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Digital filtering in EEGIERP analysis: Some

technical and empirical comparisons

JACKB. NITSCHKE and GREGORY A MILLER
University ojIUinois at Urbana-Champaign, Urbana, IUinois

and

EDWINW. COOK III
University ojAlabama, Birmingham, Alabama

A general approach to time domain digital filtering is described, and examples of some filters used
in EEGIERP research are presented. Simulations are reported that evaluate the impact of the relative
length of the filter weight series and the signal cycle to be flltered, the span and real-time density of the
filter weights, and slow drift across the epoch being flltered. Results indicate that some fllters com
monly used in the EEGIERP literature are inadequate. Frequency domain digital filtering is also briefly
discussed. The fast Hartley transform, a fast but relatively unknown computational method for fre
quency domain filtering of ERPIEEG data, is introduced and compared with time domain flltering.
Some practical recommendations are provided.

The analysis of encephalographic (EEG) data, either

ongoing activity or event-related potentials (ERPs), gen

erally requires the extraction of a signal of interest from

a noisy background. This filtering process may be carried

out in a variety of different ways. The term digital filter
refers to a wide range oftechniques that have in common

the fact that they are mathematical procedures applied to

discrete, numeric representations of continuous wave

forms to emphasize or attenuate certain frequencies.

Digitally filtering an EEG waveform in the time do

main' typically involves cross-multiplying each unfiltered

data point and its neighbors with a set ofweights. In effect,

the weights represent a copy of the signal pattern of inter

est. The cross-multiplication process is repeated for each

point to be filtered. The sums of these cross-products,

arranged as a series, constitute the filtered waveform. An

intuitive appreciation of how such a procedure can accom

plish frequency-specific filtering can be gained by con

sidering a set of weights with magnitudes forming a sine

wave of a particular frequency. When data points are

cross-multiplied with these weights, the sum of the cross

products will be largest when the data predominantly con

sist ofa sine wave ofthe same frequency and are in phase

with the weights, such that the two sets of values rise and
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fall in synchrony. The sum of the cross-products will be

most negative when the data have the same frequency but

are inverted (180 0 out of phase). Any other pattern in the

data will produce a sum closer to zero. In effect, the filter

is "tuned" to detect a sinusoidal signal of a certain fre

quency, and signals that are nonsinusoidal or do not match

the filter's frequency will not produce as much output.

Digital filters ofthis type are pervasive in psychophys

iology. In designing an appropriate filter for a given EEGI

ERP application, the investigator faces a choice among a

variety ofmethods for generating the weights used in the

cross-multiplication function and also a choice of the set

of adjacent time points to which to apply the weights.

These choices affect the computational speed of the fil

ter, how much ofthe desired signal is preserved, and what

kind of noise is attenuated. In aggregate, these choices

involve a variety of subtle factors and tradeoffs. Unfor

tunately, it appears that digital filters are more widely

used than understood, with the result that inferior and

often inappropriate filters are used.

To facilitate appropriate use of digital filtering in the

EEG/ERP literature, this paper will provide a general ap

proach to conceptualizing time domain filter methods,

followed by some empirical investigations of the limits

of such methods. The presentation will emphasize ac

cessibility rather than completeness (see Cook & Miller,

1992; Ruchkin, 1988; and especially Glaser & Ruchkin,

1976, for more technical discussions). Time domain fil

tering will be distinguished from frequency domain fil

tering. Basic concepts of frequency analysis will be pre

sented, and a relatively new computational approach to

frequency domain filtering that is largely unknown in the

EEG/ERP literature will be introduced. Finally, some com

parisons and recommendations involving these methods

will be offered.
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point being filtered. In an average ofN points, each point
is weighted by 11N. Because the N points generally cover
only a small portion of the total time series, fast but not
slow changes are removed by the filter, which thus

serves a smoothing function. This filter is variously re
ferred to as a moving-average filter, reflecting the fact
that computation of the average is repeated to define
each filtered point; as an equal-weight filter, reflecting
the fact that the weights are identical; or as a boxcar fil
ter, reflecting the shape ofa plot of the weights. Boxcar

filters vary only in the number of data points averaged
together, since that dictates the value of the weights
(lIN).

The gain function ofa filter describes its gain (ratio of
output to input) as a function of frequency. Thus, the
gain functions illustrated in Figure 1 show the propor
tion of the input signal at a given frequency that is avail
able in the output of the filter. A gain of0.0 implies com
plete attenuation at a given frequency, whereas a gain of
1.0 implies no attenuation. In some circumstances, gain
can exceed 1.0 (in effect, the filter functions as an am
plifier at that frequency) or fall below 0.0 (an inverter).
Gain functions for useful digital filters typically share
several features: The pass band is the frequency range
where the gain function is close to 1.0, the stop band is
the frequency range where the gain function is close to
0.0, and the transition band is the frequency range where
the gain is intermediate. The x-axis ofa gain function for
a digital filter ranges from 0 Hz (de) to one half the sam
pling frequency (i.e.,fs/2, called the Nyquist frequency).

For a boxcar filter, the gain function is solely a func
tion of the number ofweights and the sample frequency.
Gain functions for some boxcar filters illustrated in Fig-

Figure 1. Amplitude gain functions for boxcar mters.f, is the

sampling frequency. The different line types illustrate filters dif

fering in number ofweights. The highest possible value for f, and

hence for the y-axis is the Nyquist frequency, which is half the

sampling frequency. Note the considerable undershoot (negative

gain) and ringing in the stop band.

where Wis the series of2j+ I weights (subscripted -j to

+j), X is the input time series, Y is the filtered time se
ries, and the subscript t refers to each time point in the
input series.

This cross-multiplication and summing procedure,

when carried out across a range ofvalues of t, is referred
to as convolution. The 2j+ 1 weights are symmetric (i.e.,
Wi = W_;) about an unpaired center weight, Woo Such
filters have a finite impulse response (FIR), a term re
ferring to a filter's response to a perturbation in an oth
erwise consistent input function. Filters that define out
put points solely on the basis of input points are said to
have a finite impulse response, because the arithmetic
effect of a single aberrant input point (an "impulse") is
confined to the 2j points adjacent to it. As a result, the
perturbation disappears after a finite amount of time
(after the last filtered point that includes the aberrant un
filtered point in its computation-the jth point). In con
trast, filters that define each filtered point in part on the
basis of prior filtered points have an infinite impulse re

sponse (IIR), because the arithmetic effect of a single
aberrant point will continue to some degree into all sub
sequent points. These two kinds of filters are also some
times referred to as "nonrecursive" and "recursive," re
spectively (see Cook & Miller, 1992, for discussion of
FIR and IIR filters).

A variety of FIR filters have been described in the
EEG/ERP literature, with the most common use being to
smooth a time series (i.e., remove high-frequency com
ponents). Smoothing is most often accomplished by av
eraging a symmetric set of points before and after each

DIGITAL FILTERING
IN THE TIME DOMAIN

X"Xt+p,Xt+2p,Xt+3p,··· ,Xt+(n-l)p'

The subscripts refer to the time at which the associated
data pointXis observed, such that t is the time at which
recording began and p is the sampling period (the time
between adjacent samples). Such a representation of the
data is said to be "in the time domain." The present focus
is on a very common type ofdigital filter, in which each
filtered point is computed by using the corresponding
unfiltered point and an equal number ofunfiltered points
before and after the point to be filtered. Specifically,
each output value is computed as the sum of the cross
products of the weights and a symmetrical set of adja
cent input data points, as follows:

j

Yt = L W; *X t+ j ,

i=-j

Concepts and Terminology
We will introduce a formal representation of a com

mon filtering method and then discuss some examples.
EEG voltage varies continuously over time and may be
digitized at equal intervals, yielding a time series of n

observations of the form
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ure I indicate several limitations of such filters. Unless

a considerable number of weights is used (more than is
typical in the ERP literature; see Farwell,Martinerie, Bash

ore, Rapp, & Goddard, 1993), the gain function shows

very poor frequency precision. This is apparent in the

breadth of the transition band and the ripple in the stop

band. In fact, the signal can be inverted (gain < 0.0) by

as much as 33% for a 3-weight filter and still as much as

22% even for a 15-weight filter. The half-amplitude cut

offfrequency,fc,for a boxcar filter oflength 2}+ I weights,

applied to data digitized at a sampling frequency ofis , is

approximately .61 *is/i. This implies that} andfc cannot
be specified independently. Furthermore, because} must

be an integer, available cutoff frequencies are quite lim

ited for a givenis.
Advantages of boxcar filters include intuitive sim

plicity and speed of computation. The speed considera

tion may be particularly important if the filter is to be

implemented on line. These advantages must be weighed

against the boxcar filter's limited range of parametric

control (e.g., available cutoff frequencies), its very poor
frequency precision, and its potential for introducing ap

parent phase shifts. Cook and Miller (1992), Farwell et al.

(1993), Ruchkin (1988), and Ruchkin and Glaser (1978)
have provided further discussion of boxcar filters. Far

well et al. make a particularly convincing case against the

use of boxcar filters in ERP research.
In recent years, FIR digital filters have increasingly

used sets ofunequal weights. In exchange for the greater

computational demands of these more complex FIR fil

ters, they generally provide far superior frequency pre

cision and greater control over other filter characteris
tics. Frequency precision is limited only by the number

of weights (and thus time points) employed. Multiple

pass or stop bands can be specified, which may be ofuse

if several sources of narrow-band activity are of interest
(e.g., different EEG frequency bands) or are to be removed

as noise.
Any filtered time series can be subtracted from the

original time series, yielding a second filtered time se

ries. This implements the complement of the original fil
ter. For example, a filter that passes frequencies only

very close to 50 or 60 Hz can be used to remove 50 or

60 Hz via subtraction. This procedure can be applied

with any low-pass filter (including a boxcar filter) in
order to effectively convert it to a high-pass filter, and

vice versa.

Given this broad view of FIR filters (see also Coles,

Gratton, Kramer, & Miller, 1986; Cook & Miller, 1992;

Donchin & Heffley, 1978), it becomes clear how perva

sive they are in the EEG/ERP literature. Computation of
the mean of a time series may be construed as the appli

cation of a boxcar filter, attenuating all frequencies ex

cept 0 Hz (de). One can also conceptualize an area mea

sure in the scoring of an ERP component as a boxcar
filter, in which the number of weights is equal to the

number of data points in the scoring window. Computa

tion of the variance of a time series removes the de com-

ponent while retaining (and combining) all other (ac)

frequencies. This follows from the fact that computation

ofthe variance involves the subtraction ofthe mean. Sim

ilarly, the computation of the root mean square (RMS)

value of an ac signal is equivalent to the standard devia

tion of the time series, since the mean (not explicitly sub

tracted in the RMS procedure) of an ac signal, in gen
eral, is O. The most common scoring method in the ERP

literature is the detection of a maximum or minimum

value in a time window. This peak-picking can be un

derstood as the application of a filter with weights (...,

0, 0, 0, 1, 0, 0, 0, ...). This filter is applied repeatedly, at

each sample point within the scoring window, and the

sample producing the largest convolution is selected as

the score. As a high-frequency noise-reduction strategy,

occasionally one chooses to remove an errant point and

replace it with the average of its immediate neighbors.
Such a procedure can be considered the application of a

filter consisting of the weights (.5, 0, .5) applied around

the errant point (although Glaser & Ruchkin [1976]

warn against the unusual gain function of such a filter).

Even the ubiquitous prestimulus baseline computation

is, in effect, a boxcar filter.

Particularly interesting are FIR filtering methods used
in ERP template-matching algorithms. The template can

be seen as a set of weights that reflects a specific hy

pothesis about the shape of the signal being sought. For

example, ifthe template (the set of weights) is simply the

positive half cycle of a 2-Hz sine wave, then cross

multiplication of that template with raw EEG will con

stitute a means of filtering for the P300 component of

the ERP on a single-trial basis (see, e.g., Ford, White,
Lim, & Pfefferbaum, 1994). One might search EOG or

EEG data for a blink by establishing a filter template

whose weights approximate the shape of a blink (e.g.,

Gratton, Coles, & Donchin, 1983; Miller, Gratton, & Vee,
1988). The Woody (1967) filter technique used for la

tency correction of ERPs uses as its template a portion
of the precorrection waveform for a given subject (i.e.,

the template weight function is customized for each sub

ject). In all of these examples, one slides the template

along the time series ofdata, cross-multiplies and sums,
and notes the latency of maximum value as the likely la

tency of the signal for which one is filtering.

A somewhat different use of the weight series in time

domain frequency filtering is seen in the autocorrelation

function. In autocorrelation, a time series ofN points is
systematically correlated with a copy of the N points at

various sample-point lags. At zero lag, the correlation is

1.0. The lag is systematically increased, with the corre

lation computed at each lag for up to N-2 lags. The re

sulting set of correlations can be plotted as a function of
lag, as is shown in Figure 2.

The autocorrelation function filters by highlighting
temporally recurrent information and deemphasizing

other information in a time series. In the case of a pure

sine wave signal (top panel of Figure 2), the autocorre
lation function duplicates the original sine wave per-
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fectly. When the signal-to-noise ratio is moderate, the

autocorrelation function is fairly robust to random noise
(middle panel). Finally, the autocorrelation can reveal
multiple signal frequencies (bottom panel), although this
is less useful as the number of frequencies increases. A
cross-correlation function is generated similarly, except
that distinct sets of points X and Y (e.g., from two chan
nels) are correlated at various lags. This approach could
be especially useful, for example, in determining latency
differences between ERP component peaks at homolo

gous sites over different hemispheres. Autocorrelation
and cross-correlation procedures require no a priori
model of a desired signal. They simply reveal whatever
substantial periodic signals may be present.

Autocorrelation and cross-correlation procedures il
lustrate the breadth of means by which the investigator
can obtain the set ofweights for a digital filter. Although
they obtain their weights rather differently from the other
examples presented here, all of these methods have in
common a simple summing-of-cross-products computa
tion involving two time series. The general point is that
such digital filters are pervasive in the EEG/ERP litera
ture. Here are four examples that illustrate such filters
used with EEG and ERP data.

In a standard ERP study, one often wants to identify
components that are roughly half sinusoids and quantify
their peak amplitude and the latency of that peak. The
phase distortion that a conventional analog filter intro
duces might affect the latency measurement. Setting the
analog low-pass filter too high is problematic, because
searching for the maximal value in a latency window

would then risk capitalizing on small, chance fluctua
tions (noise) in the channel. Hence, it is useful to smooth
the data digitally before scoring. One must estimate the
frequency characteristics of the component(s) of interest
and select a filter that has either a narrow transition band
or a cutofffrequency well above those frequencies. Giese
Davis, Miller, and Knight (1993) expected the main ERP
components of interest to be below 5 Hz and wished to
remove alpha-band information (around 10 Hz) prior to
scoring. A low-pass filter with a half-amplitude cutoff
of 5 Hz would require a moderately narrow transition
band, in order to pass 0 Hz and still remove alpha. A non
boxcar 3 I-weight filter proved adequate for data digi
tized at 125 Hz, with amplitude gains of 96% at 0 Hz,
87% at 2 Hz, and just 2% at 10Hz.

In contrast, in looking at alpha activity in baseline EEG
digitized at 125 Hz, Etienne, Deldin, Giese-Davis, and
Miller (1990) found that a non-boxcar 31-weight filter
constructed to pass just 8-13 Hz (half-amplitude cutoffs)
was much less effective. The filter passed only 61% of
the desired activity at 10Hz, yet it passed 25% ofthe un
desired activity at 6 and 16 Hz. The large attenuation at
10Hz and the considerable leakage outside the desired
pass band were essentially due to 10Hz being relatively
close to both of the cutoff frequencies. Very narrow tran
sition bands, requiring many weights, are necessary in
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Figure 2. Examples ofthe autocorrelation function. The x-axis
represents real time for the signal (thin lines) and real-time lag for
the corresponding autocorrelation function (thick lines). The y

axis is in arbitrary units for the signal and correlation value for
the autocorrelation function. Top panel: The signal is a noiseless,
pure sine wave. The autocorrelation reproduces the original
waveform exactly. There is an apparent difference between the
signal and the autocorrelation only because the signal starts at
zero amplitude. At zero lag the autocorrelation is +1.0. With
growing nonzero lags, the correlation drops until a lag of 180°,
when the correlation is -1.0. At a lag equal to one fun cycle, the
correlation is again +1.0. If the signal were a noiseless, pure co
sine wave, there would be no lag between the raw data and the
autocorrelation function, because both functions would start at
+1.0. Middle panel: The signal is the same pure sine wave plus
random noise. The autocorrelation function nevertheless again
reproduces the dominant frequency and its phase quite wen, al
though the maximum correlation is attenuated because of the
noise added to the sine wave. Bottom panel: The signal is the
same pure sine wave plus a second pure sine wave signal at twice
the frequency ofthe first. Note the double peaks in the autocor
relation function, revealing the periods of the two signals. The
range of correlation values is again attenuated relative to the first
case, however. The maxima and minima will vary with the rela
tive amplitude of, and the phase relationship between, the two
sine waves, although the double peaks win always be apparent. In
this example, the two signals began in phase, so they are in phase
whenever the slower sine wave begins a new cycle. Thus, the auto
correlation reaches + 1.0 at those times and never reaches -1.0.
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5 10

Simulated Signal Frequency (Hz)

Table 1
Effect of Filter Weight Cycle Span

4.321 3.079 7.865 4.321

6.052 3.587 10.861 6.051

9.390 4.721 14.933 9.390

16.335 10.532 17.743 16.335

17.485 13.404 17.662 17.485

17.741 16.048 17.635 17.741

17.636 17.752 17.648 17.636

17.670 17.611 17.671 17.672

Sample frequency (Hz) 125 250 125 250

Samples per signal cycle 25 50 12.5 25

No. Weights

21

31

51

125

175

251

501

1,023

10-Hz signal). The lO-Hz simulation was selected be

cause of the importance of alpha band (8-13 Hz) activ

ity in much EEG research and because of the threat that

alpha band activity poses in much ERP work. The 5-Hz

simulation allowed an unconfounding of simulated sig

nal frequency and sample frequency. Thus, for example,

a 5-Hz signal sampled at 125 Hz provides the same num

ber of samples per sine wave cycle as does a 10-Hz sig

nal sampled at 250 Hz.

Table I contains the RMS values obtained for 32 simu

lated cases in which the weights spanned varying amounts

of real time and thus varying numbers of signal cycles,

from less than a tenth of a second to over 8 sec and from

less than half a cycle to over 80 cycles. Not surprisingly,

as the number of weights increased, the filter improved.
Examining each column in the table, the RMS values rise

monotonically until they are within 1% ofthe 17.678-J,.LV

ideal. Importantly, in all four columns, RMS values do not

reach asymptote until about 7 cycles were spanned. In

contrast, the real-time span of the filter shows no consis

tent relationship to the number of weights at which as

ymptote was reached.

Certain regularities in Table 1 confirm the validity of

the simulation. For a given row (i.e., a given number of
weights), the first and last cases (columns) produced

identical RMS values (within rounding error). For ex

ample, with 21 weights, a 5-Hz signal sampled at 125 Hz

and a 10-Hz signal sampled at 250 Hz both produced

4.321 J.1Y. In both cases, sampling provided 25 samples

per cycle, and the 21-weight filter spanned .84 cycle.

Table 1 raises significant questions about some kinds

of filters in widespread use. The relatively low number

of weights often employed in time domain digital filters
in the EEG/ERP literature (e.g., the 7-weight boxcar fil

ters historically common in P300 studies or the 9- to 15

weight boxcar filters evaluated by Farwell et aI., 1993)

Note-Table entries are postfiltering RMS signal voltage in fJV for an

input signal consisting of 60 sec of a 5- or 10-Hz pure sine wave with

a peak-to-peak amplitude of 50 fJV The 5-Hz data were submitted to

time domain 4 ~ 6 . 5 Hz bandpass filters with specified numbers of

weights. The 10-Hz data were submitted to time domain 8 ~ 13 Hz band

pass filters with specified numbers of weights. For a perfect 4-6.5 or

8-13 Hz filter (passing all 5- or 10-Hz activity and passing nothing

else), the entry would be 17.678 fJV Tables entries near that asymptote

« 2% error) are in boldface.

such a case. These first two examples are not as similar

as they may seem. Although both involved 125-Hz sam

pling and 3I-weight filters that could be described as
having a pass band that is 5 Hz wide, the 8-13 Hz band

pass filter is much more exacting, because half of the 8

Hz amplitude must be removed. In contrast, for the 0-5

Hz low-pass filter, all of the O-Hzactivity is to be passed.

For more success in separating 8-13 Hz activity in EEG

digitized at 250 Hz, Heller, Nitschke, Etienne, and Miller

(1997) employed a non-boxcar 50 I-weight filter that

provided a virtually perfect gain function.

A quite different case is the measurement ofvery slow

phenomena. To quantify the contingent negative varia

tion (CNV), Vee and Miller (1988) employed, in effect,

a boxcar filter to remove conventional (faster) EEG ac

tivity, averaging together the last 250 msec of EEG to

score the CNY. Such a case in which signal and noise
have very different frequencies permits a wide transition

band, and one can benefit from the computational speed

of a boxcar filter.

Practical Considerations in Time Domain
Digital Filtering

The foregoing discussion has provided some defini
tions and some computational and intuitive perspectives

on basic time domain digital filters (see also Cook &

Miller, 1992, and Donchin & Heffley, 1978). Also worth
consideration are some practical issues. For this paper,

we undertook some empirical comparisons in order to

address three issues: the signal cycle length to be fil

tered, the span and real-time density of the weights, and

the impact of a linear trend (slow drift). For all of these

comparisons, we digitally generated data with specified

frequency and amplitude characteristics and then sub
jected them to digital filters varying along various di

mensions of interest. The accuracy of the filter was judged

on the basis of its ability to return a waveform with the

same RMS amplitude as that of the original waveform.

Relationship of niter length to signal cycle length.
Working with time domain digital filters in a variety of

electrogastrogram, electrodermal, EEG, and ERP appli

cations, we came to wonder whether the length of the fil

ter (in number of weights or in real time) relative to the

length of a given sine wave cycle could be a factor in the

accuracy of the filter. There is some appeal to the notion
that a filter might perform better to the degree that it

spans a larger portion of a given sine wave cycle, or a

larger number ofcycles. Alternatively, it may be the span

of real time that the filter covers, rather than the number

of cycles, that matters. A third possibility is that neither

the span of real time nor the number of cycles matters.
We explored this empirically by creating two simu

lated 60-sec samples ofa 50-J,.LV peak-to-peak (17.678 J,.LV

RMS) pure sine wave, one at 5 Hz and one at 10 Hz. We
then sampled the continuous sine wave functions at ei

ther 125 Hz or 250 Hz. We constructed a number offil

ters, each with a half-amplitude bandpass of 4-6.5 Hz

(applied to the 5-Hz signal) or 8-13 Hz (applied to the



appears to be far short of asymptote. Even with 21
weights and the greater precision that an unequal-weight
filter allows, the RMS value was only 17%-44% of the
correct value. It must be noted, of course, that no simu
lation can be comprehensive. Whereas a span of half a
dozen cycles or more seems necessary in the four cases
evaluated here, that number could vary as a function of
the width ofthe filter pass band (the frequencies that the
filter should retain) relative to the bandwidth of the tar
get signal and also as a function of the amplitude and fre
quency ofnoise to be filtered out in the stop band. If any
thing, however, the present noiseless simulations may
underestimate the appropriate number of weights. Mini
mally, these empirical simulations suggest that the num
ber of weights should be sufficient to span at least 5-10
cycles of prominent signals in the time series of data

being filtered.
Real-time filter weight density. These same simula

tion data can address a second practical question. For the
filtering of a given time point and a given number of
weights, the number of signal cycles that the weight se
ries spans is a function of the sampling frequency of the

raw data. For a fixed number of weights, increasing the
sample frequency reduces the real-time span of data in
volved in the filtering of a given point. Does increasing
the sample frequency (and thus the density of the
weights in real time) have an impact on the performance
of the filter?

The results of the simulations presented in Table 1 can
be rearranged to address this question. Table 2 illustrates
five pairs offilters, each with a half-amplitude bandpass
of8-13 Hz, applied to a simulated IO-Hzsignal. The first
case compares the signal passed by a 51-weight filter ap
plied to data sampled at 125 Hz to the signal passed by a
10I-weight filter applied to the same data sampled at
250 Hz. The two filters span about the same amount of
real time (about four cycles), thus differing only in the
real-time density ofthe weights. The resulting RMS val
ues differ by less than .5%. The other cases provide sim
ilar comparisons for filters that span more data, with the
same result. The similarity of the two RMS values in

Table 2
Effect of Filter Weight Density

No. Milliseconds Cycles Sampling Frequency (Hz)

Weights Spanned Spanned 125 250

51 408 4.08 14.933

101 404 4.04 14.985

63 504 5.04 16.269

125 500 5.00 16.335

125 1,000 10.00 17.743

251 1,004 10.04 17.741

251 2,008 20.08 17.635

501 2,004 20.04 17.636

501 4,008 40.08 17.648

1,023 4,092 40.92 17.672

Note-Table entries are postfiltering RMS signal voltage in IlV for an

input signal consisting of a 10-Hz pure sine wave with a peak-to-peak

amplitude of 50 IlV For a perfect 8-13 Hz filter (passing all 1O-Hzac

tivity and showing nothing else), the entry would be 17.678 IlV
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each pair of rows does not vary as a function of how
close the RMS values are to asymptote, even though, as
in Table 1, the RMS values do approach asymptote as the
number of weights grows. In sum, weight density does
not affect the filtered representation of the signal.

The practical implication of Table 2 is that increasing
the sampling frequency and correspondingly the number
of weights per cycle does not improve filter accuracy. It

simply increases filter computation time. If available,extra
computation time should be spent on increasing the num
ber ofweights without changing the sampling frequency.
That will mean that more signal cycles are spanned,which
in Table 1 is established as beneficial. This conclusion is
consistent with the dictum that frequency resolution and
temporal resolution vary inversely-for better frequency
resolution, sacrifice temporal resolution by including a
greater span of real time (i.e., more cycles) in the filter
(Cook & Miller, 1992).

Impact of slow drift. For reasons to be reviewed
below in the discussion of frequency domain filtering, a
standard assumption is that frequency domain methods
are very vulnerable to nonsinusoidal changes during the
filtered epoch. We investigated the vulnerability of the
type of time domain filter emphasized here to a particu
larly extreme version ofthat problem. To our pure 10-Hz
sine wave, we added a linear trend, simulating the slow
drift sometimes seen in EEG/ERP data. We employed a
number ofdifferent slopes, ranging from .5 to 250 f.N/sec.
The composite waveform was sampled at 250 Hz and
submitted to 251- and 1,023-weight filters designed to
pass 8-13Hz. The output of the 251-weight filter varied
less than 1% up to a trend of 125 f.N /sec. At 250 JiV/sec,
an unusually large drift for real data, the error was 1.4%.
The 1,023-weight filter showed no variability at all, per
fectly matching the RMS alpha value obtained when no
trend was added. It is clear that, given enough weights,
low-frequency activity is fully attenuated, such that even
large amounts of slow drift have little or no effect on the
8-13 Hz filter output. Filters using fewer weights, typi
cal in EEG/ERP research, would be far more vulnerable,
and this problem would be exacerbated in studies in
which researchers are interested in lower pass bands. Si
mons, Miller, Weerts, and Lang (1982) developed a
method for dealing with the latter problem in long-inter
val CNV studies that may be applicable to other low-fre
quency measures.

DIGITAL FILTERING
IN THE FREQUENCY DOMAIN

Concepts and Terminology
Up to this point we have been concerned with data

represented and filtered in the time domain. The fre
quency domain provides an alternative perspective on
digital filtering and frequency analysis that warrants
some discussion and comparison with the time domain
perspective. This alternative is of interest both as a dif
ferent means of implementing a digital filter (in the fre-



60 NITSCHKE, MILLER, AND COOK

Figure 3. IUustration of the Fourier modeling of a square wave
via summation of sine waves of appropriate frequency, ampli
tude, and phase. The square wave at the bottom is the average of
the five sine waves above it. Note that the sine waves are in phase
only at the half-eycle transitions of the square wave. Those syn
chronized transitions are thus reflected in the approximate
square wave at the bottom. At alJ other times, the sine waves are
out of phase with each other and thus cancel out, providing the
plateaus of the square wave. Although this illustration employs
five sine waves, according to the Fourier theorem a complete
model would employ an infinite number of increasingly small
amplitude sine waves, further sharpening the half-cycle transi
tions and flattening the plateaus.

which yields an estimation of the amplitudes and phases

of the constituent sinusoids as a function of frequency.

This representation of a signal is said to be "in the fre

quency domain." A direct Fourier transform is an algo

rithm that converts a digitally represented signal from

the time domain to the frequency domain; an inverse

Fourier transform converts the signal from frequency do

main to time domain.'

Frequency flltering with the FFf. Some simple arith

metic (see Cook & Miller, 1992) applied to a portion of

the output of the Fourier transform produces a series of

frequencies and amplitude (or, optionally, power) values

at those frequencies. Those frequencies are often re

ferred to as frequency bins/: The original time series of

data (such as the square wave in Figure 3) is thus repre

sented as a series of frequencies, each with a specific

amplitude appropriate for modeling that time series. At

this point, the investigator may pursue either of two

goals. If the goal of the filtering is simply to quantify the

amount ofactivity at certain frequencies, the investigator

sums or averages the activity in the bins that come closest

to spanning 8-13 Hz. The resulting score is analogous to

the procedure, presented above, ofleaving the data in the

time domain, applying an FIR digital filter to the raw

time series, and computing an RMS score on the filtered

time series to quantify the amount of activity in a partic

ular frequency band. If instead the goal ofthe filtering is

to provide a filtered time series, the investigator can set

the activity in all frequency bins outside the desired pass

band to 0.0 and then perform an inverse Fourier trans

form to reproduce the (now filtered) time series.

In summary, the time domain and frequency domain

approaches may be contrasted as follows. For time do

main filtering, the investigator applies the filter to the

raw data, directly producing the filtered time series. If

frequency analysis is desired, an additional step is nec

essary, such as an RMS computation. For frequency do

main filtering, the Fourier transform of the raw data is

computed, the filter is applied (by zeroing unwanted fre

quency bins), and the inverse Fourier transform is ap

plied. If quantification ofpass band activity is all that is

desired, the inverse Fourier transform step is omitted.

Some limitations of frequency domain filtering are

well established. It requires that filtering be delayed until

the full epoch to be filtered has been acquired. This may

present difficulties if filtered data are required in real

time. Another limitation is often imposed by the algo

rithm used to compute the transform. Most typically,

some form ofthe FFT (for some variations, see Brigham,

1974) is used to provide increased computational speed

in exchange for certain limitations (Dumermuth & Moli

nari, 1987). For example, the algorithm is usually ap

plicable only to a time series with exactly 2n members,

where n is a positive integer. Despite these limitations,

frequency domain filtering with the FFT is a well-estab

lished practice in the EEG/ERP literature. A third limi

tation is that, if the signal is not stationary (i.e., does not

have consistent mean and frequency components) over

\..... ~/f""----.....\.. ... ~,

quency domain) and as a means ofgenerating the weights

to be used in a digital filter in the time domain. Crucial

to understanding how data collected in the time domain

might be filtered in the frequency domain is an under

standing of how time series data can be converted to a

frequency domain representation.

The fast Fourier transform. In the substantial litera

ture on frequency domain methods of data analysis in

general and digital filtering in particular, the community

of EEG/ERP researchers is probably most familiar with

the fast Fourier transform (FFT; Cooley & Tukey, 1965)

as a means ofestimating the frequency composition ofa

time series. Intensive treatments ofthe FFT are available

in numerous sources (e.g., Brigham, 1974; Glaser &

Ruchkin, 1976). Most relevant here is an intuitive un

derstanding ofwhat the FFT does, what some of its prac

tical constraints are, how it can be used to accomplish fre

quency filtering in the frequency domain, and how it can

be used to facilitate frequency filtering in the time domain.

Subject to certain constraints, Fourier's theorem states

that any time series waveform may be modeled as the

sum ofa set of sinusoidal waveforms, each ofa different

frequency and having an associated amplitude and phase.

Figure 3 provides an illustration of this summation ap

proach. This principle is the basis of Fourier analysis,



the epoch for which the Fourier transform is calculated,

artifactual high-frequency noise and discontinuities be

tween adjacent epochs can result (Attinger, Anne, & Me

Donald, 1966; Cook & Miller, 1992).

Stationarity. It is commonly noted that real-world

psychophysiological data routinely violate the Fourier

method's requirement of stationarity, but this issue has

not received extensive treatment in the EEG/ERP litera

ture. The property ofstationarity refers to complete con

sistency over time of the constituent functions underly

ing an observed time series. Since the Fourier approach

to a time series oflength T (in seconds) starts with a sine

wave offrequency liT (in cycles per second), the Fourier

modeling of the time series will work properly only

when the slowest frequency in the data is exactly liT.

Furthermore, all other (faster) frequencies in the data

should be limited to the harmonics of liT; that is, 2/T,

3/T, and so on. Brigham (1974, chap. 6) and Glaser and

Ruchkin (1976, chap. 3) provided graphical illustrations

of the misallocation of frequency information, called

leakage, that occurs when nonharmonic frequencies are

present. Were the FFT applied to a time series of infinite

length, this leakage into inappropriate frequency bins

would not occur. This point can readily be understood in

tuitively, in that as Tapproaches infinity, liT approaches

0.0. As a result, the frequency resolution becomes ex

tremely high, so that virtually any activity is close to a
harmonic. Very long analysis epochs are thus much less

vulnerable to leakage of nonharmonic activity.

On the other hand, long analysis epochs are vulnera

ble to another violation of the stationarity assumption:

changes in the constituent frequencies over time. The

Fourier transform from the time to the frequency domain

produces a set of amplitude and phase values, one am

plitude and one phase value for each harmonic. Because

the entire time series will be described by a (static) set of

frequencies of specified amplitude and phase, this ap

proach cannot deal correctly with any change in the am

plitude or phase ofa given frequency during the T epoch.

In that sense, the data must be "stationary" during the

epoch analyzed.

One way to deal with the stationarity assumption is to

break up a long time series into shorter epochs, on the as

sumption that data will be more stable over shorter peri

ods. Thus, for example, a 60-sec time series might be an
alyzed as sixty l-sec epochs, rather than as a single 60-sec

epoch. This is a computationally demanding strategy, for

which the speed improvement of the FFT has proven very

important. We wish to draw attention to a newer method,

the fast Hartley transform (FHT; Bracewell, 1984; for a

very accessible introduction, see O'Neill, 1988), which

we believe would be superior in most EEG/ERP appli

cations. Conceptually, the Hartley transform is closely

analogous to the Fourier transform. However, the FHT
algorithm relies solely on real arithmetic, unlike the tra

ditional FFT, which involves complex arithmetic. O'Neill

discussed why the FHT takes half the time and half the

memory of the traditional FFT. Like the Cooley-Tukey
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FFT method discussed above, the FHT requires that the

length of the time series be a power of2.

Design of Time Domain Filters

in the Frequency Domain

With the preceding brief discussion of Fourier analy

sis in mind, we can now examine one means of design

ing the time domain digital filters discussed earlier in

this paper that will illustrate some aspects of the rela

tionship between time domain and frequency domain

data representations and filter methods. The FIR filters
involve convolving a time series with a symmetric weight

series (which may itself be considered a time series),

yielding a filtered time series. Specific steps for con
structing such filters (i.e., generating the weight series)

have been described by Gold and Rader (1969; see also

Ackroyd, 1973; Cook & Miller, 1992; Dumermuth &

Molinari, 1987; Oppenheim & Schafer, 1975), and soft

ware implementing the weight-generation process is
available (e.g., Cook, 1981). Briefly, the technique in

volves four steps, summarized in Figure 4. First, the fil

ter's ideal, frequency domain gain function is specified

as an array of 1s and Os corresponding to the pass and
stop bands, respectively. Second, the inverse Fourier

transform is applied to this gain function to obtain its

time domain equivalent, which serves as the initial set of

filter weights. Following the principles of Fourier analy

sis described above, these weights are by definition a

time series consisting of the sum of a set of sinusoids,

each corresponding to a different frequency in the pass

band of the ideal gain function. Although the process of

designing an FIR filter can stop after these two initial

steps, two further steps are often taken to improve and

evaluate the filter. The third step involves refining the

filter weight series by applying a window to it. Figure 4

illustrates three such windowing functions. Finally, the

windowed filter is evaluated: the direct Fourier trans

form converts the windowed weight series back to the
frequency domain, which yields the actual gain function,

which can be evaluated in comparison with the ideal gain

function specified in Step I. Steps 3 and 4 may be re

peated with different parameters until a weight series is

obtained that has a gain function satisfactory for the

user's application.

Although Cook and Miller (1992, Appendix B) de

scribed these steps in greater detail, the windowing pro

cess is so central to the filter generation process that it
deserves further comment here. In general, windowing

involves cross-multiplying a function with the original
filter weights, with the result being a filter that is nar

rower (has fewer weights) and/or tapered at its ends.

Windows vary in their shape and width, and the choice

of a window involves balancing tradeoffs related to fil

ter width, computation speed, transition bandwidth, and

gain function ripple (i.e., variation in the actual gain

function around 0.0 in the stop band and 1.0 in the pass
band). The simplest window function is rectangular, and

its effect is to truncate the weight series. Truncating the
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Figure 4. The four-step process of generating niter weights (see text). For iUustration, an 8--13 Hz
bandpass niter is the stipulated goal. The obtained gain functions resulting from each of three win
dowing functions are compared.

weight series directly reduces computation time. How
ever, applying such a rectangular window also produces
ripple in the gain function, as is apparent in Figure 4.
Ripple can in tum be reduced by tapering the ends of the
truncated weight series, using one of several tapering
windows (Ackroyd, 1973). The Hamming window is rel
atively gradual among the tapering functions illustrated
in Figure 4. For example, it reduces the weights by about
46% halfway from the center of the weight series to the
outermost weight. In general, applying a Hamming win
dow reduces but does not eliminate truncation-related
ripple. However, it also widens the filter's transition band,
making it less selective across the frequency spectrum.
Compared with the Hamming window, the Blackman

window is more severe (the corresponding reduction is
66% at the halfway point), and its effects are more ex
treme. That is, it nearly eliminates gain function ripple
but further widens the gain function transition band.

Practical Considerations in Frequency Domain
Digital Filtering

Slow drift. The requirement for stationarity, the re
quirement that all frequencies present in the time series
be limited to the harmonics of liT, and the typical avail
ability of analysis only of time series the lengths of
which are a power of 2 provide important practical con
straints on the appropriateness of frequency domain
analysis. A particularly underappreciated aspect ofthese

constraints is the stationarity requirement in the face of
slow drift in the data.

The wide range of possible violations of stationarity
precludes a thorough empirical investigation of the con
ditions under which such violations seriously distort
one's analysis. However, we used the simulated slow
drift data discussed earlier to investigate the impact on
FHT output (see Glaser & Ruchkin, 1976, chap. 3, for an
analytic discussion of this point). As was the case with
the time domain filters with adequate numbers of
weights, FHT output was not seriously affected. Even
when we added a 250-JiV/sec linear trend, FHT output in
the alpha band changed by less than .07% from the ideal
value.Ofrelevance in studies ofP300, the 1-2 and 2-3 Hz
bins showed almost no effect. Virtually all of the activ
ity contributed by the linear trend was confined to the
0-1 Hz bin. Thus, slow drift is likely to be problematic
only for investigators concerned about very slow activity.

Windowing. Because Fourier analysis in principle re
quires continuous data, but real-world data epochs are
discontinuous, the ends of the epoch present a serious
problem. Unless the only signals present in the data are
sinusoidal waves with periods of exactly liT and its har
monics (T, again, being the length of the epoch), the data
value at the end ofthe epoch will not generally be that of
the start at the epoch. To minimize disruption from that
discontinuity, it is common to window each epoch-to
taper the ends toward zero by using a weighting function



that resembles the positive halfcycle ofa sine wave. Un
derstanding the relationship ofthis windowing ofdata, in
the context of frequency domain filtering, to the win
dowing of weights discussed earlier, in the context of
time domain filtering, helps to clarify the relationship of
time and frequency domain filtering more generally. In
the case of time domain filtering, we window the weights,

in the time domain, and then we cross-multiply the
weights with the data. In the case of frequency domain
filtering, we window the data in the time domain, and
then we employ the FFT or FHT to convert the data to the

frequency domain. In both cases, the windowing is ap
plied in the time domain. In fact, the same choices of

windowing functions are available for both uses. In both
the time domain and the FHT computations used for the
simulations that we report here, we employed the Ham

ming window.
The role of windowing in time domain and frequency

domain approaches may be summarized and compared

as follows. The time domain approach cross-multiplies
three time series in the time domain: the windowing
function, the (unwindowed) weights (the inverse trans
form of the desired gain function), and the original data.
The frequency domain approach cross-multiplies two
time series in the time domain: the windowing function
and the original data. Then, after this product is trans
formed to the frequency domain, the frequency domain
approach does a third cross-multiplication, using the de
sired gain function. The pragmatic point is that the in
vestigator needs to choose a windowing function for use
with FFT or FHT analysis, just as was needed for use

with the time domain filtering discussed earlier.
Epoch overlap. Although advisable in principle, this

tapering of data prior to FFT or FHT necessarily loses
information (because some data points receive weights
less than 1.0 in the tapering function). To compensate for
this problem, overlapping segments are commonly ana
lyzed when multiple contiguous epochs are available.
Forexample, when one is processing a lengthy EEG epoch
1 sec at a time with 50% overlap, the first epoch to be an
alyzed covers 0-1,000 msec, and the second epoch cov
ers 500-1,500 msec. The weighting function would have
tapered (substantially underrepresented) the data from
roughly 800 to 1,000 msec in the 0-1,000 msec epoch,
but those data would pass through the tapering function
almost intact during analysis of the 500-1,500 msec
epoch.

There is no firm rule for how muchoverlap there should
be, but common amounts are 25%, 50%, and 75%.5

When one is using a pure sine wave as simulated data,
the choice of overlap should make no difference, pro
vided that the epoch is long relative to the sine wave fre
quency, because the same information is contained in any
epoch. In the present case, we applied the FHT to 1.024
sec epochs (28 data points) of the 60-sec, 10-Hz sine
wave. As expected, overlaps of 0%, 25%, 50%, and 75%
made no difference, within rounding error, and they pro
duced RMS values very close to those for the time do
main filters with the most weights in Tables 1 and 2.
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One consequence of the overlap strategy can be noted.

The run time ofa straightforward implementation of the
Fourier transform is proportional to N2, where N is the
number of data points in the time series analyzed. The

fast Fourier transform improves this to N * log, N. This
is an enormous improvement for large N. As noted ear
lier, one option to reduce violation ofthe stationarity as
sumption is to analyze long epochs as a series of short
epochs, such as a 60-sec time series analyzed via 60
FFTs of l-sec epochs. This approach has the added ad

vantage of requiring less total run time-43% less for a
60-sec time series. However, using a 50% overlap, 119
rather than sixty l-sec analyses must be run, taking 14%

longer than a single 60-sec time series. Furthermore, be
cause the frequency resolution ofthe FFT or FHT output
is liT, analyzing the longer epoch provides better fre

quency resolution. Glaser and Ruchkin (1976) showed
that the frequency spectrum leakage discussed earlier af
fects less of the frequency spectrum for small values of
liT. Investigators must weigh these tradeoffs in selecting
epoch length.

COMPARISON OF TIME AND FREQUENCY

DOMAIN DIGITAL FILTERING

The interchangeability of time domain and frequency
domain representations of a given waveform warrants
emphasis. Either description completely specifies the
raw phenomenon illustrated in the composite waveform.
One description may be more tractable for a particular
type of analysis or more intuitively appealing for a par
ticular type of question, but exactly the same informa
tion is available in the two representations. Given the
focus in this paper on filtering, the relevant implication
of this fundamental point is that equivalent filtering can
be accomplished in the time domain or in the frequency
domain. For at least some kinds of methods in each do
main, there is a direct analogue in the other domain. An
example ofthis can be seen in the steps illustrated in Fig
ure 4. We began with raw data collected in the time do
main and with an ideal filter gain function specified in
the frequency domain. To generate the weights for a time
domain filter, we transformed the frequency domain
gain function into the time domain. Alternatively and
equivalently, however, we could transform the raw data
into the frequency domain and conduct the filtering
there, simply by cross-multiplying, frequency bin by fre
quency bin, the frequency spectrum of the raw data with
the desired gain function. Various details, choices, and
tradeoffs are left out of this comparison for clarity, but
the point is that many time domain operations have fre
quency domain analogues and vice versa. The investiga
tor should choose a method based on familiarity, avail

ability, speed, and so forth.
Of practical interest is how the accuracy and speed of

the time domain digital filtering method emphasized
earlier in this paper compare with those of the FHT. We
evaluated this empirically, finding both methods to be
highly accurate (given sufficient weights for the time do-
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Table 3
Time Domain Filtering of Real EEG

No. Weights Filtered RMS Value

21 7.071
31 4.600
41 2.591
51 2.470

101 3.325
125 3.538
I~ 3~~

251 3.982
501 ~177

1,023 4.280

Note-Table entries are postfiltering RMS signal voltage in J.N for an
input signal consisting ofreal EEG sampled at 250 Hz.

main filter) and finding each method to be superior
under some circumstances, depending on tradeoffs ofac
curacy and speed. We employed two 60-sec data sets,
sampled at 250 Hz and filtered for an 8-13 Hz bandpass.
The first was the same pure 10-Hz sine wave used in
simulations reported above. The second was a sample of
actual EEG, to provide a comparison using a complex,
real-world signal containing noise.

Filter Accuracy
Choice of degree of overlap is potentially more of an

issue with complex, nonstationary, real-world EEG/ERP
data. We used 60 sec of real EEG data recorded from
F3-Ml and M2-Ml derivations (International 10-20
System; Jasper, 1958) and converted off line to a linked
mastoids reference, corrected for EOG artifact (Gratton
et al., 1983; Miller et al., 1988), and analyzed in 1.024
sec epochs. Each epoch was Hamming windowed. With
the FHT, overlaps of0%, 25%, 50%, and 75% produced

RMS values of4.459,4.025,4.293, and 4.290).tV. These
four values are quite consistent, although increased over
lap appears to be associated with more stable values.

Table 3 illustrates the results of similar analyses but
using a time domain filter with varying numbers of
weights. As the number of weights increases from 51,
the RMS values grow toward that for the 1,023-weight
filter. At 1,023 weights, the filtered RMS value (4.280)
is virtually identical to the values for the 50% (4.293)
and 75% (4.290) overlaps in the FHT analysis.

As illustrated above in the Etienne et al. (1990) exam
ple and also in Figure 5, filters with fewer weights, in
general, pass less of the activity in the pass band(s) and
more activity in the stop band(s). If the epoch to be fil
tered contains considerable activity in frequencies adja
cent to the desired pass band, the computed (filtered)
RMS value may fluctuate substantially as a function of
what transition band activity is passed. Thus, the RMS
values could vary greatly as a function ofactivity in other
parts of the frequency spectrum. This fluctuation is ap
parent for the filters in Table 3 with the fewest weights.
The poor gain functions ofthose filters (see Figure 5) in
dicates that a significant portion of the low frequencies
in the data would be passed. With RMS values at 0-1 Hz
being substantially larger than those in the alpha band in
the data sample, the RMS values obtained by the putative
"alpha" filters in Table 3 that have relatively few weights
fluctuated badly. It should be noted that these filters nev
ertheless have considerably more weights than do many
used in the ERP literature, underscoring our earlier point
about the potential inadequacy of common time domain
digital filters.

The vulnerability of time domain filters with few
weights is a function of the signal-to-noise ratio (pass-
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band activity/stop-band activity), the width of the pass

band (because narrow pass bands are approximated es

pecially badly with few weights), and how close the lower

bound of the pass band is to 0 Hz (because a significant

de level may be present, and filters with few weights may

pass much of that activity). In fact, no filter in Table 3

with fewer than 51 weights removed all of the O-Hz ac

tivity nor passed even halfof the activity in the pass band.

The 51-weight filter eliminated over 99% ofthe 0-Hz ac

tivity but passed no more than 54% of the activity at any

frequency within the 8-13 Hz pass band (see Figure 5).

Not until the 175-weight filter was 100% ofthe 10-11 Hz

activity passed (still, less than 100% ofthe 8-10 Hz and

11-13 Hz activity was passed). In summary, the FHT

was clearly superior to the shorter time domain filters in

representing the IO-Hzsignal. With enough weights in the

time domain filter, the two methods converge-as they

should, given the equivalence of time domain and fre

quency domain filtering methods discussed earlier.

Filter Speed
Aside from accuracy, the two kinds of methods may

differ in speed. An appeal of the FHT is its speed rela

tive to that of typical FFT implementations, but it is not

clear a priori how those frequency domain methods com

pare with the speed of the time domain digital filter

method emphasized in this paper. For a given data sam

ple, the run time of the time domain filter is directly pro

portional to the number of weights. Table I illustrated

that that filter's accuracy asymptoted when the number

of weights was sufficient to span several cycles of the

target signal. In contrast, the run time of the FHT is di

rectly proportional to the degree of overlap of the win

dowed epochs. Thus, because run times for the two

methods are sensitive to different parameters, no single,

general speed comparison is possible (see Ruchkin,

1988, for some general remarks on comparative speed).

However, if on the basis ofTables I and 3 we assume that

the 25 I-weight filter comes close enough to asymptotic

accuracy (asymptote reached for three ofthe four columns

in Table 1), and if we take 50% overlap of epochs to be

a middle-ground case for the FHT approach (50% is

commonly employed in EEG studies using the FFT), in

our various simulations we found that the FHT compu

tation took about 60% as long as that of the time domain

filter.

Although such a difference in run time is not striking,

the advantage of the FHT could become significant, de

pending on the size of the data set to be analyzed and the

computational facilities available. On the other hand,

typical applications of time domain filters often employ

far fewer weights than do most of the cases investigated

here. Filter speed would be substantially enhanced, al

though in many cases filter accuracy would be signifi

cantly reduced. In such cases, the time domain approach

could be considerably faster than the FHT and, therefore,

faster still than a standard FFT implementation. Fur-

FILTERING IN EEG/ERP ANALYSIS 65

thermore, the time domain method is not confined to

epochs consisting of 2n samples.

It should be noted that the FFT and FHT algorithms

were designed to minimize execution time. Conceivably,

a variety of optimizations could be developed for time

domain filters. The time domain method emphasized in

this paper was not developed with speed in mind, nor is

it thoroughly representative of the many other forms of

time domain filter methods. In either domain, it is some

times possible to optimize a given method for a highly

constrained problem on a particular computing platform.

For example, algorithms have been developed to gener

ate efficient integer-oriented assembly language for a

specific-length FFT (e.g., 256 points) for a specific com

puter architecture or to remove the power-of-2 constraint

(Brigham, 1974). In summary, the implementation of a

particular filter on a particular platform may have much

more impact on computational speed than does the

choice of generic type of filter.

SUMMARY AND RECOMMENDATIONS

This paper has emphasized, first, that time domain

digital filters in various forms are pervasive in the

EEG/ERP literature, although the conceptual continuity

across specific examples is not always appreciated; sec

ond, that time domain filters are robust to variations in

real-time filter weight density and slow drift but not to

variations in number ofcycles spanned; and, finally, that

the FHT appears to be an underappreciated method which

is faster not only than the commonly used FFT but also

in some cases than time domain digital filtering. Such

generalizations must be offered cautiously, for there are

surely cases in which empirical conclusions might be dif

ferent. Furthermore, the goals of digital signal process

ing vary greatly across studies. For example, the FFT and

FHT have the advantage of providing a full-spectrum,

frequency domain characterization of the data, which is

more commonly of interest in EEG than in ERP studies.

Time domain filtering can readily be applied in real time,

and it preserves the data in their original form (more

suitable for conventional ERP component scoring), al

though the output of frequency domain filtering can be

transformed back to the time domain as well.

Our strongest recommendation is that investigators

evaluate the filters they plan to use before becoming

committed to them.f This can be done empirically, with

simulations such as those undertaken for this paper, or

analytically, relying on evaluation ofthe gain function of

a given filter. As concluded above, the number of cycles

spanned deserves particular attention.

Second, we recommend that gain functions be de

scribed more fully than is typical in published work. Al

though inclusion ofa figure providing the full gain func

tion is generally unnecessary, investigators should report

more than the nominal cutoff frequency (which itself

should be specified as the half-amplitude or the half-
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power frequency; see Cook & Miller, 1992). For exam

ple, the gain function slope at the cutoff frequency and
in some cases the degree of ripple in the pass band and

stop band should be provided. Gains at specific frequen

cies are sometimes important, such as alpha band arti

fact in a P300 study involving single-trial scoring.

Third, we recommend that investigators pay as much

attention to the low end of the frequency spectrum as to

the high end. The need for a sampling frequency well
above twice the highest frequency in the raw data is gen

erally understood. Investigators often implement some
sort of smoothing filter to minimize the resulting high

frequency activity that is not ofinterest in the time series

to be filtered. However, present simulations suggest that

time domain digital filters may need to span several cy

cles of the slowest frequencies present in order for arti

factual results to be avoided. The number ofcycles needed

in order to reach asymptotic filter performance may be
highly dependent on the parameters of a given case, but

the general point is that frequency resolution will im

prove when more weights are used.

Fourth, we share Farwell et al.'s (1993) serious reser

vations about boxcar filters. Werecommend that their use

be confined to cases in which their appropriateness has

been clearly established. Their computational speed ad
vantage rarely provides a compelling reason for their use.

We hope that the present discussion encourages appre

ciation for and more systematic evaluation oftime domain

and frequency domain approaches to digital filtering.
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NOTES

I. The methods discussed in this paper are applicable to data points

arrayed in space as well as to those arrayed in time. Spatial frequency

analysis becomes more feasible as the number and spatial density of

electrode placements increases (see Srinivasan, Tucker, & Murias,

1998). The methods discussed in this article generally assume that the

time series ofdata resulted from sampling at equal time intervals. Thus,

for a straightforward application of these methods to spatial time-series

data, electrodes would have to be equally spaced on the scalp. Further

more, two- and three-dimensional extensions of such methods would be

desirable. The methods discussed in this paper are also applicable be

yond EEG/ERP data, encompassing other psychophysiological mea

sures such as the electrogastrogram, the magnetoencephalogram, heart

rate, and hemodynamic imaging data.

2. A sine wave signal can be completely characterized by three param

eters: amplitude, frequency, and phase. The concept ofphase can be read

ily understood ifone conceives of the time course ofa cosine wave as ro-



tation around a circle. Thus, phase refers to where the cosine function is

in its cycle at a given moment. Phase is commonly quantified in terms of

degrees (of the 360· in a circle) or in radians (of the 21tradians in a cir

cle). A cosine wave starting at amplitude y = I (at x = 0) is said to be at

a phase angle off)" or 0 radians. One quarter cycle later, as it crosses 0 (at

x = I), the cosine wave is at 90· (360/4) or rrJ2 (2rrJ4) radians. One can

follow this throughout the cycle or, equivalently, around the circle.

3. See Appendix A in Cook and Miller (1992) for discussion of the

computational steps for the direct and inverse Fourier transforms-that

is, for shuttling between time and frequency domain representations.

See Makeig and lung (1996) for a discussion ofsome nonsinusoidal ap

proaches to frequency decomposition in psychophysiology.

4. Although bin is the common term, it can be misleading. It implies

that the amplitude value for a given "bin" reflects all ofthe activity in a

range of frequencies. For example, in an FFT of a I-sec epoch, the fre

quency resolution will be liT = I Hz. It is common to misunderstand,

say, the 8-Hz bin as capturing all frequencies between 8 and 9 Hz or be-
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tween 8.5 and 9.5 Hz. In fact, however, it correctly represents activity

only at precisely 8 Hz. In this example, any activity that is not a har

monic of I Hz-that has a frequency that is not an integer-is not ac

curately represented by any "bin" and instead "leaks" into other "bins."

This issue ofharmonics and leakage is discussed later in this paper (see

also Glaser & Ruchkin, 1976).

5. As this paper went to press, it was pointed out that if a Hanning

window is used, then 50% epoch overlap provides uniform weighting

over time (i.e., that the weights applied to each time point sum to 1.0),

whereas there is no ideal overlap for a Hamming window (James Long,

personal communication, July 25, 1997).

6. Software (based on Cook, 1981) available from E. W.Cook com

putes and plots the gain function for any arbitrary set ofweights used in

the kind of zero-phase-shift FIR filter emphasized in this paper, in

cluding a boxcar filter. Alternatively, it computes weights for such fil

ters on the basis of user-specified cutoff frequencies, sampling fre

quency, and window type.


