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Abstract

Digital delta-sigma modulators are used in a broad range of modern electronic sub-systems,

including oversampled digital-to-analogue converters, class-D amplifiers and fractional-N

frequency synthesizers.

This work addresses a well known problem of unwanted spurious tones in the modulator’s

output spectrum. When a delta-sigma modulator works with a constant input, the output signal can

be periodic, where short periods lead to strong deterministic tones. In this work we propose means

for guaranteeing that the output period will never be shorter than a prescribed minimum value for

all constant inputs. This allows a relationship to be formulated between the modulator’s bus width

and the spurious-free range, thereby making it possible to trade output spectrum quality for

hardware consumption.

The second problem addressed in this thesis is related to the finite accuracy of frequencies

generated in delta-sigma fractional-N frequency synthesis. The synthesized frequencies are

usually approximated with an accuracy that is dependent on the modulator’s bus width. We

propose a solution which allows frequencies to be generated exactly and removes the problem of

a constant phase drift. This solution, which is applicable to a broad range of digital delta-sigma

modulator architectures, replaces the traditionally used truncation quantizer with a variable

modulus quantizer. The modulus, provided by a separate input, defines the denominator of the

rational output mean.

The thesis concludes with a practical example of a delta-sigma modulator used in a fractional-

N frequency synthesizer designed to meet the strict accuracy requirements of a GSM base station

transceiver. Here we optimize and compare a traditional modulator and a variable modulus design

in order to minimize hardware consumption. The example illustrates the use made of the

relationship between the spurious-free range and the modulator’s bus width, and the practical use

of the variable modulus functionality.

Keywords: delta-sigma modulation, digital circuits, fixed point arithmetic, frequency

synthesis, limit cycle
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Abbreviations and symbols

AC alternating current, in the context of a digital modulator denotes a varying

input signal

ADPLL all-digital phase-locked loop

Att attenuation; a spectrum analyzer measurement parameter

BS base station

BW bandwidth

CMOS complementary metal-oxide-semiconductor

CMQ classical model of quantization

DAC digital-to-analogue converter

DC direct current, in the context of digital modulator denotes a constant input

signal

DCO digitally-controlled oscillator

DCR direct-conversion receiver

DFS discrete Fourier series

DFT discrete Fourier transform

DSE delta-sigma encoder

DSM delta-sigma modulator (modulation)

DT discrete time

EFM error-feedback delta-sigma modulator architecture

FF flip-flop

FPGA field-programmable gate array

FSM finite-state machine

GPRS general packet radio service

GSM global system for mobile communications

LC limit cycle

LO local oscillator

LSB least significant bit

LSR linear shift register

LUT lookup table

MASH multistage noise shaping delta-sigma modulator

MS mobile station

MSB most significant bit

Nsamp number of samples; a spectrum analyzer measurement parameter

NTF noise transfer function

PD phase detector
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PDF probability density function

QTII second quantization theory (formulated by B. Widrow)

RBW resolution bandwidth; a spectrum analyzer measurement parameter

Ref reference level; a spectrum analyzer measurement parameter

RF radio frequency

rPDF rectangular probability density function (dither)

SFR spurious-free range

SNR signal-to-noise ratio

SOC system on a chip

SWT sweep time; a spectrum analyzer measurement parameter

TI Texas Instruments

tPDF triangular probability density function (dither)

VBW video bandwidth; a spectrum analyzer measurement parameter

VCO voltage-controlled oscillator

VMDSM variable modulus delta-sigma modulator

VMQ variable modulus quantizer

WCDMA wideband code division multiple access; a type of third generation cellular

network

WLAN wireless local area network

Ai gain element within an error-feedback modulator

b bus width

e quantization error

f frequency

fk discrete frequency

fo output frequency

fr reference frequency

fs sampling frequency

G quantizer gain

I integer part of the frequency division ratio in fractional-N frequency synthe-

sis

Ii initial condition within an error-feedback modulator

L data path delay due to logic

Ls sequence length

Ml( fk) one-sided, discrete power spectrum based on the linear model; scaled for

comparison with a measurement

Ms( fk) one-sided, discrete power spectrum based on a simulation; scaled for

comparison with a measurement
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N a coefficient used in frequency synthesis to obtained multiples of a reference

frequency

n discrete time instant

P average power

P( fk) two-sided, discrete power spectrum

Pl( fk) one-sided, discrete power spectrum based on a linear model

Ps( fk) one-sided, discrete power spectrum based on a simulation

Q modulus; denominator of the digital quantizer gain factor

q quantizer output

R data path delay due to routing

r feedback signal in the error-feedback architecture

S average power

S( f ) two-sided power spectral density

t time

u quantizer input

x delta-sigma modulator input signal

y delta-sigma modulator output signal

∆ f absolute accuracy of a frequency source

δ f relative accuracy of a frequency source

∆ fk tone spacing due to the modulator sequence length

∆ fo step size of a frequency synthesizer

∆ quantization step

∆ch radio channel spacing

σ2
e quantization error variance

Z set of integers
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I Häkkinen J, Borkowski MJ & Kostamovaara J (2003) A PLL-based RF synthesizer test

system. In IFIP VLSI-SOC 2003, International Conference on Very Large Scale Integration.

Darmstadt, Germany, December 2003: 211–214.
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1 Introduction

The communication electronics industry has experienced very rapid development since

Nokia introduced its first highly successful mobile phone, the Mobira Cityman 900, on

the mass market in 1987. Weighing just under 5 kg, this now 20-year-old grandfather of

our present-day mobile phones, showed that people can communicate instantly over any

distance wherever they are, and brought about a revolution in communication technology

that coincided with the rapid development of personal computers and integrated circuits.

Now everybody carries a tiny box weighing a mere 80 grams in thier pocket, a device

which is still called a mobile phone but is in fact a small mobile personal computer.

These are available everywhere in the world, and it is the global markets and global

needs for them which dictate the current trends in their development.

The large computer and memory markets drive a “state-of-the-art” deep sub-micron

CMOS fabrication technology. Traditional analogue and mixed mode radio electronics

is constantly being pushed towards implementation in digital CMOS. The trend is to

pack in more and more transistors of ever smaller size, and with rather poorer analogue

properties [1–4], so that the emphasis is on developing digital techniques, which scale

better with technology and can be reused easily and ported from process to process.

These trends converge in the concept of a system on a chip (SOC), where all the

components of a computer system and various electronic sub-systems are integrated into

a single chip [3, 4]. A flexible, multi-standard radio transceiver is likely to become

a dedicated radio processor on board a SOC computer [5]. The trend is continuing

towards digitizing radios, moving closer and closer towards the antenna, and this is

exerting a growing pressure on the blocks which convert the signals from the analogue

to the digital world. This is the domain of delta-sigma data converters in the field of

wireless transceivers [6].

Oversampled delta-sigma modulators (DSM) were invented 45 years ago [7, 8],

and were originally used in analogue-to-digital conversion [9–11], and later in digital-

to-analogue conversion [12–14]. Either because they appeared historically earlier, or

because they constitute a broader class of systems, the analogue DSMs have received

much more attention in the literature [15–17]. The situation has changed fairly recently,

however, with the introduction of digital DSMs for radio transceiver applications.

Digital DSMs are now found in applications which contribute to greater integration and
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digitization of the radio front-end, including oversampled digital-to-analogue converters

(DACs), mismatch shaping converters and, most notably, delta-sigma fractional-N

frequency synthesis [6, 18, 19].

This work studies two properties of digital DSMs which are directly related to

fixed-point digital implementation. The first is tonal behaviour, which, due to the

discrete, limited DSM state space, is an even more pronounced problem in digital DSMs

than in analogue ones. Our analysis and suggested solution allow DSM spectrum quality

to be traded for the number of bits required to implement the modulator. The second

problem studied here is related to the foundations of fixed-point digital systems, in

which all arithmetic operations are performed with the modulus being a power of two.

We suggest a general modification to all DSM topologies which would allow them to

operate with any integer as the modulus. This new, more general class of digital DSMs

would be better suited for multi-standard radio transceiver applications.

The remaining part of this chapter will focus on applications of digital DSMs in

wireless transceivers. Selected applications are characterized briefly in Sec. 1.2 with

special attention paid to the types of DSM input signals. Digital DSMs with DC inputs

can be represented as digital signal generators and considered separately from the more

general class of modulators working with arbitrary inputs. The main application of

interest, fractional-N frequency synthesis is considered in greater detail in Sec. 1.3,

which will highlight the most common problems arising from the use of delta-sigma

technology and the existing solutions. Finally, Sec. 1.4 will list the original contributions

contained in this thesis and Sec. 1.5 will present an outline of the thesis. The literature

review presented in this chapter, like all the other reviews included in this thesis, is based

on scientific journals, conference proceedings and available books, which means that

our view of the “state-of-the-art” is dominated by academic research. The achievements

of industry are covered only to the extent to which information on them is available in

the scientific literature.

1.1 A short introduction to digital delta-sigma

modulation

Digital DSMs are very useful at the interface between the digital and analogue worlds.

An interpolator followed by a digital DSM, a low resolution DAC and an analogue

low pass filter together form an oversampled DAC. The same DSM controlling a

18



multi-modulus divider in a phase-locked loop (PLL) forms a fractional-N frequency

synthesizer, which can also be regarded as a digital-to-phase or digital-to-frequency

converter. Delta-sigma data converters achieve high signal-to-noise ratios (SNR) without

using high precision analogue circuits. The conversion is performed at data rates much

higher than the signal bandwidth, but with reduced resolution. This makes delta-sigma

data converters particularly well suited for VLSI technology optimized for high-speed

digital circuits [6].

A digital DSM is a nonlinear system which converts a high resolution discrete

time signal x into a low resolution discrete time signal y. Strictly speaking the digital

DSM coarsely re-quantizes the input signal x, although the literature on the subject

uses a common term quantization in the context of both digital and analogue DSMs.

Quantization alone unavoidably reduces the SNR, and in order to preserve a high SNR

the DSM filters the quantization noise from the neighbourhood of the input signal in a

process called noise-shaping. The principle of operation of a digital DSM is presented

in Fig. 1. The digital DSM is applied to a signal which is already oversampled and

occupies only a small bandwidth (BW) between zero and half of the sampling frequency.

Proper preparation of the input signal x is the task of an interpolation filter, usually

preceding the DSM. The signal path in a digital DSM data converter is described in

greater detail in [20, Ch. 9, Ch. 10] and [17, p. 221].

∆Σ
modulatorx(kT) y(kT)

bx by << bx

BW fs/2<<

x(f) y(f)
input signal

quantization

BW << fs/2

noise

Fig 1. Principle of operation of a digital delta-sigma modulator.

A stable DSM is characterized by regular behaviour, as presented in Fig. 1, where the

output signal is the sum of the input signal and properly shaped quantization noise.

Many DSMs are only conditionally stable, however, in that stable behaviour occurs when

the input signal and the DSM state variables are bounded within certain ranges. One of

the external signs of instability is a rapid decrease in the SNR within the bandwidth of

interest (BW). In the field of analogue DSMs the appearance of short limit cycles is

also considered a sign of instability. If a DSM is operating in a short limit cycle, the
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quantization noise power will be concentrated into a few strong spurious tones. DSM

stability is a broad and important subject which is left beyond the scope of this thesis. A

good overview of the problem of DSM stability is presented in [16, Ch. 4] and [21, Ch.

5]. This thesis makes two contributions to the field of digital DSMs, which are outlined

in Sec. 1.4 and presented in Ch. 3 and Ch. 4.

1.2 Digital delta-sigma modulation in wireless

transceivers

Data converters provide an interface between the analogue and digital worlds. Conversion

is not limited to the voltage or current domains, but particularly in radio applications

it includes the time, frequency and phase domains. A typical example of this kind

of converter is a delta-sigma fractional-N frequency synthesizer, which converts a

baseband digital signal into a phase or frequency-modulated RF signal. Overviews of

delta-sigma data converters in wireless transceivers are presented in [6, 22]. This section

is focused on applications of purely digital modulators and provides a short overview

that emphasizes the type of DSM input signal: constant or arbitrary. It also considers

typical solutions to the tonal problems found in wireless transceivers.

1.2.1 Classical transceivers based on a local oscillator

The first group of radio systems which benefit from delta-sigma techniques are classical

radio topologies. The classical radio transmission and reception scheme based on the use

of a local oscillator (LO) and a mixer dates back to 1914, when the first superheterodyne

receiver was invented [23, 24] and the principle has remained in common use in RF

microelectronics up to the present day [22, 25]. The direct-conversion transceiver, which

uses just one local oscillator, has become a popular choice in mobile communication as

it combines a high level of integration with low power consumption [24, 26]. Direct

conversion receivers and transmitters have been used successfully for constructing fully

integrated Bluetooth, and most notably multi-standard GSM, WCDMA and WLAN

radios [27–31].

A block diagram of a direct-conversion receiver (DCR) is depicted in Fig. 2. The RF

signal coming from the antenna is amplified by a low-noise amplifier and downconverted

directly to baseband in-phase (I) and quadrature (Q) signals. The low pass filters for

20



channel selection and gain control are therefore implemented in the baseband. The

apparent simplicity of the block diagram does not indicate the real implementation

difficulties, involving DC offset, 1/ f noise, the generating of I and Q phases and gain

matching. The design effort required to build a DCR is considerable [24–26], and

therefore designers tend to choose other classical solutions in many cases, including

double conversion or low IF, which in some cases also lead to high levels of integration

[32–35].

0
90

Pre-select
filter

Channel-select
filter

Channel-select

filter

LNA LO

I

Q

Fig 2. A direct-conversion receiver.

What is important from the point of view of this work is that the majority of integrated

radios are built using the classical approach based on a LO and mixer. The LO is built

using a PLL frequency synthesizer which generates a single, stable frequency. In highly

integrated solutions, particularly in multi-standard radios the fractional-N frequency

synthesizer is currently a common choice [28–31, 36]. Such synthesizers are based on a

DSMs working with DC inputs, but this solution is particularly prone to producing

unwanted, spurious tones [15–17, 19]. The most common approach to eliminating DSM

spurious tones is based on dithering [29, 37–40]. A more thorough discussion of tonal

behaviour and the available solutions is presented in Sec. 1.3.3.

1.2.2 A transmitter based on a modulated frequency

synthesizer

A delta-sigma fractional-N frequency synthesizer with a DC input works as a LO

in a direct conversion transceiver, and when the input to the DSM is a transmit data
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stream, the synthesizer can be used as a stand-alone transmitter capable of phase and

frequency modulation [41]. Such a transmitter can be regarded as a digital-to-phase or

digital-to-frequency converter. This approach increases the level of digitization of the

radio transmitter. Modulating a PLL synthesizer involves a built-in trade-off between

the data rate and the bit-error rate. The data rate can be increased by increasing the loop

bandwidth, but this automatically increases the noise and consequently the bit-error rate.

This inherent limitation can be addressed by introducing a pre-emphasis filter

to compensate for the PLL transfer function [42–44]. As the delta-sigma modulator

contributes to the overall noise, special techniques have been invented to minimize

this source of noise. One possibility is to use a low-order DSM, which produces a

minimum amount of the out-of-band quantization noise, which can later be subtracted

from the PLL using special compensation techniques [45]. Another way of reducing the

DSM-induced noise is to modulate the PLL division ratio at the level of fractions of the

VCO cycle [46]. Among the difficulties encountered in fractional-N synthesizer design

are fractional spurious tones [47] and high linearity requirements. Any nonlinearity

within the PLL loop will increase the in-band noise through intermodulation mechanisms

[48]. Despite the inherent design challenges, this technique has been successfully

targeted toward various standards including: ISM [49, 50], bluetooth [40], GSM [39],

multi-band GSM-GPRS [43] and GSM,GPRS and WCDMA [51].

From the point of view of this thesis, it is worth noting that this application relies on

a digital DSM working with arbitrary AC inputs. Even though the modulator works with

active inputs, some authors have addressed the problem of spurious tones by choosing

dithering as a solution [39, 40]. The problem of the contribution of a DSM to in-band

noise has also been addressed by means of a specially tailored noise transfer function

[37, 52].

1.2.3 All-digital transmitters

A PLL transmitter can also be realized using exclusively digital components and,

according to the classification introduced in [53], converted to all-digital PLL (ADPLL).

A critical part for an ADPLL in the context of an RF transmitter is the digitally-controlled

oscillator (DCO). One such DCO has been successfully developed by a research group

at Texas Instruments (TI) [54, 55] and has led to fully digital transmitters for Bluetooth

and GSM [56–58].

The TI DCO is constructed as an LC oscillator with digital tuning, where the total
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capacitance of the oscillator is split into a bank of small, selectable capacitors [54, 55].

Despite the small size of the capacitors, of the order of tens of attofarads, the frequency

step in the 2GHz range is insufficient for mobile applications [5, 54]. Therefore, the

DCO uses a digital DSM to increase the resolution when the ADPLL is operating in

tracking mode. A group of capacitors is switched at high frequency using the DSM

output signal. The mean value of the stream is in the range between zero and one, and

effectively gives the DCO fractional resolution. The principle of operation is similar to

fractional-N frequency synthesis, described in the following sections. The digital DSM

works with arbitrary inputs and and has a resolution of up to 10-bits. Since it operates at

a frequency as high as 600MHz, it must be carefully optimized for speed and power

consumption [54].

1.3 Fractional-N frequency synthesis

This section introduces the fundamental operation of a fractional-N frequency synthesizer,

a technique belongs to the PLL frequency synthesis family. PLL frequency synthesizers

are most commonly used as LOs in radio transmitters and receivers. A fractional-N

frequency synthesizer can be used as a very flexible, fast-switching LO, or can form a

very compact transmitter when directly modulated. A thorough description of fractional-

N frequency synthesis and other frequency synthesis techniques can be found in the

basic literature [18, 19, 47, 53]. This chapter provides a general introduction to the

fractional-N technique with special emphasis on the role of the digital DSM.

1.3.1 Fundamental operation

A general block diagram of a PLL frequency synthesizer is depicted in Fig. 3. The

basic PLL is composed of a VCO, phase detector (PD) and loop filter. The PLL is a

synchronization system in which the output frequency fo tracks the input frequency

fr, also known as the reference frequency in the context of frequency synthesis. The

loop tries to synchronize the phases of the output and the reference signals, hence the

name phase-locked loop. The block diagram in Fig. 3 also includes a frequency divider,

which plays a key role in frequency synthesis. The output frequency fo is divided by N

before it is compared with fr. The synchronization mechanism ensures that the output
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frequency fo becomes an integer multiple of the frequency fr:

fo = N · fr. (1)

This is the fundamental principle of an integer-N PLL frequency synthesizer, which uses

a stable reference frequency fr and produces multiples which are synchronized in phase

[18, 19, 47, 53].

VCO

1/N

Loop filter

F(s)
fr fo

PFD

Phase-freq.
detector

Sequence
N

N+1

p

q

generator

Integer N

Fractional N

Fig 3. A PLL frequency synthesizer.

An integer-N frequency synthesizer has several fundamental limitations, however. First

of all, it can only generate a set of frequencies which are separated by integer multiples

of fr. If a radio standard requires narrow channel spacing, the reference frequency must

be low, which results in many undesirable effects. The PLL’s loop bandwidth must

be significantly lower than the reference frequency fr to prevent the reference signal

from feeding through to the VCO [19]. The smaller the loop bandwidth, the larger the

settling time. Secondly, with low fr and fo in the GHz range, the division ratio N must

be high. This adversely affects the synthesizer phase noise, as the in-band phase noise is

proportional to 20log(N) [19]. It has been recognized that the integer division ratio N is

a fundamental bottleneck in this technique and methods have been invented to provide a

fractional division ratio.

Fractional-N frequency synthesis is based on the idea of switching the division ratio

between two or more integer values, so that the average ratio is a fraction [18, 47, 53].

This principle is depicted in Fig. 3. Suppose that the divider is capable of dividing by N,
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or N +1 and the division ratio is controlled by a sequence generator. The generator

produces a repeating sequence of length q which controls the divider so that division

by N + 1 occurs p times and division by N occurs q− p times. The average output

frequency can therefore be calculated as (2). This is the fundamental principle of

fractional-N frequency synthesis.

fo = fr ·

(

N(q− p)+(N +1)p

q

)

= fr ·

(

N +
p

q

)

(2)

Fractional-N frequency synthesis is similar to an earlier technique called digiphase

[59]. Both techniques and the historical background to fractional-N synthesis are

presented in [18, 47]. We will concentrate here on what has evolved to become the

mainstream fractional-N architecture, the content of the sequence generator box in

Fig. 3 and its impact on synthesizer performance.

1.3.2 Delta-sigma modulation in fractional-N

Although the theoretical foundations of fractional-N frequency synthesis, as presented

in the previous section, appear to be simple in principle, this synthesis technique has

been studied intensively up to the present day to find out exactly how the sequence

generator depicted in Fig. 3 should be constructed, what is the best way to connect it to

the PLL loop and how the negative side effects of modulating the frequency division

ratio can be mitigated. In the early days of the method the sequence generator was

implemented as a simple accumulator [60]. It is in fact a very important system, which

may explain the majority of the problems and solutions and also the trends that have

prevailed in the most recent research in this field. An accumulator with a constant

input controls a frequency synthesizer and causes a periodic phase ramp at the divider

output. Such a regular sawtooth signal contains most of its power in the first few odd

harmonics of the fundamental frequency. This gives rise to unwanted spurious tones

at the synthesizer output [18, 47]. Early solutions to the problem of spurious tones

included compensation techniques designed to reduce the effects of the phase ramp. The

integrated content of the accumulator, which is a measure of the phase ramp, can be

used for compensation using a DAC [18, 47, 53, 60]. A similar technique, based on a

specially designed PFD/DAC structure, has recently been reported in the context of

direct modulation [45].

A major breakthrough in the fractional-N technique took place when it was noticed

that an accumulator is in fact a first-order DSM [61, 62]. This suggested that instead of
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compensating for the phase ramp using a DAC, it is possible to increase the order of the

DSM. A higher-order DSM produces a more randomized output signal and therefore the

troublesome fractional ramp within the PLL loop should never appear. From that point

on, PLL-frequency synthesizers of the fractional-type were able to benefit from the

theory of oversampled delta-sigma data conversion systems [15]. This marked the rise

of the delta-sigma fractional-N frequency synthesizer family, a typical representative of

which is depicted in Fig. 4.
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Loop filter
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PFD
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detector

∆−Σ
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Σ

I
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Fig 4. A delta-sigma fractional-N frequency synthesizer.

The fundamental benefit of the fractional-N technique lies in the improved resolution,

which allows for a higher reference frequency fr and a lower division ratio N. The

fractional N is usually the sum of a fixed integer part I and a fractional part x/2b, where

x is the DSM input and b is the input bus width. The synthesizer output frequency can

be expressed as:

fo = fr ·N = fr ·
(

I +
x

2b

)

. (3)

This equation shows that the desired frequency can be approximated with an accuracy

that depends on the DSM bus width b. The DSM used in fractional-N frequency

synthesis operates with the reference frequency as a clock signal. The higher fr is, the

more power is consumed by the DSM. Power and area consumption are very important,

and therefore compact, fast topologies such as multistage noise shaping architecture

(MASH) have become very popular [19]. In a digital DSM, bus width truncation often

plays the role of a quantizer. This is the easiest way of implementing the quantizer

in a digital environment, as it requires no hardware. The truncation quantizer in fact
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performs the fixed point division modulo 2b, which is the reason why the fractional

coefficient in (3) is based on the power of two.

This limitation can be removed by applying an accumulator of programmable size

[19]. A variable-size accumulator is equivalent to a first-order variable-modulus DSM.

In this work we generalize this concept to higher-order single and multi-bit DSMs.

The concept of a variable modulus quantizer (VMQ), which converts any digital DSM

into a variable modulus DSM (VMDSM) that is capable of generating any rational

fraction, is introduced in Ch. 4. This type of modulator allows precise sequences of

frequencies to be generated for a given telecommunication standard. A dynamically

changed modulus allows a synthesizer to switch easily between different standards in a

multi-mode transceiver. A fractional-N frequency synthesizer based on a VMDSM can

generate exact frequencies instead of approximating them as in (3).

1.3.3 The spurious tones problem

As was stated in the short introduction in Sec. 1.1, a DSM quantizes the input signal and

the resulting quantization noise is conveniently filtered away from the neighbourhood

of that input signal. It is very important in radio applications that the spectrum of the

filtered quantization noise should be smooth and free from dominant spurious tones.

Unfortunately, all DSMs have the potential to produce highly correlated noise under

certain conditions; this will be discussed in greater detail in Ch. 2. It has been observed

that higher-order modulators produce better, more randomized quantization noise than

low-order modulators. Spurious tones are also more likely to occur with slowly varying

or DC inputs. Solutions to this problem vary depending on the DSM input, the particular

application and whether the DSM is implemented in the digital or in the analogue

domain [15–17, 19].

In transmitters using direct synthesizer modulation, as described in Sec. 1.2.2,

the problem of spurious tones can be solved using compensation [40, 45, 63]. Such

applications typically use a low-order DSM to limit excess out-of-band quantization

noise and allow for a wider synthesizer loop bandwidth. A low order DSM and

accumulator in particular will inherently produce highly correlated quantization noise,

which can be measured and subtracted within the synthesizer loop through cancelation

circuitry [40, 45, 63].

One of the most common ways of addressing the tonal problem without using special

cancellation techniques is called dithering. This is based on injecting an additional
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pseudo-random signal into the DSM loop or adding it to the DSM input signal [16, 17].

When the dither generator is turned off, even higher-order DSMs will produce very

distinct tones [38, 39, 64]. The use of dithering has been reported in a number of

transceiver designs [29, 37–40]. Criticisms of dithering are usually related to the higher

noise floor, possible problems with DSM stability and the fact that it is difficult to

guarantee that simple (hardware-efficient) dither generators will always remove the

spurious tones.

A number of randomization methods exist which are applicable specifically to digital

DSMs working with DC inputs. These are based on loading predefined initial conditions

[18, 19, 41, 49, 65–69], setting the LSB of the input signal [61, 70] and using a prime

modulus [71] or prime feedback [72]. The method of initial conditions is considered in

detail in Ch. 3 of this thesis, where it is shown that applying predefined initial conditions

allows precise control of the sequence length and consequently the spurious-free range

(SFR). The approach proposed here quantifies the relationship between the SFR and the

amount of DSM hardware.

1.4 Contribution

The literature and our general understanding of digital DSMs has been greatly affected

by the legacy of the theory developed for analogue modulators. Until now, the theory

concerning purely digital DSMs has been limited. Motivated by this fact, combined

with their widespread use in wireless transceiver technology, we set out to study two

fundamental properties of digital DSMs.

The first contribution of this thesis addresses DSM tonal behaviour in the case of

the most problematic DC inputs. Such modulators are used in frequency synthesizers

working as local oscillators in homodyne and heterodyne transceivers (see Sec. 1.2.1). A

digital DSM working with a DC input is a finite state machine, and limit cycles and

tonal behaviour can be regarded as being among its fundamental properties. It will be

shown here that the lengths of the limit cycles can be controlled precisely by applying

predefined initial conditions and scaling the DSM buses. As a result, the quantization

noise power can be distributed over the required number of discrete tones in the DSM

output spectrum. This contribution is important, because it shows a clear relationship

between the amount of hardware necessary to implement the DSM and the quality of the

spectrum.

The second contribution of the thesis addresses the use of digital delta-sigma
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modulators in multi-standard transceivers. We explore the possibility of implementing

DSMs in a digital environment with an arbitrary modulus quantizer. We propose a

digital quantizer topology which converts any digital DSM into a variable modulus

DSM having two inputs, one for the input data and the other for the modulus. A variable

modulus DSM can generate arbitrary rational fractions defined by the data input and

modulus input. A fractional-N synthesizer based on a variable modulus DSM can

easily be adapted to various telecommunication standards. By selecting the modulus

the synthesizer can be optimized for a chosen standard and can generate prescribed

sequences of frequencies.

1.5 Overview of the thesis

The remaining part of the thesis is organized in the following way.

Chapter 2 reviews the classical theory of quantization. Under certain conditions

quantization noise can be modelled as additive white noise that enables linear DSM

analysis. We will review the conditions under which the classical model fails. When this

happens the DSM reveals the negative effects of nonlinearity; namely limit cycles and

tonal behaviour. This chapter reviews these two problems in the context of analogue and

digital DSMs and summarizes the most common methods of addressing them in both

domains. Digital DSMs working with DC inputs constitute a special case in which the

spectrum is inherently tonal. Such modulators always generate limit cycles and the only

unknown remaining is their length.

Chapter 3 explores the possibility of controlling the lengths of limit cycles in digital

DSMs with DC inputs. Such modulators can be regarded as delta-sigma encoders

which encode a digital input word into an output sequence of the desired length. This

chapter presents a linear model for a delta-sigma encoder, taking into account the

periodically correlated quantization error signal, and compares the output of this model

with simulated and measured encoder spectra. A methodology is presented which allows

the sequence length of a practical encoder to be controlled and a minimum hardware

implementation (bus width) to be selected in order to satisfy given spectral requirements.

The solutions suggested here lead to smooth and spurious tone-free spectra for all DC

inputs.

Chapter 4 generalizes the concept of coarse quantization in the digital domain. A

digital quantizer can be modelled as an arithmetic divider, which leads to the notion of a

variable modulus quantizer (VMQ), having two inputs: one for the quantized signal and
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the other for the modulus - which effectively sets the denominator for the arithmetic

division. Practical implementations are proposed for single-bit and multi-bit variable

modulus quantizers. The average output of a DSM with a VMQ can be any rational

fraction, as set by the DSM DC input and the modulus. This functionality is useful in

the context of multi-standard wireless transceivers.

Chapter 5 shows in practice how to use the knowledge presented in chapters 3 and 4.

It presents selected aspects of DSM design for a frequency synthesizer intended to meet

GSM base station specifications. The selected example illustrates how the required

frequency resolution and spectral quality affect the selection of a traditional or variable

modulus DSM, and how to select minimum hardware implementations in both cases.
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2 Quantization noise in delta-sigma

modulation

Delta-sigma modulators are widely used in ADCs [9–11], DACs [12–14] and radio

communication [6]. They play an important role in data conversion systems as they

eliminate the need for high amplitude resolution by using more bandwidth instead

[16, 17, 73]. This is exactly in line with the current trend in microelectronics, where the

accuracy of analogue components is constantly deteriorating while operating speed is

increasing. DSMs constitute a very active research field that has grown to a respectable

size1 since the introduction of the technique 45 years ago [7, 8]. The DSM is built up

around one or more coarse quantizers, see Fig. 5, which makes it a highly nonlinear

dynamic system, and therefore one that is difficult to analyse in strict mathematical

terms. Delta-sigma modulators inherently add quantization noise to the input signal

and spread it over the increased bandwidth. One of the important recurring problems

mentioned in the literature is the tendency for DSMs to generate unwanted tones in the

frequency domain and limit cycles in the time domain.

F2(z)

x(n) y(n)

DAC

continuous amplitude discrete amplitude

u(n)
F1(z) Loop

Filter

Fig 5. A discrete-time analogue DSM.

This chapter is devoted to quantization noise. The review of the literature will highlight

differences between digital and analogue modulators, which are important from the point

of view of the contribution of this thesis as presented in the subsequent chapters. The

1A literature search for DSMs in the IEEE Xplore database returned the following results. Search by title:

1278 papers, including 352 in journals. Search by index terms: 2842 papers including 806 in journals.

Search expression 1: ((delta<and>sigma<and>modul*)<in>ti),

Search expression 2: ((delta<and>sigma<and>modul*)<in>de)
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term analogue will be taken here to refer to discrete-time (DT), continuous-amplitude

DSMs, while the term digital will refer to DT, discrete-amplitude DSMs. Continuous-

time DSMs lie beyond the scope of this thesis. This chapter is organized in the following

way. We will first consider quantization alone without DSM feedback. Sec. 2.1 will

review the classical model of quantization with special attention to the conditions

governing its applicability. When these applicability conditions are met, the DSM can

be subjected to simple linear systems analysis (see [16, 17, 73]), but if they are violated,

the DSM will display unwanted tonal behaviour, as discussed further in Sec. 2.2.

2.1 Quantization

Although signals quantized both in time and magnitude have been known for a long

time in the art of communication, it is the introduction of digital systems and pulse-code

modulation that has triggered more intensive study of quantized signals [74]. A quantizer

is a central point of any DSM, the main source of nonlinearity and the reason why DSM

analysis is so difficult. The principles of quantization and the properties of quantization

noise were studied long before DSMs appeared.

Quantization can be defined as the division of a quantity into a discrete number

of small parts, often assumed to be integral multiples of a common quantity [75]. A

quantizer is a central part of an analogue-to-digital converter, where it maps a continuous

input amplitude signal into a discrete number of digital steps. Quantization, or strictly

speaking re-quantization, can also be performed in the digital domain to reduce the

signal resolution. Quantization in the digital domain is covered in greater detail in

Ch. 4. Quantization is usually considered to be a memoryless, time-invariant, nonlinear

operation. There are three main types of quantizer which are identified by the way in

which the input-output characteristic crosses the zero point of a coordinate system.

Fig. 6 show examples of multi-bit mid-rise and mid-tread quantizers. The third type,

shown in Fig. 25, which is used primarily in the digital domain, is known as a truncation

quantizer.

It is convenient to represent a quantizer as a combination of a linear gain G and an

added quantization error e:

q = Gu+ e. (4)

This representation attributes all the nonlinearity to the quantization error e, while G is

an important parameter from the point of view of stability and modulator dynamics. As
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Fig 6. An example of a mid-tread and a mid-rise quantizer.

long as the quantizer input u remains in the non-overload range the quantization error e

is bounded in the range from −∆/2 to ∆/2 (see Fig. 6). The non-overload range criterion

can be used to determine the maximum available range for the input signal u. The

representation (4), commonly referred to as an additive noise model of quantization, as

shown here in Fig. 7, is in fact not a model in the strict sense, but just a convenient way

to define the quantization error e. Modelling begins only when simplifying assumptions

are made about the statistical properties of e, as discussed in the following section.

u q

(a) Quantizer

Σ
u q

e

G

(b) Additive noise model

Fig 7. The additive noise model of quantization.
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2.1.1 The classical model of quantization

Although the relationships between the quantizer input u, output q and quantization

error e are purely deterministic, quantization often produces similar effects to those

of an additive independent source of noise. This observation led Bennett in [74] to

postulate what is now known as the classical model of quantization (CMQ). This simple

and very useful model has three fundamental properties:

1. e is statistically independent of the input signal u

2. e is uniformly distributed in [−∆/2,∆/2]

3. e is stationary noise with a flat power spectral density (its autocorrelation is the Dirac

delta function)

We have adopted the term CMQ in the following [76], but the same model has also been

referred to as “additive white-noise approximation” [16] or “pseudo-quantization noise”

in the statistical theory of quantization [77].

Property 1 allows the purely deterministic quantizer to be replaced with a stochastic

linear system. This simplifies the analysis, as it permits power spectra analysis without

the additional complexity of cross-terms between the input u and the quantization noise

e [16, p. 47], and ensures that the quantizer’s output power spectrum can be computed

as the sum of the input power spectrum and the quantization error power spectrum.

Property 2, that the quantization noise error is uniformly distributed in the range

[−∆/2,∆/2], as shown in Fig. 8, effectively determines the average quantization error

power. Any signal with the same amplitude distribution, regardless of its frequency

content, will have the same variance. If the mean of the signal is zero, as in Fig. 8, then

the average quantization noise power power Se will be equal to the variance σ2
e [20, p.

755], and can be expressed by the familiar formula:

Se = σ2
e =

∫ ∆/2

−∆/2
e2 p(e)de =

1

∆

∫ ∆/2

−∆/2
e2 de =

∆2

12
. (5)

∆/2−∆/2 e

p(e)
1/∆

Fig 8. Probability density function of the quantization error.
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Property 3 determines the time and frequency properties of the quantization error,

stating that the quantization error signal has a flat power spectral density, as shown for a

sampled quantization error in Fig. 9. In two-sided representation the power spectral

density for the CMQ model is equal to:

Se( f ) =
∆2

12 fs

, (6)

where fs is the sampling frequency. When integrated from − fs/2 to fs/2, this gives the

average quantization noise power:

Se =
∫ fs/2

− fs/2
Se( f )d f =

∆2

12
. (7)

fs/2 f

Se(f)

0

∆2/12∆2/(12fs)

-fs/2

Fig 9. Power spectral density of the quantization error.

The property “white”, according to the Wiener-Khintchine theorem [20], implies that

the autocorrelation function of the quantization error signal is a Dirac delta. The CMQ

effectively assumes that the quantization error signal is aperiodic. For a periodic signal

with period p, the autocorrelation function would be also periodic, i.e. it would be a

train of Dirac pulses repeating every p samples. The spectrum for such signals would be

discrete. The periodicity of the quantization error is discussed further in Ch. 3 in the

context of digital DMSs.

The CMQ has been widely adopted due to its simplicity and has become a basic tool

for explaining the fundamental principle of the DSM operation, i.e. the noise-shaping

[6, 16, 17]. Although use of the model is not justified in general, it is often justified

when the input signal varies rapidly and is large compared with the quantization step ∆.

The CMQ validity conditions are reviewed in greater detail in the following sections.
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2.1.2 CMQ validity: formal conditions

This section will review the conditions under which the CMQ can be applied. These

conditions indicate what the properties of the quantizer input signal u should be in

relation to the quantization step ∆ so that the CMQ will be valid. The CMQ validity

conditions were first formulated by Bennett in [74], and have often been quoted in the

literature since then [16, 75, 76, 78]:

1. The input signal u is in the non-overload region.

2. The input signal u has a smooth probability density function.

3. The number of quantization steps is asymptotically large.

4. The quantization step ∆ is asymptotically small.

Condition 1 is fundamentally important and can easily be verified. When it is violated,

the CMQ assumption immediately breaks down, as the quantization error e exceeds

the permitted range [−∆/2,∆/2]. The remaining three conditions can serve only as a

general guideline, as they are not very precise or specific from a practical point of view.

Necessary and sufficient conditions for the applicability of the CMQ to continuous-

time systems can also be expressed in the form of one compact formula, known as

quantization theory II (QTII) [77, 79]. This forms part of an interesting statistical theory

of quantization which explores the similarity between quantization and sampling2. QTII

highlights the fact that the conditions for the validity of the CMQ assumption can be

expressed as a relation between the probability density function (PDF) of the input

signal u and the quantization step ∆. It has been shown that when QTII is satisfied

the input signal u and the quantization error e become uncorrelated and all the other

properties of the CMQ described in Sec. 2.1.1 are valid. This theory also shows that if

the input signal alone cannot satisfy the QTII, it is possible to add an independent dither

signal.

Despite everything that was said above, a quantizer remains a simple, deterministic

system. The correlation between the quantizer input u and the quantization error e

gradually increases as the quantizer is constructed with fewer and larger steps relative

to the input signal. The “no correlation” property of the CMQ occurs only under the

limit conditions, and can be proven analytically using Bennet’s original conditions

2The formula behind the QTII is intentionally not included in the thesis. While the formula itself is fairly

short, its interpretation requires familiarity with a considerable amount of background information provided in

[77, 79]
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or the QTII. The vast theoretical literature devoted to quantization is reviewed in the

monumental work of Gray and Neuhoff entitled “Quantization” [75].

2.1.3 CMQ validity: practical, approximate conditions in

discrete time systems

An interesting attempt to assign concrete numerical values to CMQ validity has been

made in [78]. This is based on an interesting and slightly unusual application of sampling

theory. Under normal conditions, sampling is performed at a frequency that is higher

than twice the signal bandwidth, in order to avoid overlapping of the spectral images. In

the case of quantization we seek a contrary effect. The images of the quantization error

spectrum should be allowed to overlap significantly in order to form an approximately

flat spectrum. This reasoning is supported by the fact that sampling and quantization are

commutative, which means that it does not matter in which order they are applied to the

signal.

The condition proposed in [77, 78] imposes an upper bound on the sampling

frequency fs as a function of the quantization step ∆ and the average value of the first

derivative of the continuous time input signal E{|u̇(t)|} is:

fs < K
E{|u̇(t)|}

∆
. (8)

The selection of the coefficient K depends on the type of input signal u. For noise-like

input signals the condition (8) can be relaxed, while for sinusoidal and other deterministic

signals it must be stricter. Sample values of K proposed in [78] are as follows: Gaussian

K = 3.2, narrowband white K = 1.2 and sinusoidal K = 0.4. This result allows an

appropriate fs to be selected for a given signal but does not tell us how to select fs for a

class of signals. It is an approximate condition which relates the sampling frequency, the

average growth rate of the input signal u and the quantization step ∆.

The condition given above is similar to a heuristic rule often quoted in the context of

discrete time signals, stating that: the CMQ can be applied when the quantizer input

signal u traverses several quantization levels between two successive samples [20, p.

755], [17, p. 24]. This way of stating the validity conditions appears to be useful in the

field of oversampling converters, where there are usually only a few quantization steps.

This approximation indicates that the CMQ is not valid for slowly varying or DC signals.
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2.2 Tonal behaviour and limit cycles in delta-sigma

modulation

The CMQ described in the previous section allows the quantizer to be replaced with an

additive source of white noise. This enables linear analysis of the DSM and allows the

signal and noise transfer functions to be calculated. Linear analysis, which is extensively

covered by the fundamental DSM literature [16, 17], neglects the nonlinear element at

the centre of the DSM and therefore describes the DSM noise behaviour only under

ideal conditions. Only a nonlinear analysis will reveal the true complexity of DSM

behaviour [80, 81]. There are many possible patterns of behaviour depending on the

modulator input, initial conditions and topology. What is important from a practical

point of view is that DSMs have a tendency to generate spurious tones which cannot be

predicted by linear system analysis [16, 17].

The spurious tones often appear as individual tones superimposed on a noise-like

spectrum and correspond to certain patterns in the DSM output signal which are likely

to occur with slowly varying or DC input signals. These spurious tones are sometimes

referred to as idle channel tones or pattern noise [16, 17, 82, 83]. The literature on the

subject distinguishes a special case in which the DSM works with a DC input and the

patterns in the output signal are strictly periodic, whereupon the DSM output signal

and the quantization error signal are periodically correlated. A DSM output sequence

repeating itself indefinitely is known as a limit cycle (LC) [16, 83]3. The spectrum

of the time waveform corresponding to a cycle consists of discrete tones, where the

number of tones is equal to the length of the LC. Consequently, the entire quantization

noise power will be concentrated into these few tones, and the SFR will be deteriorated

[16, 82, 83].

It is very difficult to calculate analytically the exact spectra of the DSM’s output

signal, in view of the large variety of modulator topologies, involving one or more

quantizers with one or more quantization steps. The available analytical solutions are

applicable only to first-order DSMs and selected second-order topologies [10, 16, 84–90].

Even when it is possible to calculate the spectrum exactly (under certain simplified

3In the field of nonlinear dynamics a limit cycle is defined as an isolated periodic orbit [81]. We will

nevertheless use the customary definition given above, as it has been adopted among engineers in the field of

DSMs design [83, 84]. The term limit cycle has been used in a similar way to describe oscillations caused by

nonlinearities due to finite precision arithmetics in discrete time recursive systems with DC inputs [20, p. 583],

[84].
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conditions), the formulae are rather difficult to apply in practice. It should be noted that

many works published on the subject, including very recent ones, begin by emphasizing

our very limited theoretical understanding of DSMs [82, 83, 91, 92]. Simulation is the

basic tool for engineers working with delta-sigma modulation [16, 17, 93], and this has

been used to determine the stability and noise performance of a DSM and to gain insight

into LC behaviour.

2.2.1 Limit cycles in analogue DSMs with DC inputs

DC inputs constitute an important special case in DSM analysis. These can take the

form of silence in audio applications, and long segments of DC levels can also appear in

the case of a high oversampling ratio and a slowly-varying input. DSM behaviour under

DC excitation can be conveniently described by state-space trajectories [80–82, 90, 94].

The DSM state vector, defined by outputs of the integrators, moves between two discrete

points on the trajectory in each clock cycle4. If a trajectory alternates between a finite

number of points it is called a periodic orbit [81], and under such conditions the DSM

will generate a periodic pattern at its output [82–84]. A short periodic state-space orbit

is shown in see Fig. 10.

It is not easy to locate LCs in continuous amplitude DSMs, as the state space

comprises an infinite number of points. In recent works all output sequences up to a

certain length have been examined to verify whether or not they could represent valid

LCs [82, 83]. A sample result (see Fig. 11) shows how many different LCs of a particular

length can occur within a given DSM topology. Locating particular limit cycles allows

one to determine their impact on the SFR [82], the minimum amount of dither required

to break them up and the optimum places for injecting the dither within the architecture

[83]. The DC input case and related limit cycles are also important from the point of

view of stability analysis, as stability under DC inputs is a necessary condition for

stability under more general inputs [90]. Theoretical and simulation-based methods

have been presented to determine stability bounds for state variables [90, 92, 94].

4This description is relevant for discrete time DSMs. Continuous time DSMs are left beyond the scope of this

thesis. A short introduction to the field of asynchronous DSM and limit cycles is presented in [95].
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Fig 10. A short, periodic state-space orbit for a second-order system. The X and Y-

axes represent the respective state variables. Figure reprinted from [82]. c© [2002]

IEEE.

Fig 11. Occurrence of limit cycles (LCs) of particular length. Y-axis: number of

LCs, X-axis: length of LCs expressed in a number of clock cycles. Figure reprinted

from [83]. c© [2005] IEEE.
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2.2.2 Inherent periodicity of digital DSMs with DC inputs

What is characteristic of digital DSMs is their discrete amplitude. This can be considered

a special case of more general continuous amplitude analogue DSMs. When digital

delta-sigma modulators are implemented in fixed point digital systems all the signals are

represented by rational numbers [16, Ch. 2]. It has been shown for a first-order DSM

[10] and for a second-order DSM [84] that when the input c
d

∆ is an irreducible rational

number normalized with respect to the quantization step ∆ the output is periodic, with

a period that is a multiple of the denominator d. This result highlights the fact that

digital and analogue modulators are very different. As seen in Sec. 2.2.1, limit cycles

are difficult to locate in analogue DSMs and yet they occur spontaneously and worsen

the SFR. On the other hand because of the finite discrete state space and deterministic

dynamics, the limit cycles are inherently present in digital DSMs. When a digital DSM

operates with a DC input it will always generate a limit cycle, the length of which may

depend on the input and the initial conditions. The ways of handling limit cycles can

therefore differ between digital and analogue DSMs.

2.2.3 Randomizing DSMs with arbitrary inputs

The goal of any randomization method is to guarantee that the quantization noise can

be modelled as additive white noise. Probably the best-known and most widely used

method is that called dithering (described in greater detail below), which addresses the

CMQ applicability criteria by adding a source of pseudo-random noise [16, 76, 96, 97].

Other well-known methods include the use of chaos [81, 89, 91, 98–100]. Further older

methods and those used primarily in the analogue domain are summarized in [16, Ch. 3].

Other methods that are specific to digital DSMs are described in greater detail in the

following sections.

Dithering. Probably the most general and best-known solution to the problem of

limit cycles and tonal behaviour that is applicable to all types of input (DC or varying)

and all types of modulator is that called dithering [16, 96]. Dithering aims at improving

the statistical properties of the quantization error by adding pseudo-random noise to

a signal prior to quantization. This effectively “randomizes” the quantizer input and

ensures that the CMQ validity conditions described in Sec. 2.1.2 and Sec. 2.1.3 are

satisfied. A comprehensive overview of dithering is presented in [16, Ch. 3]. The

41



effects of dithering have been studied theoretically by a number of authors [76, 96, 97].

Adding an external noise to the signal inherently degrades the achievable dynamic

range. This fundamentally negative side-effect can be addressed in a number of ways.

One possibility is simply to subtract the dither signal from the quantizer output. This

approach, called subtractive dithering [16, p.123], is not very commonly used in DSMs

as it requires additional precise circuitry to remove the dither signal. A non-subtractive

approach appears to be more popular in the DSM field, but it requires other means of

achieving an adequate dynamic range.

Noise-shaped dithering. This is an approach in which the dither signal is filtered

away from the neighbourhood of the input signal in the same way as the quantization

error. The simplest way of achieving this is to add the dither immediately before the

quantizer [16]. Optimum performance can be obtained in this configuration when the

dither is spectrally white with a triangular PDF and a peak-to-peak amplitude of two

least significant bits (LSB) of the quantizer [76]5. A dither signal injected directly

before the quantizer must have a significant amplitude and in certain cases may lead to

instability in the modulator. Recent studies suggest that this is not a very effective way

of removing strong limit cycles [83], [V]. A much smaller disturbance introduced into

the DSM state variables (registers) or at the input may yield better results [83, 101, 102].

LSB dithering. It has been known for some time that adding a small disturbance to

the input can help to break up the limit cycles [102, 103]. Low-level, or LSB dithering

has been recommended recently in [97, 101]. In this case, LSB refers to the LSB of the

input signal. For a b-bit input signal the LSB dither could be added to the (b+1)st LSB

and remain below the noise floor of the input signal. If the extra hardware needed to

extend the DSM bus by one bit is a concern, the dither could be added to the LSB of the

input signal and be noise-shaped. For the dither to be effective, however, the order of the

dither filtering should be matched to the transfer function of the DSM. This relationship

has been studied for a MASH architecture, and the corresponding DSM and dither filter

topologies are determined in [101].

5The term LSB is used in two ways in the context of dithering. Sometimes it refers to the LSB of the quantizer

[76], but in digital DSMs it can also refer to the LSB of the input signal [101]. This distinction is important,

because these LSBs differ dramatically in amplitude!
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2.2.4 Randomizing digital DSMs with DC inputs

Once it has been recognized that limit cycles are a fundamental feature of digital DSMs,

the problem of tonal behaviour can be reduced to the following two problems: the length

of the LC, which determines the number of discrete tones among which the quantization

error power is distributed, and how evenly the power is distributed between the tones.

There are many methods available for randomizing digital DSMs working with DC

inputs.

Precalculated initial conditions have been used for long time as a means of ensuring

a good quality DSM spectrum [41, 49, 66–69]. The initial conditions can be loaded

using a simple reset mechanism and therefore do not require any additional hardware,

but the method does require resetting the DSM each time the DC input is changed. It

has been shown in [67–69] that this approach results in a smooth spectrum.

The problem of short limit cycles has been addressed in a number of works

[19, 61, 65, 70]. Initial conditions have been used explicitly as a way of avoiding short

limit cycles [65], [19, p. 349]. It has also been noted that setting the input LSB to ‘1’

increases the length of the limit cycles [61, 70]. At the same time, the quantization noise

power is smoothly distributed over a large number of tones. This approach entails a

small hardware penalty as it requires extending the DSM bus by one bit, but it does not

require resetting the DSM and could possibly be used with arbitrary inputs.

Full attention is given to the limit cycle length in [II], [IV], [V], [VI]. Probably all

of the preceding published works had aimed either at “removing” the limit cycles or

lengthening them beyond the detection levels. It was shown empirically in [VI] and

has been proved analytically in [104, 105] that the length of the limit cycles can be

determined. As a result it is possible to establish a relationship between the amount of

DSM hardware and the quality of the output spectrum. Thus it is shown in [VI] for

classical MASH and error-feedback modulator (EFM) topologies that the sequence

length, and consequently the number of tones, can be controlled in practice regardless of

the DC input. The length of a limit cycle can be set by applying certain initial conditions

[VI], or by setting the input LSB [IV] and selecting the appropriate bus width. A digital

DSM working in such a regime can be regarded as a delta-sigma encoder. This approach

is one of the main contributions of this thesis and is discussed further in Ch. 3.

The classical MASH and EFM topologies considered in [VI] do not use the hardware

in a very efficient manner, as the longest orbits utilize only a fraction of the available

state space points. This observation allowed the amount of hardware in MASH to be

43



reduced without any loss of sequence length [106]. In other works certain topology

modifications have been found to allow better utilization of the remaining state-space

points and to enlarge the sequence length dramatically regardless of the initial conditions

and the DC input [72]. It has also been shown that using a prime modulus quantizer

can lead to very long sequences and a smooth spectrum regardless of the DC input

and initial conditions [71]. A general class of digital delta-sigma modulators based

on a variable modulus quantizer is studied in Ch. 4 and constitutes the second main

contribution of this thesis.

2.3 Summary

This chapter has briefly reviewed the classical model of quantization (CMQ) and its

applicability conditions. When the model applies, the quantization error can be modelled

as an input-independent, additive source of white noise. We have reviewed both the

formal and the approximate conditions determining the applicability of the model.

When CMQ applies, it allows a simple linear DSM analysis, and when it fails, the DSM

behaves unpredictably and is likely to generate spurious tones and limit cycles.

It is very difficult to locate and study particular limit cycles in the context of

continuous amplitude analogue DSMs, as stable analogue DSMs can be characterized by

a bounded but infinite state space, a characteristic which distinguishes them from discrete

amplitude, digital DSMs. Digital DSMs working with DC inputs constitute a particularly

simple class from the point of view of limit cycle analysis, as such modulators always

generate limit cycles, the only unknown that remains being their length.

For the above reasons the problem of randomization can be approached differently

for digital and analogue DSMs . While dithering applies to both modulator types, there

are several randomization techniques which apply specifically to digital DSMs. These

include setting specific initial conditions, setting the input LSB to one, or using a prime

modulus. The following chapter will explore the possibility of controlling the length of

the limit cycles precisely for all DC inputs as a means of assuring good quality output

spectra.
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3 Delta-sigma encoders

Digital DSMs working with DC inputs and implemented in a fixed point arithmetic

system constitute a special case among analogue and digital modulators, as under such

conditions they inherently generate periodic sequences. Short sequences are undesirable,

because they concentrate the DSM quantization noise power into a few dominant tones

and in consequence worsen the SFR. This problem is usually addressed by lengthening

the limit cycles in an uncontrolled way beyond any length that matters. This can be

achieved by adding pseudo-random noise, called dither, or by several other techniques

described in Sec. 2.2.

This chapter will consider a different approach to the problem of short limit cycles,

that proposed in [IV], [V], [VI]. We will explore a method of controlling the lengths of

the limit cycles precisely and will study the consequences of this approach. From such a

perspective, the DSM can be seen as an encoder which transforms an input digital word

into an output periodic sequence of prescribed length. In this thesis we will refer to the

DSMs working in this way as delta-sigma encoders (DSEs), in order to distinguish this

mode of operation from more general delta-sigma modulation.

This chapter begins with an analysis of an ideal DSE in Sec. 3.1. The classical

model of quantization will be adapted to reflect the periodicity of the DSE’s quantization

error sequences in Sec. 3.1.1, which will allow us to observe the relationship between

sequence length and the quantization noise spectrum in Secs. 3.1.2 and 3.1.3. Practical

DSEs are considered in Sec. 3.2. After presenting a practical means for controlling the

sequence length in Sec. 3.2.1, we will compare measured and simulated DSE spectra

with the performance of the linear model in Sec. 3.2.3. The chapter will conclude with a

comparison of dithered and non-dithered DSEs in Sec. 3.2.5.

3.1 An ideal delta-sigma encoder

A delta-sigma encoder is a specific type of delta-sigma modulator. A traditional DSM

is a continuous amplitude feedback system in which the input and the internal state

are both continuous amplitude signals, as shown in Fig. 5. Even the output digital

signal, after conversion to the analogue domain, is affected by noise and can never be

reproduced ideally. On the other hand, the input and the internal state of a digital DSM
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are purely discrete in amplitude. All arithmetic operations are performed with perfect

accuracy and all the signals inside and at the input and output interfaces are in the fixed

point digital domain (see Fig. 12) and can be represented by integers or rational numbers.

The difference between digital and analogue DSMs becomes particularly apparent when

a digital DSM is implemented with a narrow bus width. Due to the limited internal state

space, such a modulator is particularly prone to producing repeating patterns, which

lead to unwanted tonal behaviour in the output spectrum.

x(n) y(n)
F1(z)

F2(z)

Loop
Filter

u(n)
bx

bu

by

Fig 12. A digital delta-sigma modulator.

A digital DSM can be regarded as a deterministic finite state machine (FSM). It is a

type of FSM in which there is one and only one transition to the next state for each

pair of state and input. When a digital DSM works with a DC input and the trajectory

returns to a previously visited state, it must follow the same state-space orbit again.

Therefore such a system must always produce periodic sequences. A DSM producing

short periodic sequences clearly cannot be modelled by a linear model based on the

CMQ presented in Ch. 2, as the CMQ assumes an aperiodic quantization error signal.

A DSE with a periodically correlated output and a quantization error signal requires

certain modifications to be made to the conventional quantization noise model.

3.1.1 Quantization noise model for an ideal DSE

The classical model of quantization discussed in Ch. 2 assumes that the quantization

error signal is statistically independent of the input signal, is uniformly distributed in

the range ±∆/2, is aperiodic and has a flat power spectral density. The DSE differs

fundamentally from the traditional DSM in that the quantization error signal is inherently

periodic. It is a periodic sequence with a period Ls:

e(n) = e(n+ k ·Ls), wherek ∈ Z. (9)
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An important consequence of the quantization error signal being periodic is that the

Fourier spectrum is discrete. For a periodic sequence e(n) of length Ls, the discrete

Fourier transform (DFT) is another periodic sequence with Ls tones [20, 107]. The

quantization noise power is distributed among exactly Ls tones between zero and the

sampling frequency fs and there is no power between the tones. Fig. 13 shows an

idealized, two-sided discrete power spectrum Pe( fk,Ls) for the quantization error e(n),

where:

fk = fs

k

Ls

. (10)

1 2 Ls-1

Pe(fk,Ls) ∆2/12

0 3

e2

∆2/12Ls

Ls+1
1Ls Ls Ls Ls

Ls

fk
fs

Fig 13. A discrete power spectrum of the quantization error.

The classical model of quantization assumes that the quantization error is uniformly

distributed in the range ±∆/2, which implies that the quantization noise variance is

equal to ∆2/12, see Ch. 2. In the digital domain all signals are initially quantized and a

coarse quantizer only re-quantizes its input signal. For this reason the distribution of the

quantization error over the interval ∆ is discrete. It has been shown in App. 2 that if the

quantization error is uniformly distributed over a large number of discrete points the

quantization noise variance can be approximated with a commonly assumed value:

σ2
e ≈

∆2

12
. (11)

It can be shown for a real-valued quantization error signal that the average power Pe

is a sum of the variance σ2
e and the squared mean value ē2 (squared DC value):

Pe = σ2
e + ē2. (12)

Parseval’s relation for a periodic quantization error e(n) with the fundamental period Ls
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can be written as:

Pe =
1

Ls

Ls−1

∑
n=0

e2(n) =
Ls−1

∑
k=0

Pe( fk,Ls) = ē2 +
Ls−1

∑
k=1

Pe( fk,Ls). (13)

The variance is a power of the active components and is therefore distributed over Ls −1

discrete tones, excluding the DC component. Taking into consideration (13) and (12) we

can write:

σ2
e =

Ls−1

∑
k=1

Pe( fk,Ls). (14)

Assuming a flat spectrum Pe( fk,Ls) the power per tine is equal to:

Pe( fk,Ls) =

{

ē2 k = 0
∆2

12(Ls−1) ≈
∆2

12Ls
k = 1,2, . . . ,Ls −1.

(15)

This result characterizes the quantization error spectrum for an ideal DSE, shown in

Fig. 13. The model assumes a periodic quantization error e(n), with a period Ls, a

constant quantization error variance σ2
e = ∆2/12 and a flat quantization error spectrum.

As a result the number of discrete tones in the spectrum and their level depends on

the period length Ls. The relation between the average power, the mean value and the

variance (12) and also Parseval’s relation (13), are proved in App. 1.

3.1.2 Dependence of SFR on the sequence length

The distinguishing characteristic of a DSE is the ability to control the number of tones

and their levels. This is a key difference between a delta-sigma modulator and encoder.

As has been shown in Sec. 3.1.1 a DSE generates periodic sequences of a constant

average power but varying length. Consequently, not only will the sequence length

change, but the number of tones and their average levels will change as well. This

principle is illustrated in Fig. 14, where Pe( fk,Ls) is a discrete power spectrum of the

quantization error sequence. We can see in Fig. 14 that as the sequence length doubles,

the amount of power per tone is reduced by a factor of two. The level Pe( fk,16) is nearly

half of Pe( fk,8). In the first case we distribute the variance ∆2/12 over 15 tones, in the

other over 7 tones, according to (15). As the sequence length increases, the ratio comes

closer to 1/2. This corresponds to a 3dB difference in the level of tones each time the

sequence length is doubled.

lim
Ls→∞

Pe(Ls)

Pe(2Ls)
= lim

Ls→∞

Ls −1

2Ls −1
=

1

2
, −3dB (16)
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Fig 14. The level of tones as a function of DSE sequence length.

This effect can be used in the design of DSEs. We will show in Sec. 3.2 what conditions

must be satisfied for a practical DSE to produce a flat spectrum and to behave like the

ideal model described in this section.

3.1.3 Frequency domain model of a delta-sigma encoder

So far we have adapted the classical model of quantization to reflect the periodic nature

of the DSE. We will now use these results to calculate an ideal spectrum for the DSE

output signal y. Let us consider a simple third-order modulator with a noise transfer

function defined by:

NTF(z) =
(

1− z−1
)3

. (17)

From this point forward we will use a one-sided spectrum representation and assume

that all the power is concentrated in the range between zero and half of the sampling

frequency fs. This convention is used in the classical book on delta-sigma modulation

[16, p. 5] and is recommended in the IEEE standard on definitions of physical quantities

for frequency and time metrology [108]. In order to obtain a one-sided spectrum we

will multiply the discrete power spectrum Pe( fk,Ls) by a factor of two, neglecting the

existence of the DC component in (15) for the sake of simplicity, as the NTFs of the

architectures used in this work have zeros at DC. We can express the one-sided output

spectrum of an ideal DSE Pl
y( fk,Ls) by shaping a flat spectrum of the quantization error,
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thus:

Pl
y( fk,Ls) = 2

∆2

12Ls

|NTF(z)|2
z=e j2π fk/ fs (18)

=
∆2

6Ls

∣

∣

∣

∣

(

1− e− j2π fk/ fs
)3
∣

∣

∣

∣

2

.

DSE output spectra calculated for two sequence lengths are shown in Fig. 15. The

ratio of the sequence lengths is 29/25 = 24, which corresponds to a 4 ·3dB = 12dB

difference on a logarithmic scale.
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Fig 15. Noise-shaped spectrum of an ideal DSE 10log(Pl
y( fk,Ls)). The level of the

tones depends on the sequence length Ls.

3.2 A practical delta-sigma encoder

In this section we will look at two classical modulator topologies, EFM and MASH, as

shown in Fig. 16 and Fig. 17, and use them to encode a DC input value as a periodic

sequence of prescribed length. Fig. 18 shows the content of the EFM1 block in MASH.

The section will begin by reviewing practical methods for controlling the sequence

length, after which we will compare the spectra of an ideal encoder with the simulated

and measured spectra of the practical encoder. Finally we will compare the DSE

performance with and without dithering.
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Fig 18. EFM1 - first-order error-feedback architecture. Revised from [VI]. c© [2005]
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3.2.1 Sequence length control

A number of methods have been published to date for the precise control of DSM

sequence length. The first study on this topic showed that the sequence length can be

controlled for classical MASH and EFM topologies of order two to five by applying
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predefined initial conditions each time the DC input changes [VI]. The second method

required expansion of the input bus by one bit, but the initial conditions applied only at

“power-up” [IV]. More recent methods based on a prime modulus quantizer [71] and

prime feedback [72] require certain structural modifications, but allow sequence length

control regardless of the initial conditions.

Reloading initial conditions. The error feedback architecture shown in Fig. 16 is

composed of gain elements Ai, adders, a quantizer and a number of registers represented

by unity delays z−1. The method described here requires registers equipped with a

standard reset or load mechanism. Each time the DC input changes all the registers will

be loaded with the corresponding initial conditions Ii, which are stored in the hardware.

It has been shown in [IV], [V], [VI] that it is possible to control the sequence length

of the DSE by applying predefined initial conditions. The results are collected together

in two tables, of which Table 1 defines in a general way groups of favourable initial

conditions applicable to the register in the EFM and MASH structures shown in Fig. 16

and Fig. 17, respectively. These conditions are favourable because when they are applied

the DSMs produce very long sequences of known length.

Consider a third-order EFM as an example. As seen in Table 1, when the sum of the

initial conditions I1 and I3 is odd, the sequence length can be calculated according to

Table 2 as

Ls = 2b+1, (19)

where b is the DSM bus width. An example of an initial condition which can be stored

in the hardware would be I1 = 1, I2 = 0, I3 = 0. If this initial condition is applied when

the DC input x is set, the sequence length will be known exactly and will depend only on

the DSM bus width b and not on the input x. At the same time it is the longest sequence

that this particular structure can ever generate.

Consider a second-order MASH as another example. Again as seen in Table 1, when

the initial condition I1 is odd, the sequence length will vary between the minimum

guaranteed 2b−1 and the maximum available 2b+1, depending on the input DC value

x. Nevertheless, it is known that the sequence length will never be shorter than the

minimum guaranteed value, and therefore we can base our SFR predictions on the lower

of the two values and be sure that the DSM will not perform worse than that. The general

rules formulated in Table 1 and Table 2 were derived as a result of extensive simulation

[VI]. These results were later confirmed analytically for the MASH architecture [104].
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Table 1. Initial conditions. Revised from [VI]. c© [2005] IEEE.

Modulator order m MASH EFM

∑ Ii = odd

2 I1 odd I1 + I2

3 I1 odd I1 + I3

4 I1 odd I1 + I2 + I3 + I4

5 I1 odd I1 + I5

Table 2. Sequence length. Revised from [VI]. c© [2005] IEEE.

Modulator order m Guaranteed

sequence length Ls

Maximum

sequence length

2 2b−1 2b+1

3 2b+1 2b+1

4 2b+1 2b+2

5 2b+2 2b+2

Applying the initial conditions only at power-up. The method described above

can be extended so that the conditions are applied only at the moment when the DSM is

powered up [IV]. After that there is no need to reload the initial conditions, the input

can change in any way, but each time it remains at a given DC value the DSM will

generate sequence lengths as described in Table 2.

In practice, this method requires extending the DSM bus width by one bit and

connecting the LSB to zero. As a result, the input x can have only even values. It has

been shown analytically in [IV] that once the DSM has started from the initial conditions

defined in Table 1 and the input remains even, the contents of the registers always satisfy

the conditions of Table 1 [IV]. In other words, when the DSM input is even, Table 1

defines a set of initial conditions which has the property that all subsequent states lie in

the original set. Finding sets with this property of positive invariance has been used to

guarantee DSM stability [94]. In this case it is used to guarantee that the lengths of the

state space orbits can be controlled in accordance with Table 2.
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Prime modulus and prime feedback. Recent research has shown that the use of

a prime modulus quantizer allows the sequence length to be controlled irrespective

of the DSM input and initial conditions [71]. For a MASH composed of cascaded

first-order sections, the sequence length is always equal to the prime modulus Q of the

first section. The role of the modulus in the context of digital delta-sigma modulation

will be discussed in Ch. 4. Another way of controlling the sequence length independently

of the DSM input and initial conditions is based on a prime feedback factor [72]. When

applied to MASH, this technique allows the modulator to generate sequences of lengths

corresponding to the coverage of almost the entire state space. A third-order 19-bit

MASH, for example, produces a sequence length of (219 −1)3.

Both of the aforementioned methods allow sequence length control regardless of the

DSM input and initial conditions. In particular, the prime feedback method utilizes

hardware resources in the most efficient way and leads to sequence lengths that grow

exponentially with the DSM order. It should be noted, however, that the method based

on a prime modulus introduces a gain with the same prime value. The role of the gain is

discussed in the context of a variable modulus quantizer in Sec. 4.2, and in the context

of frequency generation in Sec. 5.1.2.

3.2.2 Dependence of SFR on the DSE bus width

It has been suggested in Sec. 3.1 that the spectrum of the DSE is inherently tonal and

that the levels of the tones depend on the sequence length. This observation has been

published earlier in [II], [III], [IV], [V], [VI] and has been supported by simulation

results. In this section we further confirm it by means of measurement using a simple

test system described in App. 4. We implemented a third-order EFM, shown in Fig. 16,

with two different bus widths: 9-bits and 15-bits. This is the same architecture as was

used previously in [VI]. According to (19) a 9-bit EFM produces a sequence of length

Ls = 210. We will refer to this as EFM10. Correspondingly, we will refer to the 15-bit

EFM, which generates a sequence of length Ls = 216, as EFM16. The EFMs operated at

a clock frequency fs = 20MHz, which resulted in a tone spacing of fs/210 ≈ 10kHz for

EFM10 and fs/216 ≈ 300Hz for EFM16. The spectrum measurements are presented in

Fig. 19, where the EFM10 spectrum is plotted in black and the EFM16 spectrum in grey.
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(b) Spectrum magnified around 5.41 MHz.
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(c) Spectrum further magnified around 5.410 MHz.

Fig 19. Measured spectrum of the DSE output signal. Black: third-order EFM

implemented with a 10-bit bus; Grey: 16-bit bus.
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The spectrum in the range from zero to half of the sampling frequency with the

resolution bandwidth (RBW) set to 1kHz is shown in Fig. 19(a). This resolution

bandwidth is sufficient to discriminate between the 10kHz-spaced tones of the DSM10,

but is insufficient for the 300Hz-spaced tones of the DSM16. In the latter case from 3 to

4 tones are averaged within the resolution bandwidth. As a result the spectrum of the

DSM16 appears to be smoother in this measurement. It is important to note that discrete

DSE spectra with tone spacings smaller than the RBW are practically indistinguishable

in spectral measurements and appear as smooth curves.

Increasing the RBW to 20Hz reveals the tonal nature of DSM16, as shown in

Fig. 19(b) and Fig. 19(c). We see that, in accordance with our expectations, the tone

spacing for DSM10 is equal to 10kHz. Furthermore, the levels of the tones produced by

DSM16 are clearly below those of DSM10. According to the estimate presented in

Sec. 3.1.2, the average level of the tones should decrease by 3dB for each doubling of the

number of tones. In our case, this corresponds to a difference of 3dB ·216/210 = 18dB.

The differences in the levels of the tones in Fig. 19 appear to follow this principle.

3.2.3 Ideal, simulated and measured spectra

In this section we will compare the ideal, simulated and measured spectra more carefully

in order to gain confidence in the correctness of our simulation-based analysis. Our

measurement system is described further in App. 4. The exact spectrum computation

using the DFT will be presented below and this will be compared later with the measured

spectra.

Since the DSE produces repeating periodic sequences, it constitutes a special case

for spectral analysis. In general, when studying aperiodic or very long sequences, the

spectrum is only estimated from a fragment of the sequence, but in the DSE case the

sequence length is known and therefore the spectrum can be computed exactly using

DFT [20, 107]. The DFT6 calculated from one period of a periodic output signal y can

be expressed as:

Y (k) =
Ls−1

∑
n=0

y(n)e− j2πkn/Ls k = 0,1,2, . . . ,Ls −1. (20)

The power spectrum Py( fk,Ls) of the DSM output signal y can be calculated using the

6The definition of the DFT used in this work has the same form as the definitions used in [20, 107] and in the

Matlab R© implementation.
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DFT as:

Py( fk,Ls) =
1

L2
s

|Y (k)|2, (21)

where:

fk = fs

k

Ls

. (22)

Py( fk,Ls) is a two-sided spectrum defined so that the sum of all the tones between zero

and the sampling frequency fs gives the average power Py of the DSM output signal.

Parseval’s relation is proved in App. 1 but is repeated here for convenience:

Py =
1

Ls

Ls−1

∑
n=0

y2(n) =
Ls−1

∑
k=0

Py( fk,Ls). (23)

In order to comply with the spectrum representation standards [16, 108] and in

order to compare the simulated and measured spectra, we will use a one-sided spectrum

representation. In order to distinguish the one-sided power spectrum based on the DSE

linear model Pl
y( fk,Ls), introduced in Sec. 3.1.3, from a spectrum based on simulation,

we will denote the later as Ps
y ( fk,Ls). The one-sided DSE output power spectrum can be

calculated using the DFT, as:

Ps
y ( fk,Ls) =

2

L2
s

|Y (k)|2. (24)

There are a few additional steps required to convert Ps
y ( fk,Ls) into a practical

measurable spectrum Ms
y( fk,Ls). The digitally generated discrete signal y is converted

into a continuous voltage waveform using a DAC, which performs a sample and hold

operation which must also be taken into account. The first-order sample and hold

operation is represented by a sinc function in the frequency domain:

sinc( f ) =
sin(π f / fs)

π f / fs

. (25)

The DAC also scales the DSE output signal y by a factor ∆ = 75mV. As a result the

computed power (24) will be multiplied by a scaling factor ∆2. Finally we have to

include the effect of the 50Ω load, apply a logarithmic scale and add 30dB in order to

convert the units to the dBm as used by the spectrum analyzer. The final formula for the

measured power includes all of the effects mentioned above, i.e.

Ms
y( fk,Ls) = 10log

(

∆2Ps
y ( fk,Ls) · sinc2( fk)

)

+30−10log(50)

= 10log

(

∆2 2

L2
s

∣

∣Y (k)
∣

∣

2
· sinc2( fk)

)

+30−10log(50). (26)
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Similar steps have been taken to adjust the ideal DSE spectra Pl
y( fk,Ls) derived in

Sec. 3.1.3 to the measurement results:

Ml
y( fk) = 10log

(

Pl
y( fk,Ls) · sinc2( fk)

)

+30−10log(50)

= 10log

(

∆2

6Ls

∣

∣

∣

∣

(

1− e− j2π fk/ fs
)3
∣

∣

∣

∣

2

· sinc2( fk)

)

+30

−10log(50). (27)
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(b) Spectrum magnified around 5.410 MHz.

Fig 20. Measured and calculated spectra of a DSE output signal. Third-order

EFM implemented with a 10-bit bus. Black diamond: spectrum based on the lin-

ear model Ml
y( fk,2

11); Grey rectangle: spectrum based on computer simulation

Ms
y( fk,2

11); Black line: measured spectrum.
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The simulated power spectrum Ms
y( fk,Ls), the ideal spectrum based on the linear

model Ml
y( fk,Ls) and the measurement results are shown in Fig. 20. As can be seen, the

measured and simulated spectra overlap exactly. Each point of the spectrum Ms
y( fk,Ls)

based on the DFT corresponds exactly to one discrete tone and there is no power between

the tones. The ideal spectrum Ml
y( fk,Ls) approximates the varying levels of the tones.

The simulated and measured DSE spectra generally follow the ideal prediction, in that

all of them have the same tonal nature and equal average powers. The following sections

will show that the simulated spectrum does not approach the ideal one, even when

dithering is used. The experiment shows that the measured and simulated spectra can

be approximated using the ideal DSE model introduced in Sec. 3.1. Moreover, the

measured spectrum perfectly matches the simulated spectrum, which correctly predicts

the tonal nature of the DSE.

3.2.4 Evaluating the worst-case performance

The concept of DSE simplifies the problem of evaluating the worst-case SFR in a

reliable way. The fact that the DSE is a fully deterministic system producing repeating

sequences of controlled length can be used to evaluate the spectrum under all possible

practical conditions. The overall simulated spectrum for a third-order error-feedback

DSE, as shown in Fig. 21, is relatively smooth and free from clearly dominant spurious

tones for all input DC values in the available range. If we look at the three-dimensional

image from the direction of the frequency axis, we will see the upper contour projected

onto the power-frequency plane. This contour, known as the spectrum envelope, shows

the highest level of tones that occurs for all DC inputs. The envelope quantifies the

worst-case SFR which is valid for all DC inputs.

Three envelopes for different bus widths are shown in Fig. 22. The worst case SFR,

represented by an envelope, scales very regularly with increasing bus width. Every

additional bit doubles the sequence length, in accordance with (19), and this improves

the SFR by 3dB, according to (16). As has been shown in Sec. 3.2.3, the simulated and

measured DSE spectra overlap completely. Therefore the worst case SFR for the DSE

can be computed with full confidence using the DFT.
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Fig 21. Discrete power spectrum 10log(Ps
y ( fk),2

11) with all digital DC inputs for a

third-order EFM implemented with a 10-bit bus.
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Fig 22. Spectrum envelopes and corresponding sequence lengths 1) Ls = 28, 2)

Ls = 212, 3) Ls = 216. 4) Discrete power spectrum 10log(Ps
y ( fk,2

16)) for a single DC

input, 5) Ideal model 10log(Pl
y( fk,2

16)).
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3.2.5 Dithering

We studied the impact of dithering on the performance of a third-order EFM in [V], where

we examined the effects of dithering on the spectrum and on hardware consumption. In

order to make a hardware comparison possible, the dither generators7 were designed to

produce a prescribed sequence length Ls = 216. The dithered DSM was then compared

with a DSE designed according to [VI], producing another sequence of exactly the same

length Ls. Three dither generators were used in the experiment: one based on a linear

shift register (LSR) and two based on congruent random number generators producing

rectangular probability density function (rPDF) dither and triangular (tPDF) dither. A

comparison of the spectra is presented in Fig. 23, which shows that those with rPDF and

tPDF dither and that of the DSE are very close. The spectra are presented as envelopes

and therefore show the worst SFR for all DC inputs. The DSM based on the LSR dither

performed significantly worse than the other three approaches. A classical noise-shaped

dithering scheme was used in which the dither signal was added immediately prior to

quantization, as shown in Fig.1 of [V]. It was shown that the DSE performs as well as

the dithered DSM, while using less hardware resources.
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Fig 23. 1) Spectrum envelope for a DSM with shift-register dither. 2) Overlap-

ping envelopes for DSMs with rPDF dither and tPDF dither. 3) Discrete power

spectrum 10log(Ps
y ( fk,2

16)) for a single DC input without dither 4) Ideal DSE model

10log(Pl
y( fk,2

16)). Revised from [V]. c© [2006] IEEE.

7It is interesting to note that digital dither generators are also finite state machines. Consequently they, too,

must produce finite length sequences. The lengths of the sequences depend on the amount of hardware used to

build such a generator.
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3.3 Summary

This section has examined the fundamental properties of ideal and practical DSEs,

an interesting sub-class of DSMs. These encode a digital input number in repeating

sequences of arbitrary length. The output sequence is composed of the DC component

corresponding to the input DC value and filtered quantization noise. What is characteris-

tic of delta-sigma encoders, and what distinguishes them from delta-sigma modulators,

is the inherently tonal nature of the quantization noise spectrum. Since the density of the

tones depends on the amount of hardware used to construct the DSE, it is possible to

optimize DSEs for a given application and create a sufficiently dense spectrum that is

practically indistinguishable from a continuous one. It has also been shown that setting

the initial conditions in order to maximize the sequence length results in a flat spectrum

that is free from dominant tones. Even a strong, triangular PDF dither cannot improve

the spectrum any further, provided that the sequence length is guaranteed by the design.
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4 Variable modulus DSM

This section will study a variable modulus DSM (VMDSM), as introduced in [VII].

A fractional-N frequency synthesizer used with the VMDSM can multiply a stable

oscillator frequency by any rational number. Since a traditional DSM with a truncation

quantizer can only have a modulus Q that is a power of two, i.e. Q = 2b, the fractional

ratios generated suffer from a limited choice for the denominator 2b (see (3) in Sec. 1.3.2).

Adding a certain amount of asynchronous logic will allow variable modulus quantizers

to be constructed in which Q can take on any integer value.

DSMs capable of generating arbitrary ratios have been introduced in [62], in the

patent literature [66, 109, 110] and more recently in [19]. These solutions are limited to

accumulators with programmable size [19, 66] and DSMs with single-bit quantizers

[62, 109, 110]. The literature to date does not provide any generally applicable theory

governing the operation of variable-modulus DSMs, nor does it provide any examples of

multi-bit variable modulus quantizers.

In this section we will present a way of modelling digital DSMs that takes into

account the variable modulus possibility and will propose a family of variable modulus

quantizers (VMQ) which can be used to convert any DSM topology into a variable

modulus DSM. The quantizers presented here can have an arbitrary number of steps

and are designed so that they can directly replace the traditional truncation quantizers.

Practical applications of the variable modulus functionality will be discussed further in

Ch. 5.

4.1 Quantization in the digital domain

4.1.1 Truncation quantizer

Coarse quantization of digital signals differs from the quantization of continuous

amplitude analogue signals as discussed in Sec. 2.1. Since all digital signals are

initially quantized, coarse quantization is just a way of reducing a signal’s resolution.

Quantization in the digital domain is most easily realized by truncating the digital bus.

This is an attractive choice because it does not consume any hardware resources. Digital

quantization, or re-quantization, can be performed simply by disregarding b LSBs,

as shown Fig. 24. The remaining MSBs form the quantizer output q and the LSBs
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disregarded form a signal r, which is a measure of the quantization error.

u[w]

quantization scaling

u[b]
u[b-1]
u[0]

r[0] r[b-1]

s[w]

s[b]

s[0...b-1]=0

q[w-b]

q[0]

Fig 24. Truncation quantizer.

If the input u is a positive integer, the operation of the quantizer can be interpreted as

division by 2b, where r is the remainder after division. For all positive and negative

integers u, the operation of the quantizer can be described by the following set of

equations, where the “incomplete” brackets ⌊ ⌋ denote the floor function:

{

q =
⌊

u ·2−b
⌋

r = u−2b ·q = u mod 2b.
(28)

The input-output characteristic of the truncation quantizer is shown in Fig. 25. This

quantizer can be implemented with the input u and output q, interpreted as two’s

complement signed numbers. The feedback signal should be interpreted as type

unsigned or converted to two’s complement representation by adding a zero at MSB.

q

1,2, ...,

u

2•2b2b

2

1

−1

−2

-2b-2•2b

Fig 25. Input-output characteristic of the truncation quantizer.
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The truncation quantizer can be described in terms of the traditional model introduced in

Sec. 2.1, which assumes a linear coefficient G and the addition of quantization noise e:

q = 2−b(u− r)

= 2−bu−2−b
(

u mod 2b
)

= G ·u+ e.

(29)

This is a convenient representation because it attributes all the nonlinearity to the

properties of the quantization error e, while the quantizer itself is modeled by a linear

gain. According to (29), the truncation quantizer introduces a linear gain:

G = 2−b, (30)

and the quantization error e is equal to:

e = −2−b
(

u mod 2b
)

= −r ·2−b. (31)

The appearance of the non-unity gain and such a specific way of calculating the

quantization error are consequences of interpreting the input u as an integer. This

interpretation is a convention adopted here which allows simple generalization of the

quantizer operation in Sec. 4.1.2 and has a very close and intuitive correspondence to

the hardware implementation introduced in Sec. 4.3.

4.1.2 Arbitrary modulus quantizer

The output of the truncation quantizer increases by one each time the input reaches an

integer multiple of 2b. The operation of the quantizer can be generalized if we assume

that the output increases each time the input reaches an integer multiple of an integer

number Q. Direct modification of the truncation quantizer description (28) leads to the

following:
{

q =
⌊

u ·Q−1
⌋

r = u−Q ·q = u mod Q.
(32)

This modified quantizer can be interpreted as an arithmetic divider for positive integers,

where r is the remainder from a division of u by Q. The modulus Q can take any positive

integer value, and therefore this quantizer will be called the arbitrary modulus quantizer.

The input-output characteristic of a five-step arbitrary modulus quantizer is shown in

Fig. 26(a).
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(a) Input-output characteristic.
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Fig 26. A five-step arbitrary modulus quantizer.

The arbitrary modulus quantizer can be described in terms of the traditional model,

introduced in Sec. 2.1, which assumes a linear coefficient G and an addition of

quantization noise e:

q = Q−1(u− r)

= Q−1u−Q−1(u mod Q)

= G ·u+ e.

(33)

According to (33), it introduces a linear gain:

G = Q−1, (34)

and the quantization error e is:

e = −Q−1(u mod Q) = −Q−1r. (35)

66



This is the simplest generalization of the truncation quantizer. It could be converted

to either a mid-tread or mid-rise quantizer by introducing an offset in the input-output

characteristic to position it symmetrically with respect to the origin of the coordinate

system, see [97]. This particular quantizer, however, has a simple mathematical

description which serves well to demonstrate the role of the variable modulus.

4.2 Linear model of a DSM with an arbitrary modulus

quantizer

A linear model of a first order error-feedback DSM with an arbitrary modulus quantizer

is shown in Fig. 27. The quantizer is modelled by introducing a linear gain Q−1 with

added quantization noise e, according to (33). The feedback signal r is calculated

according to (32). The DSM output can be expressed in the z domain as:

y =
x

Q
+ e
(

1− z−1
)

. (36)

This equation illustrates the principle of operation of a DSM with an arbitrary modulus

quantizer. It shows that the DSM output signal y is composed of the input signal x

divided by Q, with an added filtered quantization error e. According to the convention

used in this work all signals within the DSM take on integer values.

z-1

+ -

Σ

Σ

x u y

r
Q

Quantizer

Q-1 Σ

e

+
+

+
+

q

Fig 27. Linear model of a first-order DSM with an arbitrary modulus quantizer.

The effect of the variable modulus on the quantization noise is studied in greater detail

in App. 2, where the quantization noise mean ē, variance σ2 and power are derived on

the assumption of a uniformly distributed quantization error. The results show that if the

modulus Q is sufficiently large the quantization noise variance can be approximated
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with the familiar value:

σ2 ≈
∆2

12
. (37)

The quantization error is distributed among Q discrete values in the interval ∆ = 1, see

Fig. 26(b). The quantization error variance already reaches 99% of the limit value ∆2/12

with a DSM having a 4-bit bus (Q = 24). Therefore changing Q, in a case of a practical

DSM, will not have any significant impact on the quantization noise variance. A further

discussion of the selection of Q and the DSM bus width is presented in Sec. 5.3.2.

The relationship between the modulus and the sequence length was not studied in

this work. A mathematical analysis of the sequence length for a MASH with prime

modulus quantizers is presented in [71].

4.3 Quantizer implementations for variable modulus

DSMs

DSMs can be designed either with hardwired or variable arbitrary modulus quantizers.

This section will present practical implementations of single-step and multi-step variable

modulus quantizers, as these are more versatile and can be easily converted to their

hardwired equivalents. The example of a first-order DSM with a variable modulus

quantizer shown in Fig. 28, has two inputs: one for the data signal x and the other for the

modulus Q, which can be changed at any time during DSM operation.

z-1

+ -

Σ

Σ

x u y

rQ

Q Quantization block

Fig 28. First-order DSM with an arbitrary modulus quantizer. Revised from [VII].

c© [2007] IET.

The first-order DSM in Fig. 28 is presented in the error-feedback configuration. The

quantization block, enclosed in a dashed-line box, contains both the quantizer and the

additional hardware for computing the feedback signal r. The quantizer implementations

presented in the subsequent sections provide the feedback signal r and can therefore
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directly replace truncation quantizers in the error-feedback configurations. The proposed

quantizers can be also adopted for other topologies such as output feedback, which do

not require the signal r. For brevity we will refer collectively to the entire content of the

quantization block as the “quantizer”.

4.3.1 Single-bit quantizer

Truncation quantizer. Probably the simplest implementation of a first-order DSM

with a single-bit truncation quantizer is that shown in Fig. 29. All the signals in the

figure include their corresponding bus widths. The input signal x[0...b−1], for example,

is implemented on a b-bit bus with the LSB at position 0 and the MSB at position b−1.

z-1

Quantizer
x[0...b-1] u[0...b]

+
+

y[b]
Σ

r[0...b-1]

Fig 29. A first-order DSM with a single-bit truncation quantizer.

The quantizer is implemented as a bus-split and does not require any additional hardware

resources. The DSM shown in Fig. 29 is equivalent to an accumulator where r can be

interpreted as an arithmetic sum and y as the carry signal. This is a very popular choice

for a hardware-efficient MASH topology. The quantizer in Fig. 29 can be described in

the following way:

y =

{

0 u < 2b

1 u ≥ 2b,
(38)

where the feedback signal r is equal to:

r = u− y ·2b. (39)

This model uses only two levels of the quantizer input-output characteristic shown in

Fig. 25, the level “zero” and the level “one”, and consequently the non-overload range is

(0,1, . . . ,2 ·2b −1). Since the feedback signal is in the range r ∈ (0,1, . . . ,2b −1), the

input signal x has the same range.
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Arbitrary modulus quantizer. The implementation of a single step variable modu-

lus DSM, as depicted in Fig. 30 has two inputs: x for the data signal, and Q for the

modulus. The variable modulus quantizer, enclosed in the dashed box, is designed so

that it can directly replace the truncation quantizer shown in Fig. 29.

M
U

X

sign bit
Quantizer

Q

z-1

+
-

+
+

y

x

r

u

Fig 30. A first-order DSM with a single-bit variable modulus quantizer. Revised

from [VII]. c© [2007] IET.

The DSM output signal y is computed according to the rule:

y =

{

0 u < Q

1 u ≥ Q.
(40)

The general rule for computing the feedback signal r is expressed by (32). Adapted to

the notation used in Fig. 30, r can be expressed as:

r = u−Q · y. (41)

In order to avoid multiplication, this algorithm can be simplified in a practical imple-

mentation as follows:

r =

{

u u < Q

u−Q u ≥ Q.
(42)

The algorithm described by (40) and (42) is implemented by means of a subtractor,

an inverter and a multiplexer. The subtractor plays its nominal role and is also used as a

comparator at the same time. The signals before and after the subtractor have two’s

complement representation. The sign bit interpreted as a comparison result controls the

multiplexer and selects either the difference u−Q ·1, or if y = 0, u−Q ·0, simply u.

The critical path for this implementation is the total delay introduced by the subtractor

and multiplexer.
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4.3.2 Multi-bit quantizer

Truncation quantizer. An arbitrary-order EFM with a multi-bit truncation quantizer

is shown in Fig. 31 and its operation is described by (28). The number of bits selected

for the output signal y[b . . .w] is determined by the construction of the loop filter. Note

that as long as the quantizer input u is in the non-overload range, the feedback signal r

is bounded in the range (0 . . .2b −1). The feedback filter is typically implemented as

an FIR which for a bounded input produces a bounded output. Assuming a bounded

DSM input, the total bus width w can easily be determined by analysing the minimum

sufficient bus widths for the arithmetic operations within the FIR filter. This reasoning

shows that the DSM in this configuration produces a bounded output as long as the

quantizer input remains in the non-overload range.

Quantizer
x[0...b-1] u[0...w]

+
+

y[b...w]
Σ

r[0...b-1]
1-NTF(z)

Fig 31. An EFM of arbitrary order with a multi-bit truncation quantizer.

Arbitrary modulus quantizer. Fig. 32 shows a five-step variable modulus quantizer

which can directly replace the truncation quantizer in Fig. 31. This is an exact realization

of the input-output characteristic shown in Fig. 26, with the same non-overload range.

The algorithm for computing the output signal y and the feedback signal r is presented

below:

y =































2 2Q ≤ u d0,...,3 = 0,0,0,0

1 Q ≤ u < 2Q d0,...,3 = 0,0,0,1

0 0 ≤ u < Q d0,...,3 = 0,0,1,1

−1 −Q ≤ u < 0 d0,...,3 = 0,1,1,1

−2 u < −Q d0,...,3 = 1,1,1,1,

(43)
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r =































u−2Q 2Q ≤ u

u−Q Q ≤ u < 2Q

u 0 ≤ u < Q

u− (−Q) −Q ≤ u < 0

u− (−2Q) u < −Q.

(44)
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network y
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Fig 32. A five-step variable modulus quantizer. Revised from [VII]. c© [2007] IET.

The quantizer shown in Fig. 32 is a natural extension of the single-bit quantizer

shown in Fig. 30. With every additional quantization level there is one additional

adder/comparator connected in parallel. This structure can be easily extended to provide

more quantization steps. This construction ensures that the critical path does not increase

significantly with each additional quantization level. The minimal implementation

in Fig. 32 requires only a routing network to provide the multiples of Q. In any case,

signals propagate through the multiplying network only when Q is changed. Therefore,

although the multiplying network increases the hardware consumption, it does not

contribute to the DSM’s critical path.
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4.3.3 Adapting quantizers to the output-feedback DSMs

The quantizers shown in Fig. 30 and Fig. 32 can easily be adapted to the output-feedback

DSM topologies. In order to illustrate the required changes, the first order error-feedback

DSM shown in Fig. 27 has been rearranged and presented in an equivalent output-

feedback configuration in Fig. 33. As we can see the gain Q in the feedback must remain

in order to compensate for the gain of the quantizer Q−1.

z-1

ΣΣ
x u y

Q

Quantizer

Q-1 Σ

e

+
+

+
+

q

+
-

Fig 33. Linear model of a first-order DSM with an arbitrary modulus quantizer.

Consider the multi-bit quantizer implementation shown in Fig. 32. In the current

configuration the multiplexer is connected to the adders and subtractors, so that the

multiplexer’s output is u− y ·Q. In order to adapt it to an output-feedback DSM the

inputs to the multiplexer must be connected directly to the multiples of Q, so that the

output will be equal to y ·Q. Since the computation of u−y ·Q is no longer required, the

adders and subtractors can be replaced with simple comparators. With these changes in

place, the proposed quantizers can be applied to the output feedback DSM topologies.

4.4 Summary

We have introduced in this chapter a linear model of an arbitrary modulus DSM and

have shown that for a DSM with an input DC value x and modulus Q the mean of the

output is a rational number x/Q. In practice this means that by changing the modulus

we can generate any rational mean with perfect accuracy. On the other hand, DSM

implementations based on the modulus 2b can only approximate rational fractions

with an accuracy that is related to the number of bits b. Thus arbitrary modulus DSMs

have a potential for hardware savings, and represent a better choice for applications

requiring perfect accuracy. The simple single-bit and multi-bit quantizer implementations
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presented here illustrate the use of power-of-two and arbitrary moduli. A more exact

comparison of the hardware consumption of the two quantizer types will be presented in

the following chapter.
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5 Practical design example

The frequency domain PLL model presented in [111] can be used to evaluate the

contributions of various noise sources to the overall noise performance of a synthesizer.

The model can be used to find the required noise transfer function and a suitable DSE

order for a specific application. When the DSE topology and order have been selected

based on a linear model, we have a certain expectation of how the noise will behave in

the frequency domain. The examples presented in this section are based on a third-order

MASH, which has been used previously in a frequency synthesizer for GSM 900

[39]. Once the topology and order have been selected, the DSE bus width should be

determined. In this chapter we will show how to find the smallest possible bus width in

order to minimize the area and power consumption.

This chapter focuses on the problem of DSE scaling with a truncation quantizer and

variable modulus quantizer. It will show how to determine the smallest possible DSM

bus width in order to meet the GSM BS requirements for frequency resolution and SFR,

and will demonstrate the applicability of the results presented in Ch. 3 and Ch. 4. This

chapter will conclude with a comparison of hardware consumption in MASH and EFM

DSMs with truncation and arbitrary modulus quantizers.

5.1 Meeting RF channel accuracy specifications

A frequency synthesizer for a narrowband transceiver generates a set of frequencies

corresponding to the available transmit and receive bands. It is usually sufficient for the

synthesizer to generate the required frequencies with a certain finite accuracy, which

can be used as the first indication of DSM scaling. The fundamental operation of a

fractional-N frequency synthesizer has been described in Sec. 1.3, but we will repeat the

main formulae here for the sake of clarity in the following analysis. The synthesizer

output frequency fo is a multiple of the reference frequency fr and a number N which is

composed of an integer part I and a fractional part x/Q. Thus,

fo = fr ·N

= fr ·

(

I +
x

Q

)

. (45)
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The fractional part is the DC component of the DSM output signal y and depends

on the DSM input x and the DSM modulus Q (see Ch. 4). In a digital fixed point

implementation all the numbers I, x and Q are integers and the fractional multiplier N

can be any rational number. When the DSM input x is increased by one, the synthesizer

output frequency increases by the smallest available quantity, called a step size, which

can be expressed as:

∆ fo =
fr

Q
. (46)

The following sections will present two approaches to the selection of Q and the resulting

step size, in order to satisfy the strict frequency accuracy specifications of the GSM

system, as discussed further in App. 3. We will assume the following parameters:

channel spacing ∆ch = 200kHz, frequency tolerance δ f = 0.05ppm, and a commonly

assumed reference frequency value fr = 13MHz [28, 39, 51, 52].

5.1.1 Approximating RF channels

The most straightforward and most common approach to realizing a fractional-N

frequency synthesizer is to use a high-resolution DSM and to approximate the required

fraction with sufficient accuracy [39, 67]. This approach is based on the most hardware-

efficient truncation quantizer, as discussed in Sec. 4.1.1. For such an implementation,

the DSM resolution is a power of two, Q = 2b, and the step size of the synthesizer can

be expressed as:

∆ fo =
fr

2b
. (47)

The tolerance of the output frequency for GSM is equal to δ f = 0.05ppm. This is a

relative measure, and therefore the strictest requirements for an absolute frequency

deviation expressed in Hz concern the lowest GSM bands. The smallest absolute

frequency deviation for all bands is ∆ f = 25Hz as derived in App. 3. The frequency

step in a synthesizer approximating the required frequency should be smaller than or

equal to twice the allowed frequency deviation, thus:

∆ fo ≤ 2∆ f . (48)

This leads to a minimum required bus width for the DSM of:

b ≥

⌈

log2

(

fr

2∆ f

)⌉

=

⌈

log2

(

13MHz

50Hz

)⌉

= 18bit. (49)
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We will assume for the present purposes that the DSM bus width b = 20 bits,

corresponding to the frequency step of the synthesizer ∆ fo ≈ 12Hz, which is closer to

the actual values used in multi-band GSM transceivers [28, 39, 43]. The modulus Q will

therefore be:

Q = 220. (50)

In this case, the DSM input would be a 20-bit number in the range 0,1,2, . . . ,220 −1.

5.1.2 Generating RF channels with perfect accuracy

Instead of approximating the required frequencies, the RF channels can be generated

with perfect accuracy8. This approach requires a certain amount of additional hardware

to realize the arbitrary modulus quantizer described in Sec. 4.3. Using such a quantizer,

we can match the synthesizer’s step size ∆ fo to the required channel spacing ∆ch:

∆ fo = ∆ch. (51)

According to (46), this leads to a condition for the DSM modulus Q:

Q =
fr

∆ch

=
13MHz

200kHz
= 65. (52)

With the modulus Q = 65 and the reference frequency 13MHz, the synthesizer output

frequency will be increased by exactly 200kHz each time the modulator input is

increased by one. The output frequency of the synthesizer will be exactly

fo = I ·13MHz+ x ·200kHz. (53)

Since the decimal number 65 is represented by 7 bits, i.e. 6510 = 10000012, we need

only 7-bits of DSM resolution to implement a quantizer with the modulus Q = 65.

In this case the DSM input will be a 7-bit number in the range 0,1,2, . . . ,64, and we

will have a 7-bit DSM with a certain amount of extra hardware for implementing the

quantizer, as compared with a 20-bit DSM with a hardware-free quantizer as described

in Sec. 5.1.1.

Generating the channels with perfect accuracy has one noteworthy consequence. If

the generated frequency is not exactly equal to the nominal frequency, the phase error

will accumulate, as the phase is an integral of the instantaneous frequency [108]. In

8This reasoning does not take into account the inherent instability and possible drift of the reference frequency

generated by a quartz oscillator. This section focuses on the phase drift due to the DSM approximation alone.
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other words, if the channel frequency is generated with an approximation error, however

small, we will observe a phase drift. On the other hand, if the frequency is generated

with perfect accuracy, as in this case, no phase drift will occur. An arbitrary modulus

quantizer is the only choice for applications which do not tolerate phase drift.

5.2 Meeting spectrum specifications

The spectral requirements for a GSM transmitter are defined in the form of spectral

masks that define the maximum permitted power levels both inside and outside the

transmitting band (see Fig. 37 in App. 3). These spectral masks are obtained by

measuring the power in a given bandwidth at various frequencies. The minimum

measurement bandwidth BWmin for qualifying the transmitter can be used to determine

the minimum sufficient tone spacing due to the finite DSE output signal period, and in

consequence the minimum sufficient DSM bus width. The minimum bandwidth used

when measuring spurious emissions from a GSM BS transmitter is 30kHz.

As has been shown in Ch. 3, the spectrum of a digital DSM working with a DC

input is inherently tonal, where the tone spacing ∆ fk is proportional to the reference

frequency and inversely proportional to the DSM sequence length, i.e.

∆ fk =
fr

Ls

. (54)

We can control not only the spacing of the tones, but also their average level. As shown

in Fig. 22, the average level of the tones decreases by 3dB each time the DSE bus width

is increased by one bit. The spectral envelope is regular, and the total output power

is the same as that for the ideal model using the CMQ. The spectrum level control

phenomenon can be observed in a spectrum analyzer only when the tone spacing is

greater than the RBW of the instrument. In the case of a GSM BS there is no sense in

increasing the DSE bus width any further once the tone spacing reaches 30kHz, so that

beyond this point the tones are only averaged within the resolution bandwidth. This

principle is illustrated in Fig. 34, which shows idealized DSM quantization error spectra

for two sequence lengths compared with the resolution bandwidth RBW = 30kHz, and

assuming a reference frequency fr = 13MHz.
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RBW = 30kHz
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(a) Insufficient tone spacing.

Pe(fk,Ls)

0

12•(65•25)
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f

RBW = 30kHz

6 kHz

(b) Sufficient tone spacing.

Fig 34. Selecting a sufficient number of tones for the specification of GSM spuri-

ous emissions. The RBW is set to the minimum bandwidth used when measuring

spurious emissions from a GSM BS transmitter.

The first example, illustrated in Fig. 34(a), shows a tone spacing that is too large.

The sequence length Ls = 65 is very short and therefore the tone spacing ∆ fk is much

larger than the resolution bandwidth: ∆ fk = 13MHz/65 = 200kHz ≫ RBW. The

tones will be detected clearly and their levels will be ∆2/(12 · 65), as suggested in

Sec. 3.1.1. The second example illustrated in Fig. 34(b) shows a sufficiently small

tone spacing for this application. The sequence length Ls = 65 · 25 is sufficiently

large and results in a tone spacing that is smaller than the resolution bandwidth

∆ fk = 13MHz/(65 ·25) = 6kHz < RBW. The absolute levels of the tones are smaller

than in the previous example, being ∆2/(12 ·65 ·25). No tonal spectrum will be detected

in the measurement in this case. In fact, a further increase in the sequence length would

not bring about much improvement. The power in the tones is simply averaged in the

RBW, and consequently the spectrum will not be distinguishable from a truly continuous

one.

We assumed here that the DSE is properly controlled and that the spectrum is as
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near as possible to that of the idealized model described in Ch. 3. The power does not

concentrate in the largely dominant tones and the spectrum tonality results from the

finite sequence length. If a certain number of tones was averaged within the RBW,

the variation seen in Fig. 20 would disappear and the practical DSE would closely

approximate the ideal DSE spectrum. Based on the discussion in the previous paragraph,

we will arbitrarily assume that ∆ fk = 6kHz is the maximum sufficient tone spacing for

the 30kHz GSM measurement bandwidth. According to (54), this leads to the shortest

acceptable sequence length for this application:

Lsmin = 65 ·25 = 2080. (55)

5.3 Scaling DSE

In this section we will calculate the minimum required bus width for a DSE with a

truncation quantizer or a variable modulus quantizer based on the channel accuracy and

spectral requirements for GMS as detailed in Sec. 5.1 and Sec. 5.2.

5.3.1 DSM with truncation quantizer

A DSM with a truncation quantizer can be used to approximate the required RF channel

frequencies. In order to meet the frequency accuracy specification, the bus width should

be at least 20 bits, as shown in Sec. 5.1.1, which corresponds to a modulus Q = 220. If

the initial conditions are set appropriately, a third-order MASH or EFM implemented

with this bus width will generate repeating sequences of length Ls = 2b+1 = 221, as

shown in Sec. 3.2.1, as a result of which the spectrum will be composed of 221 discrete

tones with a spacing of ∆ fk = 13MHz/221 = 6Hz. This means that over 5000 tones

will be averaged within the measurement bandwidth of 30kHz. This is easily a sufficient

sequence length and the measurement will not reveal the tonal nature of the DSM output

signal. This rationale shows that when a DSM is implemented in the traditional way, the

strict GSM frequency accuracy specification will predominate in the question of bus

width selection. The DSM will automatically meet the spectral resolution requirements.

It is interesting to note that when the channels are approximated the exact mean is

achieved over the entire sequence of 221 samples. Therefore, in order to use the full

resolution, one has to wait for 221/13MHz = 0.16s. From this point of view, extremely

long sequences might not be desirable. If it takes an excess amount of time to convey
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information about the exact mean value, “fine resolution” may never be achieved in

practice. This observation is only intuitive and should be verified further.

5.3.2 An arbitrary modulus DSM

If an arbitrary modulus DSM is based on Q = 65, it can generate 200kHz spaced GSM

channels with perfect accuracy. A DSM with this modulus would require a 7-bit bus, as

shown in Sec. 5.1.2. A third-order EFM with a 7-bit bus will generate output sequences

of exactly 65 when implemented according to the methodology described in [VI] and

[VII], resulting in a tone spacing ∆ fk = 200kHz. Discrete tones with such a large

spacing can easily be seen on a spectrum analyzer with a 30kHz resolution bandwidth.

In order to meet the spectral requirements the modulus must be increased to at least

Q = 65 ·25, see (55) in Sec. 5.2, which can be achieved by adding 5 LSBs. Following

the sequence length control procedure described in [VI] we obtain a sequence length of

Ls = Q = 65 ·25, which results in 6kHz spaced tones, as illustrated in Sec. 5.2. Overall,

we obtain a 7+5 = 12-bit DSM which generates the required channels with perfect

accuracy and has a sufficiently dense spectrum, which will be indistinguishable from a

continuous spectrum in a spectrum analyzer with a 30kHz resolution bandwidth. In

addition, the sequence length is relatively short and information on the perfect-precision

mean is transferred in (65 ·25)/13MHz = 160 µs, 1000 times faster than in the case of

a truncation quantizer DSM for the same application. The differences between two

DSMs implemented with a variable modulus quantizer and truncation quantizer are

summarized in Table 3.

Table 3. Comparison of the performance of two quantizers in a DSE for use in

fractional-N frequency synthesis.

DSE implementation Bus width Max. freq. Tone spacing Sequence

error ∆ fk Length Ls

Truncation Quantizer 20-bit 6Hz 6Hz 160ms

Variable Modulus Quantizer 12-bit 0 6kHz 160 µs
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5.4 DSE implementation

This section will evaluate the hardware consumption and speed of the third-order MASH

and EFM architectures introduced in Ch. 3 when implemented with truncation and

variable modulus quantizers. Both modulators were designed with the Xilinx R© System

Generator for Matlab R© and targeted for a Xilinx R© Virtex-4 FPGA (see App. 4). The

implementation results for both topologies are gathered together in Table 4 and Table 5.

Both modulators were scaled according to the principles outlined in Sec. 5.3.

Table 4. Hardware and speed costs of an Error Feedback DSM with different types

of quantizer.

Q Bus width

[bits]

FFs 4-input LUTs Data Path Delay [ns] Max. Clock

Frequency

[MHz]

Logic Routing Total

220 20 60 181 6.9 5.9 12.8 78.0

65 20 60 501 10.0 11.1 21.0 47.4

65 12 36 327 8.8 10.2 19.0 52.8

Table 5. Hardware and speed costs of a MASH DSM with different types of quan-

tizer.

Q Bus width

[bits]

FFs 4-input LUTs Data Path Delay [ns] Max. Clock

Frequency

[MHz]

Logic Routing Total

220 20 64 74 5.9 3.8 9.7 102.0

65 20 64 200 11.3 9.1 20.4 48.8

65 12 40 128 10.3 8.5 18.8 53.3

Both tables are organized in a similar way. Let us consider Table 4 as an example.

The first row shows the implementation details for a DSM implemented with a 20-bit

truncation quantizer. Such a modulator approximates the desired fractions with an

accuracy that is related to the bus width (see Sec. 5.3.1). The second row shows the
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same 20-bit DSM but with a variable modulus quantizer. This is the most flexible

implementation, as it allows any modulus to be used within the 20-bit range, but the

price of this flexibility is a three-fold increase in the asynchronous logic, expressed in

the number of lookup tables (LUTs), and a 40% decrease in the maximum achievable

frequency. If such flexibility in the selection of the modulus were not required, the DSM

bus width could be optimized as discussed in Sec. 5.3.2, whereupon the DSM would

be capable of generating a series of fractions based on a selected denominator with

perfect accuracy. Reducing the bus width will naturally lessen the number of flip-flops

(FFs) and the number of LUTs and improve the maximum achievable frequency and

the power consumption. Similar results, for the more hardware-efficient MASH are

gathered together in Table 5.

The implementation results show that the relationship between the SFR and bus

width introduced in Ch. 3 can be used to optimize the hardware resources, speed and

power consumption.

5.5 Summary

This section has discussed the problem of DSE sizing in fractional-N frequency synthesis.

After choosing a topology according to the model assuming white quantization noise,

we have to select an appropriate DSE bus width. It is desirable to minimize the bus

width in order to save area and minimize energy consumption. The reasoning behind

selection of the appropriate bus width is presented for a DSE with either a truncation or

arbitrary modulus quantizer, both sized to meet the specifications of a GSM transmitter.

The two DSE types scale differently in a system which requires high accuracy in the

frequencies generated. A frequency synthesizer based on a truncation quantizer DSE

only approximates the desired frequency with a prescribed accuracy which depends on

the DSE bus width, and therefore the scaling is dominated by the required accuracy.

For systems requiring high frequency accuracy, such as GSM, the DSE bus width will

be large and consequently the tonal DSE spectrum will be very dense. On the other

hand, a frequency synthesizer with an arbitrary modulus DSE can generate any desired

frequency spacing with perfect accuracy. The bus width of an arbitrary modulus DSE

must be large enough to implement the required modulus, but also large enough to

produce a sufficiently dense spectrum. In the example presented in this section the

minimum measurement bandwidth used in the GSM was taken as the predominant

specification for scaling the arbitrary modulus DSE. As a consequence the variable
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modulus quantizer can be implemented with a smaller bus width than the traditional

DSM based on the truncation quantizer.

The narrow bus of an arbitrary modulus DSE might suggest a smaller area, but

the example shows that this is not necessarily the case. The use of flip-flops depends

directly on the DSE bus width and is indeed smaller for the arbitrary modulus DSE.

On the other hand, a substantial amount of asynchronous logic is required to facilitate

the arbitrary modulus, which limits the maximum clock frequency and means that an

arbitrary modulus quantizer is a speed bottleneck for a DSE. An arbitrary modulus

DSE can nevertheless be particularly hardware-efficient in output-feedback topologies

with a limited number of quantization steps. In general, an arbitrary modulus DSE is

irreplaceable in applications requiring perfect frequency accuracy and zero phase drift.
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6 Overview of the contributing papers

The first two publications included in this thesis present a frequency synthesizer test

platform composed of a PLL ASIC [I] and an FPGA hosting a delta-sigma modulator

[II]. The platform was intended for testing the synthesizer’s custom switching speed-up

subsystems and various DSM structures in fractional-N mode. Measurements revealed

that the tonal behaviour of a DSM is a significant challenge in fractional-N mode,

although our research also revealed that digital DSMs with DC inputs display very

regular behaviour with respect to the DC input and initial conditions. Such behaviour

had not been discussed in the literature prior to our work and therefore inspired a more

thorough study, which laid the foundations for Ch. 3 of this thesis.

The initial study [II] had already shown that when a third-order EFM is started from

particular initial conditions the sequence length and the number of discrete tones in the

spectrum will depend on the bus width and not on the modulator input. We have also

shown for this architecture that each time the bus width is extended by one bit the SFR

is improved by 3dB. The performance of a DSM designed for a constant sequence

length can be completely verified for all inputs.

The following work [III] extended the DSM cycle length analysis to a third-

order MASH-1-1-1 and considered the effects of the DSM out-of-band noise on the

performance of the synthesizer. We showed that a simple filter at the DSM output

with one zero at the sampling frequency can improve the noise performance of the

synthesizer, since, although it increases the in-band noise by 6dB, it achieves the desired

narrower phase noise distribution and reduces the charge pump ON time by 20%. As a

result, the synthesizer is more immune to nonlinearities in the charge pump and to noise

coupling during the ON time.

The DSM sequence length control method initiated in [II] was extended to cover

MASH and EFM on a broader scale in [IV]. Groups of initial conditions that led to

desired sequence lengths were identified in a general way and equations for sequence

length were provided for architectures from orders two to five. Furthermore, a method

was demonstrated that allows loading of the initial conditions at the system’s start time

and avoids reloading each time the DC input changes. As a consequence, the internal

state of the DSM always remains in the desired sub-space. This leads to very long

output sequences. These two practical methods of controlling the sequence length are
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discussed in greater detail in Sec. 3.2.1.

The outcome of papers [II], [III], [IV] was a method for coping with the well-known

DSM spurious tone problem, which is traditionally addressed using a method employing

whitening noise, called dithering. Our proposed method based on the initial conditions

was compared with a dither signal added to the EFM immediately before the quantizer

in [V]. Three types of dither generation were considered, and it was shown that

the spectrum obtained by applying predefined initial conditions is as good as that

obtained using the best-known form of dither, while the proposed solution consumes

less hardware.

A complete practical DSM design method based on the behaviour of limit cycles

was published in [VI], which also presented the previously published results [II], [III],

[IV], [V] in a more complete and unified manner and proposed a complete solution to

the tonal problem for two classical DSM topologies. This paper shows that, by loading

specific initial conditions and scaling the DSM bus width it is possible to achieve precise

control over the level of DSM noise. At the same time the noise spectrum will remain

very regular and free from dominant spurious tones.

The second contribution to digital DSMs, covered in Ch. 4 of this thesis, was

introduced in [VII], in which we showed that coarse quantization in the digital domain is

equivalent to arithmetic division and proposed practical means for changing the divisor,

referred to as modulus. As a result the DC value of the DSM output can be any rational

fraction generated with absolute accuracy. When such a DSM is used for frequency

synthesis it allows individual frequencies to be generated without any approximation, so

that they will not suffer from constant phase drift.
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7 Conclusions

7.1 Summary

Two techniques are described here that improve the performance of digital delta-sigma

modulators and extend their capabilities. Both techniques are suitable for modulators

implemented in a fixed-point digital environment and are applicable to fractional-N

frequency synthesis.

The first technique addresses the problem of quantization noise in digital DSMs with

DC inputs. Our proposed approach ensures a smooth spectral envelope and allows the

noise level to be traded off against DSM hardware consumption. We have shown for

MASH and error feedback that the output sequence length can be controlled by loading

pre-defined initial conditions and by scaling the bus width. As a result, it is possible

to distribute the quantization noise power among a controlled number of tones. In

effect, the SFR depends on the DSM bus width and not on the DC input. This technique

enables one to avoid over-designing and can guarantee the desired performance under

all practical conditions.

The second contribution is a proposal for a general family of digital quantizers with

variable modulus. A DSM with such a quantizer will have two inputs, one for the data

and the other for the modulus. A variable modulus will expand the DSM capability

for generating the mean value as any rational fraction with perfect accuracy, within

reasonable limits of practical implementation. This functionality is desirable in frequency

synthesis applications as it allows sets of frequencies to be generated with perfect

accuracy. Since the frequencies are generated exactly, without any approximation, the

commonly observed phase drift can be avoided. The proposed practical implementation

is general in nature, compact, scalable and applicable to many digital DSM topologies

with any number of output bits.

7.2 Discussion

Sequence length control. The first contribution of this thesis addresses DSM’s

tonal behaviour. The idea of using predefined initial conditions as a means of ensuring a

spurious tone-free DSM spectrum is not new, and was proposed in [41, 49, 66–69]. What
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is new is the observation that such means allow the sequence length to be controlled

precisely for all DC inputs. We have shown for the first time in [III], [IV], [V], [VI] that

it is possible to control the sequence length and that this entails a number of benefits.

First of all, controlling the sequence length opens up a new perspective on noise

shaping in the digital domain. Noise can not only be shaped, but it can also be distributed

among a well-defined number of tones. The quantization noise power is always constant,

and it is therefore desirable to maximize the number of tones in order to minimize their

average level.

Sequence length can be used as a benchmark for DSMs. The longer the sequences

that can be generated with a given amount of hardware, the better. The desire to generate

very long sequences has led to the construction of novel, hardware-efficient topologies

which produce significantly longer sequences than traditional MASH and error-feedback

structures [71, 72]. These topologies score very highly in terms of the sequence length

“benchmark”, as they have the ability to utilize almost the entire available state space.

The same line of thought has also allowed the amount of hardware in MASH to be

reduced without sacrificing the achievable sequence length, and in consequence without

compromising on performance [106]. Controlling the sequence length is a form of

deterministic approach to controlling the spectral performance of a DSM, i.e. it is a

form of solution “by design” [VI], [72].

It should be admitted, however, that the relationship between long sequences and a

good-quality spectrum is not a simple one. A long sequence yields a large number of

discrete tones, but it does not necessarily guarantee how the quantization noise power

will be distributed among those tones. All the available studies have nevertheless shown

that when the DSM is forced to produced long sequences the desired power distribution

follows [VI], [71, 72]. Moreover, the solution based on controlled sequence length

is entirely deterministic and the spectrum can be tested beyond any doubt under all

practical conditions [VI].

Variable modulus DSM. Fractional-N frequency synthesis has a built-in capacity

to generate any rational multiples of the reference frequency, see (2) in Sec. 1.3.1. It is

simply a matter of maintaining proper control over the frequency divider. One known

solution is based on accumulators of programmable size [19, 66], but the same effect

can be obtained with a DSM that controls the division ratio. The known solutions are

limited to DSMs with single-bit quantizers [62, 109, 110].

This work proposes a unified means of analysis and a practical solution that is
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applicable to many DSM topologies. It is argued that the desired functionality can be

achieved by appropriately constructing a digital quantizer. This new approach points to

a unified way of modelling and interpreting the operation of a variable modulus DSM,

and consequently leads us to propose a family of variable modulus quantizers which are

easily scalable and can have any arbitrary number of output bits. It is also noted that as a

by-product these quantizers can compute the quantization error.

Our proposed family of arbitrary modulus quantizers is based on truncation quantiz-

ers characterized by a DC offset in the quantization error, but can easily be converted to

more traditional mid-tread or mid-rise quantizers.

7.3 Future work

Although the methodology described in Ch. 3 is applicable to DSMs working with DC

inputs, in which the limiting factor is the requirement to reload the initial conditions

each time the DC input changes, it has an interesting extension which is described in

greater detail in [IV]. This second approach requires one to set the initial conditions

only at power-up. The DSM can work with arbitrary inputs, but whenever the input has

a DC-like segment, the DSM spontaneously generates a very long output sequence.

This approach could potentially be used to address the tonal problem in DSMs working

with arbitrary inputs. Further studies would be required to prove the usefulness of this

method and to determine whether it can be applied to a broader class of digital DSMs.

When we forced the digital DSMs to produce very long periodic sequences in this

work, the spectrum associated with the sequences was smooth and tone-free. Sequence

length and the distribution of spectral power are two different things, however, and the

relationship between a long sequence and the desired uniform power distribution has

only been observed empirically. This relationship should be studied further.
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Appendix 1 Spectrum representation for

discrete-time periodic signals

The spectra of discrete-time periodic signals studied here represent a special case of

spectral analysis, as the spectrum is not estimated but can be computed exactly. In this

appendix we prove Parseval’s relation for the power spectrum representation used in this

work and study the relationship between the average power, mean and variance of the

real-valued discrete time periodic signal. The appendix has a formal character, as it

expresses some very well known relationships with the notation used in this work. It

is nevertheless included on account of the specific character of the spectral analysis

performed here.

Discrete power spectrum

Let us consider a discrete-time signal x with fundamental period9 Ls:

x(n) = x(n+ k ·Ls), wherek ∈ Z. (56)

The discrete Fourier transform (DFT) of x(n) and the inverse DFT (IDFT) can be

expressed as [20, 107]:

DFT

X(k) =
Ls−1

∑
n=0

x(n)e− j2πkn/Ls k = 0,1,2, . . . ,Ls −1, (57)

IDFT

x(n) =
1

Ls

Ls−1

∑
k=0

X(k)e j2πkn/Ls n = 0,1,2, . . . ,Ls −1. (58)

The definition of the DFT presented above is implemented in the same form in

Matlab R© and therefore the expressions derived here can be used directly to construct

algorithms for use in that environment. Formally, the spectra of the discrete-time

periodic signals should be expressed by the discrete Fourier series (DFS), but in practise

the DFT and DFS have the same form [20, 107]. Some authors introduce a scaling

9We deliberately avoid using the common symbol N for denoting a period, in order to not to confuse it with

the fractional N in fractional-N frequency synthesis.
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coefficient L−1
s into the definition of the DFS [20], but others do not [107]. More

importantly, the difference between the DFT and the DFS lies in the interpretation of the

spectra.

We will represent the power spectrum of a discrete-time periodic signal x as:

Px(k) =
1

L2
s

|X(k)|2 . (59)

Since we will use the DFT to compute a power spectrum for one period of a periodic

signal with period Ls, the spectrum will be computed exactly and will be composed of

Ls discrete tones with no power between them.

Parseval’s relation

The average power Px of a discrete-time periodic signal with period Ls is defined as:

Px =
1

Ls

Ls−1

∑
n=0

|x(n)|2. (60)

The power spectrum for a discrete-time periodic signal (59) is defined in such a way

that the average power in the signal is the sum of the powers of the individual frequency

components [20, p. 251]. Parseval’s relation for a discrete-time periodic signal can be

stated as:

Px =
1

Ls

Ls−1

∑
n=0

|x(n)|2 =
Ls−1

∑
k=0

Px(k). (61)

For convenience, we repeat here the standard proof of Parseval’s relation for discrete-time

periodic signals [20, p. 250], adapted to the notation used in this thesis:

Px =
1

Ls

Ls−1

∑
n=0

x(n)x∗(n)

=
1

Ls

Ls−1

∑
n=0

x(n)

(

1

Ls

Ls−1

∑
k=0

X∗(k)e− j2πkn/Ls

)

=
1

L2
s

Ls−1

∑
k=0

X∗(k)

(

Ls−1

∑
n=0

x(n)e− j2πkn/Ls

)

=
1

L2
s

Ls−1

∑
k=0

X∗(k)X(k) =
1

L2
s

Ls−1

∑
k=0

|X(k)|2.
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Relationship between the average power, mean and variance

Here we derive a relationship between the average power Px, mean x̄ and variance σ2
x for

real-valued discrete time periodic signal x. Taking (56) in to acount the mean value can

be expressed as:

x̄ =
1

Ls

Ls−1

∑
n=0

x(n). (62)

Variance is defined as:

σ2
x =

1

Ls

Ls−1

∑
n=0

(x(n)− x̄)2. (63)

Expanding the definition of the variance we obtain the following:

σ2
x =

1

Ls

Ls−1

∑
n=0

(x(n)− x̄)2

=
1

Ls

Ls−1

∑
n=0

x2(n)−2x̄

(

1

Ls

Ls−1

∑
n=0

x(n)

)

+ x̄2

=
1

Ls

Ls−1

∑
n=0

x2(n)− x̄2. (64)

Considering that for a real-valued signal x the following is true:

x2(n) = |x(n)|2, (65)

then the average power defined by (60) is related to the mean value and the variance:

Px = σ2
x + x̄2. (66)

Relationship between the power spectrum and the variance

It automatically follows from the definition of the DFT (57) that:

X(0) =
Ls−1

∑
n=0

x(n), (67)

and therefore, considering (65) for a real-valued signal x, the zero component of the

discrete power spectrum is:

Px(0) =
1

L2
s

|X(0)|2 =

∣

∣

∣

∣

∣

1

Ls

Ls−1

∑
n=0

x(n)

∣

∣

∣

∣

∣

2

= |x̄|2 = x̄2. (68)
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According to Parseval’s relation, (61) we can write:

Px =
Ls−1

∑
k=0

Px(k) = x̄2 +
Ls−1

∑
k=1

Px(k). (69)

Finally, taking into account (66) we can see that the variance σ2
x is distributed over

Ls −1 spectral tones, excluding the DC component at k = 0:

σ2
x =

Ls−1

∑
k=1

Px(k). (70)
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Appendix 2 The arbitrary modulus quantizer

This appendix presents a more detailed analysis of the arbitrary modulus quantizer

introduced in Sec. 4.1.2. This quantizer represents a generalized version of the truncation

quantizer commonly used in digital DSM implementations. Assuming a uniformly

distributed quantization error e, we will derive expressions for the quantization error

mean ē and variance σ2
e and the average quantization noise power Pe. The input-output

characteristic and the quantization error of the arbitrary modulus quantizer are shown in

Fig. 35.

q

1,2, ...,

u

2Q

-Q-2Q

Q

2∆

∆

−∆

−2∆

3Q

-3Q

(a) Input-output characteristic.

1,2, ...,

u

2Q

-∆

-Q-2Q Q

e

-3Q

non-overload range

3Q
3Q-1

(b) Quantization error.

Fig 35. A five-step arbitrary modulus quantizer.
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The operation of the quantizer in the non-overload range can be defined as:

{

q = ∆
Q

u+ e

e = − ∆
Q
(u mod Q).

(71)

The quantization error differs from that of the CMQ and the mid-rise and mid-tread

quantizers discussed in Sec. 2.1 in three ways. First of all, it is discrete, it is asymmetrical

(has a negative offset) and it is distributed in a range of magnitude smaller than ∆:

e = −∆

(

0,
1

Q
,

2

Q
, . . . ,

Q−1

Q

)

. (72)

The distribution range approaches ∆ as the modulus Q increases. The discrete and

uniformly distributed quantization error in the given range is shown in Fig. 36. The

mean value ē of the quantization error can be expressed as:

ē = −
1

Q

Q−1

∑
i=0

∆ ·
i

Q

= −
∆

2
·

Q−1

Q

lim
Q→∞

ē = −
∆

2
. (73)

The quantization error variance can be expressed as:

σ2
e =

Q−1

∑
i=0

(e(i)− ē)2 · p(e(i))

=
1

Q

Q−1

∑
i=0

(

−∆
i

Q
+

∆

2
·

Q−1

Q

)2

=
∆2

12
·
(Q−1)(Q+1)

Q2

lim
Q→∞

σ2
e =

∆2

12
. (74)

As expected, as the quantizer resolution approaches infinity the quantization error

variance approaches the well-known value ∆2/12 that is characteristic of a continuous

system. As the bus width increases, the real value of the variance quickly approaches this

limit value, and will have already reached 99% of it with b = 4 bits. We can therefore

assume for most practical systems that the variance for the arbitrary modulus quantizer,

and an equivalent truncation quantizer, is ∆2/12.
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Fig 36. Probability function of the quantization error.

Due to the asymmetry of the quantizer, the quantization error power is not simply

equal to the variance but is affected by the DC offset:

Pe =
1

Q

Q−1

∑
i=0

(

−∆
i

Q

)2

=
∆2

6
·
(Q−1)(2Q−1)

Q2

lim
Q→∞

Pe =
∆2

3
. (75)

This makes the arbitrary modulus quantizer significantly different from a symmetrical

quantizer. Due to the DC offset the power is 4 times higher than the variance. This result

may matter in modulator architectures which do not attenuate the quantization noise at

DC. In such cases mid-rise or mid-tread quantizers should be used. According to (66),

the average quantization noise power is related to the mean and variance as follows:

Pe = ē2 +σ2
e ≈

∆2

4
+

∆2

12
=

∆2

3
. (76)

In this work all modulator architectures have a maximum attenuation at DC, which

allows us to neglect the DC component of the quantization error.
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Appendix 3 Selected GSM transceiver

specifications

This appendix contains a selection of GSM specifications that are relevant to a DSM

fractional-N frequency synthesizer working as a local oscillator. The DSM generates

pseudo-random sequences with two essential properties: a mean value corresponding to

the selected radio channel and a noise-shaping property. The resolution required for

the mean can be derived from the transceiver channel spacing specification, frequency

source accuracy and reference frequency, while the DSM scaling related to the noise

shaping property can be derived from the minimum measurement bandwidth used to

qualify the transceiver.

GSM specifications

The required specifications can be found in two documents: ETSI 3GPP TS 05.05,

which defines the requirements for the transceiver, see [112], and ETSI GSM 05.10,

which defines the requirements for synchronization on the GSM radio sub-system [113].

The parameters in question fall into the following categories:

Frequency bands and channel arrangement. The technical specification [112]

defines all the available GSMS bands. The channel spacing ∆ch for all bands is:

∆ch = 200kHz. (77)

Radio frequency tolerance. The technical specification [113] defines the require-

ments for the frequency source separately for a base station (BS) and a mobile

station (MS). In this work we will use the BS requirement, as it is the stricter of

the two and assumes a relative accuracy in the frequency source:

δ f = 0.05ppm. (78)

Transmitter characteristics. The technical specification [112] defines the output

RF spectrum and permitted spurious emissions in the form of spectral masks

obtained by measuring the power in a given bandwidth at various frequencies. The

bandwidth is usually increased as the frequency offset between the measurement
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frequency and either the carrier or the edge of the MS or BS transmit band

increases. The minimum bandwidth for the spectral mask due to modulation,

wide band noise, and switching transients, is 30kHz for the BS. An example mask

is shown in Fig. 37. The minimum measurement bandwidth for determining the

spurious emissions in the MS is 10kHz. For the purpose of this work we will use

a commonly used specification for the BS measurement bandwidth [28, 39, 43]

and denote:

BWmin = 30kHz. (79)

Absolute frequency accuracy

The radio frequency tolerance of the GSM system is given as a relative accuracy (78).

This means that, as the generated frequency increases, the permitted absolute frequency

error increases as well. Thus the strictest requirement for the accuracy of the synthesizer

arises at the lowest frequency it is supposed to generate. Here we derive the maximum

permitted absolute frequency error for the lowest GSM band, GSM 450. For a complete

specification of the GSM bands, refer to [112]. The maximum permitted frequency

errors for GSM 450, GSM 900 and GSM 1800 are shown in Table 6.

Since the lowest frequency in the GSM 450 system is fmin = 450.4MHz, the absolute

frequency accuracy for this band can be calculated as:

∆ f = δ f · fmin (80)

= 5 ·10−8 ·450.4MHz = 22.5Hz.

Similarly ∆ f = 43.8Hz and ∆ f = 85.5Hz in the GSM 900 and GSM 1800 bands,

respectively.

Table 6. Maximum permitted absolute frequency errors ∆ f for various GSM bands.

Band ∆ f

GSM 450 22.5Hz

GSM 900 43.8Hz

GSM 1800 85.5Hz
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Fig 37. Example spectral mask. Figure reprinted from [112]. c© European Telecom-

munications Standards Institute 2008. Further use, modification, redistribution is

strictly prohibited. ETSI standards are available from http://pda.etsi.org/pda/
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Appendix 4 Measurement setup

A simple test system has been built to enable DSM output spectra to be measured directly

using a spectrum analyzer. The test system comprises a Xilinx R© ML401 evaluation

board and a custom-built DAC extension board. The block diagram of the test system

is shown in Fig. 38. The DAC board is based on a 10-bit, 125 MSPS, DAC AD9750.

The differential DAC current output is converted to a single-ended voltage output by

means of an operational amplifier AD8056, according to the standard configuration

suggested in the DAC data sheet [114]. The spurious-free dynamic range of the DAC

can vary between 70 and 87dBc depending on the clock frequency and the differential

to single-ended coupling method [114]. In the selected arrangement, based on the

operational amplifier and a 20MHz clock frequency, the noise floor remained at 70dBc,

as shown in Fig. 20.

Xilinx Virtex-4
XC4VLX25

∆−Σ modulator DAC

20 MHz

Spectrum
analyzer

AD 9750 TxDAC

10-bit, 125MSPS

Rhode&Schwarz

FSQ 8

Fig 38. Block diagram of the measurement system.

This test system is not equipped with any image rejection filter and allows direct mea-

surement of the DSM output spectrum over the full frequency range. This measurement

system can be used to measure the out-of band spectrum, as the in-band noise is covered

by the noise floor of the off-the-shelf multi-bit DAC. When comparing the measured

spectra with simulation results based on the DFT, the following parameters have to be

taken to account:

Sample and hold. Since the DAC performs first-order sample and hold operations,

the spectrum is multiplied by the frequency response of the sinc function (see
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((25) in Sec. 3.2.3).

DAC gain. The quantized output from the DSM passes though the multi-bit DAC, in

which the gain is selected to maximize SNR but not to overdrive the spectrum

analyzer input. With the actual selected DAC gain taken into account, the value of

the DSM quantization step is ∆ = 75mV.

Load impedance. The spectrum analyzer provides a standard load impedance of

RL = 50Ω.

Clock frequency. The DSM and DAC are driven at the same clock frequency fs =

20MHz. In the context of the DSM implementation the clock frequency is referred

to as the sampling frequency fs.
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