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Abstract 

The performance of a Structural Health Monitoring (SHM) system can be assessed using Probability of 

Detection (PoD) curves, which is a common tool for the evaluation of Non-Destructive Testing (NDT) 

methods. This study presents a novel digital clone platform to quantify and account for uncertainties that can 

be detrimental to the reliability of a SHM system. Uncertainties relating to experimental measurement noise 

and Environmental and Operational Conditions (EOC) are considered during the definition of a threshold 

value that aims at reliably distinguishing between pristine and damaged signals. At the same time, the 

variability of impact damage characteristics and uncertainties associated with Lamb waves interaction in 

composites are captured though the Bayesian calibration of a Finite Element (FE) model using experimental 

observations. The FE model is integrated within the digital clone testing platform to substitute the 

experimental testing and generate a statistical sample of distributed impact events at different locations on a 

composite plate and compute the Model Assisted Probability of Detection (MAPOD). This approach allows 

the estimation of the system’s performance under different EOC that can be used during the selection and 

operation of a specific SHM configuration.  

1 Introduction 

The capability of designing composite materials to achieve target stiffness to weight rations has increased their 

popularity for application within the aerospace industry [1]. Contrary to traditional metallic materials however, 

composites are very susceptible to impact damage that can reduce significantly the structure’s remaining 

useful life. Current maintenance strategies in aviation rely on schedule-based inspections for the assessment 

of the aircraft structural integrity. Traditional NDT methods require access to the inspection area and manual 

inspection of the structure. Structural Health Monitoring (SHM) systems on the other hand can be permanently 

mounted or embedded into the structure and provide on-demand damage detections, reducing the time interval 

between inspections and the required manual intervention [2,3]. Guided wave based SHM systems in 

particular, utilize a distributed network of piezoelectric transducers and have been proven an effective way to 

detect damage in composite structures and interrogate the structure over long distances [4]–[6]. 

Damage detection and localization using remote SHM systems can be more challenging compared to 

traditional NDT methods due to operational and environmental conditions during maintenance [7]. The 

industrial adoption of SHM systems depends on the capability to quantify the uncertainties associated with 

the diagnosis of damage and assess its reliability [8]. Although baseline-free methodologies are available [5, 

9], a typical SHM system consists of comparing the current measurements with a baseline response that is 

considered as pristine or defect free and the extraction of a damage index (DI) to determine the current state 

of the structure [10]. Among others, the accuracy of a SHM system depends on the configuration of the sensor 

network, the damage location, environmental noise, measurement limitations and device errors [11]. Many 
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experimental campaigns have been performed in the literature to assess the accuracy of SHM systems 

however, large scale experimental campaigns can be unfeasible due to their high cost and the time required 

[12], [13].  

The reliability of the SHM system can be assessed following the guidelines in the Military Handbook MIL-

HDBK-1823A [14] that relies on the PoD curve estimation.  The guidelines in [14] require the collection of 

experimental data from multiple specimens, with varying damage sizes and locations. Furthermore, 

measurements must be collected from different operators to reduce human error. Such requirements are 

suitable for traditional NDT methodologies on metallic structures however they can be restrictive when 

studying the detectability of BVID in composites. To ensure independence between observations, different 

specimens must be used for each impact damage test. 

Damage localization is also an important aspect of SHM. Various methodologies have been proposed within 

the scientific community to perform damage imaging based on guided wave measurements such as the RAPID 

and the Delay-and-sum imaging methodologies [15], [16]. The capability to correctly localize a damage event 

can be evaluated using metrics such as the absolute error of localization that can be used to construct 

probability of localization curves [12]. Although damage localization is an integral aspect of SHM, this study 

is limited in the assessment of the reliability of a system in terms of damage detectability.   

To get meaningful estimations on the performance of the SHM system, the uncertainties affecting its accuracy 

must be quantified and taken into consideration. In this study the uncertainties considered are grouped into 

two main categories: 

1) Category 1: SHM system operation 

Uncertainties regarding the EOC the structure is subjected to, bonding characteristics and 

measurement noise can alter the wave propagation characteristics and impair the accurate extraction 

and computation of damage sensitive features. These effects can influence significantly the signals 

recorded at the sensing locations and lead to undesirable false-positive or false-negative indications, 

obscuring the true state of the structure [17]. 

2) Category 2: Variability in the observed DI 

The second category refers to the variability of the observed DI values due to uncertainties in the 

physical system. These uncertainties may arise due to fluctuations in the material properties, 

observation error, initial flaws, differences in the manufacturing process, impact damage  

characteristics, the complex interaction and scattering of Guided waves with damage in composites 

etc.[18].  

Regarding the uncertainties in category 1, many studies have been conducted to quantify their influence on 

the ability of the SHM system to output accurate predictions (see e.g. [8], [19] and the references therein). Of 

paramount importance is the temperature difference between the baseline and the current signals. Various 

temperature compensation algorithms have been proposed in the literature to account for such variations [20]–

[22]. A data driven approach is adopted in this study for the statistical quantification of these uncertainties 

using experimental measurements collected from multiple composite panels at different EOC. Furthermore, 

the temperature compensation methodology proposed in [20] is implemented to account for the temperature 

difference between measurements. A threshold value is then defined based on the computed statistical 

estimates that accounts for the ability of the SHM system to detect damage.   

The uncertainties of the second category refer to the natural variability of the physical model that affects the 

observed DI values. As outlined in [23] and in [24], the estimation of the PoD using MIL-HDBK-1823A 

requires the collection of a large dataset from multiple specimens. To alleviate the restriction on the number 

of experimental tests that is feasible to conduct, many Model Assisted Probability of Detection (MAPOD) 

methodologies have emerged [12], [18], [24], [25] that implement a computer simulator running a 

mathematical model, that approximates the system response in a cost-efficient manner. Most computer 

simulators however are deterministic and cannot treat the variability of a physical model [18], [25]. These 

uncertainties may have a profound impact on the accuracy of the simulator predictions. Probabilistic methods, 
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such as Bayesian inference, can provide a rigorous mathematical framework for treating uncertainties and 

updating prior beliefs as more data become available [11]. Such methodologies address the problem of using 

Bayesian update to infer the parameters of the simulator that best describe the experiments [26]. Bayesian 

update has been implemented in the literature for damage identification [27], localization [28] as well as 

damage size estimation [29], [30]  

The aim of this contribution is the development of a Digital Clone Testing Platform for the estimation of the 

MAPOD considering the uncertainties in the two aforementioned categories. The general overview of the 

platform is illustrated schematically in Figure 1 while a detailed explanation of each step is provided in the 

methodology section of the paper. The experimental measurements provide inputs at two points within the 

proposed framework. First the experimentally observed DIs are combined with the numerical predictions to 

create the combined dataset for the calibration while measurements under different EOC are used to quantify 

uncertainties in the threshold definition that is subsequently used to evaluate the detectability of damage. A 

FE model is developed to simulate Lamb wave propagation and interaction with damage. The FE model 

constitutes a deterministic numerical representation of the physical system. The uncertainties associated with 

the physical system are accounted for through the Bayesian calibration of the model’s parameters using 

observations from impacted composite panels [31]. This way, the uncertainty regarding the output of the 

experiments is propagated to the FE model through the uncertainty of the input parameters [32], [33]. The 

goal is to train a ‘digital clone’ that will reduce the number of the costly experimental campaigns. The 

combination of numerical and experimental observations will offer a more realistic quantification of the 

underlying uncertainties. The term digital clone is used here to denote the stochastic representation of the 

system and the estimated calibration parameters that can be used to generate new observations. It is noted that 

the purpose of the digital clone is not to solely replicate the interaction of guided waves with damage nor to 

substitute the experimental tests altogether but rather to represent and propagate the variability in the damage 

features observed during the experimental testing which can reduce the number of specimens required for the 

estimation of the PoD and provide invaluable information for the reliability assessment of the SHM system.  

 

Figure 1: Flow diagram of the Digital Clone Testing Platform for the estimation of the MAPOD. 

The motivation behind the digital clone platform is to evaluate the reliability of SHM systems for BVID 

detection under different EOC and address the challenges with the direct estimation of the PoD. Such platform, 

that considers in a structured framework the identification, quantification and propagation of multiple sources 

of uncertainty for the estimation of the MAPOD in piezo-sensorized composites, is currently missing from the 

literature. The Bayesian calibration of the digital clone is based on the method proposed by Kennedy and 

O’Hagan [31] to leverage the built-in surrogate approximation (Gaussian Process). Information from a single 

impact location or a single actuation frequency might not be adequate for the estimation of the calibration 

parameters. This limitation is demonstrated here for the numerical simulator implemented. The Gaussian 

Process covariance matrix is tailored to allow the incorporation of observations from different impact locations 

and actuation frequencies, accounting for the characteristics of different wave-modes. This way, the range of 

the calibration parameters posteriors can be limited. despite the initial use of uninformative priors. 

Furthermore, the uncertainty in the application of a temperature compensation scheme to reduce the effect of 
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temperature difference between the current and the baseline measurement is estimated and it is combined with 

the measurement noise to establish a detection threshold. This results to a threshold value that is temperature 

dependent, contrary to a constant one that is typically used. The platform developed presents thus a framework 

to also estimate the temperature range that a given BVID size is detectable. Lastly, the proposed platform is 

modular. For instance, the definition of the damage sensitive features that are extracted from the signals or the 

temperature compensation methodology adopted can be modified according to the user’s requirements. 

This contribution is structured as follows: Section 2 describes the methodology used in this study and contains 

the experimental configuration used for the data acquisition from composite plates and the calibration 

procedure of the FE model used. In section 3, the process for the definitions of a threshold value that accounts 

for the measurement noise and the EOC is defined. Then, in section 4, the experimental observations from the 

impact test campaign are used to calibrate the FE model and extract the posterior distributions of the model 

parameters. In section 5, a statistical population of impact events at different locations is generated using the 

calibrated FE model. The results are combined with the threshold values defined in section 3 to estimate the 

MAPOD of the SHM system. Lastly, concluding remarks and recommendations for future work are included 

in section 6. 

2 Methodology: Development of the Digital Clone Testing Platform 

In this section the methodology adopted for the MAPOD estimation is discussed. An overview of the 

methodology is presented in Figure 1. First the experimental set-up is defined for the impact test campaign 

and the acquisition of the signals under different EOC. Then the FE model used to simulate guided wave 

propagation and the calibration approach for the creation of the digital clone is presented.  

2.1 Experimental Set-up 

In total, five specimens are used for the acquisition of guided waves measurements before and after the impact 

events. The plates are made of 12 layers of standard thermoset unidirectional prepreg material 

M21/194/34%/T800S with stacking sequence  [±45/02/90/0]𝑠 and thickness 𝑡 = 0.184mm. The resulting 

lamina has a total thickness of 𝑡𝑙𝑚𝑡 = 2.208mm. The lamina is assumed orthotropic and its material properties 

are given in Table 1.  

Table 1: Material properties of the unidirectional M21/194/34%/T800S 

𝑬𝟏𝟏 [𝐆𝐏𝐚] 𝑬𝟐𝟐 [𝐆𝐏𝐚] 𝑬𝟑𝟑 [𝐆𝐏𝐚] 𝒗𝟏𝟐 𝒗𝟏𝟑 𝒗𝟐𝟑 𝑮𝟏𝟐 [𝐆𝐏𝐚] 𝑮𝟏𝟑 [𝐆𝐏𝐚] 𝑮𝟐𝟑 [𝐆𝐏𝐚] 𝝆 [
𝐤𝐠

𝐦𝟑
] 

141.2 8.675 8.675 0.312 0.312 0.4 4.29 4.29 3.1 1600 

DuraAct piezoelectric transducers (PZT) are surface mounted for the actuation and the sensing of guided 

waves in the specimens. The geometry of the plates, the locations of the PZTs and the location of the impact 

events is illustrated in Figure 2. It is noted that the 0𝑜 fibre direction of the composite is oriented along the 

long side of the plate. The thickness of the PZT wafers is 𝑡𝑃𝑍𝑇 = 0.5mm, the radius 𝑟𝑃𝑍𝑇 = 5mm and they 

are bonded to the CFRP plate using Hexcel Redux 312 adhesive film.  

Due to the dispersive nature of wave propagation in layered composite plates, narrowband excitation is 

preferred [4]. Here, a 5-tone Hanning windowed input pulse is used for the actuation given as: 

 
𝑉(𝑡) = 𝐴0[𝐻(𝑡) − 𝐻(𝑡 − 𝑛/𝑓𝑐)] sin(2𝜋𝑓𝑐𝑡) (1 − cos(2𝜋𝑓𝑐𝑡/𝑛)) , (1) 

where, 𝐻 is the Heaviside function, 𝑛 is the number of cycles in the tone-burst, 𝑓𝑐 is the central frequency and 

𝐴0 is the input amplitude. To avoid repeating the measurements for different values of 𝑓𝑐 during the 

experiments, a chirp signal is used instead. The tone-burst response is extracted using the reconstruction 

procedure described in [34]. The chirp signal is given as:  
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 𝑉𝑐ℎ𝑖𝑟𝑝(𝑡) = 𝐴0[𝐻(𝑡) − 𝐻(𝑡 − 𝑡𝑐ℎ𝑖𝑟𝑝)] sin(2𝜋 (𝑓0𝑡 +
𝑓1 − 𝑓0
𝑡𝑐ℎ𝑖𝑟𝑝

𝑡2)) , (2) 

where, 𝑡𝑐ℎ𝑖𝑟𝑝 = 2 ∙ 10−4s is the duration of the chirp signal, 𝑓0 = 10kHz is the start frequency and 𝑓1 =

600kHz is the end frequency.  

 

Figure 2: Geometry of the composite plates (all dimensions reported in mm). The numbering of the PZTs is indicated at the corners 

of the plate.  

A 12V peak-to-peak amplitude is applied to the actuator PZT using a National Instrument waveform generator 

while an PXI 5105 Oscilloscope is used to record the signals acquired at the sensor PZTs with a sampling 

frequency of 60MHz. The total recording duration of the experimental signals is  𝑡𝑡𝑜𝑡 = 4 ∙ 10−4s and each 

measurement is recorded 10 times and averaged to improve the signal to noise ratio. 

Pristine measurements are first taken for each plate to establish the pristine baseline 𝑠𝑖,𝑗
𝑟𝑒𝑓(𝑡) where the 

subscripts 𝑖, 𝑗 are used to denote the actuator and the sensor PZT, respectively [6]. Signals are recorded under 

different EOC using a TVC J2235 environmental chamber. Pristine measurements are collected from −5 ℃ 

to 55 ℃, with a step of 5 ℃ to generate the dataset of measurements that will be used for the quantification of 

the uncertainty on the temperature difference. At each step, the temperature is held constant for 20min before 

guided waves are actuated and recorded. The baseline pristine signals are recorded at reference temperature 

𝑇0 = 25 ℃.   

Subsequently, damage is induced to the plates using an INSTRON CREST 9350 drop tower apparatus with a 

20mm hemispherical impactor. After each impact event, the impact location in each plate is inspected with a 

portable hand-held C-scan camera to evaluate the damage area. In all cases the impact energy level is set as 

such that induces Barely Visible Impact Damage (BVID) to the plate. Measurements are then taken again to 

establish the damaged signals, 𝑠𝑖,𝑗(𝑡). The impact energy and the resulting damage area for each plate are 

summarized in Table 2.  

Table 2: Summary of Impact campaign on the plates.  

Plate 

Number  

Impact 

Location 

Impact Energy 

[𝑱] 
Damage 

Radius [𝐦𝐦] 
Damage Area 

[𝐦𝐦𝟐] 
Plate 1 1 16 9.1 260.15 

Plate 2 2 14 7.5 176.71 

Plate 3 2 16 8.25 213.82 

Plate 4 2 20 8.6 232.35 

Plate 5 2 20 9.0 254.47 

The presence of damage in the plate is evaluated by comparing the pristine with the damaged signals and 

extracting specific features. These features can be used for the detection, localization and characterization of 
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damage [16], [35]. Here a DI based on the correlation coefficient is used for the damage detection. The DI is 

given as [16]: 

 𝐷𝐼(𝑋, 𝑌) = 1 −
𝐶𝑋𝑌

𝜎𝑋𝜎𝑌
 , 𝑋 = 𝑠𝑖,𝑗

𝑟𝑒𝑓
(𝑡) and 𝑌 = 𝑠𝑖,𝑗(𝑡) (3) 

where, 𝐶𝑋𝑌, 𝜎𝑋 and 𝜎𝑌 are the covariance and the standard deviations of signals 𝑋 and 𝑌. The correlation 

coefficient DI detects changes in the shape of the signal that are caused due to the differences in the state of 

the structure at the time of the data acquisition, compared to the original baseline [35].  

 

Figure 3: Correlation coefficient DI for all PZT pairs used in the plates.  

Lamb wave measurements are recorded for the pristine and damaged state for all plates. To record the wave 

propagation in multiple directions, the measurements are repeated 4 times, each time one PZT acts as the 

actuator while the others as the sensors. The measurements are stored in a matrix and then, using Eq. (3), the 

correlation coefficient DI is computed for each actuator-sensor pair. The computed DIs are plotted in Figure 

3 for 𝑓𝑐 = 50kHz and 𝑓𝑐 = 250kHz. These two frequencies are selected as the former produces clear 𝐴0 while 

the latter 𝑆0 wave modes.  

The highest values of the DI are observed along wave propagation paths (2 − 3), (3 − 2), (2 − 4) and (4 −

2) for impact location 1 and paths (1 − 3) and (3 − 1) for impact location 2. In [16], a monotonic increase 

in the correlation coefficient DI is reported for increasing crack lengths. In Figure 3 it is observed that despite 

Plate 5 having a larger damage area than Plates 3 and 4, the DI along the direct path (1 − 3) is smaller. Such 

variabilities in the DIs are expected due to variations during the manufacturing of the composites and the 

complex nature of the BVID. It is noted that, a path is called the direct path if the perpendicular distance of 

the impact location to the line segments that connects a pair of PZTs is the smallest among all PZT pairs. 

2.2 Calibration of the Computer Simulator 

Modelling of Lamb Wave propagation can be carried out by solving the equation of motion. However, due to 

material anisotropy and complex geometries in real-life composite structures, analytical solution can be very 

challenging or impossible [36]. In such cases, the equation of motion can be solved using numerical tools such 

as the Finite Element (FE) Method [6], [36], [37], Boundary Element Method (BEM) [38], spectral element 

methods [39], [40], particle models [41], finite differences method [42] and hybrid-semi analytical methods 

[36], [43]. 

In this work an FE model developed using the commercial software package Abaqus is used to simulate the 

actuation, propagation and sensing of guided waves. Time marching can be performed using either an implicit 
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or an explicit integration algorithm. To ensure the accuracy of the numerical solution, the temporal and spatial 

discretization must be selected as such that the wave does not propagate further than one wavelength per time 

step. As noted in [44], the time step must satisfy the Courant-Friedrich-Levy condition in Eq. (4): 

  
𝛿𝑡 ≤

𝑙𝑒
𝑚𝑖𝑛 

𝐶𝑔
, (4) 

where, 𝛿𝑡 is the time-step size, 𝑙𝑒
𝑚𝑖𝑛  is the size of the smallest element and 𝐶𝑔 is the group velocity. This 

condition results in step sizes that is comparable to the stability requirement of explicit methods. Given that 

the intention of the present study is to present a methodology that is computationally applicable to large 

structures, the Abaqus Explicit solver is used.  

The plate is modelled using bi-linear reduced integration shell elements (S4R) while the PZTs with 3D solid 

elements (C3D8R). The bonding between the PZTs and the plate is assumed perfect and it is enforced through 

the application of kinematic coupling constraints between the bottom surface of the PZT and the plate [45]. 

Modelling of the surface mounted PZT actuator is achieved by converting the input voltage from Eq. (1) to an 

effective displacement that is applied radially on the actuator [46], [47]. Following [47], the effective 

displacement is 𝑑𝑃𝑍𝑇 = 𝑄𝐴𝑉𝐼𝑛𝑝𝑢𝑡, where, 𝑄𝐴 is a conversion constant for the actuation. The output voltage of 

the PZT sensors can be approximated as 𝑉𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑄𝑆휀𝑐𝑒𝑛, where, 𝑄𝑆 is a conversion constant for the sensing 

and 휀𝑐𝑒𝑛 is the mean strain at the centre of the PZT wafer. The interested reader is referred to [47] for the 

computation of 𝑄𝐴 and 𝑄𝑆. The application of the effective radial displacement on the top circumference of 

the PZT is illustrated schematically in Figure 4 while the amplitude and the frequency content of the input 

signal is plotted in Figure 5. 

The numerical simulations are conducted for the tone-burst signal given in Eq. (1) with i) 𝑓𝑐 = 50kHz (𝐴0 

wavemode dominant) and ii) 𝑓𝑐 = 250kHz (𝑆0 wavemode dominant).  Each tone-burst signal is simulated 

individually instead of using the chirp signal with the reconstruction process used during the experimetns. For 

𝑓𝑐 = 50kHz the maximum element size is selected as 𝑙𝑒
𝑚𝑎𝑥 = 1mm and the time step equal to 𝛥𝑡 = 5.5 ∙

10−8s while for 𝑓𝑐 = 250kHz the maximum element size is 𝑙𝑒
𝑚𝑎𝑥 = 0.5mm and the time step 𝛥𝑡 = 3.5 ∙

10−8s. Based on the experimental time of arrival (ToA) measurements [20], the maximum value of the group 

velocity is 𝐶𝑔 = 1603m/s and 𝐶𝑔 = 7114m/s for 𝑓𝑐 = 50kHz and 𝑓𝑐 = 250kHz, respectively. In the mesh 

generated, the minimum element size is 𝑙𝑒
𝑚𝑖𝑛 = 0.25mm for both input frequencies and corresponds to the 

through thickness discretization of the PZT sensor. The above selections satisfy the condition stated in Eq. (4) 

and provide more than 10 nodes per wavelength that is recommended in [48].  

 

Figure 4: Application of the effective radial displacement on the PZT sensor.  
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Figure 5: Excitation load, a) input voltage and equivalent radial displacement and b) frequency content of the input signal.   

In this study, we are interested in simulating Lamb wave propagation and interaction with damage. Despite 

low velocity impact leading to barely visible indentation on the skin of the structure, typical C-scan and B-

scan evaluations of BVID reveal a tapered/conical through thickness damage profile, consisting of a 

combination of delamination, matrix cracks, fiber breakage, surface buckling etc. [49]. Therefore, to represent 

the complex nature of different damage profiles, a simplified damage representation is utilized in this work. 

The material’s elastic tensor is given as: 

 

𝐶𝑑 = 𝛥−1

[
 
 
 
 
 
 
𝑑𝑓𝐸11(1 − 𝑑𝑚𝑣23𝑣32) 𝑑𝑓𝑑𝑚𝐸11(𝑣21 + 𝑣23𝑣31) 𝑑𝑓𝐸11(𝑣31 + 𝑑𝑚𝑣21𝑣32)    

 𝑑𝑚𝐸22(1 − 𝑑𝑓𝑣13𝑣31) 𝑑𝑚𝐸22(𝑣32 + 𝑑𝑓𝑣12𝑣31)    

  𝐸33(1 − 𝑑𝑓𝑑𝑚𝑣21𝑣12)    

   𝛥𝑑𝑓𝑑𝑚𝐺12   

    𝛥𝑑𝑓𝑑𝑚𝐺23  

     𝛥𝑑𝑓𝑑𝑚𝐺13]
 
 
 
 
 
 

, 

 

(5) 

where 𝛥 = 1 − 𝑑𝑓𝑑𝑚𝑣12𝑣21 − 𝑑𝑚𝑣23𝑣32 − 𝑑𝑓𝑣13𝑣31 − 2𝑑𝑓𝑑𝑚𝑣21𝑣32𝑣13 and 𝑑𝑚 and 𝑑𝑓 are the matrix 

damage and fiber damage, respectively. It is noted that the value 1 indicates pristine material while 0 complete 

damage. As a simplification, it is assumed that 𝑑𝑚 and 𝑑𝑓 are uniform through the thickness and with constant 

values for all elements within the damage radius 𝑑𝑟 (Figure 6).  

 

Figure 6: Reduction of the material properties for the elements that are located within 𝑟𝑑 from the damage location. 

Because of the difference between the wave propagation characteristics of the pristine and the damaged 

material, wave scattering is observed. Each simulation is repeated two times, first no damage is assumed in 

the plate (𝑑𝑚 = 1 and 𝑑𝑓 = 1) to record the pristine case and then, damage is introduced (𝑑𝑚 < 1 and 𝑑𝑓 <

1) in the elements within 𝑑𝑟 to approximate the damaged state. The DI between the signals is then computed 

using Eq. (3) to evaluate the damage detection capabilities.  

The plate geometry from Figure 2 is used to create the numerical model in Abaqus and simulate numerically 

the Lamb wave propagation and interaction with the damage to perform an initial investigation on the 

sensitivity of the DI on the value of 𝑑𝑚 and 𝑑𝑓. Damage is assumed at impact location 2 (see Figure 2) with 

𝑑𝑟 = 8mm. The damage parameters are varied one at a time and the DI is computed along the direct sensor 

path 1 – 3, with sensor 1 acting as the actuator. The simulations are repeated for 𝑓𝑐 = 50kHz and 𝑓𝑐 = 250kHz.  
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Table 3: Variation of the DI along path 1 – 3 when the damage parameters 𝑑𝑚 and 𝑑𝑓 are varied to 0.75 and 0.5 one at a time. 

 
Computed DI when 

𝑑𝑚 is reduced to 

Computed DI when 

𝑑𝑓 is reduced to 

 0.75 0.5 0.75 0.5 

𝑓𝑐 = 50kHz 0.0057 0.0566 0.0098 0.0726 

𝑓𝑐 = 250kHz 0.0014 0.004 0.0052 0.0358 

The computed DI for the different values of 𝑑𝑚 and 𝑑𝑓 is reported in Table 3. It is observed that at both 

frequencies, the value of the DI is more sensitive to 𝑑𝑓 compared to 𝑑𝑚. For 𝑓𝑐 = 250kHz in particular, the 

sensitivity on 𝑑𝑓 is pronounced and significant higher values of DI are observed compared to 𝑑𝑚. For BVID, 

matrix damage is more prominent compared to fiber damage [50] and the value of 𝑑𝑓 is expected to be high.  

The response of the FE model (computer simulator) depends on the values of  𝑑𝑟, 𝑑𝑚 and 𝑑𝑓. In the proposed 

setting, 𝑑𝑟 is a controlled variable while 𝑑𝑚 and 𝑑𝑓 are considered model parameters and must be selected as 

such that are able to capture the experimental observations. The uncertainties associated with model 

parameters can be constrained by fitting the computer simulator to experimental observations. Such 

methodologies can implement Monte Carlo or other exploration approaches to train the computer simulator 

(e.g. [51]).  

In their work, Kennedy and O’Hagan [31], developed a methodology for calibration of computer models using 

a Gaussian process to estimate the simulator output at yet untried values. A Bayesian approach is then 

implemented to estimate the calibration parameters based on the available experimental observations. The key 

features of the approach are the introduction of a discrepancy term to account for possible mispatch between 

the computer simulator and the physical response of the system and the use of a metamodel to reduce the 

required number of simulator evaluations. Other calibration approaches can be found in the literature such as 

the contributions in [18], [52], [53] while a review on Bayesian method for damage assessment can be found 

in [27]. Furthermore, in [26], Bayesian inference is used for the identification of the most probable model in 

a model class using probability logic.  For the sake of completeness, the calibration procedure adopted here is 

briefly described below. 

The aim of the proposed methodology is to calibrate the set of yet unknown calibration parameters 𝜽 using 

the available experimental observations. From a Bayesian point of view, 𝜽 is treated as a random variable with 

an associated probability distribution, 𝑝(𝜽) [54] that expresses the prior beliefs on the value of the calibration 

parameters. The calibration parameters are defined as the vector 𝜽 = (𝑑𝑚,  𝑑𝑓).  

Given a dataset of observations 𝒟, Bayes theorem states that: 

 𝑝(𝜽|𝒟) =
𝑝(𝒟|𝜽)𝑝(𝜽)

𝑝(𝒟)
 , (6) 

where, 𝑝(𝒟|𝜽) is the likelihood of observing dataset 𝒟 given a specific choice of calibration parameters, 𝑝(𝒟) 

is the marginal likelihood of observing 𝒟 over all possible 𝜽 and 𝑝(𝜽|𝒟) is the posterior distribution of 𝜽, 

after observing 𝒟 [54]. For the SHM system considered here, the dataset consists of the Damage Index values 

evaluated for the sensor pair that defines the direct path. 

Assume the experiment is repeated 𝑛 times at input settings 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑛)𝑇, resulting in observations 

𝒚 = (𝑦(𝒙1), 𝑦(𝒙2), … , 𝑦(𝒙𝑛))
𝑇

. Following [55], the physical model is described as:  

 𝑦(𝒙𝑖) = 휁(𝒙𝑖) + 휀(𝒙𝑖), 𝑖 = 1,2,…𝑛 (7) 

where, 휁(𝒙𝑖) is the actual response of the physical model, 𝑦(𝒙𝑖) is the observed response of the system, after 

conducting the experiment, and 휀(𝒙𝑖) is the observations error. Here it is assumed that the observation error 

is i.i.d. following a zero-mean Gaussian distribution 𝑁(0, 𝜎𝜀). The response of the physical system can be 
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modelled as 휁(𝒙𝑖) = 휂(𝒙𝑖, 𝜽) + 휁(𝒙𝑖) where, 휂(𝒙𝑖, 𝜽) is the response of the simulator at the true values of the 

calibration parameters 𝜽 and 휁(𝒙𝑖) is a bias term that accounts for the discrepancy between the actual response 

of the system 휁(𝒙𝑖), and the simulator 휂(𝒙𝑖 , 𝜽) [56]. Eq. (7) can then be re-written as: 

 
𝑦(𝒙𝑖) = 휂(𝒙𝑖 , 𝜽) + 휁(𝒙𝑖) + 휀(𝒙𝑖), 𝑖 = 1,2,…𝑛 (8) 

The term 휁(𝒙𝑖) can be used to capture the characteristics of the system that the computer simulator is not able 

to.  

The true values of the calibration parameters 𝜽 are initially unknown to the user. Instead the user can run the 

simulator 𝑚 times at pairs (𝒙𝑗
∗, 𝒕𝑗), 𝑗 = 1,2, … ,𝑚 where 𝒙𝑗

∗ and 𝒕𝑗 are used to denote the simulator input and 

test values respectively. The simulator results 휂(𝒙𝑗
∗, 𝒕𝑗)  are then used to find the values 𝒕 that fit best the 

experimental observations. In many cases, the computer simulator might be computationally demanding and 

unfeasible to run for a large number of 𝑚. To avoid this restriction and to be able to find the optimum 

calibration parameters 𝜽, a surrogate model can be implemented to approximate the response of 휂(𝒙𝑗
∗, 𝒕𝑗) for 

combinations of (𝒙∗, 𝒕) that the simulator has not been carried out [31], [55], [56]. A Gaussian process (GP) 

is defined through a mean function 𝜇(𝒙, 𝒕) and a covariance function 𝐶𝑜𝑣((𝒙, 𝒕), (𝒙′, 𝒕′)) [57]. The simulator 

is modeled as: 

 휂(𝒙, 𝒕)~𝒢𝒫(𝜇(𝒙, 𝒕), 𝐶𝑜𝑣((𝒙, 𝒕), (𝒙′, 𝒕′)) ). (9) 

The discrepancy term 휁(𝒙) in Eq. (8) is defined as a zero-mean GP of the form [32]: 

 
휁(𝒙)~𝒢𝒫(0, 𝐶𝑜𝑣(𝒙, 𝒙′) ). (10) 

The use of a GP for 휁(𝒙) indicates that for a given input 𝒙 the prior probability for the discrepancy between 

the simulator and the experiments has a Gaussian distribution centered around zero (i.e. we do not assume that 

the discrepancy will be either positive or negative) and its variance will be 𝐶𝑜𝑣(𝒙, 𝒙). For further details, the 

interested reader is referred to the contribution of Brynjarsdóttir and O’Hagan [32] where the meaning and the 

use of 휁(𝒙) has been discussed extensively.  

The matrix containing the pairs of inputs for both the experimental and the numerical observations is defined 

as ℳ = ((𝒙1, 𝜽), … , (𝒙𝑛, 𝜽), (𝒙1
∗ , 𝒕1),… , (𝒙𝑚

∗ , 𝒕𝑚))
𝑇

 while the vector of (𝑛 + 𝑚) observations as  𝒟 =

(𝑦(𝒙1),… , 𝑦(𝒙𝑛), 휂(𝒙1
∗ , 𝒕1), … , 휂(𝒙𝑚

∗ , 𝒕𝑚))
𝑇

. Then the likelihood function can be written as [55], [58]: 

 ℒ(𝒟|𝜽, 𝒬) ∝ |𝜮𝒟|−1 2⁄ exp[−0.5(𝒟 − 𝜇)𝜮𝒟
−1(𝒟 − 𝜇)]  (11) 

where, 𝒬 = {𝑄1, 𝑄2, …𝑄𝑘} is a set of parameters required for the definition of the GP for the simulator 휂(𝒙, 𝒕) 

and the discrepancy 휁(𝒙𝑖) and 𝜮𝒟 is the covariance matrix. In the above definitions the only unknowns in the 

problem are the calibration parameters 𝜽. Following [55], the covariance matrix 𝜮𝒟 is computed as: 

 𝜮𝒟 = 𝜮𝜂 + [
𝜮𝜁 + 𝜮𝑦 𝟎

𝟎 𝟎
]  (12) 

where 𝜮𝑦 is the observation covariance matrix, 𝜮𝜂 is computed by applying Eq. (9) to the (𝑛 + 𝑚) input pairs 

and 𝜮𝜁 is computed by applying Eq. (10) to the 𝑛 inputs of the experimental observations.  

Using Eqs. (6) and (11), the posterior distribution of 𝜽 after observing the observation dataset 𝒟 is given as: 

 
𝑝(𝜽, 𝒬|𝒟) ∝ ℒ(𝒟|𝜽, 𝒬)𝑝(𝜽)∏𝑝(𝑄𝑖)

𝑞

𝑖=1

 (13) 

where prior distributions have been assigned for the parameters in 𝜽 and 𝒬. The posterior probability will 

provide updated information on the value of 𝜽, after observing the data 𝒟. The posterior probability can be 
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explored with Monte Carlo approaches [56]. Here, the posterior distribution is explored using the No-U-Turn 

(NUTS) Hamiltonian Monte Carlo sampler, implemented using PyMC3 package in python [59], [60].  

3 Threshold value definition 

In order to successfully distinguish between pristine and damaged measurements, a threshold value (𝑇ℎ) is 

defined. The purpose of 𝑇ℎ is to reliably identify the DIs obtained from a damaged case while its value must 

be selected such that it provides an adequate statistical confidence for the indications of the SHM system. In 

this study, it is considered that the baseline and the damaged measurements are taken from the same plate. 

This reduces the effect of material variability as measurements are not compared between different plates. 𝑇ℎ 

accounts for two main sources of uncertainty: i) the background noise and ii) differences in the EOC between 

measurements.   

External noise that contaminate the signals can be removed though the implementation of appropriate filters. 

Vibration noise from the structure is typically in the lower frequency range of the structure (<1kHz) inducing 

an almost constant shape change of the SHM signal while the frequency content of electrical noise and 

interference with other instruments is usually above 1MHz [8]. The reconstruction process effectively 

performs a frequency selection process that minimizes the influence of frequencies outside the frequency band 

of interest [61]. Thus, the influence of the external noise to the measurements is reduced. Furthermore, noise 

can be further reduced by taking multiple measurements and averaging the signals. 

To quantify the measurement noise, 40 pristine measurements are recorded for each of the plates in Table 2. 

Batches of 10 measurements are randomly generated, averaged and compared between them for each plate. If 

all measurements were identical, then the DIs between two sets of averaged pristine signals should be 0. Due 

to the existence of noise, non-zero DI values are computed. The uncertainty between pristine measurements 

under the same EOC is quantified by using maximum likelihood estimation (MLE) to fit a random variable to 

the DIs computed from all plates. The random variable is defined as: 

 𝑇ℎ1(휃)~𝐺𝑎𝑚𝑚𝑎(𝑎1(휃), 𝑏1(휃)) (14) 

where, 휃 is the propagation direction. The DIs computed along path 1-4 (휃 = 0𝜊) are illustrated in Figure 7 

(A) while the directional dependency of 𝑇ℎ1 is plotted in Figure 7 (B).  

 

Figure 7: (A) Computed DIs along path 1-4 indicating the corresponding 95% confidence interval and (B) directional dependency of 

𝑇ℎ1. 

Comparing the values reported in Figure 3 and Figure 7 it can be seen that the measurement noise computed 

is approximately two orders of magnitude lower. For simplification, the dependency of 𝑇ℎ1 on 휃 is dropped  

by making the conservative approximation 𝑇ℎ1 = 𝑇ℎ1(0) =  𝐺𝑎𝑚𝑚𝑎(𝑎1(0), 𝑏1(0)), where 𝑎1(0) = 3.909 

and 𝑏1(0) = 16.18𝑒 − 5. 

One of the major sources of uncertainty for SHM systems however stems from the variations in the EOC and 

in particularly, the temperature at which the measurements have been taken. Many studies have demonstrated 
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that even small changes in the ambient temperature between the pristine (baseline) and test signal are enough 

to lead to erroneous decisions regarding the state of the structure, significantly impairing the robustness of the 

SHM system [17], [20], [62], [63]. Various temperature compensation methodologies have been reported in 

the literature, both data-driven and physics based, aiming to mitigate the effects of temperature change [17], 

[64]–[68]. In this study, the data-driven temperature compensation methodology proposed by Yue and 

Aliabadi [20] is implemented, that has been developed and validated for layered composites with anisotropic 

behavior.  

Two signals that have been recorded at two difference temperatures exhibit variations in their amplitude and 

shapes due to the temperature dependency of the wave propagation characteristics. The current temperature is 

denoted with 𝑇 = 𝑇0 + 𝛥𝑇, where 𝑇0 is the reference temperature and 𝛥𝑇 is the temperature change. Following 

[20], the experimental estimation of two factors is suggested, namely 𝛼(휃, 𝛥𝑇) and 𝛽(휃, 𝛥𝑇), to account for 

the influence of the temperature change on the amplitude and the phase shift of the recorded signals 

respectively. These factors are estimated as: 

 𝛼(휃, 𝛥𝑇) =
𝑉𝑜𝑢𝑡(휃, 𝑇)

𝑉𝑜𝑢𝑡(휃, 𝑇0)
 and 𝛽(휃, 𝛥𝑇) =

𝑇𝑂𝐴(휃, 𝑇)

𝑇𝑂𝐴(휃, 𝑇0)
 (15) 

where, 𝑉𝑜𝑢𝑡(휃, 𝑇) is the amplitude and 𝑇𝑂𝐴(휃, 𝑇) is the time of arrival of the received signal. The temperature 

compensated signal is then computed as: 

 𝑆′(𝑡, 𝑇0, 𝛥𝑇) ≈ 𝛼(휃, 𝛥𝑇)𝑆(𝛽(휃, 𝛥𝑇)𝑡, 𝑇0 + 𝛥𝑇). (16) 

Following [20], factors 𝛼(휃, 𝛥𝑇) and 𝛽(휃, 𝛥𝑇) are estimated by fitting a cubic polynomial using least squares 

regression to the experimentally obtained amplitudes and TOA values along different propagation directions, 

respectively.  

The aim of applying the compensation is to allow reduce the uncertainty when comparing baseline signals 

with measurements taken at different EOC. To evaluate the uncertainty of the compensation scheme, we 

compute the DI between the original signal measured at 𝑇0 and the compensated signal using Eq. (3) as  

𝐷𝐼(𝑆(𝑡, 𝑇0), 𝑆′(𝑡, 𝑇0, 𝛥𝑇)). The resulting DI values for different 𝛥𝑇 values are reported in Figure 8 (A). It is 

observed that the uncertainty increases as |𝛥𝑇| increases while there appears to be symmetry around 𝛥𝑇 = 0. 

A power law with the form: 

 𝑇ℎ2(|𝛥𝑇|) = 𝑎2|𝛥𝑇|𝑏2 (17) 

is used to fit the experimental observations. A log-log regression is carried out for the simple linear model 

𝑦𝑖 = 𝑏2𝑥𝑖 + 𝑎2
′ + 휀, where 𝑦𝑖 = ln (𝑇ℎ2(|𝛥𝑇𝑖|)), 𝑎2

′ = ln(𝑎2) and 휀~𝑁(0, 𝜎2). The best fitted parameters 𝑎2
′  

and 𝑏2 are obtained though maximum likelihood estimation and the resulting expected value 𝔼(𝑦𝑖|𝑎2
′ , 𝑏2, 𝜎) 

along with the 95% confidence interval is plotted in Figure 8 (B). The fitted model with its 95% confidence 

interval is also plotted in the untransformed axes in Figure 8 (A), for comparison with the observed data. The 

estimated parameters of the linear model are 𝑎2
′ = −9.9709 , 𝑏2 = 2.025 and �̂�2 = 0.0712 where, �̂�2 is the 

mean square error of the residuals. 
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Figure 8: Variation of the threshold uncertainty for different values of 𝛥𝑇. (A) Original data and (B) transformed for the liner 

regression fitting. 

The final 𝑇ℎ value should account for the uncertainty of both the measurement noise and the temperature 

compensation for the different EOC conditions to reliably distinguish between damaged and pristine 

measurements. Here we use the value: 

 𝑇ℎ(|𝛥𝑇|) = 𝑇ℎ1
95% + 𝑇ℎ2

95%(|𝛥𝑇|) , (18) 

where the superscripts 95% are used to denote the confidence of the values used. The values in Eq (18) are 

defined as 𝑇ℎ1
95% = {𝑇ℎ1: 𝐹(𝑇ℎ1; 𝑎1(0), 𝑏1(0)) = 0.95} = 5.33 ∙ 10−4 where 𝐹 is the Gamma cumulative 

distribution function and 𝑇ℎ2
95%(|𝛥𝑇|) = 7.45 ∙ 10−5|𝛥𝑇|2.025. In the absence of temperature difference 

between the baseline and the current signal, i.e. 𝛥𝑇 = 0 ℃, the threshold becomes minimum as 𝑇ℎ(0) =

𝑇ℎ1
95% = 5.33 ∙ 10−4 and takes into consideration the measurement noise only.  

4 Estimation of the Calibration Parameters 

In this section the calibration of the computer simulator is presented. The aim is to introduce an equivalent 

damage in the numerical model and calibrate the value of the damage parameters 𝑑𝑚 and 𝑑𝑓 such that the 

numerically estimated DI values match those obtained through the experimental observations for different 

damage sizes. It is envisaged that through this process, the numerical simulator will account for uncertainties 

in the value of the DI relating to the variability of the damage characteristics, manufacturing defects and 

material strength.  

The numerical model is first calibrated for impact damage at locations 1 and 2 where experimental data are 

available. The steps required for the calibration of the numerical simulator are illustrated schematically in 

Figure 1. Subsequently, the posterior estimates of the damage parameters are used to draw samples for the 

creation of the statistical sample of impact events at different locations of the plate. This way, the calibration 

is first focused on the locations where observations are available. The statistical population is then used to 

assess the overall performance of the SHM system.  

During the experimental campaign, the damage area after each impact event is estimated using C-scan imaging 

and the equivalent damage radius 𝑑𝑟 is computed. Following the definitions from section 2.2, the controlled 

variables are the damage radius 𝑑𝑟 and the frequency of the input signal 𝑓𝑐. To take advantage of the higher 

sensitivity of the DI value on 𝑑𝑓 when 𝑓𝑐 = 250kHz, both frequencies will be considered during the parameter 

calibration. The controlled variables for the 𝑛 experimental observations are stored in the input vector 𝒙 =

(𝒙1, 𝒙2, … , 𝒙𝑛)𝑇 = ((𝑑𝑟,1, 𝑓𝑐,1), (𝑑𝑟,2, 𝑓𝑐,2),… , (𝑑𝑟,𝑛, 𝑓𝑐,𝑛))
𝑇
. For each impact location, the DI along each path 

is computed through Eq. (3). Here, only the direct path is considered for the calibration of the finite element 

model. Paths 2-4 and 1-3 are considered for impact locations 1 and 2, respectively. Thus, the corresponding 

observations for each damage location are 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 = (𝐷𝐼1, 𝐷𝐼2, … , 𝐷𝐼𝑛)𝑇, where 𝑛 = 𝑛1 = 1 for 

impact location 1 and 𝑛 = 𝑛2 = 4 for impact location 2. Using these observations, we estimate the yet 

unknown calibration parameters 𝜽 = (𝑑𝑓 , 𝑑𝑚).  
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Two scenarios have been considered: i) in the first scenario, only the observations from impact location 2 are 

considered during the calibration and ii) in the second scenario the observations of both impact locations are 

used simultaneously. The first scenario is used as an example to demonstrate the need of considering both 

50kHz and 250kHz measurements during the calibration. The second scenario performs the calibration on all 

available experimental observations and the distribution of the calibration parameters is extracted that is used 

in the next section for the computation of the MAPOD.   

4.1 Scenario 1 

In this scenario, only the 𝑛2 = 4 observations from impact location 2 (plates 2 – 5 from Table 2) are used for 

the calibration of the finite element model. In order to create the surrogate GP that will substitute the FE 

simulator 휂(𝒙𝑖
∗, 𝒕𝑖

∗) first a sample of possible (𝒙𝑖
∗, 𝒕𝑖

∗) = (𝑑𝑟,𝑖, 𝑓𝑐,𝑖, 𝑑𝑓,𝑖, 𝑑𝑚,𝑖)  pairs needs to be generated that 

will be used for the training phase. It is assumed that the controlled variable 𝑑𝑟 can take the values of 𝑑𝑟,𝑖 ∈

[4mm,12mm]. From the results in Figure 3 and Table 3, it is expected that the true value of the damage 

parameters is in the range 𝑑𝑚,𝑖, 𝑑𝑓,𝑖 ∈ [0.5,1.0]. Furthermore, since there are no other information available 

regarding these parameters, it is assumed that each value within their range is equally probable [54]. To explore 

the design space more efficiently, samples pairs (�̂�, �̂�) are generated using a Latin Hypercube approach [56], 

[69], where �̂� and �̂� are scaled such that  �̂�, �̂� ∈ [0,1].  

 

Figure 9: (A) Sampled (𝒙𝑖
∗, 𝒕𝑖

∗) pairs. (B) Computed DIs for 𝑓𝑐 = 50𝑘𝐻𝑧. (C) Computed DIs for 𝑓𝑐 = 250𝑘𝐻𝑧  

In total, 𝑚2 = 40 samples are taken, and the FE simulation is repeated for each of the sampled pairs. These 

samples are used to simulate wave propagation for both 𝑓𝑐 = 50𝑘𝐻𝑧 and 𝑓𝑐 = 250𝑘𝐻𝑧. The generated 

samples and the corresponding DI are plotted in Figure 9. As expected, the simulator indicates that the DI 

value increases as the damage radius 𝑑𝑟 increase and the parameters 𝑑𝑓 and 𝑑𝑚 decrease.  

The GP in Eq. (9) is defined by assigning a mean and a covariance function [57]. Following [56], we use a 

zero-mean function and a squared exponential covariance function. Because for 𝑓𝑐 = 50kHz the 𝐴0 wave 

mode is dominant while at 𝑓𝑐 = 250kHz the 𝑆0 wave mode is dominant, we treat the two frequencies as 

independent observations. This is encoded into the covariance function [70] and it is written as: 

 
𝐶𝑜𝑣 ((𝒙𝑖 , 𝒕𝑖), (𝒙𝑗 , 𝒕𝑗)) = 𝜎𝜂

2 exp(−
(𝑑𝑟,𝑖 − 𝑑𝑟,𝑗)

2

2𝑙𝑟
)𝛿 (𝑓𝑐,𝑖,𝑓𝑐,𝑗)exp(−

1

2
∑

(𝑡𝑖,𝑞 − 𝑡𝑗,𝑞)
2

𝑙𝑡,𝑞

𝑞=2

1

) (19) 

where 𝑞 = 2 as there are two calibration parameters, 𝛿(∙) is the Kronecker delta, 𝜎𝜂
2 is the variance of the 

response and 𝑙𝑟 and 𝒍𝑡 = [𝑙𝑡,1, 𝑙𝑡,2] are the length scale parameters that control the smoothness of the function 

and describe the dependence strength in variations in the 𝒙 and 𝒕 values, respectively. The introduction of 

𝛿 (𝑓𝑐,𝑖,𝑓𝑐,𝑗) in Eq. (19) leads to a block diagonal covariance matrix. Similarly, the covariance function of the 

discrepancy term in Eq. (10) can be computed as: 
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𝐶𝑜𝑣(𝒙𝑖 , 𝒙𝑗) = 𝜎𝜂,𝜁

2 exp(−
(𝑑𝑟,𝑖 − 𝑑𝑟,𝑗)

2

2𝑙𝑟,𝜁
)𝛿 (𝑓𝑐,𝑖,𝑓𝑐,𝑗) (20) 

Where 𝜎𝜂,𝜁
2  and 𝑙𝑟,𝜁 are the variance and the length scale for the GP of 휁(𝒙). Denoting 𝒍𝑟 = [𝑙𝑟, 𝑙𝑟,휁] and 𝝈𝜂 =

[𝜎𝜂 , 𝜎𝜂,휁], the posterior distribution from Eq. (13) is written as: 

 𝑝(𝜽, 𝝈𝜂 , 𝒍𝑟, 𝒍𝑡 , 𝜮𝐷|𝒟) ∝ ℒ(𝒟|𝜽, 𝝈𝜂 , 𝒍𝑟 , 𝒍𝑡, 𝜮𝐷)𝑝(𝜽)𝑝(𝝈𝜂)𝑝( 𝒍𝑟)∏ 𝑝(𝑙𝑡,𝑞)
𝑞=2
𝑖=1 . (21) 

The following prior distributions are used for the values of 𝜽, 𝝈𝜂 , 𝒍𝑟 and 𝑙𝑡,𝑞 [71]: 

 
𝑝(𝜽)~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.5,1.0) 

𝑝(𝝈𝜂)~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0.5) 

𝑝( 𝒍𝑟)~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝑝( 𝑙𝑡,𝑞)~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝑝( 𝜎휀)~𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0.02) 

(22) 

In order to explore the posterior distribution, 2 chains with 10000 samples each were sampled. Additionally, 

1500 samples were used at the beginning of each chain as burn-in for initialization.  

The calibration is carried out first when only the samples with 𝑓𝑐 = 50kHz are considered and thus the term 

𝛿 (𝑓𝑐,𝑖,𝑓𝑐,𝑗) vanishes in Eq. (19). In this case, 𝑛2 + 𝑚2 = 44 observations and pairs of inputs are stored in 

matrices 𝒟 and ℳ, respectively. Since there are two controlled variables and two calibration parameters, 𝒟 is 

a 44 × 4 matrix. The posterior distributions of the damage parameters 𝑑𝑚 and 𝑑𝑓 are plotted in Figure 10.  

 

Figure 10: Posterior distribution of the damage parameters 𝑑𝑚 and 𝑑𝑓 when only 𝑓𝑐 = 50kHz is considered for the calibration.  

The calibration is then repeated considering both 𝑓𝑐 = 50kHz and 𝑓𝑐 = 250kHz frequencies and the posterior 

distributions of the damage parameters are plotted in Figure 11. In this case, 2𝑛2 + 2𝑚2 = 88 observations 

and pairs of inputs are used. When only 𝑓𝑐 = 50kHz, there are multiple pairs of 𝑑𝑚 and 𝑑𝑓 values that can be 

used to fit the experimental observations. Comparing Figure 10 and Figure 11, tighter bounds are obtained for 

the damage parameters when 𝑓𝑐 = 250kHz is also observed. This is due to the higher sensitivity of the 𝑆0 

wave mode on the value of the fiber damage (𝑑𝑓), as discussed in section 2.2.  
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Figure 11: Posterior distribution of the damage parameters when both 𝑓𝑐 = 50kHz and 𝑓𝑐 = 250kHz frequencies are considered. 

 

Figure 12: Posterior mean estimate of the model prediction with the associated 50% and 95% confidence interval (CI), after the 

calibration of the simulator.  

When both frequencies are considered, the maximum a-posteriori (MAP) estimates are �̅�𝑚 = 0.78 and �̅�𝑓 =

0.83 while the 94% highest posterior density (HPD) for each parameter is defined as [0.66,0.91] and 

[0.80,0.88] for 𝑑𝑚 and 𝑑𝑓 ,  respectively. The predicted DI is plotted in Figure 12 for 𝑑𝑟 ∈ [5mm,11mm], 

along with the 95% confidence intervals. Although possible, extrapolation outside this range is not 

recommended due to the zero mean assumption [72]. Predictions for the DI can be made and explore 

sensitivities of the model. The variability of the experimental measurements due to uncertainties regarding the 

damage mechanisms of the BVID is captured in the uncertainty of the damage parameters. Additionally, a 

higher variability is observed when 𝑓𝑐 = 50kHz. This can be attributed to different way 𝐴0 and 𝑆0 wave modes 

interact with damage [36].  

4.2 Scenario 2 

In this scenario, the experimental observations from both impact locations are used simultaneously during the 

calibration. Additional 𝑚1 = 38  samples (𝒙𝑖
∗, 𝒕𝑖

∗) are generated and the FE simulator is repeated for damage 

at impact location 1. Although it would be possible to use the same sample size for both impact locations, the 

sizes used are different to illustrate the ability of handling heterotopic data [70]. The sampled pairs used, and 

the estimated DIs for each sample are reported in Figure 13.  
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Figure 13: (A) Sampled (𝒙𝑖
∗, 𝒕𝑖

∗) pairs. (B) Computed DIs for 𝑓𝑐 = 50𝑘𝐻𝑧. (C) Computed DIs for 𝑓𝑐 = 250𝑘𝐻𝑧. 

An additional variable 𝑘𝑙𝑜𝑐 is introduced as an indicator to distinguish between the different impact locations 

that takes the value 𝑘𝑙𝑜𝑐 = 1 and 𝑘𝑙𝑜𝑐 = 2 for locations 1 and 2 respectively. The indicator is concatenated to 

the input vector as: 

 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑛)𝑇 = ((𝑑𝑟,1, 𝑓𝑐,1, 𝑘𝑙𝑜𝑐,1), (𝑑𝑟,2, 𝑓𝑐,2, 𝑘𝑙𝑜𝑐,2), … , (𝑑𝑟,𝑛, 𝑓𝑐,𝑛, 𝑘𝑙𝑜𝑐,𝑛))
𝑇

 (23) 

Due to the introduction of the additional indicator, the covariance function from Eq. (19) is now modified to: 

 𝐶𝑜𝑣 ((𝒙𝑖 , 𝒕𝑖), (𝒙𝑗 , 𝒕𝑗))

= 𝜎𝜂
2 exp(−

(𝑑𝑟,𝑖 − 𝑑𝑟,𝑗)
2

2𝑙𝑟
)𝛿 (𝑓𝑐,𝑖,𝑓𝑐,𝑗) 𝛿(𝑘𝑙𝑜𝑐,𝑖,𝑘𝑙𝑜𝑐,𝑗) exp(− ∑

(𝑡𝑖,𝑞 − 𝑡𝑗,𝑞)
2

2𝑙𝑡,𝑞

𝑞=2

1

) 
(24) 

For impact location 1 there is only a single experimental observation available (𝑛1 = 1). Since we consider 

both 𝑓𝑐 = 50kHz and 𝑓𝑐 = 250kHz the total number of experimental observations for the simultaneous 

calibration using both impact locations is 𝑛 = 2𝑛1 + 2𝑛2 = 10 observations. Similarly, the number of the 

available numerical simulations is 𝑚 = 2𝑚1 + 2𝑚2 = 156. 

 

Figure 14: Posterior distribution of the damage parameters 𝑑𝑓 and 𝑑𝑚 when both impact locations are considered for the calibration. 

Similar to the previous scenario, 2 chains with 10000 samples each are used to explore the posterior while the 

same prior distributions as defined in Eq. (22) are used. The resulting posterior distributions of the calibration 

parameters are illustrated in Figure 14 when both impact locations are considered simultaneously. 

Furthermore, the predicted DI values for each impact location and actuation frequency are reported in Figure 

15. Because in this scenario the calibration parameter is shared between the two impact locations, it is 

attempted to find the shared value that fits all experimental observations from both impact locations.   
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Figure 15: Posterior estimate of the model prediction with the 95% prediction bounds when both impact locations are considered.  

Comparing Figure 12 and Figure 15 it is evident that there is an upward shift in the posterior prediction of the 

model after observing the datapoint at impact location 1. It is also noted that the expected value of 𝑑𝑚 is 

smaller than 𝑑𝑓, which is expected for BVID damage [50].  

Table 4: Summary of the computed RMSE values. 

𝑓𝑐 Experiments Numerical 

50𝑘𝐻𝑧 0.01088 0.00824 

250𝑘𝐻𝑧 0.00233 0.00279 

For verification, 20 new samples are drawn from the posterior distributions of  𝑑𝑓 and 𝑑𝑚 and random damage 

sizes 𝑑𝑟 ∈ [7.5, 9.5]mm are assigned to each sample. The simulations are repeated for both impact locations 

and actuation frequencies. The simulated DIs are reported in Figure 15. This is used to evaluate the capability 

of the calibrated simulator to be used as a digital clone and generate new samples that can replicate the 

variability of the experimental observations. The root mean square error (RMSE) is used as a metric for this 

comparison. For a given frequency, the RMSE is given as:  

 𝑅𝑀𝑆𝐸 = √𝑛−1 ∑(𝑦𝑖 − 𝑦𝑖
∗)2 (25) 

where 𝑛 is the number of measurements and 𝑦𝑖
∗ is the predicted DI of the stochastic model. The experimental 

measurements and the new numerical samples are then used in 𝑦𝑖. The RMSE values computed are 

summarized in Table 4. For both actuation frequencies, the new numerical samples follow the posterior 

predictions of the probabilistic model and lead to similar RMSE vales. Thus, new sample points can be 

generated that follow the variability of the experimental observations. 
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5 Evaluation of the SHM system performance  

To estimate the PoD of an impact event it is necessary to evaluate impacts at various locations on the plate. 

However, gathering experimental measurements at multiple impact locations for different damage severity 

levels is both costly and time consuming [13]. According to the recommendations in [23], approximately 174 

samples from different specimens are required to accurately capture the PoD using hit/miss data. For this 

reason, it is desirable to substitute experiments with numerical tests.  

Following the current guidance in MIL-HDBK-1823 [14], the performance of the SHM system is evaluated 

based on the minimum damage size (𝑎) that can be detected reliably. With 𝑎90 we denote the damage size that 

can be detected with 90% probability and with 𝑎90 95⁄  its upper one-sided confidence interval [2]. In [14], two 

methodologies are suggested for the computation of the PoD, either using hit/miss data or using the 

�̂� 𝑣𝑒𝑟𝑠𝑢𝑠 𝑎 approach, where �̂� denotes the response of the SHM system. The latter method is used here and 

�̂� corresponds to the DI computed using Eq. (3).  

The digital clone platform is used to simulate impact damage events at different locations of the plate to 

generate the required statistical sample to estimate the PoD. In the previous paragraphs, the uncertainties 

regarding the measurement noise and EOC are accounted for in the threshold value while the uncertainties 

regarding the observed DI value after an impact event are considered the calibration of the simple FE model 

with the experimental data. Because the threshold value varies depending on the measurement temperature 

from Eq (18), the PoD is written as 𝑃𝑜𝐷(𝑎, 𝛥𝑇) ≈ 𝑀𝐴𝑃𝑂𝐷(𝑎, 𝛥𝑇) = Pr[�̂� > 𝑇ℎ(𝛥𝑇)]. 

In this section, the damage parameters that were calibrated using both impact locations are used to generate 

numerically a statistical sample of independent impact events at different locations. The inputs for each impact 

event is defined as a vector 𝒃𝑖 = (𝑥𝑙𝑜𝑐,𝑖, 𝑦𝑙𝑜𝑐,𝑖, 𝑑𝑟,𝑖, 𝑑𝑚,𝑖, 𝑑𝑓,𝑖) where 𝑥𝑙𝑜𝑐,𝑖 and 𝑦𝑙𝑜𝑐,𝑖 are the 𝑥 and 𝑦 coordinates 

of the 𝑖𝑡ℎ impact location, respectively. The damage parameters are sampled from the posterior distribution 

of the calibration process (Figure 14) while 𝑥𝑙𝑜𝑐,𝑖, 𝑦𝑙𝑜𝑐,𝑖 and 𝑑𝑟,𝑖 are sampled uniformly in the intervals 20 ≤

𝑥𝑙𝑜𝑐 ≤ 280mm, 20 ≤ 𝑦𝑙𝑜𝑐 ≤ 205mm and 3 ≤ 𝑑𝑟 ≤ 18mm. In total 𝑁𝑠 = 300 samples are generated. Wave 

propagation is simulated for each impact event and the DI is computed for each sensor pair. The distribution 

of the impact events for the numerical testing are presented in Figure 16. These samples are then used to 

estimate the MAPOD of the SHM system.  

 

Figure 16: Distribution of generated impact events.  
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Figure 17: Schematic illustration of the detected impact events 

Using the results from the numerical simulations, the ability of the SHM system to detect each impact event 

is evaluated. The resulting DIs can be arranged in a matrix �̂� with dimensions 𝑁𝑘  × 𝑁𝑠 where 𝑁𝑘 is the number 

of the sensor pairs. For the SHM network with 4 PZTs considered here, 𝑁𝑘 = 6 unique paths can be defined 

while the DIs along repeating paths have been averaged. A Boolean detection matrix 𝑀 with entries 𝜇𝑘,𝑙 is 

then used to indicate with 𝜇𝑘,𝑙 = 1 if the 𝑙𝑡ℎ impact event is detected by the 𝑘𝑡ℎ sensor pair or 𝜇𝑘,𝑙 = 0 

otherwise. The decision for detection is carried out by comparing the DIs with the threshold value defined in 

Eq. (18). In Figure 17, green circles represent the locations of the PZT wafers, gray circles the samples with 

𝜇𝜄 = ∑ 𝜇𝑘,𝑖
𝑁𝑝

𝑘=1 = 0 (i.e. not detected by any sensor pair) and  red circles indicate the samples with 𝜇𝜄 =

∑ 𝜇𝑘,𝑖
𝑁𝑝

𝑘=1 ≥ 1 (i.e. detected by at least one sensor pair) when 𝛥𝛵 = 0 in Eq. (18). 

The relationship between 𝑎 and �̂� is approximated using a simple linear regression model as [12]: 

 
log (�̂�) = 𝛽0 + 𝛽1log (𝛼) + 휀 (26) 

where, 𝛽0 and 𝛽1 are the intercept and the slope of the line and 휀~𝑁(0, 𝜏2) is the error random variable with 

constant variance. Because the FE model is calibrated along the direct path only, in Eq. (26) �̂� corresponds to 

the DI computed along the direct path and 𝑎 to the damage radius 𝑑𝑟 of the impact event. The prediction bounds of 

the regression are computed using the Wald method [12], [14]. Then, the PoD is computed as: 

 𝑃𝑜𝐷(𝑎,𝛥𝑇) = Φ(
log (𝑎) − �̂�

�̂�
) (27) 

where, Φ(∙) denotes the normal cumulative distribution function. The parameters of 𝑃𝑂𝐷 are related to the linear 

regression parameters through �̂� = (log (𝑇ℎ(𝛥𝑇)) − �̂�0) �̂�1⁄  and �̂� = �̂� �̂�1⁄ . The parameters �̂�0 and �̂�1 are 

computed using maximum likelihood estimation while �̂� is computed through the mean squared error of the 

regression [2]. Lastly, the covariance matrix of the PoD is computed using the delta method for the definition of 

the prediction bounds, as outlined in [14]. Other approaches for the estimation of the prediction bounds are 

available, such as the nonparametric bootstrap method, as discussed in [2].  

The DIs obtained from the different impact events are plotted in Figure 18. In the same plot, the mean of the 

regression and the 95% prediction bounds are also plotted. The estimated regression parameters are �̂�0 =

−9.9591, �̂�1 = 3.2697 and 𝜏2 = 0.7986. Using the regression estimates, the PoD can be computed for different 

values of 𝛥𝑇. In Figure 19, the estimated PoD is plotted for 𝛥𝑇 = 0𝐶𝑜, 𝛥𝑇 = 15𝐶𝑜and 𝛥𝑇 = 30𝐶𝑜 along 

with the 95% confidence intervals. In each case, the 𝑎90 95⁄  is also indicated with red dotted lines. Increasing 

the temperature difference between baseline and the damaged signals not only shifts the PoD curve to higher 

𝑎 values but also increases the 95% prediction bounds. The increased uncertainty associated with differences 

in the EOC, lead to an increase in the damage size the SHM system can reliably detect. 
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Figure 18:Scatter plot of the DIs simulated using the calibrated FE model and the fitted linear model.  

 

Figure 19: Estimated PoD for 𝛥𝑇 = 0𝐶𝑜, 𝛥𝑇 = 15𝐶𝑜and 𝛥𝑇 = 30𝐶𝑜. Dotted red lines indicate the 𝑎90 95⁄  damage size for each 

case. 

The variation of 𝑎90 95⁄  for different values of 𝛥𝑇 is illustrated in Figure 20. The results exemplify the need to 

account the uncertainty associated with EOC and in particular the temperature difference, as it can 

significantly affect the performance of the SHM system or provide basis for selection between different 

network set-ups. The combination of model calibration and uncertainty quantification due to measurement 

noise and EOC provide insights on the performance of the system under different conditions. 

 

Figure 20: Estimated 𝑎90 95⁄  for different 𝛥𝑇 values.  

6 Conclusions 

The accurate computation of the PoD of SHM systems in composites requires many tests that are both costly 

and time consuming. To address this, a digital clone platform was presented in this study for the estimation of 

the MAPOD. Uncertainties relating to the reliability of the SHM system were quantified and propagated within 

the platform to consider different operational conditions and capture the system’s response. The variability of 

the experimental observations was introduced by training a numerical simulator using available experimental 

data. Because the calibration was carried out within a Bayesian framework, the results can be updated as more 

observations become available. The platform was then used to generate a statistical sample of impact events 

for the estimation of the MAPOD under different operational conditions.  

The threshold value used for the damage detection was defined through the implementations of a data-driven 

approach that takes into consideration the measurement noise and differences in the EOC. Despite 
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implementing a temperature compensation algorithm [20], variations in the temperature between the pristine 

and the current measurement increases the uncertainty and requires higher threshold values for the reliable 

distinction between pristine and damaged measurements. Compared to the influence of the temperature 

difference between the measurements, the measurement noise is less impactful. The threshold value was 

defined following an exponential relationship to the temperature difference while the measurement noise is 

added as a constant value, considering the most unfavorable direction of wave propagation.  

The, uncertainties relating to the actual geometry of the damage area, the interaction with guided waves and 

the characteristics of the impact damage were considered through the calibration of a simple FE model. The 

numerical model was calibrated following the methodology proposed in [31], that allows the combination of 

numerical results with experimental observations from impacted composite plates while a surrogate model is 

used to reduce the required number of simulations. This way, the variability of the experimental observations 

is captured as uncertainty in the input parameters, 𝑑𝑚 and 𝑑𝑓, of the damage model. Considering the higher 

sensitivity of the 𝑆0 mode on the value of  𝑑𝑓, the calibration is carried out at two actuation frequencies 𝑓𝑐 =

50kHz (𝐴0 mode dominant) and 𝑓𝑐 = 250kHz (𝑆0 mode dominant). The posteriors of the damage parameters 

indicate higher values for matrix damage (i.e. lower 𝑑𝑚) compared to the fiber damage, which is expected for 

BVID in composites.  

The calibrated FE model was used in conjunction with the definition of the threshold value to simulate impact 

events at different locations on the plate and estimate the MAPOD.  The PoD of the SHM system is then 

estimated following the current guidance in MIL-HDBK-1823. The temperature difference between the 

baseline signal and the current measurement temperature significantly affects the ability of the SHM system 

to reliably detect an impact damage. This dependency however can be quantified in order to establish 

temperature ranges that allow the detection of a given impact damage.  For instance, using the estimations of 

this study, the SHM system considered can reliably detect BVID with 200mm2 damage area when  |𝛥𝑇| ≤

10℃. Thus, taking baseline signals every 20℃ ensures that 𝛥𝑇 is never larger that the allowable limits. Such 

ranges can be used by engineers and managers for the selection and operation of SHM systems. 

The FE model used for the simulation of lamb wave interaction with damage assumes that 𝑑𝑚 and 𝑑𝑓 are 

uniform through the thickness and are applied in a circular region. Although these assumptions lead to a 

simplistic model, significant insights can be obtained regarding the performance of the system. The FE model 

considered can be refined to account for additional damage mechanisms such as delaminations, the complex 

geometry and the through thickness characteristics of BVID. Such examples can be found in the works of 

[73], [74]. These models could potentially reduce the number of impact events and impact locations needed 

to capture the response of the system however, it is important to take into consideration the computational cost 

of the model and the need to increase the required samples if the unknown parameters are increased.  

Furthermore, the framework presented here was used to propagate the variability in the experimental 

observations to the numerical simulations and estimate the MAPOD. This framework could be modified to 

generate a sample of impact events for the assessment of the localization capabilities of the SHM system. Then 

uncertainties relating to damage localization can be propagated to the estimations similar to the work presented 

in [75] where the case of a through thickness hole in a metallic plate is studied. 

As noted in [55], one of the disadvantages of the calibration methodology is that 𝜮𝒟 depends on 𝜽 and thus 

each time 𝜽 is updated during the Bayesian inference, a determinant and a matrix inversion must be performed 

which are computationally intensive operations. In the presented applications, the number of available 

computer simulations and experimental observations is limited, and such restriction should not affect the 

performance of the methodology. This restriction however is detrimental for applications with high 

dimensional inputs. The dimensionality of the input matrix however can be reduced using principal component 

analysis (PCA), as noted in [55].  
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