricted ourselves to a subset of logic cir-
cuits by assuming that (i) multiple light inputs to a
gene are combined with an OR gate and (ii) the net
light signal directly modulates the state of the gene
through either an AND or an OR gate, depending on
the free-running light regime (figure 2). Of course not
all possible circuits will be biologically reasonable ones
(e.g. any circuit for which gates with light inputs uni-
formly output 0 or 1 would be unviable). Nonetheless,
it is reasonable to expect that some interactions may
be more accurately modelled by gates that are not of
the simple AND/OR type [64], meaning that better
performing LCs may have been overlooked.

In view of these restrictions, the fact that our optimal
Boolean circuits match the dynamics of their target
datasets, both synthetic and experimental, is very
encouraging. Indeed, we anticipate that it should be
possible to find circuit configurations and parameter
sets giving good fits to data over a broader range of gen-
etic and environmental perturbations. For example, our
Boolean 3-loop Arabidopsis model shows consistency
with much of the photoperiodic behaviour of its DE
counterpart (figure 7d). However, it does not reproduce
the phase response observed in the DE model as photo-
period is decreased, for which some components switch
between dawn- and dusk-dominance in a complex
manner [57].

A probable contributing factor is that our current
optimization method involves computing the score at
every parameter combination over a fixed lattice. This
can be inefficient, particularly where the stoichiometry
of an interaction and/or its molecular dynamics require
the density of interacting species to accrue beyond a
certain value before the interaction is statistically
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likely to occur. In such cases, the optimal threshold
choice for the discretization is likely to be found
within a narrow band of possibilities. Furthermore,
high threshold resolutions can be required to resolve
topological degeneracies in the cost function which
make optimal networks difficult to distinguish (see the
electronic supplementary material, §S1.2). The accu-
racy of the optimization could thus be increased by
employing logic variants of global search methods
capable of providing a more computationally efficient
exploration of the parameter space, such as evolution-
ary algorithms [74]. This would increase the predictive
power of the models, better positioning us to address
features such as the dawn and dusk switching in shorter
photoperiods observed in the 3-loop model.

3.4. Future directions

Finally, we note that there are many promising avenues
for further developing the approaches introduced in this
study. From a theoretical perspective, there is scope for
extending established methods for analysing Boolean
models. Of particular interest are techniques for deter-
mining the simplest inequalities involving linear
combinations of the time delays that are required to tra-
verse a given path through the state–space [44,52,53].
In the context of circadian models, this would involve
developing general methods for deriving linear inequal-
ities that result in free-running cycles with the target
period. As the computational demands of optimization
grow exponentially with the number of parameters to be
fitted, restricting the search to the corresponding sol-
ution set would be expected to dramatically reduce
the computational load.

More generally, hybrid logic/DE algorithms would
see Boolean methods used firstly to determine the opti-
mal model configuration from data, and then to identify
the regions of parameter space within which an equival-
ent DE model is likely to give a good fit. This would
exploit the ability of logic models, demonstrated in
this work, to generate a coarse, but quantitative rep-
resentation of the system dynamics in a systematic
and efficient manner. We anticipate that regulatory
networks of much greater complexity than those con-
sidered here could be quantitively modelled using such
an approach.

4. MATERIAL AND METHODS

4.1. Datasets used for model fitting

In order to incorporate some of the variability in
expression levels characteristic of real experimental
data, synthetic datasets were generated using the var-
iant of Gillespie’s stochastic simulation algorithm
(SSA) introduced by Gonze et al. [39]. Fits to determi-
nistic data obtained from direct integration of the DEs
gave very similar results (data not shown). However,
the stochastic datasets yielded a clearer separation
between LCs, most likely owing to the lifting of topolo-
gical degeneracies. For all circuits, final analyses
were therefore restricted to the results obtained with
stochastic time courses.

In generating the synthetic time courses, the scaling
(or extensivity) parameter V was set close to the mini-
mum value yielding self-sustained, unforced oscillations
in each case. The final values used for simulations were
1-loop Neurospora, V ¼ 25; 2-loop Neurospora, V ¼ 50;
2- and 3-loop Arabidopsis, V ¼ 1000. Time series
were generated for five cycles in both entrained (LD
12:12) and free-running conditions (DD for the Neuro-
spora models; LL for Arabidopsis). This choice mirrors
the combination of experimental datasets typically
chosen for parameter optimization in computational
circadian studies [18,25,34–36,38]. Time series were
then subsampled every 0.5 h to give the data used
for model fitting. Plots of the synthetic LD datasets
are shown in the electronic supplementary material,
figure S5.

Experimental gene expression levels were measured
using LUC imaging, carried out as previously described
[16]. Images were recorded using Hamamatsu C4742-98
digital cameras operating at2758C under the control of
WASABI software (Hamamatsu Photonics, Hamamatsu
City, Japan) with a sampling interval of 1.5 h. Biolumi-
nescence levels were quantified using METAMORPH

software (MDS, Toronto, Canada). The resulting
expression profiles were detrended for amplitude and
baseline damping using the mFourfit function of
BRASSv3 [35]. The detrended time series can be seen
in figure 9a.

4.2. Implementing circadian networks in

Boolean logic

For n biochemical species, let Xi(t) [ f0,1g denote the
activity of species i at time t, where t is a multiple, ktS,
of the sampling interval tS. The update rule is then
expressed as

XiðtÞ ¼ siðX1ðt % ti1Þ; . . . ;Xnðt % tin Þ;

L1ðt % tNþ1Þ; . . . ;Lmðt % tNþmÞÞ: ð4:1Þ

Here, the Lks represent external light inputs to the cir-
cuit and t1, . . . , tNþm are the signalling delays, with
tij [ ft1; . . . ; tNg for all i,j. Assuming a 24 h day and
writing tDAWN and tDUSK for the times of dawn
and dusk, respectively, the Lks are described by the
following function:

LkðtÞ¼

1; if tDAWN &modðt;24Þ&modðtDAWNþpk ;24Þ;

0; otherwise:

!

ð4:2Þ

Setting pk ¼ 0 creates a constant darkness signal (DD);
setting pk ¼ 24 corresponds to constant light (LL); set-
ting pk ¼ tDUSK 2 tDAWN yields a continuous LD cycle.
Parameter sets with pk , tDUSK 2 tDAWN yield LD
cycles with a pulse of length pk at dawn.

The functions si are Boolean functions si : f0,1g
nþm !

f0,1g representing the interactions between genes and
light inputs that determine the state of species Xi. We
introduce a logical dependency function (or logic gate)
G(.,g) to describe these interactions. This function takes
a single parameter g[ f0,1g, the value of which

2376 Report. Digital clocks O. E. Akman et al.

J. R. Soc. Interface (2012)

 on August 15, 2012rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/


determines the type of reaction modelled. Formally, we
consider two types of operator. The first operator acts
on a single Boolean input Y[ f0,1g, implementing
either the identity or NOT gate, modelling activation
and repression, respectively:

G1ðY ; 0Þ ¼ Y

and G1ðY ; 1Þ ¼ NOT Y :

)

ð4:3Þ

The second type of operator acts on two Boolean
inputs Y,Z[ f0,1g, implementing either the AND or
the (inclusive) OR dependency. If either species can
fulfil the interaction, an OR dependency is used. If
both species are required in the interaction, then an
AND dependency is used. Thus, for species Y[ f0,1g
and Z[ f0,1g

G2ðY ;Z ; 0Þ ¼ Y OR Z

and G2ðY ;Z ; 1Þ ¼ Y AND Z :

)

ð4:4Þ

The functions si in (4.1) are formed as compositions
of these dependencies. For example, the update rule for
gene TOC1 in the optimal 2-loop Arabidopsismodel has
the form

XTOC1ðtÞ ¼ ðNOTXLHYðt% t1ÞÞ AND XYðt% t6Þ:

ð4:5Þ

Using (4.3) and (4.4), this can be written as a
composition of logic functions

XTOC1ðtÞ ¼ G2ðG1ðXLHYðt % t1Þ; g1Þ;

G1ðXYðt % t6Þ; g6Þ; g8Þ; ð4:6Þ

with g6 ¼ 0 and g1 ¼ g8 ¼ 1. The resulting Boolean
function models a reaction in which LHY must be
downregulated in order for Y to activate TOC1
production.

A given set of interaction functions si has an associ-
ated adjacency matrix A ¼ (Aij) defined by

Aij ¼

1; if siðX1; . . . ;X j%1; 0;X jþ1 . . . ;Xn;LÞ

! siðX1; . . . ;X j%1; 1;X jþ1 . . . ;Xn;LÞ;

0; otherwise;

8

>

<

>

:

ð4:7Þ

where L ¼ (L1, . . . , Lm). Thus, Aij ¼ 1 if species Xj

can change the state of Xi, and so matrix A descri-
bes the abstract topology of a model (these topologies
can be seen in figure 2). It follows that a circadian
clock model is parametrized by its adjacency matrix
A, a set of delays t ¼ (t1, . . . ,tNþm) and a set of gates
G ¼ (g1, . . . , gd). Writing X ¼ (X1, . . . , Xn), this
yields the following compact, vectorized form of the
update rule:

XðtÞ ¼ SðXðtÞ;LðtÞ;A; t;GÞ: ð4:8Þ

The set of gates G is the model’s logic configuration
(LC). As each configuration G ¼ (g1, . . . , gd) is a
bitstring, it can be represented uniquely by the
corresponding decimal expansion D(G) defined as

Dðg1; . . . ; gdÞ ¼
X

d

l¼1

gl2
d%l

: ð4:9Þ

For the models considered, the LCs are enumerated in
terms of their decimal expansions for simplicity in
figures 4, 5 and 8.

Of the LCs consistent with A, a subset matches
the pattern of activation and inhibition in the corre-
sponding DE model. These are referred to as the
DE LCs. For example, for the 2-loop Neurospora
model, frq activates both isoforms of FRQ, giving
g1 ¼ g2 ¼ 0, and both isoforms repress transcrip-
tion, giving g3 ¼ g4 ¼ 1 (figures 1b and 2b). There are
thus a pair of DE LCs in this case, 00110 and 00111,
depending on whether both isoforms are required
for repression (g5 ¼ 0, corresponding to OR) or a
single isoform is sufficient (g5 ¼ 1, corresponding to
AND). These DE LCs are encoded by the integers 6
and 7, respectively.

Finally, in order to construct the simplest logic models
consistent with the general form of circadian DE systems,
each Boolean function si is assumed to have the form

siðX;LÞ ¼ Hiðs
F
i ðXÞ; sLi ðLÞÞ; ð4:10Þ

such that (i) Hi : f0,1g
2 ! f0,1g implements either the

AND or OR gate; (ii) si
F : f0,1gn ! f0,1g encodes

the structure of the free-running system; and (iii) si
L :

f0,1gm ! f0,1g determines how multiple light inputs are
integrated with si

L(0, . . . , 0)¼ 0 and si
L(1, . . . , 1)¼ 1.

For consistency, it is therefore necessary that setting each
light input Lk to the relevant constant value L recovers
the free-running system (L ¼ 0 for DD; L¼ 1 for LL).
This condition is equivalent to Hi(si

F(X),L)¼ si
F(X). For

the Neurospora models, where the free-running condition
is DD, the consistency condition is achieved using an OR
gate because xOR 0¼ x. In the case of theArabidopsis cir-
cuits, where the free-running condition is LL, the AND
gate is appropriate as x AND 1¼ x.

For both Arabidopsis models, the multiple light
inputs to Y are combined using an OR gate: this is
because in the corresponding DE models, both inputs
can independently upregulate transcription [35,36]. In
addition, the 3-loop model incorporates only the
pulsed light input to the PRR gene because removing
the continuous light input from the DE system had a
negligible effect on its photoperiodic behaviour.

Full details of the logic formulation of each clock
network are given in the electronic supplementary
material, §S2.

4.3. Optimization and constraints

In order to identify the optimal combination of signalling
delays t ¼ (tj), thresholds T ¼ (Ti) and logic gates G ¼

(gl) for a given model and dataset, we must introduce a
cost function to be minimized. We used a simple function
based on a correlation between the predicted time
courses generated by the model and the corresponding
data. Further details can be found in the electronic sup-
plementary material, §S1.1. Optimal LC–parameter
combinations are given in tables 1 and 2.

The most comprehensive strategy in seeking to
minimize the cost function is to systematically calculate
the cost for all possible configurations and parame-
trizations of the model; that is all delays 0 & tj &
tMAX, where tMAX is the longest time scale considered
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in the system, and all thresholds 0, Ti, 1. However,
when the model becomes too complex to permit a
global analysis, it becomes necessary to introduce
further constraints to restrict the parametrization to
be considered. Such constraints should be as objective
as possible.

One viable, objective constraint is to limit all the sig-
nalling delays around a closed loop so that they sum to
no more than the period tFR of free-running oscillations
in the target dataset.

For 1-loop Neurospora, this gives the single delay
bound

t1 þ t2 & tFR; ð4:11Þ

where tFR ¼ 22 h.
For 2-loop Neurospora, the constraint results in two

delay bounds

t1 þ t3 & tFR

and t2 þ t4 & tFR;

)

ð4:12Þ

where again tFR ¼ 22 h.
For 2-loop Arabidopsis, there are three delay bounds

t1 þ t2 þ t3 & tFR;

t5 þ t6 & tFR

and t2 þ t3 þ t4 þ t6 & tFR:

9

>

=

>

;

ð4:13Þ

In this case, tFR ¼ 25 h.

For 3-loop Arabidopsis, there are four delay bounds:
those for the 2-loop model above together with an
extra bound introduced by the addition of the
LHY–PRR loop:

t7 þ t8 & tFR: ð4:14Þ

For this circuit, tFR ¼ 24 h.
Two further constraints were introduced for reasons

of computational tractability. Firstly, each delay tj

was restricted to integer multiples of a minimum
delay resolution tR, itself a multiple kttS of the data
sampling interval tS. Secondly, each threshold Ti was
bounded within a subinterval [TMIN,TMAX] of [0,1],
and also restricted to integer multiples of a minimum
threshold resolution TR.

4.3.1. Optimization to synthetic data
For all models, TMIN and TMAX were set to the values
0.2 and 0.8, respectively. For the Neurospora models,
kt was set to 1 and TR to 0.025; for the Arabidopsis
models, kt was initially set to 2 and TR to 0.05. Scores
were then recalculated with kt ¼ 1 and TR ¼ 0.025,
within intervals [ti2 3tR,ti þ 3tR] and [Tj2 5TR,
Tj þ 5TR] centred around the parameter combinations
giving the best scores. For Arabidopsis optimizations,
light parameters controlling the impulse inputs (L1

and L3 in the 2-loop circuit; L1, L3 and L4 in the
3-loop circuit) were fixed at the values shown in
table 1. These were determined from discrete approxi-
mations to the corresponding continuous curves in the
DE models.

Table 1. Optimal parameter sets: synthetic data. The logic configurations, G, delays, tj, and discretization thresholds, Ti (0 ,
Ti , 1), yielding the best fit of each logic model to synthetic time series. The values used for photoperiod simulations—
obtained by fitting directly to DE time series—are shown in brackets. For each model, pk indicates the parameter used to
simulate light input Lk through equation (4.2). These were fixed at the values shown, with P denoting the photoperiod
tDUSK 2 tDAWN.

1-loop Neurospora 2-loop Neurospora 2-loop Arabidopsis 3-loop Arabidopsis

G 01 00111 10011011 10011011011

t1 (h) 5 (5) 5 (5.5) 1.5 (3) 0 (3)
t2 (h) 6.5 (6.5) 1.5 (2) 5.5 (6) 5.5 (6.5)
t3 (h) 7.5 (9) 6 (6.5) 6.5 (7.5) 7 (8)
t4 (h) — 10 (9) 0 (0.5) 0 (1)
t5 (h) — 9 (9) 7.5 (6) 8 (5)
t6 (h) — — 4 (4) 5 (3.5)
t7 (h) — — 0 (1) 4.5 (6)
t8 (h) — — 2.5 (0.5) 6 (5)
t9 (h) — — 1 (0) 1 (0)
t10 (h) — — — 1 (3)
t11 (h) — — — 0.5 (0)
t12 (h) — — — 3 (4)

T1 0.35 (0.40) 0.425 (0.425) 0.250 (0.450) 0.1250 (0.4350)
T2 0.40 (0.70) 0.525 (0.650) 0.375 (0.775) 0.3000 (0.6850)
T3 — 0.250 (0.350) 0.575 (0.750) 0.6250 (0.7325)
T4 — — 0.150 (0.325) 0.2250 (0.1295)
T5 — — — 0.8250 (0.9500)

p1 (h) P P 2 2
p2 (h) — P P P

p3 (h) — — 0.5 0.5
p4 (h) — — — 3
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Each parameter set was then checked for a func-
tioning circadian clock. Firstly, the solution to the
free-running model was generated under the appropri-
ate continuous light conditions, using the discretized
data as initial conditions. If a limit cycle was
obtained with period within 20% of the DE
model, then this was fed into the model under simulated
12:12 LD cycles. Periodic, entrained oscillations were
taken to indicate a viable clock circuit.

For the Neurospora and 2-loop Arabidopsis models,
optimizations included all possible LCs. The 3-loop
Arabidopsis optimizations were restricted to the
subset of LCs defined by G ¼ (10011011xyz), x,y,z
[f0,1g; these are the configurations that result from
fixing gates g1, . . . , g7 to their optimized values in the
2-loop circuit.

The photoperiod simulations shown in figure 7 were
obtained by locally re-optimizing the logic circuits yield-
ing viable clocks to simulations of the DE models under
12:12 LD cycles, and then calculating the maximum sym-
metric photoperiod interval (122 PMAX, 12 þ PMAX)
over which both model formulations generated stable,
entrained solutions. The cost was minimized with a simu-
lated annealing algorithm [18,34,75], using a cost function
for which the data and predicted time courses were taken
to be single cycles of the entrained solution in the DE and
logic models, respectively.

4.3.2. Optimization to experimental luciferase data
In fitting the 3-loop Arabidopsis model to the LUC data
shown in figure 9a, genes were matched to model vari-
ables in the following manner: (i) CCA1 was equated
to LHY on the basis that the LHY variable in the equiv-
alent DE model groups together the effect of the two
genes [36]; (ii) TOC1 was matched to TOC1; (iii) GI
was matched to Y owing to experimental results show-
ing that this gene can account for some of the action of
Y in the DE model [36]; and (iv) PRR9 was matched to
PRR, as this variable combines the PRR7 and 9 genes
in the DE formulation [36].

Because the exact biological correlate of variable X is
currently unknown, it was not used for costing the fit.
Consequently, g2 and t2 were both fixed at 0 (note that
fixing g2 reduces the number of possible LCs from 2048
to 1024). This preserves the dynamics of all components
in the model excluding X, together with the delay
bounds used for constraining the parameter space. It
also means that TOC1 and the dummy variable X have
identical time series. Thus, in practice, the discretized
TOC1 expression time series were used as a proxy for X
data when calculating the cost at the LHY vertex. In
addition, as the LUC data were measured in LL, the par-
ameters p1 ! p4 controlling the light inputs were all set
to 24 (cf. equation (4.2)). In LL conditions, the absence
of dawn and dusk means that the choice of the delay
parameters t9 ! t12 is arbitrary. We therefore set the
values of these delays to 0. TMIN and TMAX were fixed
at 0.2 and 0.8, respectively. kt was initially set to 2 and
TR to 0.2. Scores were then recalculated with kt ¼ 1
and TR ¼ 0.05, within intervals [ti2 2tR,ti þ 2tR] and
[Tj2 2TR,Tj þ 2TR] centred around the best-scoring par-
ameter sets. The optimal parameter set for each LC was
assessed to determine whether it yielded a viable clock by
first generating the solution to the model using the discre-
tized LUC time series as initial conditions, and then
checking that this gave a limit cycle with free-running
period within 20% of 24 h.

4.4. Software

The numerical routines for parameter optimization and
model simulation were initially developed in MATLAB

(Mathworks, Cambridge, UK) and C. The scoring
algorithms used for global parameter sweeps were
subsequently converted into Java and run on a task
farm computer consisting of 118 Intel Harpertown
quad-core processors. All software used is available on
request from the corresponding author.
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Table 2. Optimal parameter sets: experimental data. The
logic configurations (LCs), G, delays, tj, and discretization
thresholds, Ti (0, Ti , 1), yielding the top two fits of the
3-loop Arabidopsis logic model to experimental LUC time
series recorded in LL. GOPT is the highest-scoring LC. GDE is
the second highest-scoring LC, and is also the top-ranked
configuration under the constraint that LHY represses TOC1
and TOC1 promotes LHY production. Note that GDE was
previously identified as the LC giving the optimal fit to
synthetic data generated by the equivalent DE model
(cf. table 1).

G 10101011011 (GOPT) 10011011011 (GDE)

t1 (h) 1.5 1.5
t2 (h) 0 0
t3 (h) 1.5 10.5
t4 (h) 9 0
t5 (h) 6 7.5
t6 (h) 4.5 4.5
t7 (h) 1.5 3
t8 (h) 10.5 6
t9 (h) 0 0
t10 (h) 0 0
t11 (h) 0 0
t12 (h) 0 0

T1 0.30 0.35
T2 0.40 0.35
T3 — —
T4 0.15 0.10
T5 0.50 0.45

p1 (h) 24 24
p2 (h) 24 24
p3 (h) 24 24
p4 (h) 24 24
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Corrigendum for the paper ‘Digital clocks: simple Boolean models can quantitatively

describe circadian systems’

Ozgur E. Akman, Steven Watterson, Andrew Parton, Nigel Binns, Andrew J. Millar

and Peter Ghazal

In our recently published article, we stated in the penultimate paragraph of §4.2 that ‘In addition, the 3-loop model
incorporates only the pulsed light input to the PRR gene because removing the continuous light input from the DE
system had a negligible effect on its photoperiodic behaviour’. This should instead read, ‘In addition, the 3-loop
model incorporates only the pulsed light input to the LHY gene because removing the continuous light input
from the DE system had a negligible effect on its photoperiodic behaviour’. We apologize for any confusion caused.
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S1 Fitting logic models to data - further details

S1.1 Specification of the cost function

The cost score for a given combination of signalling delays τ “ pτ1, . . . , τN`mq, thresholds T “

pT1, . . . , Tnq and logic gates G “ pg1, . . . , gdq is calculated from the target data set as follows:

Let D be an n ˆ q array comprising the original data and D̂T the corresponding discretised

expression data obtained using the thresholds T. Analogously, we introduce R as an nˆ r array of

continuous random numbers in the interval r´L,Ls, where L is arbitrary and r " q. R is discretised

using the same choice of thresholds T to obtain an array of discrete random expression profiles R̂T.

The correlation score, ci, for the ith vertex is defined to be the difference between the correlations

obtained using D̂T and R̂T:

ci

´

D̂T, R̂T, τ,G
¯

“ c̃i

´

D̂T, τ,G
¯

´ c̃i

´

R̂T, τ,G
¯

. (S1)

In this expression c̃i

´

X̂, τ,G
¯

is a function that predicts the output of the model at i using the

data X̂, and then calculates the normalised dot product of this with the data at i. Subtracting

the correlation score obtained for the random data set in eqn. (S1) normalises ci against spurious

correlations introduced by the discretisation process.

To compute c̃i, we define X̂i to be the vector of discrete expression data for the ith component,

and the predicted output P̂i to be the vector obtained by applying the corresponding Boolean

function si to X̂. As predictions can only be made for t • τ̂i, where τ̂i is the maximum signalling

delay that contributes to si, the elements of P̂i and X̂i corresponding to t † τ̂i are flagged as

unknowns. We do this by setting the values arbitrarily to 2.

Removing the elements of P̂i and X̂i for which P̂i “ 2 and mapping the truncated vectors from

t0, 1u to t´1, 1u, via 1 Ñ 1 and 0 Ñ ´1, we denote the resulting vectors P̄i and X̄i. We calculate
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the correlation as

c̃i

´

X̂, τ,G
¯

“
1

ˇ

ˇX̄i

ˇ

ˇ

X̄i ¨ P̄i, (S2)

where ¨ denotes dot product and
ˇ

ˇX̄i

ˇ

ˇ the cardinality of X̄i. By construction, c̃i lies in the interval

r´1, 1s where 1, 0 and ´1 denote correlation, no correlation and anticorrelation, respectively.

The cost score C pτ,T,Gq for the data set D̂T is then computed from (S1) and (S2) as

C pτ,T,Gq “ n ´
n

ÿ

i“1

ci

´

D̂T, R̂T, τ,G
¯

. (S3)

An optimal score of 0 corresponds to a combination of parameters and gates pτ,T,Gq that predicts

the time courses exactly.

For the fits of the models to synthetic data, C pτ,T,Gq was calculated for both the LD data set,

DLD, and the appropriate free-running data set, DDD (Neurospora) or DLL (Arabidopsis). The

overall cost in each case was taken to be the linear sum of these values:

CNc pτ,T,Gq “ 2n ´
n

ÿ

i“1

ci

´

D̂DD
T

, R̂DD
T

, τ,G
¯

´
n

ÿ

i“1

ci

´

D̂LD
T

, R̂LD
T

, τ,G
¯

, (S4)

CAt pτ,T,Gq “ 2n ´
n

ÿ

i“1

ci

´

D̂LL
T

, R̂LL
T

, τ,G
¯

´
n

ÿ

i“1

ci

´

D̂LD
T

, R̂LD
T

, τ,G
¯

. (S5)

The cost function used for the optimisation of the 3-loop Arabidopsis model to LL experimental

LUC data, DLUC , was as follows:

CLUC

At pτ,T,Gq “ n ´
n

ÿ

i“1

ci

´

D̂LUC
T

, R̂LUC
T

, τ,G
¯

. (S6)

Finally, in order to facilitate comparison across the different models, the scores plotted in Figs.

4, 5 and 8 are linearly scaled so that 0 and 1 represent the lowest and highest optimal values across

all the gates considered in each case.

S1.2 Degeneracy of the cost function

Depending on the model and data set, there can be degeneracies in the cost function that make

different LCs difficult to distinguish. To illustrate this, we consider the abstract topology of the

1-loop Neurospora model shown in Fig. 2A. With discrete time courses of period Q that have equal

durations of 0 and 1 states, two different LC-delay combinations will give the same cost score if

they differ by the substitution of activation with inhibition (or vice versa) in one interaction, and

the substitution τ Ñ modpτ ` Q

2
, Qq in the corresponding signalling delay. The 1-loop Neurospora

model has 4 LCs associated with its adjacency matrix and so a search with no constraints using

data from just one light condition will yield a 4-fold degeneracy in the cost function. This can be

seen in Supp. Fig. S6A.

For the same model, if we consider discretisations T that yield discrete time courses with heavily

asymmetric durations of 1 and 0 states, we see that the degeneracy partially lifts. In this case, two

different parameter combinations will yield similar costs if they are related by the substitution of

activation with inhibition (or vice versa) in one interaction, the substitution τ Ñ modpτ ` Q

2
, Qq

and a change to the discretisation threshold that switches the duration of the 1 and 0 states.

However the change of discretisation threshold has consequences for the other interactions in a

closed loop, requiring similar changes to be made to the local parameters there too. As a result,

2



for this discretisation in 1-loop Neurospora, the degeneracy in the cost function lifts to a 2-fold

degeneracy, as shown in Supp. Fig. S6B.

Experimental data generally incorporates a degree of variability due to the inherent stochasticity

of the interactions. Depending on the degree of variability, this introduces minor variations in the

expression levels that correlate between upstream and downstream components. These micro-

correlations help to lift the degeneracies in the cost function, and data with a greater degree of

stochasticity cause a greater lift in the degeneracy. This results in distinct ranked cost profiles for

different LCs (Supp. Figs. S6C-H). Similar results were obtained with the other models considered

in this study (data not shown).

Taken together, these results indicate that cost function degeneracies can be lifted by increasing

the total number of bitstrings costed, either by varying the discretisation thresholds or introducing

stochasticity into the data set. This suggests that in order to distinguish different LCs from the

experimental and synthetic data sets, both of which exhibit stochasticity, it is necessary to employ

an optimisation strategy that is capable of searching over a sufficiently large set of thresholds.

S2 Logic models of the clock networks

This section presents the logic versions of the clock models used in this study. In each case, both the

general and optimal logic models are given (the latter correspond to the logic gate configurations

yielding the best fits to data presented in Tables 1 and 2). The following logical symbols are

employed for brevity: Z “ NOT Z (logical complement); Z1 ¨ Z2 “ Z1AND Z2 (logical product);

Z1 ` Z2 “ Z1OR Z2 (logical sum) [1, 2].

S2.1 General logic circuits

1-loop Neurospora

FRQ ptq “ G1 pFRQ pt ´ τ2q , g2q ` L1 pt ´ τ3q

FRQ ptq “ G1 pFRQ pt ´ τ1q , g1q

2-loop Neurospora

FRQ ptq “ G2 pG1 pFRQ
1

pt ´ τ3q , g3q , G1 pFRQ
2

pt ´ τ4q , g4q , g5q ` L1 pt ´ τ5q

FRQ
1

ptq “ G1 pFRQ pt ´ τ1q , g1q

FRQ
2

ptq “ G1 pFRQ pt ´ τ2q , g2q

2-loop Arabidopsis

LHY ptq “ G1 pX pt ´ τ3q , g3q ¨ L1 pt ´ τ7q

TOC1 ptq “ G2 pG1 pLHY pt ´ τ1q , g1q , G1 pY pt ´ τ6q , g6q , g8q

X ptq “ G1 pTOC1 pt ´ τ2q , g2q

Y ptq “ G2 pG1 pLHY pt ´ τ4q , g4q , G1 pTOC1 pt ´ τ5q , g5q , g7q

¨ pL2 pt ´ τ8q ` L3 pt ´ τ9qq

3



3-loop Arabidopsis

LHY ptq “ G2 pG1 pX pt ´ τ3q , g3q , G1 pPRR pt ´ τ8q , g10q , g11q ¨ L1 pt ´ τ9q

TOC1 ptq “ G2 pG1 pLHY pt ´ τ1q , g1q , G1 pY pt ´ τ6q , g6q , g8q

X ptq “ G1 pTOC1 pt ´ τ2q , g2q

Y ptq “ G2 pG1 pLHY pt ´ τ4q , g4q , G1 pTOC1 pt ´ τ5q , g5q , g7q

¨ pL2 pt ´ τ10q ` L3 pt ´ τ11qq

PRR ptq “ G1 pLHY pt ´ τ7q , g9q ¨ L4 pt ´ τ12q

S2.2 Optimal networks for synthetic data

1-loop Neurospora

FRQ ptq “ FRQ pt ´ τ2q ` L1 pt ´ τ3q

FRQ ptq “ FRQ pt ´ τ1q

2-loop Neurospora

FRQ ptq “
`

FRQ
1

pt ´ τ3q ¨ FRQ
2

pt ´ τ4q
˘

` L1 pt ´ τ5q

FRQ
1

ptq “ FRQ pt ´ τ1q

FRQ
2

ptq “ FRQ pt ´ τ2q

2-loop Arabidopsis

LHY ptq “ X pt ´ τ3q ¨ L1 pt ´ τ7q

TOC1 ptq “ LHY pt ´ τ1q ¨ Y pt ´ τ6q

X ptq “ TOC1 pt ´ τ2q

Y ptq “
`

LHY pt ´ τ4q ¨ TOC1 pt ´ τ5q
˘

¨ pL2 pt ´ τ8q ` L3 pt ´ τ9qq

3-loop Arabidopsis

LHY ptq “
`

X pt ´ τ3q ¨ PRR pt ´ τ8q
˘

¨ L1 pt ´ τ9q

TOC1 ptq “ LHY pt ´ τ1q ¨ Y pt ´ τ6q

X ptq “ TOC1 pt ´ τ2q

Y ptq “
`

LHY pt ´ τ4q ¨ TOC1 pt ´ τ5q
˘

¨ pL2 pt ´ τ10q ` L3 pt ´ τ11qq

PRR ptq “ LHY pt ´ τ7q ¨ L4 pt ´ τ12q

S2.3 Optimal networks for experimental LUC data

Note that the equations for 3-loop Arabidopsis below model the free-running (LL) circuit. Con-

sequently, light inputs and their associated parameters have been removed for brevity. The corre-

sponding circuit diagrams are plotted in Supp. Fig. S4.
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Highest ranked LC, GOPT

LHY ptq “ X pt ´ τ3q ¨ PRR pt ´ τ8q

TOC1 ptq “ LHY pt ´ τ1q ¨ Y pt ´ τ6q

X ptq “ TOC1 pt ´ τ2q

Y ptq “ LHY pt ´ τ4q ¨ TOC1 pt ´ τ5q

PRR ptq “ LHY pt ´ τ7q

Second-highest ranked LC, GDE

LHY ptq “ X pt ´ τ3q ¨ PRR pt ´ τ8q

TOC1 ptq “ LHY pt ´ τ1q ¨ Y pt ´ τ6q

X ptq “ TOC1 pt ´ τ2q

Y ptq “ LHY pt ´ τ4q ¨ TOC1 pt ´ τ5q

PRR ptq “ LHY pt ´ τ7q

References

[1] Thomas, R. 1991 Regulatory networks seen as asynchronous automata: A logical description.

J. Theor. Biol. 153, 1–23.

[2] Kaufman, M., Andris, F., Leo, O. 1999 A logical analysis of T cell activation and anergy. Proc.

Natl. Acad. Sci. USA 7, 3894–3899.

5



Supplementary Tables

DE model Logic model

One-loop Neurospora 13 5

Two-loop Neurospora 18 8

Two-loop Arabidopsis 64 15

Three-loop Arabidopsis 80 20

Table S1: The number of parameters in the differential equation (DE) and logic formulations of

each clock circuit. For the logic formulations, this is calculated as the sum of the numbers of delays

and discretisation thresholds, together with the number of light inputs possessing a variable pulse

length (i.e. for which pk ‰ P ).
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Supplementary Figures
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Figure S1: The discrete time course of an upstream entity Xi (black) which activates a downstream

entity Xk (blue). The signalling delay τj is the time difference (red).
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Figure S2: A. Discretisation of a hypothetical expression level time course (black) using the thresh-

old shown in red. B. The resulting discrete expression time course.
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LHY TOC1 X Y
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LHY TOC1 X Y PRR
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Figure S3: Time series for the differential equation (DE) and Boolean versions of the clock models

in constant conditions. Two periods of each are plotted for comparison. A, B: 1-loop Neurospora;

C, D: 2-loop Neurospora; E, F: 2-loop Arabidopsis ; G, H: 3-loop Arabidopsis. DE time series (left

panels) have been normalised to lie between 0 and 1 in order to facilitate comparison with the

Boolean simulations (right panels). Different components within a model are slightly offset from

one another so they can be distinguished more easily. The time step used for solving the Boolean

models was 0.5h, equal to the data sampling interval.
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A B

Figure S4: The logic configurations of the free-running 3-loop Arabidopsis model giving the best

fits to experimental LUC data. A. The optimal configuration, GOPT “ p10101011011q. B. The

second highest ranking configuration, GDE “ p10011011011q.
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Figure S5: The synthetic LD data used to fit the Boolean clock models. A. 1-loop Neurospora. B.

2-loop Neurospora. C. 2-loop Arabidopsis. D. 3-loop Arabidopsis : PRR expression has been scaled

to fit on the same axes as the other genes. Time series were generated for each model using the

Gillespie algorithm, as described in the Methods section. White and black bars denote lights-on

and lights-off respectively. The sampling interval is 0.5h.
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Figure S6: Degeneracies in the cost function for the 1-loop Neurospora model. A. 4-fold degeneracy

in data with near equivalent durations of ON and OFF states. (Sinusoidal synthetic data with

discretisation thresholds in the range [20%, 80%] of the minimum to maximum difference). B.

2-fold degeneracy in data with significantly imbalanced durations of ON and OFF states. (Same

data with discretisation thresholds in the ranges [0%, 20%] and [80%, 100%] of the minimum to

maximum difference). C-H. Pairs of figures showing global costs (left panels) and the lowest 200

costs (right panels) for each LC, obtained using increasingly noisy synthetic data. The degeneracy

lifts for increasing noise, with the DE LC, G “ p01q, separating from the others to emerge clearly

as the configuration yielding the lowest cost.
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