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Abstract We study the response of populations of digital
organisms that adapt to a time-varying (periodic) fitness
landscape of two oscillating peaks. We corroborate in general
predictions from quasi-species theory in dynamic landscapes,
such as adaptation to the average fitness landscape at small
periods (high frequency) and quasistatic adaptation at large
periods (low frequency). We also observe adaptive phase
shifts (time lags between a change in the fitness landscape
and an adaptive change in the population) that indicate a
low-pass filter effect, in agreement with existing theory.
Finally, we witness long-term adaptation to fluctuating
environments not anticipated in previous theoretical work.

1 Introduction

Time-dependent (or fluctuating) environments have attracted a considerable amount
of interest in biology, in particular in the ecological literature. Within ecology, envi-
ronmental variation can affect biological processes and population structures [11], and
it can be important for the evolution of ecosystems. For example, it is plausible that
constant or slowly changing environments favor the evolution of specialists, while fast
changes in the landscape foster the emergence of generalists [22]: In a constant envi-
ronment, generalists are expected to lose unselected functions, as a result of mutation
accumulation, antagonistic pleiotropy (adaptations to the peculiarities of the environ-
ment have a negative effect on unselected functions), or both. Therefore, over time
specialists will prevail. In a rapidly changing environment, specialists will fare better
than generalists only for short periods of time, and fare worse at all other times. There-
fore, in the long run generalists will prevail. Within the field of population genetics,
changing environments have been shown to favor the evolution of recombination [1]
and affect mate choice in favor of heterozygotes [2].

On the level of the individual sequence (or groups of related sequences), fluctuating
environments have been shown to affect the evolution of mutation rates [10, 7, 15], to
a level where the population can just about follow the changes in the environment [9].

There is general interest in the effect of fluctuating environments on populations
of macromolecules evolving at high mutation rates [14, 16, 29], because these mod-
els of evolution are tractable either analytically or computationally, and make definite
predictions. However, it is difficult to test these predictions experimentally, because
adaptation is a slow process, and adaptation to temporally varying environments even
more so. While the rise of mutator alleles (predicted by theory [13, 7, 21]) has been ob-
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served experimentally [20], few other predictions are amenable to experimental testing
with standard experimental organisms.

In this contribution, we set out to test several predictions of Eigen’s theory of macro-
molecular evolution [5, 6] extended to dynamic (meaning time-dependent) fitness land-
scapes [29], in particular fitness landscapes that vary periodically. As our experimental
organism of choice we use digital organisms of the Avida variety (see [18] in this issue
for an overview and user’s guide, and [26] for a review of recent work using digital
organisms).

Avidians have been shown to display a kind of adaptive dynamics (“survival of the
flattest” [30]) that is one of the hallmarks of a quasi species. Quasi species are the
closely related groups of organisms, localized around one or a few high-fitness types,
that are predicted by Eigen’s theory to dominate populations at high mutation rates. In
Avida, mutation rates can be set by the experimenter, and we chose here two different
rates (µ = 0.1 and µ = 1.0) that can be characterized as fairly high and high, and
that are comparable to viral mutation rates. Thus, we believe that the experimental
conditions are such that Eigen’s theory applies.

There are a number of unique predictions of Eigen’s theory in dynamic fitness land-
scapes [14, 16, 29] that are amenable to experimental tests. The general response to a
changing peak depends on the frequency and the type of that change. If the change is
slow, the population will adapt to the changed height of the peak (quasistatic adapta-
tion), or even move away from its peak to another one. If the change is fast, we expect
the population to adapt to the average of the landscape over a period [29, 27]. These
predictions can be summarized with the concept of low-pass filtering: Evolution acts
as a low-pass filter on the population, such that the response of a population to fitness
fluctuations at high frequencies is depressed in comparison with the response to the
same fluctuations at low frequency. As a consequence of low-pass filtering, we expect a
time lag between the movement of the peak and the response of the population, termed
the phase shift. The low-pass filter effect has previously been seen in one-dimensional
models of population dynamics [7, 3, 12] and in quasi-species evolution [16].

Most theoretical investigations of adaptation to time-varying environments discuss
the adaptation either to a single peak [28, 16, 27], or to a pair of peaks [29] whose
height is changing periodically, or to a peak whose position in genetic space is chang-
ing periodically or stochastically [14, 19, 15]. In Avida, landscapes can be carved by
specifying the amount of energy (in the form of bonus CPU time) an organism har-
vests for carrying out logical/mathematical operations. (These operations are called
tasks [18].) We can create a single oscillating peak in Avida by changing the reward
for one particular task only (while keeping all other rewards fixed). Likewise, we can
implement stochastically jumping peaks by increasing the reward from zero to a finite
value for a stochastically chosen task from a set, while keeping all others at zero. Here,
we study an oscillating landscape that is a cross between oscillating and jumping peaks,
namely the case of two peaks whose height changes periodically, from full height to
flat (absent). As a consequence, this situation can also be viewed as that of a peak
periodically jumping in fitness space. We investigate two different pairs of peaks that
differ in how difficult it is to evolve (or re-evolve) each associated task. This difficulty
scales approximately with the minimum amount of code necessary to complete the
task. In Figure 1, the two pairs are depicted schematically, where NAnd/Not represents
the easier of the task pairs, while And/OrN is harder. (Tasks Echo and Add are always
rewarded with constant bonuses. They are stepping stones for the more complex tasks
NAnd, Not, And, and OrN, and facilitate the evolution of the latter tasks.) More detail
on the nature of these logical tasks and how they are implemented in Avida can be
found in [18] in this issue.
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Figure 1. Conceptual view of the landscape with oscillating peaks. (a) NAnd/Not pair of peaks: first half period
(upper part), second half period (lower part). (b) And/OrN pair. The location of the peaks for Echo and Add
is arbitrary; the heights of the peak qualitatively reflect the awards given. The difference in distance between the
Not/Nand peaks and And/OrN peaks is qualitative only and reflects past experience with these tasks.

2 Materials and Methods

All experiments were conducted using Avida version 1.99, available from http://www.
sourceforge.net/projects/avida. All parameters in the genesis file (see [18]) except
those mentioned below were kept at their default settings. The size of the world was
set to 50×50 (carrying capacity of 2500 organisms). We forced organisms to remain at a
constant length of 100 instructions, by setting CHILD SIZE RANGE to 1 in the genesis
file. This setting ensures that all offspring are the same length as their parents, and
guarantees a constant genomic mutation rate and fairly consistent generation time. We
seeded the ancestor runs (see below) with an organism consisting of a copy loop
and enough NOP instructions to fill up the rest of the genome. Mutations in these
experiments occurred only during the copy process.

2.1 Ancestor Runs
In order to limit the effect of history in this study, we evolved different ancestral or-
ganisms to seed the later experiments with time-dependent fitness landscape. For each
pair of tasks and each mutation rate, we evolved five independent ancestral organisms
(for a total of 20). In each replica, we chose the highest fitness candidate to seed the
runs with time-dependent fitness landscape.

We chose to set up the reactions using limited resources (instead of the global
resourceless fitness landscape), so that rewarded tasks could easily be changed in the
events file (as opposed to changing the environment file). A sample environment file
for the Not/NAnd set of tasks is shown in Figure 2. The And/OrN ancestors were
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RESOURCE resECHO:initial=1000000000000

RESOURCE resADD:initial=1000000000000

RESOURCE resNOT:initial=1000000000000

RESOURCE resNAND:initial=0

REACTION ECHO resource=resECHO:value=0.2 requisite:max count=4

REACTION ADD resource=resADD:value=0.5 requisite:max count=2

REACTION NOT resource=resNOT:value=3.0 requisite:max count=1

REACTION NAND resource=resNAND:value=3.0 requisite:max count=1

Figure 2. The environment file for the Not/NAnd set of tasks.

created with an identical setup except for the tasks rewarded. We rewarded Echo and
Add in order to facilitate the development of the more complicated tasks. These tasks
were kept constant throughout the runs and were performed very consistently by all
the organisms.

2.2 Periodic Landscape Runs
Periodic fitness landscapes were implemented via the events file. A sample events file
for the Not/NAnd task pair is shown in Figure 3 for period T = 2.

The events file reflects the following protocol. The population is first allowed to
equilibrate for 1000 generations. Starting with generation 1001, we switch between
the two peaks at constant intervals. In the case depicted in Figure 3, this consists of

u 0 inject all START CREATURE

# Print standard data files

g 1:1:end print average data

g 1:1:end print dominant data

g 1:1:end print tasks data

# Setup oscillating environment

g 1001:2:end set resource resNOT 0

g 1001:2:end set resource resNAND 1000000000000

g 1002:2:end set resource resNOT 1000000000000

g 1002:2:end set resource resNAND 0

# Setup exit time

g 1200 exit

Figure 3. The events file for the Not/NAnd set of tasks and a period of 2.
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switching NAnd for Not as the major available resource in the first half of the period,
and then switching back in the second half. We varied the period from 2 to 2000
generations (T = {2, 4, 10, 20, 40, 100, 200, 400, 1000, 2000}). For short periods, we let
the run continue for 100 periods. For periods of length T = 100 and above, we let
the run continue for only 20 periods. We carried out one run for each period length.
All experiments were started with populations grown from genotypes adapted to the
fitness peak that is present in the first half of the period: Not for the easy pair, and And
for the hard pair.

3 Results

The general dynamics that we observed can be summarized as follows. If the landscape
changes very rapidly, the population experiences an average landscape that consists of
both peaks. If the landscape changes very slowly, on the other hand, then the popula-
tion adapts to the currently rewarded task, and loses the unrewarded one (quasistatic
adaptation). For intermediate period lengths, the population can maintain both tasks,
but during the time interval in which a task is not rewarded, its gene frequency in the
population declines. (Here, we refer to the part of an organism’s genome responsible
for the completion of a particular task as a gene, and to the number of organisms that
can perform a particular task as the gene frequency of that task.)

Figure 4 shows a typical plot of gene frequencies. In the upper panel, the period
is small (T = 2). We see that the NAnd task reaches capacity after approximately
50 generations (=25 periods). (Note that the organism with which we seeded the
population was evolved in an environment that rewarded only Not, so that it could
perform Not but not NAnd.) Once NAnd has reached capacity, however, it is firmly
established, because the period during which the gene is not under selection is too
brief to lead to its decay. For intermediate period lengths (middle panel of Figure 4,
T = 100), NAnd reaches capacity faster (after approximately 25 generations). Since
the period length is now 100 generations, NAnd is constantly rewarded for the first 50
generations, so that the selective pressure to perform NAnd is stronger than in the case
of T = 2. Gene frequencies drop somewhat during the unselected periods, because
mutations accumulate in the unselected gene. As the period of changes increases
further, genes not selected can go extinct, so that they have to be newly acquired in
the following period. This effect is more pronounced at high mutation rates (Figure 5),
as unselected genes degrade more rapidly then.

The dynamics for each task pair and each mutation rate can be summarized by
averaging the gene frequency over all the periods, and plotting them as a function of
the phase � = t (mod T )/T . (Note that with this definition, � runs from 0 to 1, and
not to 2π .) Figure 6a shows the average Not gene frequency for small, medium, and
large periods and at mutation rate µ = 0.1. We can see that only for the largest period
tested do gene frequencies drop to about half at the end of the unselected period, only
to rebound very quickly if selection is reinstated. The rate at which the unselected task
decays is much higher in Figure 6b, which shows the same experiment at a tenfold
higher mutation rate.

The dynamics for the pair And/OrN is qualitatively similar to that of the Not/NAnd
pair. However, genes are lost quicker and rediscovered slower, a result of the increased
difficulty to evolve these tasks. As a consequence, some effects are more pronounced
in the data for this task pair than for the easier pair. For example, we notice in Fig-
ure 6c that the variance of the gene frequency is unusually large (but constant) for the
intermediate period T = 100. We can trace this effect back to accidents in evolution:
If the task is lost in some periods and not reacquired in the next (as sometimes hap-
pens), the distribution of gene frequencies at a given phase � over all periods is not

Artificial Life Volume 10, Number 2 127



Y. Li and C. O. Wilke Digital Evolution in Time-Dependent Fitness Landscapes

Figure 4. Number of organisms performing tasks Not/NAnd, versus time, for small (T = 2, upper panel), medium
(T = 100, middle panel), and large (T = 1000, lower panel) periods, at mutation rate µ = 0.1. Time is measured
in generations, where generation 0 is the first generation in the time-dependent landscape (thus, generation 1001
overall).

normal. Rather, it is a double humped distribution that is inaccurately characterized by
the mean and variance. We see the same effect in Figure 6d for period lengths T = 100
and T = 1000.

Second, we notice in Figure 6c and d that there is a time lag between the onset
of selection and the maximum of the population’s gene frequency. This time lag is
known as the phase shift [16], and is predicted by quasi-species theory for small and
intermediate period lengths. In the extreme, for very short periods, the lag can move
the maximum gene frequency into the half period in which the gene is not under
selection, as we can see for example in Figure 6c for T = 10.

We have estimated the phase shift by determining the phase �max at which the
population achieves its maximal gene frequency after �0 = 0.5, that is, after the gene
is back under selection. This estimate is shown in Figure 7 for mutation rate µ = 0.1,
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Figure 5. Number of organisms performing tasks Not/NAnd versus time for small (T = 2, upper panel), medium
(T = 100, middle panel), and large (T = 1000, lower panel) periods, at mutation rate µ = 1.0. The notion of time
is identical to that of Figure 4.

plotted against the period length. The phase shift decays faster for the Not/NAnd pair
than for the And/OrN pair, which is in agreement with our earlier assessment that the
latter pair is harder to evolve.

Finally, we found that for intermediate period lengths, there exists a selective pres-
sure to rewrite the genome in such a way that the loss of unselected tasks becomes
less likely. For example, in Figure 4b, during the first two periods, both Not and NAnd
are lost when they are not selected. However, starting with the third period, now the
organisms have rewired their genomes so that loss of either unselected task is minimal.
A similar effect can be seen in Figure 8. (The experiment shown in Figure 8 is identical
to that of Figure 5b, but we display a longer time frame in Figure 8.) Around generation
t = 1000, the maximum gene frequency for NAnd over one period increases slightly,
and the minimum gene frequency over one period increases substantially.
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Figure 6. Number of organisms performing Not (a, b) or NAnd (c, d) as a function of the phase � = t(mod T)/T.
(a, b) Task frequency for the NAnd/Not pair at µ = 0.1 and µ = 1.0, respectively. (c, d) Task frequency for the
And/OrN pair at µ = 0.1 and µ = 1.0, respectively. Frequencies were averaged over all periods in a run. Error
bars indicate standard error.

Figure 7. Phase shift δ as a function of period length. The phase shift was estimated as the phase �max at which the
first task (Not for the Not/NAnd pair, and And for the And/OrN pair) reached its maximum value, minus �0 = 0.5
(at which time the first task starts to be rewarded). For those cases in which �max − �0 was negative, we used
δ = 1 + �max − �0.

130 Artificial Life Volume 10, Number 2



Y. Li and C. O. Wilke Digital Evolution in Time-Dependent Fitness Landscapes

Figure 8. Number of organisms performing tasks Not/NAnd, versus time, for period length T = 100, at mutation
rate µ = 1.0. Time is measured in generations.

4 Discussion

Overall, our results agree very well with existing theory [14, 29, 16]: For both peak
pairs and mutation rates, we found that the population adapts to the average fitness
landscape for quickly changing landscapes, and to the particular landscape that is active
at a given moment for very slowly changing landscapes.

We found that the phase shift increases up to almost 1 for small T . At first glance, a
phase shift this large seems counterintuitive, since a shift larger than 0.5 indicates that
genes continue to increase in frequency even if they are not under selection anymore.
We can understand this phase shift from the particular way in which organisms acquire
fitness in Avida [18]: Fitness in Avida is the ratio of the speed at which an organism’s CPU
runs (i.e., the organism’s merit) to the number of instructions the organism executes in
one gestation cycle. Organisms inherit their initial merit from their parents, and their
merit does not change during one gestation cycle. However, during its gestation cycle,
an organism accumulates bonuses that will count towards a new merit value, which is
given to both the organism and its offspring at the end of the gestation cycle. It can
be shown that this type of maternal fitness determination does not alter the course of
evolution in a static fitness landscape [25]. However, it does introduce short delays into
the process of adaptation. These short delays become apparent in the dynamics of
adaptation in a temporally changing fitness landscape. The moment a task is switched
off, organisms that have been carrying out this task still have the accumulated merit
that they earned earlier. Once they reproduce, they and their offspring will get this
merit value, which means they can continue to reproduce at a high fitness value. As a
consequence, the gene frequency can continue to rise for two more generations after
the selective pressure has been switched off. We can see this effect very clearly in
Figure 6c, for T = 10.

We should note that while the effect described in the previous paragraph contributes
to the phase shift, it is by no means the sole origin of the phase shift. We can estimate
the contribution of this effect to the phase shift by 3/T , since at most three generations
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are affected by the delayed response of organisms to a new bonus structure. If we
subtract 3/T from the measured phase shift, we find that the phase shift converges
to δ = 0.5 for small T (data not shown). This result is intuitively obvious: If the
environment changes faster than it takes the population to regrow a task, then the
corresponding gene frequency will always have its maximum exactly at the point in
time when the task is switched off again.

We found for intermediate period lengths that the organisms followed the changes
in the fitness landscape, while at the same time they retained a genetic memory of
past environments. By genetic memory, we here mean that the organisms acquired
a genetic architecture that minimized loss of the unselected gene: Over time, the or-
ganisms were able to rearrange their genomes in such a way that the unselected gene
remained in the population in increasingly higher proportions. Presumably, this re-
arrangement occurred through increased interactions between genes. If the selected
and the unselected gene have strong negative epistatic interactions, then mutations in
the unselected gene will likely have a negative effect on fitness, and thus be selected
against. Similar changes in genetic architecture have been observed as a response to
alternating environments in experiments with arboviruses: Vesicular stomatitis virus
experienced fitness increases in both cell types when subjected to alternating passages
in mammalian and insect cells [17] or different mammalian cells [23]. Adaptation to a
single cell type in a constant environment resulted only sometimes in increased fitness
in the other cell type. Likewise, alternating passages of eastern equine encephalitis
virus in different cell types consistently led to fitness improvements in both cell types,
whereas passages in a single cell type did not consistently increase fitness in the other
cell type [24, 4].

The possibility that the genetic architecture may change as a result of adaptation to
changing environments lies outside the scope of the simple theoretical models pub-
lished to date [14, 29, 16, 8, 9]. These models are typically built on the basis of a very
simple genotype-to-phenotype map without significant interaction between genes. For
this reason, we have currently no good theoretical understanding of the conditions
under which we can expect to see simultaneous adaptation to different environmental
conditions, nor do we understand the genetic mechanisms that enable this adaptation.
For example, if the environment remains unchanged for too long, then certainly the
population will lose its adaptation to the alternative environment. However, we do not
know how long is too long. Second, we mentioned above that loss of the unselected
gene is most likely prevented by increased epistatic interactions between genes. How-
ever, we do not have evidence for or against this hypothesis, nor is there to date a
simple mathematical model that can corroborate or refute it.
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