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Abstract-An algorithm for efficient and accurate computation 
of the fractional Fourier transform is given. For signals with 
time-bandwidth product N ,  the presented algorithm computes 
the fractional transform in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO( N log N )  time. A definition for 
the discrete fractional Fourier transform that emerges from our 
analysis is also discussed. 

I. INTRODUCTION 

HE fractional Fourier transform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11-[4] has found many T applications in the solution of differential equations [2], 

[31, quantum mechanics and quantum optics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5]- [  111, optical 

diffraction theory and optical beam propagation (including 

lasers), and optical systems and optical signal processing [ 11, 

[ 131-[25], swept-frequency filters [4], time-variant filtering 

and multiplexing [I], pattern recognition [26], and study of 
time-frequency distributions [27]. The recently studied Radon 
transformation of the Wigner spectrum [281-[30] is also known 
to be the magnitude square of the fractional Fourier transform 
[ll,  [31]. The fractional Fourier transform has been related to 
wavelet transforms [l], [32], neural networks [32], and is also 

related to various chirp-related operations [l], [33]-[35]. It can 

be optically realized much like the usual Fourier transform 

[l], [131-[17], [20] and, as we will show in this paper, can 
be simulated with a fast digital algorithm. Other applications 

that are currently under study or have been suggested include 

phase retrieval, signal detection, radar, tomography, and data 
compression. 

In this paper, we will be concerned with the digital com- 

putation of the fractional Fourier transform. We are not only 
interested in a numerical method to compute the continuous 

transform but also in defining the discrete fractional Fourier 

transform and show how it can be used to approximate the 

continuous transform. More precisely, we will show that the 

samples of the continuous time fractional Fourier transform 

of a function can be approximately evaluated in terms of the 

samples of the original function in O(N log N )  time, where 
N is the time-bandwidth product of the signal. 

In many of the above-mentioned applications, it is possible 
to improve performance by use of the fractional Fourier 
transform instead of the ordinary Fourier transform. Since 
in this paper we show that the fractional transform can be 
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computed in about the same time as the ordinary transform, 

these performance improvements come at no additional cost. 

To give one concrete example, in some cases, filtering in a 

fractional Fourier domain, rather than the ordinary Fourier 

domain, allows one to decrease the mean square error in 
estimating a distorted and noisy signal [36]. 

In Section 11, preliminaries about the fractional Fourier 
transform are given, including its relation to the Wigner 
distribution. Section I11 reviews some straightforward yet 
inefficient methods of computing the fractional Fourier trans- 
form. Fast computational algorithms are presented in Section 

IV, and simulation examples are given in Section V. Some 

alternate methods are discussed in Section VI to better situate 

the suggested algorithm among other possibilities. Section 

VI1 deals with the issue of defining the discrete fractional 
Fourier transform in some detail. The remainder of the paper 
constitutes concluding sections. 

11. PRELIMINARIES 

A. The Fractional Fourier Transform 

Let { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3Tf) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) denote the Fourier transform of f (s) . Integral 

powers 3-7 of the operator 3 e 3' may be defined as its 
successive applications. Then, we have {3 ' f } ( s )  = f ( - x )  
and { 3 4 f } ( x )  = f (s ) .  The ath-order fractional Fourier 
transform {F '" f } (x)  of the function f ( x )  may be defined for 
O < ( a ( < 2  as 

00 

F'" [ f (s) ]  ?E {F " f } ( s )  = Ba(x,z ' ) f (x ' )  ds',  1, 
Ba(z,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2') = A+ exp [ZT(S' cot 4 - 2x2' csc q5 + 5'' cot $)I,  

exp ( - i ~  sgn (sin 4)/4 + @ / a )  
1 sin $(1/2 

(1) A+ 

where 

and i is the imaginary unit. The kernel approaches Bg(z, s') E 

S(z - d) and B%2(x,x ' )  S(z + 2') for a = 0 and 
a = f.2, respectively. The definition is easily extended outside 

the interval [-2,2] by remembering that 3 4 3  is the identity 

operator for any integer j and that the fractional Fourier 
transform operator is additive in index, that is, 3'"13a2 = 
.FTa1+'"2. A complete set of eigenfunctions of the fractional 
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Fourier transform are the Hermite-Gaussian functions 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,(z) is the nth-order Hermite polynomial. The spec- 

tral expansion of the linear transform kernel is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CO 

B,(x,x’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e-2ann’2$,,(Z)t/jn(5’). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) 
n=O 

Two and higher dimensional transforms [ 141-[ 181 have sepa- 
rable kernels so that most results easily generalize to higher 
dimensions. Proofs of these and other properties may be found 

in [1]-[4], [14]-[18], and [31]. 

The ath fractional Fourier transform { F a f } ( x )  of the 

function f ( x )  will be abbreviatedly denoted by f a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x). 
As a word on terminology, we believe that ultimately, the 

term “Fourier transform” should mean, in general, “fractional 
Fourier transform” and that the presently standard Fourier 
transform be referred to as the “first-order Fourier trans- 
form.” Likewise, DFT should stand for the discrete (fractional) 
Fourier transform, etc., and the invention of new acronyms and 
abbreviations should be discouraged. 

To avoid confusion, we note that for a = 1, the frac- 

tional transform reduces to the ordinary transform defined as 

1 f ( z ’ )  exp (-227rzz’) dz’. 

B. Relation to the Wigner Distribution and the 
Concept of Fractional Fourier Domains 

The Wigner distribution Wf(z:,v) of a signal f can be 
defined in terms of the time-domain representation f ( x )  of 
that signal as 

Wf(x, V )  = 1, f ( z  + z ’ /a ) f * (z  - x’/2)e-22Tv2’ d d .  (6) 

Roughly speaking, W ( z , v )  is a function that gives the dis- 

tribution of signal energy over time and frequency. Properties 
of the Wigner distribution may be found in [37] and [38]. We 
note the following: 

00 

00 i, W(x:, U) dv = lfb)I2, (7) 

(8) 

(9) 

The Wigner distribution can also be defined in terms of any 

of the fractional transforms of f ( x )  and can be written as a 
function of other coordinate variables in the x-U plane. Thus, 
it should be considered to be a geometric entity associated 
with the signal f in the abstract and not tied to a particular 
representation of f in a given domain. 

It is possible to show that the Wigner distribution of fa (z )  
is merely a rotated version of that of f(x) [I], [4], [lS], [31] 

Wfa ( IC ,  v )  = Wf(z  cos 4 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv sin 4,  z sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 + v cos 4) .  (IO) 

CO 

W(z, U )  dz = l f l (U)I2, 
C O C O  

W(z, U )  dx dv = Signal energy. .i, .1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x, = v 

Fig. 1. Fractional Fourier domains. 

The same property can be stated in the alternative form [l], 

[41, ~311 

PdW? V)I>(xa)  = l fa(xa) l2  (1 1) 

where R, is the Radon transform operator. 724 takes the 

integral projection of the 2-D function Wf(z, U )  onto an axis 
making angle = with the z axis. We will refer to 
this axis as the z, axis or the ath fractional Fourier domain 
(Fig. 1). The xo axis is the usual time domain z, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 

axis is the usual frequency domain U .  Notice that (7) and (8) 

are special cases of this equation. In general, the projection of 

the Wigner distribution on the ath fractional Fourier domain 
gives the magnitude squared of the ath fractional Fourier 

transform of the original function. 

There is actually nothing special about any of the continuum 

of domains; the privileged status we assign to the time and 
frequency domains can be interpreted as an arbitrary choice of 
the origin of the parameter a. All of the fractional transforms, 
including the 0th transform (the function itself), are different 
functional representations of an abstract signal in different 
domains. The unitary transformation between these different 
representations is the fractional Fourier transform [ 11. 

C. Compactness in the Time Domain, the 
Frequency Domain, and Wigner Space 

A function will be referred to as compact if its support is so. 

The support of a function is the subset of the real axis in which 
the function is not equal to zero. In other words, a function 
is compact if and only if its nonzero values are confined to a 
finite interval. It is well known that a function and its Fourier 
transform cannot be both compact (unless they are identically 

zero). In practice, however, it seems that we are always 
working with a finite time interval and a finite bandwidth. 
This discrepancy between our mathematical idealizations and 
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the real world is usually not a problem when we work with 

signals of large time-bandwidth product. The time-bandwidth 

product can be crudely defined as the product of the temporal 

extent of the signal and its (double-sided) bandwidth. It is 

equal to the number of degrees of freedom and the number of 

complex numbers required to uniquely characterize the signal 
among others of the same time-bandwidth product. 

We will assume that the time-domain representation of our 
signal is approximately confined to the interval [-Atla,  At121 

and that its frequency-domain representation is confined to the 
interval [-Af/2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAf/Z]. With this statement, we mean that a 

sufficiently large percentage of the signal energy is confined 

to these intervals. For a given class of functions, this can 

be ensured by choosing At and Af sufficiently large. We 

then define the time-bandwidth product N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz AtA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  which is 

always greater than unity because of the uncertainty relation. 

Let us now introduce the scaling parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs with the 
dimension of time and introduce scaled coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = t / s  

and U = f s .  With these new coordinates, the time and 
frequency domain representations will be confined to intervals 

of length A t l s  and A f s. Let us choose s = d m  so that 
the lengths of both intervals are now equal to the dimensionless 

quantity d m ,  which we will denote by Ax. In the newly 

defined coordinates, our signal can be represented in both 

domains with N = Ax2 samples spaced Axp1 = 1/f i  
apart. 

From now on, we will assume that this dimensional normal- 
ization has been performed and that the coordinates appearing 
in the definition of the fractional Fourier transform, Wigner 
distribution, etc., are all dimensionless quantities. 

If the representation of the signal in the ath domain is 

confined to a certain interval around the origin, the Wigner 

distribution will be confined to an infinite strip perpendicular 

to the xa axis defined by that interval. Thus, assuming that 

the representation of the signal in all domains is confined 

to an interval of length Ax around the origin, is equivalent 

to assuming that the Wigner distribution is confined within a 
circle of diameter Ax, With this, we mean that a sufficiently 
large percentage of the energy of the signal is contained in 
that circle, For any signal, this assumption can be justified by 
choosing Ax sufficiently large. (Of course, it is in our interest 

to choose it as small as possible to reduce computational 

complexity.) For convenience, we will require Ax to be an 

integer. 

Signals whose energy are not concentrated around the origin 
of Wigner space might be treated more efficiently than by 
simply choosing Ax large enough to include them, but this 

extension to the “bandpass” case is not treated in this paper. 

D. The Discrete Fourier Transform 

The discrete Fourier transform (DFT) is a mapping RN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

RN.  The matrix elements of this transformation are defined as 

(12) 

The DFT is related to the continuous Fourier transform as 
follows [39]: 

Assume that a function f (x) and its Fourier transform f l  ( U )  

are both confined to the interval [-Ax/2, Ax/2]. Then, the 

N = Ax2 samples of the Fourier transform may be found 

by taking the DFT of the N samples of the original function, 

where the sample spacing in both domains is l / f i  = l /Ax. 
A more precise statement of the above belongs to a class of 

relations known as Poisson formulas [39]: 

111. METHODS OF COMPUTING THE CONTINUOUS 

FRACTIONAL FOURIER TRANSFORM 

The defining integral (1) can be rarely evaluated analyti- 

cally; therefore, numerical integration is called for. Numerical 
integration of quadratic exponentials, which often appear in 

diffraction theory, require a very large number of samples 

if conventional methods are to be employed, due to the 

rapid oscillations of the kernel. The problem is particularly 

pronounced when a is close to 0 or 5 2 .  If we assume both 
the function and its Fourier transform to be confined to a 

finite interval, we can walk around this difficulty as follows: 
If a E [0.5,1.5] or a E [2.5,3.5], we evaluate the integral 
directly. If a E (-0.5,0.5) or a E (1.5,2.5), we use the 
property Fa = F1FT”-l, noting that in this case, the ( a  - 1)th 
transform can be evaluated directly. (Essentially similar issues 

are discussed in [28]-[30].) 

Another method of evaluating (1) would be to use the 

spectral decomposition of the kernel (see (5 ) )  [l], [14]-[161. 

This is equivalent to first expanding the function f ( x )  as 

C ~ ? o  c,$, (x), multiplying the expansion coefficients c,, re- 

spectively, with e-1nnr/2,  and summing the components. 

Although both ways of evaluating the fractional Fourier 

transform may be expected to give accurate results, we do 
not consider them further since they take O ( N 2 )  time. 

Iv. FAST COMPUTATION OF THE 

FRACTIONAL FOURIER TRANSFORM 

The fractional Fourier transform is a member of a more 

general class of transformations that are sometimes called 

linear canonical transformations or quadratic-phase transforms 

[20]. Members of this class of transformations can be broken 
down into a succession of simpler operations, such as chirp 
multiplication, chirp convolution, scaling, and ordinary Fourier 
transformation. Here, we will concentrate on two particular 

decompositions that lead to two distinct algorithms. 

A. Method Z 

First, we choose to break down the fractional transform 

into a chirp multiplication followed by a chirp convolution 

followed by another chirp multiplication [171, [391. 
In this approach, we assume a E [- 1, 11. Manipulating (l), 

we can write 

(14) .fa(x) = exp [-inz2 tan ( d P ) ] g ’ ( x ) ,  
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00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g’(x) = A4 1 exp [ z~ /? (x  - d ) ’ ] g ( d )  d d ,  (15) 

(16) 

--oo 

g(x)  = exp [-ii7x2 tan ($/2)]f(x) 

where g(x) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg/(z) represent intermediate results, and /3 = 

In the first step (see (16)), we multiply the function f ( x )  by 

a chirp function. As we discuss in the Appendix, the bandwidth 

and time-bandwidth product of g(x) can be as large as twice 

that of f(x). Thus, we require the samples of g(x)  at intervals 

of 1/2Ax. If the samples of f(x) spaced at l /Ax  are given 
to begin with, we can interpolate these and then multiply by 

the samples of the chirp function to obtain the desired samples 
of g(z). There are efficient ways of performing the required 

interpolation [40]. 
The next step is to convolve g(x) with a chirp function, as 

given in (15). To perform this convolution, we note that since 

g(x)  is bandlimited, the chirp function can also be replaced 

with its bandlimited version without any effect, that is 

csc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

00 

g’(x) = A4 [ exp [i;.P(x - z’)’]g(x’) dx’ 
J -00 

J -00 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A X  

H ( v )  exp (i27rvz) du (18) 

and where 

1 
H ( v )  -e2w/4 exp ( -i;.v’//P) (19) 

Jp 
is the Fourier transform of exp (irr/3x2). It is possible to 

express h(x) explicitly in terms of the Fresnel integral defined 

as 

(20) 

Now, (15) can be sampled, giving 

This convolution can be evaluated using a fast Fourier trans- 
form. 

Then, after performing the last step (see (14)), we obtain the 

samples of f a ( z )  spaced at 1/2Ax. Since we have assumed 

that all transforms of f(x) are bandlimited to the interval 
[-Ax/2, Ax /2 ] ,  we finally decimate these samples by a factor 

of 2 to obtain samples of f a ( z )  spaced at l /Ax. 
Overall, the procedure starts with N samples spaced at 

l /Ax, which uniquely characterize the function f(z),  and 
returns the same for f a  (x) . If we let f and fa  denote column 
vectors with N elements containing the samples of f(x) and 
f a (z ) ,  the overall procedure can be represented as 

f a  = G f ,  (22) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F4 = DAHl,AJ. (23) 

Here, D and J are matrices representing the decimation and 
interpolation operations [40]. A is a diagonal matrix that 
corresponds to chirp multiplication, and Hz,  corresponds to 

the convolution operation. We notice that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3’: allows us to 

obtain the samples of the ath transform in terms of the samples 

of the original function, which is the basic requirement for a 
definition of the discrete fractional Fourier transform matrix. 

If we are merely interested in computing and plotting the 

fractional Fourier transform of a given continuous f (z), then 

the decimation and interpolation steps can be eliminated. 
Note that the described algorithm works for -1 5 a 5 1. 

If a lies outside this interval, we can use the properties 

{F4f}(x) = f ( x )  and { F 2 f } ( z )  = f(-z) to easily obtain 

the desired transform. 

B. Method I1 

We now turn our attention to an alternative method that 
does not require Fresnel integrals. The defining equation for 

the fractional Fourier transform can be put in the form 
00 

e-z2Tpzx’ f(.’)] dx’ JL {Fat}(.) = A+ezTcuz2 

(24) 

where a = cot q!J and /3 = csc 4. We are again assuming 

that the Wigner distribution of f ( . )  is zero outside a circle of 

diameter Ax centered around the origin. (This was_ discussed 

in detail in Section 11-C.) Under this assumption, and by 

limiting the order a to the interval 0.5 5 la1 5 1.5, the 

amount of vertical shear in Wigner space resulting from the 

chirp modulation is bounded by Ax/2. Then, the modulated 

function eznaxt2 f (x‘) is bandlimited to A x  in the frequency 

domain. Thus, ezTcux‘2 f ( d )  can be represented by Shannon’s 
interpolation formula 

sinc 2Ax x’ - - )) (25) ( ( 2Ax 

where N = (Ax)2. The summation goes from -N to N 
since f ( d )  is assumed to be zero outside [-Ax/2,Ax/2]. 
By using (25) and (24) and changing the order of integration 
and summation, we obtain 

A1 

The integral is equal to e-z2wpz(n/2AX)(  @Ax) rect (/3x/2Az). 
For the range of 0.5 5 la1 5 1.5, rect (/3x/2Ax) will always 
be equal to unity on the support 1x1 5 Ax/2 of the transformed 
function. Hence, we can write 

. N  
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Then, the samples of the transformed function are obtained as 

N 
- - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, i~ (~~(m/2A~)~-2p[mn/ (2Az)~ ]+c~(n /2Az)~)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n=-N 
2A2 

which is a finite summation, allowing us to obtain the samples 
of the fractional transform in terms of the samples of the 

original function. Direct computation of this form would 

require O ( N 2 )  multiplications. An O ( N  log N )  algorithm can 

be obtained as follows. We put (28) into the following form 

after some algebraic manipulations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ 3 U f  1 (&) 

N 
- - & e i ~ ( ~ - ~ ) ( m / 2 A z ) ’  , i~@((m-n) /2Az) ’  

n=-N 
2Ax 

It can be reco nized that the summation is the convolution 
of einp(n/2Ax) and the chirp-modulated function f (  .). The 

convolution can be computed in O(N log N )  time by using 

the FFT. The output samples are then obtained by a final chirp 

modulation. Hence, the overall complexity is O( N log N ) .  
As in method I, by assuming appropriate x 2  interpolation 

and decimation, the procedure starts with N samples spaced 
at l /Az, which uniquely characterizes the function f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) and 

returns the same for f a ( % ) .  Again, letting f and f,, denoting 

column vectors with N elements containing the samples of 

f (2) and f a (%) ,  the overall procedure can be represented as 

F 

where 

K,(m,n) = -e ‘ 4  in(~~(m/2Az)~-2p[mn/(2Az)~]+a(n/2Az)~) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2Ax 

for In1 and Iml 5 N .  Just as F I ,  we notice that FYI also 
allows us to obtain the samples of the ath transform in terms 
of the samples of the original function. 

We has assumed 0.5 5 la1 5 1.5 in deriving this algorithm. 
Using the index additivity property of the fractional Fourier 
transform, we can extend this range to all values of a easily. 

For instance, for the range 0 5 a 5 0.5, we observe that 

F- lP .  (33) 3” = ~ u - 1 + 1  - - 

Since 0.5 5 la - 11 5 1, the algorithm derived earlier, in 
conjunction with an ordinary Fourier transform, can be used 
in this case as well. More concretely, since both the signal and 
its Fourier transform is assumed to be limited to the interval 
[-Ax/2, Az/2], samples of the fractional Fourier transform 

-2 -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(f) 

Fig. 2. (a) Rectangle function rect(2). The magnitude of its fractional 
Fourier transform of orders (b)a = 0.25, (c)  a = 0.50, (d) a = 0.75, 
and (e)  a = 1. (f) The phase of the transform of order a = 0.5 is also shown. 

can be related to the samples of the Fourier transform as 

N 
- A@ ,i.rr(a’(m/ZAz)’-Z~’[mn/(2A~)’]+a’(n/2Am)~) 

n=-N 
2Ax 

. w 1 (2) (34) 

where @ = ~ ( a  - 1)/2, a’ = cot $’, and ,b” = C S C ~ ’ .  In 

this case 

Fa 11 -Fa- lF - 11 (35) 

where F is the ordinary DFT matrix. 

V. EXAMPLES 

Both of the above presented fast methods give results that 

are in perfect agreement for all of the examples we tried. We 

prefer Method 11, which does not involve Fresnel integrals, 
since it is faster than the first. 

We first tested our algorithm by calculating the fractional 
Fourier transform of the Hermite-Gauss functions. We verified 
(4) for the first eight orders with excellent precision. 

We then evaluated the Fourier transform of the common 
rectangle function (Fig. 2). It is interesting to see the evolution 
of the rectangle function continuously to the sinc function as 
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I. I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 3. Fractional Fourier transform of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.5 of a triangle function 
rect(x/2) * rect(rr/2): (a) Magnitude of original (solid) and transform 
(dotted), (bj phase of original (solid) and transform (dotted)). Transform of 

order n = 0.5 of exp ( 2 7 ~ ; ~ )  rect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x / 2 0 )  (c) original, (d) real part of the 
transform. Transform of order n = (2 arctan ( -2) /a+l)  of exp (-i27ir2): 
(e) original, (f) magnitude of transform. 

a varies from 0 to 1. This evolution is closely related to the 

evolution of a diffracting wave 1201. 
In Fig. 3, we see the fractional transform of triangular, 

sinusoidal, and chirp functions, respectively. The chirp was 

deliberately fractional transformed at the order a that concen- 
trates it maximally. Were it not for the finite extent of the chirp, 
it would have been transformed into a delta function. (Our 
numerical algorithm can not in general deal with functions 
that are not of finite extent.) 

Our last example is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan elementary application (Fig. 4). 

Here, we take the fractional transform of a simple Gaussian 

signal on which a chirp distortion has been superimposed 
(Fig. 4(a)). By taking the fractional transform of this func- 

tion at the appropriate order, it is possible to separate the 

distortion from the Gaussian (Fig. 4(b)). After masking the 
distorting term (Fig. 4(c)), we are able to transform back to 
the original domain (Fig. 4(d)), where the chirp distortion has 
been eliminated [I], [36]. 

VI. DISCUSSION OF ALTERNATE METHODS 

The method presented in the previous section is only one 

of many possible ways to decompose the calculation. Another 

decomposition is the following: 

(36) f n ( 2 )  = CXP [-27rx2 tan (4/2)19’(. sec ( $ / a ) ) ,  

2,5--7 

0.5 iL 0 -5 0 5 

2,5---n--- 
2 

1.5 

1 

0.5 

n 
U 

-5 0 5 

(b) 

Fig. 4. (a) Magnitude plots of (a) exp ( - T ( z  - 4)’) + exp(-iTz2) 
rect(z/16),  (b) fractional transform of order a = 0.5, (c) masked transform, 
and (dj inverse transform of Gaussian with distortion eliminated. 

g’(x) = A, Im exp [zr cot (4/2)(z - x’)21f(x‘) dzl. (37) 

The first step corresponds to a chirp convolution that can be 

performed efficiently by use of the FFT, as explained in the 

previous section. In the second step, the result of the first step 

is multiplied by a chirp function after a scaling operation. The 

overall sequence of steps is of the form convolution-scaling 
multiplication. Yet another decomposition is the following: 

--oo 

00 

fa(x) = A+ exp [m cot (4 /2 ) ( x  - z ’ ) ~ ]  g ’ ( z l )  dz’ (38) L 
g l ( z )  = exp [-z7r/2z2 sin (4)]f(zcos ( 4 / 2 ) ) .  (39) 

In this case, the sequence of steps are in the form scaling- 
multiplication convolution. The required convolution can again 
be computed by using the FFT. 

All these methods result in the same time complexity. How- 
ever, in practice, these alternate methods are not preferable 

because they require coordinate scaling. Not having to perform 
scaling is an advantage if the original data has already been 
sampled. This is because scaling would require additional 
interpolations, etc., which will require additional computation. 
Another advantage of Methods I and I1 is that they require only 

a moderate amount of oversampling (by a factor of two) since 

the shearing operations in Wigner space are of limited extent. 

The above are not the only possible ways of decomposing 

this class of integrals [39], [41]. However, among all the 
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alternatives we have examined, the chosen method I1 has 

the advantages of resulting in O(N1ogN) computation, of 

requiring a moderate amount of oversampling by distributing 

the shears in the Wigner domain in the 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv directions 

in a balanced way, and of minimizing the need for overhead 
operations. 

VII. THE DISCRETE FRACTIONAL FOURIER TRANSFORM 

In Section V, we obtained matrices that when multiplied 
with the samples of a function, gave us the samples of the 
fractional Fourier transform of the function. For instance, take 

the matrix defined in (30). This property is certainly one that 
we desire of the discrete fractional Fourier transform matrix. 

Now, the matrix that maps the samples of any function into the 

samples of its Fourier transform is unique. Thus, it would seem 

that we have found the discrete fractional Fourier transform 
matrix. 

However, remember that we have made the (approximate) 
assumption that the Wigner distribution of the signal is con- 
fined to a circle of diameter Ax around the origin. Thus, 

there might be several discrete fractional Fourier transform 

matrices, some of which are more elegantly expressible than 
the others, which give the same result within the accuracy 
of this approximation. Of course, all of these matrices will 

yield results that are in increasingly better agreement as the 
signal energy contained in the circle is increasingly closer to 
the total energy; therefore, this definition, together with any 
other definitions, will approach each other in this limit. 

A. Discrete Fractional Fourier Transformation 

The relation between the DFT and the continuous ordinary 

Fourier transform was given in Section 11-D. We wish a 
similar relation to be valid for the definition of the discrete 

fractional Fourier transform. That is, we wish a definition that 
maps the sample vector f of the original function into the 
sample vector fa  of the fractional transform. This mapping 
may be represented by the matrix Fa ,  which we call the 
discrete fractional Fourier transform matrix. In the Appendix, 
we have argued at length that this matrix should not be the 
simple functional ath power of the ordinary DFT matrix if 
we are to reach a definition of the discrete fractional Fourier 

transform relation that directly corresponds to the continuous 

transform. (The continuous fractional transform is also not a 
simple functional power of the continuous ordinary transform.) 

Two candidates for Fa that are consistent with our basic 
requirement are the matrices FY and F:I, which were derived 
in Section IV. In both cases, we are unable to write a 

simple analytic expression of the matrix elements in terms 
of elementary functions. However, the fractional transform 
matrices can be written in piecewise manner for different 
ranges of a as the product of a small number of relatively 
simple matrices. For instance, considering method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, we can 

express FYI as 

DKaJ, for 0.5 5 161 5 1.5 
= { D K z J F ,  for 161 5 0.5 or 1.5 5 161 5 2 (40) 

where ii is the unique modulo-4 equivalent of a lying in the 
interval [ - 2 , 2 ) .  

Whereas these definitions are technically acceptable, it may 

be possible to come up with simpler loolung definitions or 

definitions with other analytically desirable properties. Thus, 

we feel that it is best not to freeze the definition until opinion 

is voiced by other members of the community. 

VIII. CONCLUSIONS 

The fractional Fourier transform is a subclass of a more 
general class of integral transformations characterized by 
quadratic complex exponential kernels. It is often not possible 
to evaluate these by direct numerical integration because the 

fast oscillations of the phase of the complex exponential would 

imply excessively large sampling rates. Many decompositions 
of these integral transformations into suboperations are possi- 

ble. However, these methods might also require sampling rates 
that are significantly higher than the Nyquist rate, depending 
on the order and particular decomposition employed. This, in 
turn, results in greater time of computation, larger numerical 
inaccuracy, and the need for more memory. 

The computationally efficient method (O(N log N )  time) 
of calculating the fractional Fourier transform that we have 
presented requires oversampling by only a factor of 2, re- 
gardless of the order of the transform. Since the computation 

of the fractional transform does not take much longer than the 
computation of the ordinary Fourier transform, algorithms that 
can improve performance by employing the fractional trans- 
form instead of the ordinary transform can be implemented at 
no additional cost. Those working on the many applications 
listed in the introduction should also benefit from the presented 
algorithm. 

We have also dealt with the definition of the discrete 

fractional Fourier transform. A definition satisfying the basic 
requirement of providing a mapping from the samples of the 

original function to the samples of the fractional transform was 
obtained. However, as is the case with the ordinary DFT, this 
requirement does not uniquely determine the definition of the 
discrete fractional transform. In this paper, we arrived at two 
distinct definitions, which of course give results that are equal 
within the intrinsically necessary approximation of assuming 

the signals to be limited in both time and frequency. (This is 
the same approximation that is made when we use the DFT to 
compute a continuous ordinary Fourier transform.) Ultimately, 

the definition to be agreed upon will assert itself with qualities 
such as internal consistency, simplicity, and being part of a 
broader analytical framework. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1x. EXTENSIONS AND FUTURE RESEARCH 

We have limited our discussion to real values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Complex 
ordered transforms also have potential applications (such as 
modeling wave propagation in media with loss or gain) so that 
it might be of interest to generalize the simulation algorithm 
to this case. 

The decompositions employed in this paper are also appli- 

cable to other quadratic-phase transform integrals [20]. Thus, 
by relatively straightforward extension of the method of this 
paper, O ( N  log N )  algorithms for these integrals can also be 
found. 
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There remains much to be worked out in the theory of 
the discrete fractional Fourier transform. It would be quite 
desirable to find an expression for the discrete transform 
that is related to the discrete Wigner distribution through 

a relation resembling (1 1). Furthermore, to tie everything 

together, it would be of interest to define discrete versions 

of the Hermite-Gauss functions in such a way that they are 

the eigenvectors of the discrete fractional Fourier transform 

matrix. Whatever the final definition of the discrete fractional 

Fourier transform matrix that emerges from future work, 
we know that it will give the same result in simulating a 
continuous transform as the matrix defined in this paper within 
the accuracy limited by representing a continuous function 

with a discrete vector. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

APPENDIX A 

EFFECT OF CHIRP MULTIPLICATION AND 

CONVOLUTION ON COMPACT SIGNALS 

We will refer to a signal as compact if its Wigner distribution 

function is compact, that is, if it is confined to a circle of 
some finite diameter Az. As discussed earlier, we are content 
with having a sufficiently large percentage of the signal energy 
confined to this circle (Fig. 5(a)). 

Now, let us assume that the time domain representation 

of our signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x) is multiplied by the chirp function 
exp[i-rrtan(4/2)x2], where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7r/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 4 5 7r/2. It is 

known that the effect of this is to shear the Wigner 
distribution in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/ direction, as shown in Fig. 5(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[37]. 
(Mathematically, this corresponds to convolving the original 

Wigner distribution with the Wigner distribution of the chirp 
function S[v - tan (4/2)z] in the v variable.) We see that the 
support of the Wigner distribution remains compact. Whatever 

percentage of the signal was confined to the bandwidth Ax, 
we are now assured that it is confined to the bandwidth 

[I + 1 tan (4/2)l]Az I 2Ax. 
We can convince ourselves of the same fact by the following 

intuitive argument. The instantaneous frequency of the chirp 

function in question is tan(4/2)z.  If this chirp is con- 
fined to the interval [-Az/2, Ax/2, the largest instantaneous 
frequency will be I tan (4/2)IAx/2. If we take this to be 
approximately equal to the bandwidth of the chirp, then the 

double-sided bandwidth is I tan (4/2) 1 Ax. Multiplying this 
chirp with f ( z )  results in a convolution of their Fourier 

transforms, resulting in an overall double-sided bandwidth of 
[l + I tan (q5/2)/]Ax, as found above. 

A similar argument holds for convolution of a function with 

a chirp. This time, shearing of the Wigner distribution in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LC direction is involved [37]. 

The need to limit the extent of vertical or horizontal shearing 
of the Wigner distribution has also been discussed in [28]-[30] 
in a similar context. 

APPENDIX B 

DEFINITION OF THE DISCRETE FRACTIONAL FOURIER 
TRANSFORM AS THE FUNCTIONAL POWER OF THE DFT MATRIX 

In this Appendix, we discuss a definition of the discrete 
fractional Fourier transform given by Dickinson and Steiglitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V 

< > 

i 
V 

Fig. 5. (a) Circular support of a signal in time-frequency space. The 
square bounding the circle is also shown. (b) Effect of multiplication of 
the time-domain representation of the signal by a chirp function. 

some time ago [44], [45]. According to their definition, the ath- 

order discrete fractional transform matrix is found by taking 

the ath power of the DFT matrix F .  The ath power of the 

DFT matrix Fa is found by standard procedures, and the 
ambiguity in taking fractional powers is resolved by choosing 
the principal roots. Then, one finds that 

where explicit expressions for the a3(a) are given in [44]. 

We will now argue that the above definition of the discrete 
fractional Fourier transform is not the one that corresponds 
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to the continuous definition given in (I).’ One of the central 

properties of the continuous fractional transform is given in 
(3). The corresponding property for the DFT would look like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-n -n $ (42) 
Fa[$ ] = e-canx /2  

where $ ’s are the eigenvectors of the DFT matrix. We 
now pr&: that the discrete fractional Fourier transformation 
defined as in (41) cannot have the property given in (42). 

Proposition 1: Given a set of eigenvectors $n of the DFT 
matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF such that 

(43) 

if the discrete fractional Fourier transformation is defined as 

in (41), then (42) will not hold true for noninteger values of a. 
Proof For integer powers of the DFT matrix, the fol- 

lowing holds true: 

F[$ -n ] = p+$ -n 

where ,k is an integer. This can be seen by repeated application 
of the DFT matrix to both sides of (43). Assuming that the 

discrete fractional Fourier transformation matrix given by (4 1) 

satisfies (42), we obtain 

Fa[$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 1 =qO - = + w ( a )  + a2(a) + a3(4)& (45) 

= ( ~ ( a )  + ~ ( a )  + m ( a )  + w(a))$,. 

(46) 

Fa[&] 

Since $),’s are nonzero, these equations imply the following 
contradiction for noninteger values of a: 

1 =ao(a) + w ( a )  + % ( U )  + a3(u )  

e-22ax - - a ~ ( a )  + a ~ ( u )  + a2(a) + a3(a). 

(47) 

(48) 

Thus, (41) and (42) are inconsistent. Hence, the proposition 

is true. 

Furthermore, if the chosen discrete fractional Fourier trans- 
form matrix satisfies (42), the resulting matrix is not a function 
of the common DFT matrix: 

Proposition 2: Given a set of eigenvectors gn of the DFT 
matrix F such that 

F[$j -n ] = e-anx/2$ -n (49) 

if ~ a [ $  1 = e-zana/2 $ , then there is no function T(  .) that 

satisfies” 
-n 

Fa = T ( F ) .  (50) 

Proof For any function T(. )  of the DFT matrix F ,  there 
exists an equivalent definition in the spectrum of F [42], [43]: 

3 

T ( F )  = x & F k .  (51) 
k=O 

In Proposition 1, we have proved that the right-hand side 
cannot satisfy the property given in (42). Thus, the left-hand 

side cannot satisfy it either, proving Proposition 2. 
In conclusion, whereas this definition of the fractional 

Fourier transform may be useful for certain applications [441, 
[4S] , it is not the discrete version of that defined in (1). 

We have stated exactly the opposite in 111, where our derivation was 
flawed 
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