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Abstract

Digital compression of video images is a pos-
sible avenue for HDTV transmission. Com-

pression needs to be optimized while picture

quality remains high. Two techniques for com-

pressing digitized images are explained, and

comparisons are drawn between the human

vision systeln and artificial compression tech-

niques. Suggestions for improving compres-

sion algorithms through the use of neural and

analog circuitry are given.

I Introduction

Digital compression algorithms are being ex-
amined closely for possible use in High Defi-

nition Television (HDTV) transmissions. For

digital transmission of HDTV pictures to be-

come a reality, broadcast quality video needs

to be compressed in order to remain within

typical bandwidths allotted for TV. Figure 1

shows a block diagram of a general transmis-

Figure 1: Typical HDTV Transmission

sion of digital information. The compression

can be done in either a lossy or lossless man-

ner. Lossy compression involves the use of es-

timat.ing a "continuum" of values with a dis-

crete set. of points, each of which represents a

range of values. This estimation, or quanti-

zation, causes some loss of information. Loss-

less compression involves no loss of informa-

tion; it mak_ use of statistical properties of

the data being transmitted. A ttuffman code

is a good illustration of lossless compression:

code words having higher a priori probabilities

are assigned shorter word lengths, thus mini-

mizing the code length.

II Vector Quantization

One popular form of digital compression is vec-

tor quantization (VQ). VQ is a lossy algorithm

that involves dividing the screen into regular

blocks of pixels, e.g. 2 pixels on a side. If each

pixel is quantized into an 8 bit word, then the

4 pixel block, or tile, can be represented as a 32
bit vector. This vector can be used as a search

key in an as_ciative memory lookup [1] to find

the closest match amongst a predetermined
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"codebook" of vectors. The codebook is a set

of relatively few vectors representative of all

possible tiles. Since the encoder and decoder
both have a copy of the codebook, only the
index of the chosen code vector is sent.. Thus,

if the codebook contained 64 codewords, then

only 6 bits are needed to specify the represen-
tative vector, giving a compression of 32:6 =

5.3 and a bit per pixel ratio of 6 bits/4 pixels

= 1.5 bpp.

Proper codebook generation is a significant.

factor in determining VQ performance [2]. In

principle, the codebook could be updated to
match the image it was representing: however,

in practice synchronizing the encoder to the
decoder too frequently would negate the band-

width reduction of VQ compression. The man-

ner in which the algorithm handles edge fea-

tures is also significant. The human eye places

a heavy emphasis on edge detection, thus it is

important that image reconstruction near edge

features be sharp and consistent.

Generally, codebooks are generated using

the most frequently repeated tiles in an image.

This method of codebook generation performs

well on average, but features that appear infre-

quently within the image are not handled well,

since they are not represented ill the codebook.

Unfortunately, edge features may often fall

into this category. The larger the codebook
can become, the more accurately it is able

to describe the image to be compressed; but

at the same time, the vector matching hard-

ware becomes more complex, and the num-

ber of bits sent per codebook index needs to
be increased. The ability to trade off picture

quality for compression performance may de-

sirable in some applications, but not necessar-

ily HDTV, where both properties need to be

optimized.

Figure 2: Enhanced DPCM CODEC

III Enhanced DPCM

The enhanced DPCM video data compre_

sion CODEC [3] utilizes four techniques to
achieve data compression: differential pulse

code modulation (DPCM), non-adaptive pre-

diction, non-linear quantization, and multi-

level Huffman coding. The compression al-

gorithm incorporates both lossy and lossless
mechanisms in these four techniques. The en-

coder portion of the CODEC performs the

data compression, and the decoder recon-

structs the image from the compressed image

data. A block diagram of the digital portion
of the CODEC is shown in Figure 2. The in-

put to the encoder is a digitized NTSC video

signal, smnpled at four times the color subcar-
rier frequency (nominally 14.32 MHz) with a

resolution of 8 bits per sample (pixel).

DPCM mad non-adaptive prediction are pre-

dictive techniques used to reduce the amount

of redundancy in the video image. DPCM

predicts the value of the current pixel based

on the average of two neighboring pixels of
the same color subcarrier phase, the 4th pre-

vious pixel on the same line and same pixel
from two lines previous. Redundancy is re-

moved by subtracting the DPCM predicted

value (PV in figure 2) from the current, pixel

value (PIX) resulting in a difference value.

The non-adaptive predictor attempts t.o re-

move more redundancy by predicting the dif-

ference value resulting from the DPCM pre-

diction. Using the fact that the difference val-

ues for neighboring pixels are similar, the non-

adaptive predictor values are based on the dif-
ference values of the previous pixel, and these

were determined using statistical analysis on a

number of sample images with widely varying

picture content. The predicted value (NAP),



Figure3: Look-upTableValues

whichis contained ill a look-up table (see Fig-
ure 3) in the hardware, is subtracted from the

DPCM difference value resuhing in a new dif-
ference value (DIF).

The resultant difference value (DIF) is then

quantized into one of 13 quantization levels

(QL). Each quantization level (QL) has an as-

sociated quant, ization value (QV) which is rep-
resentative of the difference value (DIF). The

difference values are quantized non-unifornaly

to allow more resolution for the quantization
levels with small difference values, and less res-

olution for large difference values. This non-
uniform distribution is chosen because the hu-

man eye is more sensitive to small variations

in smooth regions of an image (where the dif-

ference values will be small) than it is to large

variations at transition boundaries (large dif-

ference values). Like the NAP values, the

quantization values were determined by sta-

tistical analysis on sample images and the QL

and QV values are contained in look-up tables

in the encoder hardware memory,

The final data compression technique used
in the enhanced DPCM CODEC is multilevel

Huffman coding [4]. The quantized difference

values are assigned Huffman codes based on
the probability of occurrence of the quantiza-

tion level. The most probable quantization

levels are assigned the shortest length Huff-
man codes, Multilevel Huffman codes are used

to take advantage of the fact that neighbor-

ing pixels fall into the same or close t,o the

same quantization level. Fourteen Huffman
code sets are used - one for each of the 13

quantization levels and one for start-up pur-

poses. The Huffman encoder is implemented

in a look-up table addressed by QL(N) and
QL(N-1). The output of the Huffman encoder

is a Huffman code up to 12 bits long and a 4-

bit code indicating the length of the Huffman
code.

The enhanced DPCM algorithm enjoys an

advantage over vector quantization in the

manner in which it handles irregular features.

Whereas VQ has no good means of repre-

senting features that appear infrequently, the

DPCM scheme is able to simply transmit

longer codewords for unexpected events. The

effect is a slight rise in the average bpp ratio in

return for higher resolution and better image

quality near edges.

The enhanced DPCM CODEC is able to

compress a digitized NTSC image from 8

bits/pixel to an average of 1.8 bits/pixel. The
reconstructed image quality is excellent and is

indistinguishable from the original image.

IV Retinal Image Map-

ping

Due to the proven efficiency of the retina's im-

age processing, it seems reasonable to match

artificial image compression to the natural

compression used by the human vision sys-

tem. The photoreceptors on the retina form

a signal proportional to the logarithm of the

incoming light intensity. The signal is then
spatially and temporally averaged with neigh-

boring photoreceptor signals. A difference be-

tween the photoreceptor output and the aver-

aged signal is formed, and it. is a function of

this signal on which the brain operates.

The DPCM compression technique is sim-

ilar to the manner in which actual physio-

logical systems "encode" visual information.

The non-linear quantization can be compared

roughly to the logarithm function, the pre-
dicted value (PV) corresponds to a spatial av-

erage, and the difference value is the final out-

put in both syst.ems. Qualitative performance

of the two systems is also similar. If the video



imageisshiftedslightly,both theDPCMal-
gorithmandtheretinalmappingproducean
outputsimilartobutslightlyshiftedfromthat
of theoriginalimage.Ontheotherhand,the
\ZQsystemplacesartificialboundariesin the
image:anyshiftofthevideoimagecouldresult
in averydifferentorderingof thetransmitted
codeindices.Wewill exploremethodsof re-
movingredundancywithlossinamannerthat
issimilarto the lossesincurredin theretina.

V Channel Error Effects

In addition to compressing video data, the
manner in which an algorithm can detect and

correct bit errors introduced by a noisy com-

munications channel is another important per-
formance criterion. Errors must occur at rates

that are not visible or bothersonae to the

viewer.

The VQ compression algorithm has perhaps

its biggest advantage in terms of error perfor-

mance. Since each block is represented by a

fixed length codeword, any errors that occur
are localized to the block in which the error

occurred: there is no cascading effect. This

is analogous to the biological system in that

each fixed length codeword maps to an optical
nerve. The small amount of information that

is lost in a single block of data or along a. sin-

gle nerve is so negligible that processing can

continue uninterrupted.

One drawback to the DPCM algorithm is

its non-graceful performance degradation due

to bit errors. Due to their variable length na-

ture, Huffman encoded data is extremely vul-
nerable to bit errors. When an error occurs in

the Hufflnan code data, proper decoding is un-

likely and will result in loss of synchronization
of codeword boundaries. In the case of video

data compression, loss of synchronization will

result in poor image quality.

The enhanced DPCM CODEC employs line

and field resynchronization techniques to re-
duce the effects of channel errors on the re-

constructed inaage quality. A unique word is

inserted into the compressed data stream at

the begimfing of each video line and each field
(a different, unique word is used for the lines

and the fields) by the en¢oder. The decoder

detects the occurrence of the unique words and
also counts the number of Huffman codes re-

ceived for each line and each field. If the lo-

cation of the unique words and the beginning
of the video lines or fields do not occur at the

same point, then an error has occurred some-
where in the Huffman code data.

Control of a decoder FIFO buffer is used to

maintain synchronization on a line and field

basis. The FIFO controls work in conjunction

with the unique words to reduce the impact of

channel errors to merely streaks in a video line

rather than a total loss of synchronization. In

low error rate channels (less than 10-6), the

streaks caused by the errors may not be visi-
ble or bothersome to a viewer. This error rate

corresponds to approximately one bit error per
frame in NTSC transnfissions. However, in a

higher error rate channel (greater than 10 -6 )

the image degradation will be unacceptable. A

better form of error detection/correction needs

to be employed when using variable length
codes like Huffman codes in a noisy commu-
nication channel.

VI Algorithm

Improvements

One approach for reducing the effects of chan-

nel errors on image quality is to introduce re-

dundancy in the form of error checking bits. A

high rate convolutional encoder coupled with
a maximum likelihood decoder at the receiver

would give a coding gain of 2-4 db. depend-

ing on the complexity of the decoder. Such



a system lends itself well to serial transmis-

sion and would reduce error rates in virtually

all cases to acceptable viewing levels: however

in addition to slightly larger bandwidth re-

quirements, increased circuit complexity is one

price paid for such a gain. For example, win-
ner take all circuits, which are characteristic of

maxinmm likelihood estimation, would have to

be included. Also. neural networks have been

shown to produce good non-linear estimates of

maximum likelihood sequences [5].
Since the VQ algorithm performs so welt in

localizing errors to single pixels, the enhanced

DPCM algorithm could be modified to take

advantage of this characteristic. If the man-
ner in which the NAP value was derived could

be changed to an adaptive form, the difference

value could (almost) always be driven to one

of four quantization levels. If this were the

case, then two bit.s per pixel could be sent,

and the transmission would be very robust

against channel disturbances. Unfortunately
this method could introduce a further loss of

information since we are limiting the possible
values of DIF to a subset the actual values that

it can attain.

Another approach to creating constant word

length representations of difference values with

the enhanced DPCM algorithm is to include
more of the neighboring pixels in the pre-

diction of the current pixel. In most cases

this would improve the predicted value's es-

timate of the current pixel. The retina is able

to change the size of the neighborhood de-

pending on the activity of patterns within a

given pixel's range. For example, in a field of

constant, pixel values, the neighborhood will

expand to average in more of the surround-
tags; whereas in areas where there are rapidly

changing pixel values, the neighborhood is

shrunk, since values further away are not rep-

resentative of the pixe] of interest. Thus we
would want to include some mechanism for

varying the neighborhood size. Harris et al. [6]

accomplish this task through the use of resis-

tive fuses in their hardware implementation of
the retina. The resistive fuse acts as a resistor

as long as voltage differences between pixels

remain low; if they grow too large, the com-

ponent becomes a fuse, effectively cutting off

communication between pixels.

Another aspect of the retina is its ability

to remove spatial distortion resulting from the

changing media through which light signals

pass. This distortion is analogous to the t.em-

poral smearing of a transmitted digital pulse
as it passes through a network. Shown in Fig-

ure 4 is Lucky's decision directed transversal

filter [7]. This filter removes temporal smear-
ing of a digital signal by setting the weights so

that they unconvoive the dispersive channel

through which the signal passed. The incom-

ing signal enters into a tapped analog delay

line; the tapped values are weighted, summed

and compared to some threshold value. The

difference between the weighted sum and the

binary comparator output forms the error

value that. drives the weight adapting algo-

rithm. Figure 5 shows a modification to this
idea so that it implements a spatial filter.

Rather than being taps on an analog delay

line, the incoming lines are the outputs from
similar neighboring pixel filters. The weighted

sum of neighboring pixels forms a prediction

of the center pixel X. When the prediction

matches the actual value, adaptation of the

weights will stop. The modified spatial filter

uses adaptive means to unconvolve any spa-

tial smearing. Networks similar to this spatial

filter are also useful for storing vectors in an

associative memory [8].

Figure 4: Decision Directed Filter



Figure5: ModifiedSpatialFilter

VII Summary [3]

Digital compression of video images does in-

deed seem to be a viable means of transmitting

HDT\" signals. We examined two compres-

sion algorithms and made some comparisons

to the human vision system. Vector quan- [4]
tization gives superior error correction per-

formance due to the fixed length information

block it sends. The enhanced DPCM algo-

rithm compresses images more like the retinal
image mapping aald produces high quality re- [5]

constructions even near edges and other irreg-
ular features. The goal for HDTV of course is

to produce the highest quality picture given

the allotted bandwidth while still being ro-

bust against channel disturbances. Neural cir-
cuitry can help to block up the data output [6]

from the DPCM algorithm into more regular

sized "chunks", thereby incorporating the ad-

vantages of both techniques into a single pro-
cess.
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