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Abstract. Digital distance geometry (DDG) is the study of distances in 
the geometry of digitized spaces. This was introduced approximately 25 
years ago, when the study of digital geometry itself began, for providing 
a theoretical background to digital picture processing algorithms. In this 
survey we focus our attention on the DDG of arbitrary dimensions and 
other related issues and compile an up-to-date list of references on the 
topic. 
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1. Introduction 

Digital geometry (DG) is the study of the geometry of discrete point (or lattice point, 
grid point) spaces where every point has integral coordinates. In its simplest form 
we talk about the DG of the two-dimensional (2-D) space which is an infinite array 
of equispaced points called pixels. Creation of this geometry was initiated in the 
sixties when it was realized that the digital analysis of visual patterns needed a proper 
understanding of the discrete space. Since a continuous space cannot be represented 
in the computer, an approximated digital model found extensive use. However, the 
digital model failed to capture many properties of Euclidean geometry (EG) and thus 
the formulation of a new geometrical paradigm was necessary. A similarity can be 
drawn here between the arithmetic of real numbers and that of integers to highlight 
the above point. So tong we can add, subtract or multiply reals we do not need to 
devise fresh addition rules or multiplication tables for integers. These are properties 
which simply extend over a (constrained) digital model. The moment, however, 
we attempt to divide, a new framework is needed for the integers (say, in the form 
of well-known floor/ceiling functions). Analogously, some properties of Euclidean 
geometry extend to the digital case. But the vast majority do not. We tabulate some 
of them in table 1. 

The study of the above approximate model of EG, is commonly referred to as 
digital geometry or digital topology. We seek to survey here the notion, definition, 
characterization and proliferation of distance functions and distance related items in 
this geometry, under the name of digital distance geometry (DDG). 
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Table 1. A few examples of differences between Euclidean and digital geometry. 

Euclidean geometry 
Digital geometry 

(of the well-known kind) 

Properties that 
hold 

Properties that 
hold after ex- 
tension 

Properties that 
do not hold 

Euclidean distance is a metric 
Extendable to higher dimensions 

Jordan's theorem in 2-D 

Every shortest path which con- 
nects two points has a unique 
mid-point 

The shortest path between any 
pair of points is unique 
Only parallel lines do not inter- 
sect 

Two ~ntersecting lines define an 
angle between them 

Euclidean distance is a metric 
Extendable to higher dimensions 

Jordan's theorem in 2-D holds if 
4-connectivity is maintained in the 
object (background) and 8-connec- 
tivity in the background (object) 
A shortest path has a unique mid- 
point or a mid-point pair 

The shortest paih "between pair of 
points may not be unique 
Lines may not intersect but may not 
be parallel 
Angle is unlikely. Digital trigono- 
metry has been ruled out (Rosenfeld 
1983a) 

It is true that DG was conceived for two-dimensional image processing and has 
been serving many of its needs; but it has much potential for application to other 
fields as well where it can serve in various tasks of data analyses. For example, in 
applications of n-dimensional data processing, attenuation of the huge amount of 
diverse data in the real space is a practical necessity. A 3-dimensional digital space 
is used in medical applications like processing of tomographic scan data and also in 
3-D object analysis. The study of the 3-D motion along with time requires proce, ssing 
in 4-D. The state-space of the robot arm has 6-dimensions. Higher dimensions result 
in feature analysis where each property is equivalent to a dimension. Application 
areas also include computer graphics, robotics, cellular automata theory, intercon- 
nection networks and g~ometric number theory. 

The major theme of the development of DG closely followed the Euclidean geometry 
with special attention being given to results primarily relevant to image processing 
and other applications. For example, digital straight lines and curves were characterized 
and the digital counterpart of Jordan's curve theorem was established. In 3-D, major 
advances were made in closed surface characterization. In a separate, yet related 
chain of work, efforts Were invested in the study of distance functions relevant in the 
digital context. Actually it was realized that the Euclidean metric En was inadequate 
to deal with the quantized situation. Primarily because En does not have proper 
neighbourhood and path definitions in DG and its computation iff a digital picture 
is quite difficult. Thus Cityblock and Chessboard distances in 2-D and grid and lattice 
distances in 3-D naturally evolved in the initial phase. In spite of these bursts of 
advancement in DG, there were many deficiencies in various aspects of this geometry 
some of which have been addressed over the years. For example, 

1. Formulation of an axiomatic basis for DG. 
2. Definition and study of the discrete geometry of n-D grid-point spaces which was 

conceived primarily in 2- and 3-D for applications in image analysis. 
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3. Execution of a programme of distance geometry (Blfimenthal 1953), which helps 
to substitute ad hoc notions and definitions by a formal and uniform framework, 
for the digital space. 

In view of the above, the present survey attempts to review the present state-of-the- 
art in DDG. While we elaborate on the major issues of DDG through simple distance 
forms in n-D, special reference is made to 2-D to raise and settle a few fundamental 
questions of interest to image processing. 

2. Preliminary notions and definitions 

In this section we describe the notions of quantization, and define points, paths, 
metrics etc. in the context of DG. 

2.1 Tessellations 

An approximate discrete model of the continuous space can be created by partitioning/ 
tiling the space into well-formed cells/tiles. This partitioning process has been studied 
for long by mathematicians, under the name of tesscllations. By definition, a tessellation 
is an aggregate of n-dimensional cells that cover the n-D continuous space without 
overlapping (Coxeter 1963; Ahuja & Schachter 1983). Clearly, various arbitrarily 
shaped cells or tiles can be used for a tessellation. However, compact mathematical 
treatment neexis some uniform and homogeneous properties in a tessellation for it 
to be practically useful. It has already been proved in Coxeter (1963) that in 2-D 
there are 11 homogeneous tessellations where the same set of r regular polygons meet 
at every tessellation vertex (figure 1). These are called the Archimedean tilings of the 
plane. However only 3 of them are regular in the sense that only one type of regular 
polygon is used to fill the space. They are the rectangular, hexagonal and triangular 

tessdlations. In contrast to 2-D there is only one regular tessellation - the rectangular 
one - in 3-D. Surprisingly, 4-D has again three regular tessellations, though all higher 
dimensions support only the rectangular tessellation as the regular one. Since regularity 
is a prime necessity for algebraic modelling, the digital geometry of n-D space is 
always restricted to the rectangular partitioning of space. Formally thus, regular 
rectangular tesscllations of the continuous n-dimensional space produced by n mutually 
orthogonal sets of equispaced parallel hypcrplanes will be taken as the model here, 
which can be algebraically represented by Z n, where Z is the set of integers. So every 
cell or digital point x = ( x t , x 2  . . . . .  x,)~Z" is an n-tuple of integers. In 2-D we call 
them pixels, in 3-D voxels, in 4-D rexels and in n-D hypervoxels. 

As a special case in 2-D, however, digital geometry of triangular and hexagonal grids 
has also been investigated (e.g. in Bell et al 1989). From the point of view of image 
analysis, hexagonal digitization in particular has several advantages over the con- 
ventional square one. For example, all six neighbours being of the same type, the 
4-/8- dichotomy of the square grid is absent here and it also offers a better radial 
resolution and symmetry. Moreover, it supports simpler parallel architectures and is 
a better approximation of the human vision grid (Borgefors 1989b, 1992). Yet the 
hexagonal digitization has not become popular because of the difficulties in hexagonal 
image acquisition and display and due to the satisfactory performance of the square 
grid in high resolutions. 
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Figure 1. Archimedean (homogeneous) tilings of the plane. Every tiling is 
represented by a sequence T =  (al, a2 . . . . .  a,) which specifies the number of sides 
of the regular polygons that meet at every tessellation vertex. (a) Regular tilings, 
(b) irregular tilings. 

Melter (1986) has developed a set of useful embeddings for all 11 tessellations of 

the plane in the rectangular grid which can help in constructing special geometries 

over them. Us!rig Melter's embedding maps any of the homogeneous tessellations 
can be explored on Z 2. However no such attempt has yet been reported. 

2.2 Definitions 

In this section we define and explain the most commonly used concepts in DDG. 

Integer funcffons: Two integer functions are often used to express distances in DG. 

They are the floor and ceiling functions defined below. 

Vx~R, floor of x = I lx  J[ and ceiling of x = I[x][ satisfy 

Ix J, Ix]  EZ and x - 1 < LxJ ~< x ~ Ix]  < x + 1 

For  example, [3.2J = 3, L4J = 4, L -  5.3J = - 6, [2"9] = 3, [7]  = 7 and [ -  2.3] = - 2. 

Clearly [ -  x]  = - L x J  and L - x J  = - I x ] .  We also use round (x)=  Lx + 0-SJ and 

x rood y = x - y* [x/yJ. 

Neighbourhood: The neighbourhood N(x) of a point x is the set of points defined 

to be neighbours of x. Typically a digital neighbourhood is characterized by a set of 
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Figure 2. Few common neighbourhoods in 2-D. Every '#' denotes a valid 
neighbour of the central point '.'. (a) 4-neighbourhood, (b) 8-neighbourhood, 
(e) knight's-neighbourhood. 

difference vectors {e 1, e 2 ..... e k } c Z" such that Yx e Z", y ~ Z" is a neighbour of x(yeN(x)) 
iff (x - y)e {e 1, e 2 . . . . .  e k }. With every neighbour e i we also associate a cost 6(ei). Most  
often this cost is taken to be finity. For example, Cityblock or 4-neighbours, 
Chessboard or 8-neighbours, and Knight's neighbours are defined by the set of 
difference vectors {(+ 1,0), (0, __+ 1)}, k = 4 ,  {(__+ 1,0), (0, + 1), (__+ 1, + 1)}, k = 8  and 
{(___ 1, + 2), (___ 2, + 1)}, k = 8 respectively (figure 2). Common neighbourhoods in 
3-D (that is, 6-, 18- and 26-) are shown in figure 3. 

Traditionally neighbourhood has often been characterized in DDG by the following 
five factors: 

(i) Prox imi ty :  Any two neighbours are proximal sharing a common hyperplane. 
That is, Vi, 1 ~< i <~ k, Vj, 1 ~<j <~ n, [e~l ~< 1. 

(ii) Separat ing  dimension: The dimension d of the separating hyperplan¢ is bounded 
by a constant r such that 0 ~< r ~< d <~ n - 1. For example, 4-neighbours have r = 1 
and consequently only line separation is allowed. 8-neighbours, on the other 
hand, have r = 0 and both point- and line-separations are allowed. That is, Vi, 
l <<. i <<. k, n - d ~1<<. ~ <~ i = . lej l  ~< n - r. 

(iii) Separat ing cost: The cost between neighbours is unity. That is, Vi, 1 ~< i ~< k, 
~(e  i) = l .  

(A) (B) (c) 

Figure 3. Few common neighbourhoods in 3-D. (a) 6-neighbourhood, (b) 18- 
neighbourhood, (c) 26-neighbourhood. 
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(iv) Isotropy. and symmetry: The neighbourhood is isotropic in all (discrete) 
directions. That  is, ¥i, 1 ~< i ~< k, 3j, 1 ~<j ~< k, such that  e i is a permutat ion and/or  

reflection of e ~. 
(v) Uniformity: The neighbourhood relation is identical at all points along a path 

and at all points of  the space. This follows directly from the difference vector 
definition of neighbourhoods.  

Though most  distances in DDG follow the above characterization, there are many  
exceptions where one or more of the above properties are violated. 

Path: Given a ne ighbourhood  N(-), a digital path r~(u,v) connecting two points u 
and v is defined to be a sequence of points where all pairs of consecutive points 
are neighbours. Tha t  is, n ( u , v ) - - - { u = x 0 , x l , x  2 . . . . .  X u = V  } where xieN(xi+l) ,  
O<~i<M. 

The length of the path  In(u,v)l = Zo~<i<u6(Xi+ 1 -x~).  For  unit cost this is the 
number  of points on the pa th  (excluding either u or  v). Of  all paths that  connect u 
to v the one having the smallest length is called the minimal path rt*(u, v). 

Example 1: Let n = 2, N(.) = {(+ 1,0), (0, ___ 1), ( +  1, _ 1)} - the 8-neighbourhood, 
u = (0, 0) and v = (9, 5). So n(u, v) = { (0, 0), C0,1), (1, 2), (2,1), (3,1), (4, 2), (4, 3), (5, 3), (6, 3), 
(6, 2), (7,1), (8, 2), (9, 3), (9, 4), (9, 5)} is a pa th  from u to v. Clearly In(n, v)l = 14 (figure 4). 
However this path  is not  minimal,  because a shorter path  can be obtained as 
n*(u ,v)=  {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,5), (7,5), (8,5), (9,5)} of length 
In*(u,v)l = 9 .  Another  minimal  patti (of same length, of course) is n*(u ,v)=  {(0,0), 
(1,0), (2,0), (3,0), (4,0), (5, 1), (6, 2), (7, 3), (8, 4), (9,5)}. Also, In*(u,v)l = 9. 

Example2: Letn=3,N(.)={(O,O, ++_l),(O, + l,O),(++.l,O,O),(O, + l, + l),(-t-l,O,-t-1), 

( +  1, _ 1, 0) } - the 18-neighbourhood, u = (2, - 7, 5) and v = ( -  8, - 4, 13). Then a 

5 * * * 

4 * 

3 * 

2 9 * 

i 9 * 9 9 

o #9" # # # 

9 

9 

# 

$ 9 # 

# 9  

# 9 

• #$, 

# $ 

$ 

$ 

0 1 2 3 4 5 6 7 8 9 

Figure 4. Path and minimal path for 8-neighbourhood in example 1. A non- 
minimal path n is marked with '$'. Minimal paths nl and rt 2 are marked with ' , '  
and '#' respectively. Note that Ircl = 14 and I~ll= I~l = 9. 
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.y_ =( -8  ,-4,13) 

J { -7 , -%13)  

-7 , -$ ,12  ) 

~ - 6 , 1 2 |  

( -5 , -6 ,11 | 

4- 

| - 4 , - 7 , 11  | 

( - 3 , - - 7 ,10 l  

I -2  , - 7 , 9 |  

~ ; 1  (-1 , - 7 ,  i |  

[rr*(_u ; v  ;2:3)1 =11 

( 0 , - 1 , ? !  

~ 1, 6 ) 

(2 , -7 ,$ )  =U 

Figure 5. A minimal 18-path in 3-D from (2, - 7, 5) to ( -  8, - 4,13) in example 2. 

minimal path  n*(u, v) = {(2, - 7, 5), (1, - 7, 6), (0, - 7, 7), ( - 1, - 7, 8), ( -  2, - 7, 9), 
( - 3 , -  7, 10), ( - 4 , -  7,11), ( - 5 , -  6, 11), ( - 6 , -  6, 12), ( - 7 , -  5, 12), ( - 7 , -  4, 13), 
( -  8, - 4, 13)}. The path, as traced above,  is shown in figure 5. 

Distance function: The distance d(u, v) between u, v (w.r.t. to  a ne ighbourhood  N(-)) 
is the length of  the shortest path connecting them. That  is d(u, v) = In* (u, v)J. It is thus 
a mapping from Z" x Z" to P, the set of  non-negative integers. According to the 
above ne ighbourhood definitions we have, ¥u, v ~ Z  ~, d(u, v) = d(0, u - v) = d(0, lu - v[), 
where 0 is the origin. So we write d(u, v) = d(x), where x = lu - vl, that is, Vi, x~ = Jut - vii. 
Clearly in the 2-D example above,  d(u, v) = 9 and in the 3-D, d(u, v) = 11. 

Metric: A distance function d is said to be a metric if it is: 

(i) total: d(u,v) is defined and finite, 
(note that  this is needed because ¥u, v ~ Z  ~, ;z(u, v) may  not  exist, and hence d(u, v) 
may  not  be defined. See, e.g., super-knight 's  distance in § 6.2b); 

(ii) positive: d(u, v) t> 0; 
(iii) definite: d(u, v) = 0, iff u = v; 
(iv) symmetric: d(u, v) = d(v, u), and; 
(v) triangular: d(u,v) + d(v,z)/> d(u,z); for all u,v, z e Z , .  

Euclidean distance: The Euclidean distance E,  between n and v~Z" is defined as 
E,(u, v) = (2:1 <i<~(ui - vi)2) 1/2. We also use En(x) = En(u, v) for x = In - v[. 

Distance transform (DT): (Borgefors 1992) A distance t ransformation converts a 
binary image, consisting of  two types of  pixels, namely feature (or object  - marked  
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Figure 6. Distance transform of a binary image using knight's distance (§ 6.2b). 
(a) The binary image with every feature pixel marked as '1' and every background 
pixel marked as '0', (b) knight's DT of the image in (a). 

as 1) and non-feature (or background- marked as 0), into a distance image where 
each pixel has a value measuring its distance to the closest non-feature pixels. In 
figure 6, we show a binary image and its DT. A DT computed with the Euclidean 
distance is called an Euclidean DT or EOr. 

3. The background 

Since its conception in the later half of the 60's, DDG has gone through three major 
phases. In the first phase, spanning the period 1966-71, the preliminary concepts of 
the field were formalized. Subsequently, there was little development in DDG over the 
next decade (1972-82). Then in the last 10 years many fundamental contributions to 
DDG have been made. While all readers may not agree with our temporal boundaries 
there is no denying the fact that there have been three perceptible phases in DDG. 

Recent advances in DDG have been surveyed by Kong & Rosenfeld (1989), by 
Melter (1991), and by Borgefors (1992). The first survey (Kong & Rosenfeld 1989) 
deals primarily with the topology of the 2-D digital space, and comments on some 
digital distances in this connection. On the other hand, Melter (1991) considers 
path-generated-digital-metrics and chamfer distances in two dimensions. He also 
provides a rich collection of references. Since distance transforms find extensive use 
in image processing, the algorithms to compute them are of prime importance to 
DDG. Borgefors (1992) has provided a typically exhaustive review of them without 
dealing with the mathematical theory of digital distances in depth. Properties of 
lattice point structures have been discussed in an excellent book by Erdos et al (1989) 
and several unsolved problems concerning them have earlier been compiled in 
Hammer (1977). 

In contrast to these references, the present one deals primarily with the development 
of digital distance geometry (DDG) with specific emphasis on the general frameworks 
for n-dimensional DDG and other related issues. In order to restrict the size of the 
paper, digital distance transforms and a few other topics are only briefly covered here. 
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4. The formative period, (1966-71): 

Formal studies on 2-dimensional digital distance functions, distance computation 
algorithms and corresponding medial axis transforms were pioneered by Rosenfeld 
and Pfaltz in the latter half of the 1960's (Rosenfeld & Pfaltz 1966, 1968; Pfaltz & 
Rosenfeld I967). While Rosenfeld (I970) formalized the notions of 2-D digital 
connectivity, Rosenfeld & Pfaltz (1968) introduced the properties of the now well-known 
Cityblock (Manhattan, Taxicab, Absolute or d4), Chessboard (King's, Maximum or 
ds) and Octagonal (doer) distances and studied their various properties including the 
closed functional forms given below. 

Vu, v~Z 2 and x = lu - vl, 
d,(., v) = x l  + x z ,  

ds(u,v) = max(x~,x2) (see figure 4 for an example of d8), 

doer(u, v) = max(x 1 , x 2, I-2(x 1 + x2)/3]). 

The Cityblock distance uses 4- (or von-Neumann (Hayes 1984)) neighbours, Chess- 
board uses 8- (or Moore (Hayes 1984)) neighbours (see figure 2), and the Octagonal 
distance uses 4- and 8- alternately, along a path starting always with 4-. 

A geometric duality between the absolute and the maximum metrics in the real 
plane was established by Rhodes (1970) as an extension of a self-dual property of 
the Euclidean metric. 

Iterative propagation algorithms were devised in Rosenfeld & Pfaltz (1966, 1968) 
to efficiently compute digital distances defined above over a subset of digital pictures. 
The target applications of such distance transforms are the detection of clusters and 
regularities in a picture and the dissection of a region into "pieces". 

In terms of the distance functions, a "skeleton" subset of a digital set is one which 
minimally describes the digital set. The use of skeletal subsets in computer representation 
of pictures was studied in Pfaltz & Rosenfeld (1967). However, the underlying distance 
being substantially non-Euclidean, the skeletons lacked a number of desirable 
properties. For instance, the skeletons were not invariant under rotation. To improve 
the (visual) quality of these skeletons, Montanari (1968) suggested that the problem 
of obtaining a discrete skeleton be reduced to the determination of optimal paths 
through a reticular network or graph (and hence, to an optimal policy problem). By 
increasing the complexity of the network, a "quasi-Euclidean': distance is obtained 
that approximates the Euclidean distance as closely as desired and thus leads to 
well-formed skeletons. 

The generalization to higher dimensions was first attempted by Mylopoulos & 
Pavlidis (1971), where meaningful counterparts of topological notions in quantized 
spaces were introduced. Specialized Abelian groups were used as a model for such 
spaces and the notions of dimension, connectivity and order of connectivity were 
defined formally. 

5. The period of slow progress, (1972-82): 

There was little development in the distance computations on quantized spaces during 
the 70's, though the first-ever treatise on digital geometry (Rosenfeld 1979, pp. 7-39; 
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Rosenfeld & Kak 1982, pp. 209-15) was published by Rosenfeld. The references cited 
in Rosenfeld (1979) provide a good review of the related topics. Specific issues of 
geodesics or minimal paths of digital distances were highlighted in Rosenfeld (1978) 
with notions of path uniqueness. 

An interesting study in Taxicab (Cityblock) geometry, which is closely related to 
the digital geometry, was initiated during the same period (Krause 1975, 1986). The 
Taxicab geometry, as the name suggests, has wide applications in urban geography 
for pathplanning in a city. Its Taxicab metric also finds interesting applications in 
ecology (Schatschneider 1984) for its use in the measurement of "niche overlap" and 
in the notion of ecological distance between species. Krause (1975, 1986) presented 
a detailed treatment of the Taxicab geometry while elaborating various properties 
of the equidistant loci of Cityblock and Chessboard distances in depth. For example, 
see figure 7 for Taxicab circle, ellipse, hyperbola and parabola. 

Harary and coworkers (Harary & Melter 1976; Harary et al 1982) studied the 
metric dimensions of a graph and analysed their boolean distances from a graph- 
theoretic point of view. Though not related directly, these papers had substantial 
influence on further work, particularly in the graph modelling of DDG. 

In an attempt to exploit the symmetry of the hexagonal grid, Luczak & Rosenfeld 
(1976) looked into the distance properties of such tessellations and formulated the 
DT algorithms for images represented on them. 

In a different direction, Toriwaki and others (Toriwaki et al 1979; Yokoi et al 1981) 
introduced the distance transformation of a binary line pattern (DTLP) for the 
extraction of useful features to analyse and recognize given pictorial data. DTLP is 
a transformation of a binary line pattern by which the value at each feature pixel in 
an input pattern is changed into the distance measured along a line from that pixel 
to a suitably chosen edge point. A generalization of DTLP (GDTLP) was alSO discussed 
for gray-valued pictures (Toriwaki et al 1982). 

It was realized from the very beginning that the computation of the EDT of an 
image is not an easy task because the Euclidean metric is not amenable to the 
traditional chamfering used often for distance transforms. Yet the computation of an 
EDT has been extremely important due to the Euclidean structure of the natural 
scenes. So, in an attempt to bridge the gap, Danielsson (1980) defined the pseudo- 
Euclidean DT, where most of the pixels in the transformed image get distance values 
very close to the actual Euclidean distance. The skeletons recovered from such trans- 
formations are often close to the natural ones. 

6. The period of major activities, (1983-92): 

A lot of work has been carried out since the early 80's in formalising distances in 
discrete spaces. Substantial attention has also been focussed on various distance 
transforms, leading to approximate Euclidean skeletons, and on the algebraic charac- 
terization of quantized spaces. A well-organized study has also been carded out in 
the distance geometry of n-dimensional spaces. 

6.1 Graph models in DD6 

Graph-theoretic modelling of digital space has been a popular approach in the study 
of digital distances because a binary digital image can be conceived as a graph, where 
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every pixel represents a node and the adjacency is defined according to the neigh- 
bourhood. The cost associated with a neighbour serves as the weight of the corres- 
ponding arc. In their work on generalized classes of metrics in n-D space, Yamashita & 
Ibaraki (1986) have correctly identified this central philosophy of distance 
computation in the digital domain: "The distance between two points x and y is the 
length of the shortest path connecting x to y in an appropriate graph". 

In Hiibler et al {1982), a 2-dimensional binary image has been viewed as a graph 
of in-degree and out-degree less or equal to 4 and linear worst case time solutions 
for several path problems (existence, construction, minimal paths etc.) for such graphs 
(and hence for binary images) have been discussed. Similar approaches are found in 
Lipsky (1984) where an O(n log n) algorithm is devised to decide upon the occurrence 
of a Manhattan path of alternating horizontal and vertical segments between two 
given segments. The early works of Melter & Tomescu (1981 a, b) also dealt with similar 
ideas with special reference to the embeddability of graphs under invariant metric 
norms. Recently Rosenfeld & Wu (1989) have reviewed the graph-based notions of 
digital geometry. 

A new class of metrics, called path-generated-digital-metrics (PGDM) has been 
introduced for the digital plane by Melter & Tomescu (1983). These metrics actually 
originate as the minimal path-length between any two nodes of the implicit graph 
of the plane as defined by a set of elementary unit-length path segments. It has been 
proved in Melter & Tomescu (1983) that there are essentially five different metrics 
in this class, including the classical Cityblock and Chessboard metrics. Subsequently 
Das (1989b) derived closed form expressions for all five PGDM, explored their disks 
and deviations from the Euclidean norm and devised an algorithm to trace the 
minimal PGDM paths. Following the general program of distance geometry 
(Blumenthal 1953), and an earlier work (Harary & Melter 1976) on metric dimensions 
of graphs, Melter and others have also investigated the metric bases relating to the 
d4 and d a distances (Melter & Tomescu 1984a). They show that unlike the Euclidean 
distance for which the minimal metric bases for the digital plane are just the set of 
three non-collinear points, Cityblock and Chessboard distances do not define any 
finite metric basis for the digital plane. The sizes of minimal metric bases for upright 
digital rectangles are also derived in Melter & Tomescu (1984a), and it is shown that 
there exist rectangles having minimal metric bases of any size i> 3. These results, 
however, are purely theoretical in nature and no possible use for them has been 
mentioned. 

Another important graph-theoretic concept relating to d4 and d 8 distances in 2-D, 
is about the graphs they induce on the digital plane. Harary et ai (1984) characterized 
the possible metric subgraphs of these Manhattan and King's graphs. A study of the 
induced graphs of the path-generated metrics particularly with respect to the distance- 
theoretic properties such as metric bases appeared in Melter & Tomescu (1984b). 
Wire-routing in a VLSI layout being isothetic (wires are laid only in horizontal or 
vertical directions) in nature, characterization of metric subgraphs has applications 
in circuit extraction and related routing problems. 

6.2 Metrics in 2-D DDG 

Before moving to arbitrary dimensions let us explore a few rich classes of metrics in 
two dimensions. 
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6.2a Simple octagonal distances: The study of distances defined by nonuniform 
position dependent neighbourhoods was initiated by Rosenfeld & Pfaltz (1968) when 
they formulated the Octagonal distance in 2-D. With such a distance, the neighbour- 
hovel satisfies all properties except uniformity, and keeps on alternating between 4- 
and 8-types respectively on any path, starting always with a 4-neighbour. So Octagonal 
distance doe t c a n  be characterized by a neighbourhood sequence (N-sequence), B = { 1, 2} 
(where we mark a 4-neighbour as type 1, and an 8-neighbour as type 2 for uniformity 
considerations to be explained in n-D), which cyclically repeats along the path. 
Extending the above formulation, Das and others (Das et al 1987b; Das & Chatterji 
1990b) have proposed a generalized (Octagonal) distance function d(B) in 2-D, where 
B = {b(1), b(2), . . . .  b(p): b(i)e { 1, 2} } gives the cyclic sequence of neighbourhood. They 
derive the following dosed functional form for d(B)'s in 2-D. 

For u, v e Z2, d(u, v; B) = d(x; B) = max (d, (x; B), d2 (x; B)), where x = 
l u -  vt, f(i)= E, <~j<~ ib(j), g(i)= f ( p ) -  f ( i -  1 ) -  1, p = Inl, 
d, (x; B) = max(x1, x2), and 
dz(x; B) = E 1 ~<j~< ,[((x 1 + x2) + g(j ) )/f (p) ]. 

Example 3: Le t  B = { 1,2}. So, p = 2 , f ( 0 )  = 0, f ( 1 )  = 1, f ( 2 )  = 3 a n d  0(1) = 2, 0(2) = 1. 

T h u s  d,  (x) = m a x ( x l , x 2 ) a n d  d2(x ) = [ (x  1 + x 2 + 2)/3J + [ (x l  + xz + 1)/3J = [2 (x t  + 

x~)13]. 

Example 4: Let B = { 1, 2}, u = (0, 0) and v = (9, 5). rt(u, v; B) = { (0, 0), (0, 1), (1, 2), (1, 3), 
(2,4), (3,4), (4, 3), (4, 2), (5, 1), (6, 1), (7, 1), (7,2), (8, 3), (9, 3), (9,4), (9,5)} is a path from 
u to v determined by { 1, 2}. Clearly, In(u, v; B)I = 15. However, it can be verified from 
figure 8 .that this is not a minimal path, since a minimal path here has length only 
= 10. A typical minimal path is n*(u,v; B) -- {(0, 0), (1,0), (2, 1), (2,2), (3, 3), (4, 3), (5, 4), 
(6, 4), (7, 5), (8, 5), (9, 5)}. Note that d(u, v)= Ire* (u, v)l = max(9, 5, [2-14/3])= 10. 
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Figure 8. Minimal and non-minimal octagonal paths in example 4. n is marked 
with '$' and n* with '#'. Note that Inl = 15 and In'[ = 10. 
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It is interesting to note that all B's do not define d(B)'s that are triangular. For 
example in 2-D, if B = {2, 1 }, then (0, 0), (1, 1) and (2, 2) would violate the triangularity 
old(B) since d((0, 0), (1, 1)) + d((1, 1), (2, 2)) = 1 + 1 < 3 = d((0, 0), (2, 2)). Das and others 
have proved (Das et al 1987b; Das & Chatterji 1990b) that 

d(B) is a metric iff B is well-behaved, that is, 

f(O + f(J) <~ f ( i  +j), if i + j  ~< p; 
<~ f(p)+ f( i  + j - p ) ,  if i +j>~ p. 

H(B;r), the disk of radius r and centre = 0, is shown to be a digital octagon with 
corners at {(+r,+c(r)), (+c(r),+r)} where c(r )=[r /pJ( f (p ) -p)+f ( r  mod 
p ) -  (rmodp). The asymptotic size of c(r) reflects an important property of the 
N-sequence, which is related to the effective neighbourhood parameter mB defined as 
m B = Lim,_.®c(r)/r + 1. It is shown (Das & Chatterji 1990b) that m B = f(p)/p. 

Actually, over a large distance, any B effectively defines a neighbourhood orientation 
m n which lies between the two extremes of pure horizontal/vertical and pure diagonal 
moves. The success of the d(B)'s in approximating the Euclidean distance E2 is 
embodied in this effective neighbourhood which can be suitably controlled to derive 
simple yet powerful metrics. 

Out of the class of generalized Octagonal metrics in 2-D which have the same 
effective neighbourhood value m 8 = f(p)/p (and hence identical asymptotic behaviour) 
there exists exactly one metric which has a strikingly simple functional form (involving 
only one ceiling function). Such distances for which the sum turns out to be  a single 
ceiling function are called Simple Octagonal distances. 

It has been proved (Das 1992a) that d(x; B) is simple, iff b(j)  = [j.f(p)/pJ - / ( j  - 1). 
f(p)/pJ, 1 <~j <~ p, with f(p) and p relatively prime. A simple d(B) has the functional 
form d(x;B) = max(Ixi I, Ix2l, I(Ixil +lx21)/m"]), where 1 ~< m 6 2, m = f(p)/p. 

Example 5: Let p = 5 and f ( p ) =  7. So, b(1)= L7/5J - 0  = 1, b(2)= L14/SJ - L7/SJ = 
2 -  1 = 1, b(3)= [21/5J - L14/5J = 4 - 2  =2 ,  b(4)= 1, b(5)=2,  and B =  {1, 1,2, 1,2} 
is simple with d(x; B) = max(Ix1 I, Ix2 I, i-5(Ixl t + Ix2 I)/7]). 

Using a distance model in the real plane Das (1992a) carries out a detailed analysis 
to show that both the average relative error and average absolute (normative) error 
between simple d(B)'s and E2 minimizes for mB= 1"4 = 7/5. These findings have also 
been supported by experiments.. Thus no octagonal d(B) in 2-D can perform better 
than B = {1, 1,2, 1,2} (see the example above). However, {1, 1,2}, {1,2} or {2} can be 
used to trade off accuracy for computation. 

It is a common notion in 2-D that the Octagonal distance is always greater than 
the Chessboard distance but smaller than the Cityblock distance. Extending this for 
further theoretical explorations, Das (1990b) defines a partial ordering between 
N-sequences in 2-D where two d(B)'s (and hence B's) are ordered, iff d(x; B1 ) >~ d(x; B2), 
Yx~Z 2 or d(x;B~)<~d(x;B2), Yx~Z 2. It has been shown that under this ordering 
generalized Octagonal distances form a distributive lattice. 

6.2b Knight's distance in digital geometry: In the game of chess, the move of a 
knight has been particularly fascinating. This had earlier led to the  well-known 
problem of knight's tour over a chessboard. Yamashita & Ibaraki (1986) pointed out 
that the knight's moves should define a highly interesting and peculiar distance 
function in two-dimensional digital geometry. The functional form and properties of 
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this distance function, called the knight's distance dknight, have been studied by Das & 
Chatterji  (1988b). 

l f a  knight  is placed in the cell x e Z  2, then in the next step it can move  to any of  the 

eight possible cells y where (x - y)~N(2, 1) = {(___ 1, + 2), ( +  2, ___ 1)} (see figure 2). Thus 

it is a non-proximal  but  isotropic and uniform ne ighbourhood  definition involving 

unity costs. The  functional form of  the knight 's distance dknight(li, V) ---- dknlCat(X ) is given 
below 

dknlgnt(X) = max(l-Ix1/2"], I-(xl + X2)/3"]) -t- ((X 1 + X2) 

--max(i'xl/2"l, I'(xl + x2)/Yl)) rood2, 

if x ~(1,0) ,  (2,2), 

= 3 ,  if x = (1,0), 

= 4, if x = (2, 2). 

The  authors  have also studied the disks of dk,isht which are digital octagons with 
peripheral  aberrat ions (see figure 9 for knight 's circle and disk). In addition, they 

provide minimal path-tracing and DT algori thms for dk,ight tOO. 

In an at tempt to extend dknisht , Das & Mukherjee (1990) have defined a super-knight's 
move via a ne ighbourhood  N (p, q) = {(_+ p, -!-_ q), (+_ q, +_ p) }, p >>. q >i O. There  are p, q 

values for  which the corresponding N(p, q) distance function is only partial in the 

sense that  there exist u, v e Z  2 such that  u is not  reachable from v using N(p, q) (recall 

the proper ty  (i) that  a metric has to be total). Fo r  example, N(1, 1), a bishop's moves 

taken in steps of unity, cannot  define a metric (a bishop in a black cell can never 

move to a white eeH or  vice versa) whereas N(1, 0), which is the Citybloek neighbourhood 

or  the rook's moves in unity step, defines a proper  metric. Das  & Mukherjee  (1990) 

have characterized a class of  ne ighbourhoods  N(p,q), p >1 q >1 O, to be well-behaved 
if (1) p =  1, q = 0 ,  or  (2) p + q  is odd,  q>~ 1 and p,q are mutual ly  prime and it is 

proved that  a super-knight's distance is a metric, iff N(p, q) is well-behaved. 

Much remains to be done in such non-isotropic metrics. For  example, the formulation 
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of a path-tracing algorithm using N(p, q)'s, the study of their disks, and the possible 
use of these in Euclidean approximation are some of the problems. 

6.3 19DG of arbitrary dimensions 

The study of the distance functions in digitized 3-dimensional space has been 
pioneered by Okabe et al (1983). Though absolute and maximum metrics in 3-D as 
grid and lattice distances were introduced by Rosenfeld (1981) earlier, no attempt 
was made to study the general class of paths, distances and related properties in 3-D. 
In particular, even the functional form of the dis distance was unknown (Srihari 
1981, p. 402) though the fact of its existence prevailed. Since three fundamental types 
of neighbourhoods are possible in 3-D, namely the 6-, 18- and 26-neighbourhoods 
(see figure 3), the following three metrics arise. 

Vu, v~Z 3 and x = lu - vl, 

dr(u,v) = xl + x2 + x3, (grid distance) 

dls(u,v) = max(x l , x2 ,x3 ,  [(xl + x2 + x3)/2]) 

d26(u, v) = max(x1, x2, x3) (lattice distance). 

The results of Okabe et al (1983) are actually 3-D generalizations of the 2-D 
octagonal distance (Rosenfeld & Pfaltz 1968). Using a shortest path algorithm to 
trace a minimal path between two voxels, Okabe et al (1983) have derived an explicit 
function of the coordinates of the terminal voxels which computes the length of the 
traced minimal path. Different paths were defined by giving different adjacency 
relations (or neighbourhood sequences as in generalized octagonal distances in 2-D). 
Seven different distance functions (including the grid, lattice and d18 distances) were 
derived as examples. 

Okabe et al (1983) also conjectured an (imperfect) condition on the neighbourhood 
sequences for the triangularity of such distances which subsequently aroused interest 
in the study of distances in n-dimensions in general. The conjecture was settled in 
1984 and a necessary and sufficient condition for the metricity of similarly defined 
distances in n-D was obtained by Yamashita & Honda (1984). In spite of the fact 
that the condition presented by them is not computationally attractive- actually a 
better condition is possible- it provided the necessary impetus to the study of 
distances in n-D digital geometry. As a result, an investigation of the general properties 
of n-D distance functions of digitized spaces has been published (Yamashita & Ibaraki 
1986). These authors assume that a distance between two points is defined as the 
length of the shortest path connecting them" in the underlying graph which is defined 
by a given cyclic neighbourhood sequence. They compute the distance between any 
two n-D digital points, given the neighbourhood structure of the path, by solving an 
equivalent integer programming problem. A necessary and sufficient condition is 
derived for a neighbourhood sequence to define a distance function satisfying the 
metric conditions. The important problem of estimating how tight such distances can 
approximate thd Euclidean distance has also been addressed by Yamashita & Ibaraki 
(1986) from the point of view of relative and absolute errors and the importance of 
this work lies in the fact that on the one hand many of the previously known results 
in lower dimensions can be obtained as special cases, whereas on the other hand it 
provides a very general formulation for wide classes of distances in n-dimensions. 
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Moreover this is the first work in DDG which extensively exploits the graph model 
in an efficient way to derive many important results in DDG. The mathematical rigour 
of this paper, however, lies beyond the scope of this survey. 

In a series of publications following the work of Yamashita and Ibaraki, the present 
authors studied various digital metrics and their properties in n-D. We summarize 
this work in the following sections. 

6.3a m-Neighbour distance: (Das et al 1987a) The simplest kind of neighbourhood 
definition in n-D satisfies all the desired pFoperties of the neighbourhood relation 
given in § 2.2. In particular, u, v~Z n are m-neighbours, 1 ~< m ~< n, iff 0 ~< [us - vii ~< 1, 
1 ~< i ~< n, and E 1 ~< ~<, l u~ - v~ I ~< m. Also ~ (u - v) = 1. This neighbourhood parameter 
m relates to the dimensional bound of the separating hyperplane by m = n - r. Thus 
in 2-D, 4- and 8-neighbours have m = 1 and 2 respectively. In 3-D, 6-, 18- and 26- 
neighbours have m = 1, 2 and 3 respectively. Following the characterization of m- 
neighbours Das et al (1987a) have introduced the m-neiohbour distance d~m in n-D as 
a generalization of 2-D and 3-D metrics, and have proved that 

d:(u, v) = In*(u, v; m:n)l = d:(x) = max (maxixi, [X,xdm]), 

where n*(u, v; re:n) is a minimal m-path corresponding to d~,. In traditional notation 
this means that 

d~ = d, ,  d~ = ds, d~ = dr, d~ = dla, and d] = d26. 

Also note the similarity between d 2 me{l,2} and simple octagonal distance with =, 
l~<m~<2. 

Example 6: Let n = 4, m = 3, u = (2, 1, 5, 3) and v = (7, 5, 9, 0). Thus a n* --- {(2, 1, 5, 3), 
(3,2,6,3), (4,3,7,3), (5,3,8,2), (6,4,8,1), (6,5,9,0), (7,5,9,0)} and In*l=6. Also 
d~(n, v) = max(12-71, 11-51, 15-91, 13-01, [(5 + 4 + 4 + 3)/3-1) = max(5, [16/3]) = 6. 

d~, truly generalizes the results of 2- and 3-D, is a metric in nature and decreases 
monotonically with increasing m. The minimal m-paths n*(u, v; re:n) corresponding 
to d~, are non-unique. Hence Das et al (1987a) present an algorithm to trace any 
one (or all) of them. 

During the same time, Klette (1985) also discovered the m-neighbour metric while 
studying the algebraic properties of the n-D grid point space. He however did not 
analyse the properties of this metric in depth. 

6.3b t-cost distance: (Das et al 1992) Das and Chatterji have also introduced the 
cost parameter in n-D in an uniform way (after the need for doing so was established 
by Yamashita & Ibaraki 1986) and defined a new class of metrics D~' called t-cost 

distances (Das et al 1992). For this work they fixed the separating dimensional bound 
at r = 0, i.e., all points lying in the unit hypercube around x are neighbours of x, but 
changed the unity cost between neighbours. The elementary cost between two 
neighbours u and v is defined in Das et al (1992) as ~(u - v) = min(t, ~ilui-  vii) where 
t is an integer and 1 ~< t ~< n. They prove that t-cost distance between u and v is 
given by 

D~(u, v) = Y~I ~ i~< , f i ( n  - -  v) 

where fi(u) is the ith largest component of the vector [u[. Interestingly D~ = d: and 
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( - 7 , - 6  ~13) 

( - 8 ,  -~ ,  13 ) ( -6  , -  4,13 ) 

(- 5,- 4,12 ) 

~ 1- I,,-I,,111 

l-3,- ~,10 ) 

~;~ (-2,-I., 9 ) 

/ , / +  (~ {-1 , - 4 ,  e J 

- - -  ~ * (~)( (o,-s,?)  

I n ( t . J i ~  213 ) 1 -  lS (2,-7D5) 

Figure 10. A minimal t-cost path in 3-D from (2,-7,5)  to ( - 8 , - 4 , 1 3 )  with 
t = 2 in example 7. The costs between adjacent points on the path have been 
encircled in the figure. We have I n * l = 8 x 2 + 2 x  1=18. Also D,3((2,-7,5), 
( -  8, - 4, 13)) = D,3((10, 3, 8)) = max(10, 3, 8) + max(min(10, 3), min(3, 8), min(8, 10)) 
= 1 0 + 8 = 1 8 .  

n m  n D , -  d I . So D~ is a new metric in 3-D given as: 

D32(u, v) = D2a(x) = max(x1, x2, x3) + max(min(xl,  x2), rain(x2, x3), 

min(x3, xl)). 

Example 7: Let n=3,  t=2,  u = ( 2 , - - 7 , 5 )  and v = ( - 8 , - 4 , 1 3 ) .  So lt*(u,v)= 
{(2, - 7,5),(1, - 6,6),(0, - 5,7), ( -  1, - 4 , 8 ) , ( - 2 ,  - 4 , 9 ) , ( -  3, --4,  10 ) , ( -4 ,  - 4 ,  11), 
( -  5, - 4 ,  12), ( -  6, - 4, 13), ( -  7, - 4, 13), ( -  8, - 4, 13)}. The path, as traced above, 
is shown in figure 10. 

D~ thus can be thought of as a generalization in n-D from a different perspective. 
D~ is also a metric and increases with increasing t. Minimal t-paths, like minimal 
paths of other digital metrics, are also non-unique and can be computed by an 
algorithm as in Das et al (1992). 

Finally Das and Chatterji (Das et al 199i) combine the m-neighbour and t-cost 
definitions to introduce a metric with non-unity cost and m-neighbourhood. They 
call it the t-Cost-m-Neighbour (tCmN) distance, d(t, re:n). It generalizes all the properties 
of d~, and D~ given above, since it satisfies d(1, re:n)=-d~ and d(t, n:n)-  D~. There are 
(n 2 - n + 2)/2 tCmN metrics in n-D and the first unknown one d(2, 3:4) occurs in 4-D. 

6.3c Hyperspheres: The introduction of the m-neighbour distance has been closely 
followed by the study of its hyperspheres. Though digital circles and spheres had been 
analysed earlier in 2- and 3-D, Das & Chatterji (1990a) made the first attempt in the 
exploration of hyperspheres in n-D. The hypersphere of d~, of radius r centred at the 
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origin is defined as H(m, n; r )=  {xld~(x)~< r}. Das & Chatterji (1990a) have shown 
that H(m, n; r) is a digital polytope (hyper-cuboctahedron) (Coxeter 1963) with comers 
at ~b((r, r .... r, 0, 0 ..... 0)) and bounding hyper-surfaces Ixzl--r and Y~i Ix~l/m = r, where 

[-.---m J L--n- mJ 

~b(x) represents the set of all reflections and permutations of x. Using a generating 
function formulation it has been proved in Das & Chatterji (1990a) that the volume 
of H(m,n; r)(i.e, the no. of digital points in it) is given by an nth degree polynomial 
in r with rational coefficients. For example a Cityblock circle has ]H(1,2;r)] = 
2r 2 + 2r + 1 whereas a Chessboard circle has [H(2, 2; r)l = 4r 2 + 4r + 1. An efficient 
matrix algorithm is also presented to compute these coefficients. 

6.3d Errors: The common integer approximations of the Euclidean norm En either 
violate triangularity (e.g. LE, J, /E ,+0.S/ ,  E~) or forbid an easily computable 
neighbourhood-path definition (e.g. [E,]). Hence there have been attempts to use 
the digital metrics to approximate E,. The issue of the approximation by d~, has been 
studied in depth in Das & Chatterji (1989). Minimizing the maxima of the relative 
error between d", and E,, these authors have formulated an algorithm to select the 
optimal m = mop t for use in n-D. Borgefors (1984) also carried out similar analyses, 
while minimizing the maxima of the absolute error between d~ and En normalized 
w.r.t, the domain (image) size. She conjectured that Limn_.~mop t = n 1/2. This has been 
confirmed by Das & Chatterji (1988a). The utility of D~ in approximation is explored 
in Das et al (1992) to derive a formula for the optimal cost parameter top t in n-D. 
Interestingly top t <~ 3 for any n. No attempt, however, has so far been made to optimize 
m and t jointly in tCmN to get a better approximation of E,. 

6.3e Distances defined by N-sequences: Okabe et al (1983) presented a 3-D extension 
of the generalized octagonal distances based on neighbourhoo d sequences (already 
described in §6"2a). (Interestingly the 3-D results were published in 1983, while 
the 2-D properties were explored only in 1990). Generalizing Okabe's formulation 
Das et al (1987b) have proposed a new generalized distance function d(B) in n-D, 
called Hyperoctaoonal distance, where B = {b(1), b(2) .... ,b(p): 1 ~< b(i)~ n} gives the 
cyclic sequence of neighbourhood. They derive a closed functional form for d(B)'s in 
n-D. As noted in 2-D, all N-sequences do not lead to metric d(B)'s. So, Das et al 

(1987b) formulated a "well-behaved" condition on a B to test for metricity. This 
condition is a generalization of the 2-D well-behavedness given earlier and was derived 
by correcting a conjecture in Okabe et al (1983). They also present an efficient 
algorithm (Das 1992b) to test the well-behaved property. On specialization following 
identities, too, were derived. 

(i) d ( { m } )  = d~, and 
(ii) d(u,v; {m,m + 1}) = d(x) = max(maxixi, [2.Y~xJ(2m + 1)]) (recollect do¢ t where 
n = 2 a n d  m = 1). 

Various N-sequence distances satisfying the metric properties, in 2- and 3-D, for 
sequence length upto 4 and 3, respectively, have been tabulated in table 2. 

6.4 Other metrics and related issues 

Besides the metric classes discussed above many other distance functions and distance 
related geometric properties have .been explored. We shall briefly touch upon them 
in this section. 
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Rosenfeld (1986) defines a function f e n  digital pictures to be continuous iff f takes  
neighbours to neighbours, i.e. if Q is a neighbour of P then either f(Q) = f(P) or f(Q) 

is a neighbour of f(P). Hc has proved various results for such functions including 
an almost-fixed-point theorem. Rosenfeld (1983b) has characterized the geometric 
transforms that have certain simple set theoretic properties. This includes distance 
and isovist transforms as special cases. Rosenfeld (1987) proves that for any finite 
connected digital set S and an integcr-valued metric on S, there exists a non-negative 
integer k such that, for any n points Pl,P2 . . . . .  Pn of S, there exists a point p in S 
whose average distance from pi's differs from k by at most 1/2. But unlike the Euclidean 
case, k is not necessarily unique. Hc has also defined (Rosenfeld 1985) two 
distance-derivcd measures to estimate the sizes of concavities in digital pictures. 

A digital triangle has vertices at three lattice points and its sides are the minimal 
paths between pairs of vertices. Rosenfeld (1983a) shows that many familiar theorems 
of Euclidean geometry break down for digital triangles. 

Melter (1987, 1988) also has contributed many important results in 2-D DDG. Using 
the condition R defined by Rosenfeld (1986) for continuous digital functions, he 
derives some characterizations for the Cityblock distance in n-D. In particular, he 
presents necessary and sufficient conditions for reflexive and symmetric relations to 
be associated with the planar Cityblock distance. Further characterizations of both 
Chessboard and Cityblock metrics have been derived by Rhodes (1990). Using d4, 
Melter (1985) has defined the cover of a digital image as the sum of all distances 
between pairs of image points. It is shown that certain images can be recognized 
from their cover values in the presence of additional geometric symmetry conditions. 
Melter & Rosenfeld (1989) present a new distance related connectcdness which is 
intermediate between 4- and 8-conncctedness. A set S of lattice points is said to be 
(r, s)-metrically independent, if the congruence of S and T under the r-metric implies 
congruence under the s-metric for every digital set T. Necessary and sufficient conditions 
are obtained (Melter & Wu 1990) for sets to be metrically independent w.r.t, d4, ds 
and E 2 metrics. 

DUe to the multiplicity of minimal paths for digital distances, there have been 
attempts to count the number of minimal paths between a given pair of points. Path 
counting has various applications too. For example, it has been used to cluster point 
sets (Tamura 1982). Rutovitz (1978) had earlier provided two definitions for digital 
convexity, namely super- and sub-convexity, based on the non-uniqueness of minimal 
paths. A digital set S is said to be super-(sub-)convex w.r.t, a digital metric d if for 
all pairs of points x, y of S, all (at least one) minimal d-paths connecting x to y lie(s) 
totally inside S. Piper & Granum (1987) have further elaborated on such notions of 
convexities while providing an interesting characterization for convex and non-convex 
domains. Das (1989a), on the other hand, has proposed a matrix algorithm for 
counting the number of minimal paths constrained by an image subset of the plane. 
Following the formulations of Rosenfcld & Pfaltz (1968), Das (1991) has also derived 
rccursive formulae for determining thc number of minimal Cityblock, Chessboard or 
Octagonal paths in the digital plane. 

We often need to transform the metric of a metric space into another which satisfies 
some desirable properties. For cxamplc, in the digital space, we want to use an integer 
equivalent [En] of the normal Euclidean distance. We know that while [En] preserves 
the metric properties, [EnJ does not. In general a function f :R + ~ R  +, where R + 
is the set of non-negative reals, is said to be a Metricity Preserving Transform (MPT) 
if for any metric space (S,d), D = f(d) is also a metric over S. Das (1989c) has 
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characterized the metricity preserving transforms deriving the following necessary as 
well as sufficient condition for metricity preservation. 

(i) f is total 

(ii) f ( x )  = 0, iff x = 0 and 
x + y  

(iii) f ( x )+f (y )>~ max f(z); Vx, y~R +. 
zffilar-y t 

Krause (1975, 1986) developed the Taxicab geometry of the real plane where all 
motions are restricted to horizontal and vertical directions only. Widmayer et al 

(1987) observed that there are several applications for this geometry to VSLI design 
(especially in routing). Subsequently the question of diagonal movements was also 
raised. Widmayer et al (1987) have tackled this by constructing a geometry on a 
predefined set of fixed orientations. Finall~ many distance problems have also been 
solved in this framework. Many existing results then follow as special cases. 

Other prominent contributions to DDG during this period include: Shonkwiler's 
(1989) algorithm for computing the Hausdorff distance in an image in linear time; 
the extensions of the classical Voronoi diagram for Lvmetrics in the real plane by 
Lee (1980) and for digital pictures proposed by Arcelli & Sanniti di Baja (1986); 
applications of digital Voronoi diagrams by Toriwaki & Yokoi (1988, pp. 207-28) 
to texture analysis; an algorithm by Culberson & Rudnicki (1989) for constructing 
trees in optimal time from tree-realizable distance matrices; Das & Chatterji's (1987) 
note on the limitations of Chamfer-computability for the Euclidean distance; an 
efficient algorithm for computing the Manhattan diameter by Du & Kleitman (1990); 
a generalized Chamfer algorithm for m-neighbour distance transformation (Nag et al 

1987); the discrete version (Das 1990a) of Rhodes' (1970) geometric duality theorem; 
application of DT techniques by Peachey & Osborne (I 990) for quantitative assessment 
of wall thickness and boundary perimeter in various kinds of wood cells; Rosenfeld 
and Kong's extensive studies on digital surfaces (Rosenfeld et al 1991) and the design 
of parallel algorithms by Stojmenovic & Kim (1987) for solving problems in digital 
geometry. 

Khalimsky (1987) and Kong & Roscoe (1985) also made significant contributions 
to digital geometry though they did not use the notion of a metric in their formulation. 
Bogomolny (1988) has employed various concepts of classical topology to introduce 
a variant of "digital geometry" which need not be defined on discrete point spaces 
as in our case. 

6.5 Distance transforms for image processing 

Distance transformations (DT) for images which are subsets of the digital space form 
a significant part of digital distance geometry. Recently Borgefors (1992) has presented 
an excellent review of the various DT techniques with a comprehensive and critical 
comparison of them. We shall merely mention the different algorithms for 
transformation, and refer the interested reader to Borgefors' article for an informed 
study. 

Most notable amongst the works on DT are the attempts to compute an EDT of 
a binary picture in 2-D. The first effecti'~e sequential propagation algorithm for an 
Euclidean map was given by Danielsson (1980). Based on a two-component descriptor 
(a distance label for each point), a map with negligible errors can be produced. 
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Yamada (1984) has proposed a parallel algorithm for a "complete" EDT without 
any error. As a consequence of this "completeness", skeletonization and reverse 
transformation become simple and systematic. The computational expense of this 
algorithm is very attractive too, since it takes only the time of an ordinary Chessboard 
DT to compute the Euclidean DT. Yamada also suggested the use of signed vectors 
in EDT computation, which has been subsequently adapted by Ye (1988). The 
advantage of this signed EDT is that each pixel of the transformed image stores a 
pointer to the feature pixel from which the DT has been computed besides the distance 
value. This will obviously be helpful in the computation of the Voronoi diagrams 
and convex hulls, in the detection of dominant points in digital curves etc. 
Forchhammer (1989) has also'computed the exact EDT by first using a weighted 
integer DT, and then performing a post-processing via table look-up. However his 
post-correction is possible only for distances upto an upper bound fixed by the mask 
size and the local distances. Mazille (1989) has outlined a method for getting very 
good approximations to the EDT by linear filtering of the image. Boult (1990), on the 
other hand, has elaborated dynamic digital distance maps in two dimensions. 
Ragnemalm's (1990) thesis also contains a wealth of practical knowledge about the 
EDT and some of its applications. 

Klein (1987) has compared the Euclidean skeletons constructed through an inter- 
mediate map of Yamada's (1984) distance with those formed from other methods. 
He also introduces a more general interpretation of the metric notion that ensures 
continuity. These Euclidean distance transforms and skeletons have been used by 
Klein & Kubler (1987) to give robust characterization of shape and to represent 
multi-component objects by close approximations to the continuous medial axis. 
These are also extended for deagglomeration of objects in mutual contact and for 
the structural interpretation of characteristic patterns in line drawings. Forsgren & 
Seideman (1990) have used a medial axis retrieved from discrete distance maps to 
define a distance measure for estimating similarity of objects. Medial axis from 
Euclidean distance computation has also been studied by Shih & Pu (1991). 

In an attempt to devise efficient iterative distance transforms for n-dimensional 
digital pictures, Borgefors (1984) has presented an interesting exposition of at least 
four different families of non-Euclidean distance transforms. These include the 
m-neighbour (d~) DT, the hyperoctagonal (d(B)) DT and two other chamfer distance 
transforms. The Euclidean distance is compared with the DT using the upper limit 
of the difference between the Euclidean and the computed distances. She has also 
obtained optimal local chamfering distances (steps) to design a suitable approximate 
Euclidean DT (Borgefors 1983, 1986b). A generalization of Danielsson's (1980) DT in 
higher dimensions has been carried out under the name of D-Euclidean DT. Though 
the error analyses of this paper are restricted only to four dimensions, it clearly sets 
a formal framework for the future work in distance transforms in arbitrary dimensions. 
In a later publication, Borgefors (1986a) developed the theory of optimal chamfer 
distance transforms in 2-D using local neighbourhood sizes upto 7 x 7 pixels. The 
idea of best integer approximations of optimal real-valued distance transforms has 
been elaborated. Modifications to these chamfer distance transforms for getting good 
approximations to the EDT using (almost) integer arithmetic have been suggested by 
Vossepoel (1988) and Beckers & Smeulders (1989). Borgefors (1991) further obtained 
optimum rescaling factors for various integer distance transforms as functions of 
integer local distances in 3 x 3 and 5 x 5 neighbourhoods. This generalizes her 
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previous solutions (Borgefors 1986a) for "good" distance transforms. Applications of 
the chamfer DT are also highlighted in Borgefors (1986a). Subsequently these have 
been used for a fast thinning algorithm to get skeletons very close to the continuous 
case (Dorst 1986) and also for a pseudo-Euclidean recursive implementation of the 
Lee algorithm for routing (Dorst & Verbeek 1986, pp. 917-20). Besides, Borgefors 
has also treated (Borgefors & Sanniti di Baja 1988; Borgefors 1989a) distances, distance 
transforms and skeletons in the hexagonal grid. 

Distance transformation of an image being an expensive task, the need for parallel 
algorithms for computing DT has long been stressed and touched upon in various 
papers. But probably Borgefors has presented the first effective and efficient algorithm 
for parallel machines (SIMD and pyramid) (Borgefors 1989c; Borgefors et al 1990). Her 
algorithm runs in time proportional to the longest side of the image, and uses no 
arithmetic to compute weighted DT. Ragnemalm (1989) also has implemented a signed 
EDT algorithm on an SIMD architecture which exploits the parallelism in the 
neighbourhood operations. 

Extending their studies on distance transformation of digitized pictures, Yokoi 
et al (1981) defined the concept of generalized distance transformation of a binary 

picture (GDTB) in terms of a sequence of thinning operators with different neigh- 
bourhoods. A family of GDTB defined using a sequence of local minimum filtering 
with the different neighbourhoods was examined in detail. The oeneralized gray 

weiohted distance transformation (GGWDT) has also been discussed with reference to 
its inverse transform (IGGWDT). In this connection a new variant, called the max-type 
DT for binary pictures has been proposed by Suzuki & Abe (1983). It is a binary 
equivalent of the DTLP (Toriwaki et al 1979) mentioned in § 5. This transformation 
can be compared to the propagation of a wave, which propagates with a constant 
velocity to the pixels whose connectivity numbers are less than two, and can be 
applied to extract shape features by measuring the length of the core line such as the 
major axis of an ellipse. A fast thinning algorithm (Suzuki & Abe 1986) consisting 
of the 4-neighbour DT of an input picture, a shrinking operation and post-processing 
has also been presented by the same authors. 

Since the evolution of quadtrees as a compact hierarchical representation for binary 
images, the distance transforms on recursively decomposed spaces have constituted 
a salient feature in the study of distance transforms. Such transforms are defined by 
Samet (1982) using the Chessboard metric. An algorithm is also presented for its 
computation. Recently, Shaffer & Stout (1991) have shown that distance transforms 
can be computed in linear time on images represented by quadtrees. The quadtree 

medial axis transform (QMAT) has been developed by Samet (1983) and the algorithm 
for its construction from the quadtree has been designed. Samet (1985) shows that an 
algorithm for the reconstruction of the quadtree from QMAT can run in an average 
time proportional to the number of leaf nodes in the quadtree. Another distance 
measure for a quadtree representation of a binary image was defined by Shneier 
(1981). This measure depends on the structure of the tree and on the paths through 
it, rather than on the underlying image represented by it. In some applications such 
alternative distance measures are preferable to the image-based definitions. 

Other major studies in DT include the application of an efficient uniform cost 
algorithm to DT by Verwer et al (1989) and an algorithm for a generalized distance 
transformation based on Minkowski operations proposed by Wang & Bertrand (1988). 
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7. Conclusions 

In this paper we have reviewed the current status in the distance geometry of digital 
spaces. Though we have compiled most of the literature on DDG till date, our emphasis 
has been on the studies of paths and distances in n-dimensional digital geometry. 
We have particularly elaborated on a general framework for distance geometry in 
the digital case. On the one hand, this framework helps to unify various lower 
dimensional results obtained earlier, and on the other, it generates new interesting 
classes of metrics in 2-D. Detailed discussion of other important topics like distance 
transformation in images, digital topology of 2-D space etc., however, could not be 
taken up here due to the lack of space. The reader may refer to Kong & Rosenfeld 
(1989), Melter (1991) and Borgefors (1992) for further in-depth studies. 

The authors are extremely grateful to Drs G Borgefors, R A Melter, P P Chakrabarti, 
N Okabe, E Krause, L Dorst and A Rosenfeld for their continuing suplx~rt in this 
work over the past few years. The first author also acknowledges the financial support 
of the Indian National Science Academy under the grant for Young Scientist 
Awardees. 
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