

DIGITAL FILTERS FOR NON-REAL-TIME DATA PROCESSING

by James T. Taylo

Prepared by
NORTHEAST LOUISIANA STATE COLLEGE
Monroe, La.
for George C. Marshall Space Flight Center

DIGITAL FILTERS FOR NON-REAL-TIME DATA PROCESSING

By James T. Taylo

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 8-11492 by NORTHEAST LOUISIANA STATE COLLEGE Monroe, La. for George C. Marshall Space Flight Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Abstract

Digital filtering techniques have become significant methods for data processing. This report presents the general theory through the definition of a digital filter and also presents a class of digital filters, called Martin-Graham filters, which are particularly wellsuited to the operation of data smoothing. Included in this class are filters for non-real-time smoothing; smoothing and differentiation; smoothing and interpolation; smoothing, differentiation, and interpolation; and smoothing and integration. Application of these filters requires that the data be band-limited. In most cases, error bounds are given. Sample programs and sample results are also included.

PREFACE

On November 6, 1964, a project sponsored by the Computation Laboratory of the Marshall Space Flight Center, Huntsville, Alabama, was initiated with Northeast Louisiana State College to perform a research study of numerical smoothing methods and numerical aspects of finite difference methods. The research was supported in its entirety by the National Aeronautics and Space Administration, Huntsville, Alabama, under Contract No. NAS 8-11492 and was performed by members of the Mathematics Department of Northeast Louisiana State College. The Contract Technical Representatives were Mr. Ronald J. Graham and Mr. David G. Aichele of the Computation Laboratory.

Mathematics Department members involved in the research during the term of the contract were Dr. Edward B. Anders, Principal Investigator from November 6, 1964 to September l, 1966, Mr. James T. Taylo, Investigator, November 6, 1964 to September 1, 1966, and Principal Investigator, September 1, 1966 to March 1, 1967; and for various periods, Dr. Daniel E. Durpee, Dr. Lonnie T. Bennett, Mr. James O'Neil, Dr. Dale R. Bedgood, Mr. Stephen Hamm, and Mr. Kenneth R. Russell. Typing of the final report was done by Mrs. Betty Stone and the proofreading was done by Mr. Russell Rainbolt.

Two of the investigators on this contract were also involved in the research performed under Contract No. NAS 8-11492 at Auburn University, Auburn, Alabama. The final report on that contract, CR-136, was wellreceived, and one project undertaken under NAS 8-1I492 was revision and
rewriting of that final report. The report presented here completes that project, and also incorporates significant results obtained under the present contract.

In writing this report, it was assumed that the reader is familiar with Fourier series. A very readable presentation of the Fourier theory can be found in [1].

The methods employed here in the applications assumes that the transfer function of a filter is given analytically, and that it is such that its inverse Fourier transform can be found. Cases do arise where only values of the transfer function of a filter are known at equally spaced points on one-half the period of the filter. A method for computing the corresponding filters weights is given in Appendix B.

In Appendix C, a method is given for determining coefficients in the Fourier series representation of a function. Application requires that the series either be finite or the coefficients a_{n} and b_{n} be negligible for large n, and that the samples of the function can be obtained at the required points.

A reader interested only in the weight expressions and the applications may go directly to Chapter IV.

TABIE OF CONIENTS

ABSTRACT iii
PREFACE v
CHAPIER I
CLASSICAL FOURIER ANALYSIS 1
1.0 Introduction 1
1.1 Improper Integrals and Absolutely Integrable Functions 2
1.2 The Fourier Transform 6
1.3 Special Forms of the Fourier Transforms 8
1.4 Some Simple Theorems 10
1.5 The Convolution Theorems 16
CHAPTER II
GENERALIZED FUNCTIONS AND THEIR FOURIER TRRANSFORMS 20
2.0 Introduction 20
2.1 The Test Space S 24
2.2 Generalized Functions 29
2.3 The Dirac Delta Function and Its Transform 45
2.4 Comments on Notation 48
2.5 Equality of Ordinary and Generalized Functions on an Interval 51
2.6 Convolution of Generalized Functions 51
2.7 Trigonometric Series 55
CHAPIER III
FILIERS 58
3.0 Linear Systems 58
3.1 Ideal Low Pass Filters 61
3.2 The Sampling Theorem 63
3.3 Definition of a Digital Filter 67
3.4 Even and Odd Transfer Functions 70
3.5 Methods of Filter Approximation 71
3.6 Error Analysis 73
3.7 Gibbs' Phenomenon 75
CHAPIER IV
FILIER DESIGN 77
4.0 Assumptions About the Input 77
4.1 Fil.ter Design by Convolution 78
4.2 Comparison of the Performance of the Ormsby and Martin-Graham Smoothing Filters 88
4.3 Some New Smoothing Filters 89
4.4 Some Smoothing Error Bounds 93
4.5 Smoothing Filter Constraints 95
4.6 Band-Pass Filter 104
CHAPIPER V
FIITERS FOR SMOOTHING AND DIFFFRENPIATION 110
5.0 Martin-Graham Filters 110
5.1 Smoothing anc First Derivative Filter 111
5.2 Band-Pass Smoothing and First Derivative Filter 116
5.3 Smoothing and Second Derivative Filter 118
5.4 First and Second Derivative Weights for $1 / 2 T_{d}$ an Integer 120
CHAPTER VI
FILIERS FOR INPEGRATION AND INTERPOLATION 121
6.0 Integrating Filters 121
6.1 Interpolating Filters 126
CHAPIER VII
APPLICATIONS 130
7.0 Editing and Determination of Digital Filter Parameters 130
7.l Empirical Error Bounds for Martin-Graham Filters 131
7.2 Sample Program and Results for the Martin-Graham Smoothing and Derivative Filters 133
7.3 Sample Program and Results for the Martin-Graham Interpolating Filters 151
7.4 Sample Program and Results for Indefinite Integration with Smoothing 168
BTBLIOGRAPHY 173APPENDIX A
CONSTRAINTS 174
APPENDIX B
DETERMINATION OF DIGITAL FILIER WEIGHTS FOR A FILIERWHOSE GAIN AND PHASE FUNCTIONS ARE GIVEN AT A FINITENUMBER OF POINTS183
APPENDIX C
DETERMINATION OF FREQUENCY CHARACTERISTICS IN SAMPIED
DATA 192

CHAPIER I

CLASSICAL FOURIER ANALYSIS

1.0 INTRODUCTION

We shall give here some definitions and results from the classical Fourier analysis. We shall not attempt to establish the Fourier integral theorem and we refer the reader to [1] for a proof with integration in the sense used here. The reader familiar with Lebesgue integration will find a proof in [2].

There are several different forms of the Fourier integral theorem. The so-called complex form of the theorem states that if $h(t)$ is a function of the real variable t, then

$$
\begin{equation*}
h(t)=\int_{-\infty}^{\infty} d f \int_{-\infty}^{\infty} h(x) e^{-2 \pi i f(x-t)} d x \tag{1.0}
\end{equation*}
$$

provided $h(t)$ satisfies one of the variety of sufficient conditions (see Section 1.2 for two such conditions).

The results in this chapter are obtained again in the second chapter in a more general setting. Many of the restrictions placed on the functions in the classical theory are removed there. The duplication is intentional and serves two purposes. First, for the reader not familiar with the Fourier transform, this chapter will serve as an introduction. Secondly, if the reader is willing to accept a few results from the second chapter, he can read this chapter and go directly to the third chapter and the applications.

We shall use integration in the sense of Riemann and integration
will be over the entire real line. Furthermore, our functions can have a finite number of points of discontinuity at which they may be bounded or unbounded. Thus the integrals we encounter shall be improper Riemann integrals of the so-called "third kind".

1.I IMPROPER INTEGRALS AND ABSOLUTELY INTEGRABLE FUNCTIONS

Let $h(t)$ be a function defined for all real t. We shall say that $h(t)$ is integrable if $h(t)$ has at most a finite number of points of discontinuity on the real line and the improper Riemann integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} h(t) d t \tag{1.1}
\end{equation*}
$$

exists (finite). Thus if $t_{1}, t_{2}, \ldots . ., t_{n}$ are points of discontinuity at which $h(t)$ is unbounded, choosing $a_{1}<t_{1}<a_{2}<t_{2}<a_{3}<t_{3}<\ldots$ $\ldots<a_{n}<t_{n}<a_{n+1}$, then (1.1) is the limit
$\underset{\substack{b \longrightarrow 0}}{\lim _{a \rightarrow-\infty}}\left\{\int_{a}^{a_{1}} h(t) d t+\sum_{i=1}^{n}\left[\int_{a_{i}}^{t_{i}-\epsilon} h(t) d t+\int_{t_{i}+\epsilon}^{a} h(t) d t\right]+\int_{a_{n+1}}^{b} h(t) d t\right\}$
if this limit exists, and we say that $h(t)$ is integrable. The integral (1.1) is usually said to be convergent or divergent according to whether the above limit does or does not exist. Thus when we say that $h(t)$ is integrable, we simply mean that $h(t)$ has at most a finite number of points of discontinuity and the integral (1.1) is convergent.

Suppose that $h(t)$ is continuous at t_{0}. Then from the inequality

$$
|\ln (t)|-\left|h\left(t_{0}\right)\right|\left|\leq \ln (t)-h\left(t_{0}\right)\right|
$$

it follows that the function $h(t)$ is continuous at t_{o}. The converse is not always true. A simple example is the function

$$
h(t)=\left\{\begin{array}{rl}
1 & t \leq 0 \\
-1 & t>0
\end{array}\right.
$$

The function $|h(t)|$ is continuous at $t=0$, but $h(t)$ is not. Thus if a function $h(t)$ has at most a finite number of points of discontinuity, then so does the function $|h(t)|$, but the converse is not true in general.

We shall say that a function $h(t)$ which has at most a finite number of points of discontinuity is absolutely integrable if the function $|h(t)|$ is integrable in the above sense, that is, the improper Riemarin integral

$$
\begin{equation*}
\int_{-\infty}^{\infty}|h(t)| d t \tag{1.2}
\end{equation*}
$$

exists. The continuity of $|h(t)|$ except at a finite number of points follows from that of $h(t)$. This is sometimes expressed by saying that the integral (1.1) is absolutely convergent. Noting that

$$
-|h(t)| \leq h(t) \leq|h(t)|
$$

and adding $|h(t)|$ to each member, we have

$$
\begin{equation*}
0 \leq h(t)+|h(t)| \leq 2|h(t)| \tag{1.3}
\end{equation*}
$$

By (1.3) and the comparison test for integrals, the existence of.
(1.2) implies that the integral

$$
\int_{-\infty}^{\infty}[h(t)+|h(t)|] d t
$$

exists. But then we have that

$$
\int_{-\infty}^{\infty}[h(t)+|h(t)|] d t-\int_{-\infty}^{\infty}|h(t)| d t=\int_{-\infty}^{\infty} h(t) d t
$$

and the integral (1.1) exists. This proves the following theorem. Theorem l. 10 If $h(t)$ is absolutely integrable, then $h(t)$ is integrable. The converse is not always true, for example, the function

$$
h(t)=\frac{\sin t}{t}
$$

is integrable, but it is not absolutely integrable.
Special forms of other theorems on improper integrals apply here and we shall use them when needed. Thesc theorcms are found in most advanced calculus texts. Some other results for improper integrals containing a parameter shall be needed and we list these for easy reference. Proofs of these are usually found in advanced calculus texts also.

Let $h(t, \beta)$ be a function of t involving the parameter β and suppose that $h(t, \beta)$ is integrable with respect to t for $\beta_{1} \leq \beta \leq \beta_{2}$, that is, $h(t, \beta)$ has at most a finite number of points of discontinuity as a function of t and the improper integral

$$
\begin{equation*}
\Phi(\beta)=\int_{-\infty}^{\infty} h(t, \beta) d t \tag{1.4}
\end{equation*}
$$

exists for all β in $\left[\beta_{1}, \beta_{2}\right]$. The integral (1.4) is said to be uniformly convergent in $\left[\beta_{1}, \beta_{2}\right]$ if for each $\epsilon>0$ there exists a number $\mathbb{N}(\epsilon)>0$ such that

$$
\left|\Phi(\beta)-\int_{-a}^{b} h(t, \beta) d t\right|<\epsilon
$$

for all $a, b>N(\epsilon)$ and all β in $\left[\beta_{1}, \beta_{2}\right]$.
Theorem 1.ll Weierstrass M test. If there exists a function $M(t) \geq 0$ such that

$$
\text { (a) }|h(t, \beta)| \leq M(t) \text { for all } t \text { and all } \beta \text { in }\left[\beta_{1}, \beta_{2}\right]
$$

(b) $\int_{-\infty}^{\infty} M(t) d t$ converges,
then $h(t, \beta)$ is absolutely integrable with respect to t and the integral (1.4) is uniformly convergent in $\left[\beta_{1}, \beta_{2}\right]$.

Theorem 1.12 If $h(t, \beta)$ is integrable with respect to t and continuous as a function of β for $\beta_{1} \leq \beta \leq \beta_{2}$ and if (1.4) is uniformly convergent in $\left[\beta_{1}, \beta_{2}\right]$, then

$$
\Phi(\beta)=\int_{-\infty}^{\infty} h(t, \beta) d t
$$

is a continuous function of β on $\left[\beta_{1}, \beta_{2}\right]$. In particular,

$$
\beta \xrightarrow{\lim } \beta_{0} \Phi(\beta)=\beta^{\lim } \beta_{0} \int_{-\infty}^{\infty} h(t, \beta) d t=\int_{-\infty}^{\infty} \beta^{l i m} \beta_{0} h(t, \beta) d t .
$$

Theorem 1. 13 Under the conditions of Theorem 1.12, the function $\Phi(\beta)$ is integrable (in the proper sensc) on $\left[\beta_{1}, \beta_{2}\right]$ and

$$
\int_{\beta_{1}}^{\beta_{2}} \Phi(\beta) d \beta=\int_{\beta_{1}}^{\beta_{2}} d \beta \cdot \int_{-\infty}^{\infty} h(t, \beta) d t=\int_{-\infty}^{\infty} d t \int_{\beta_{1}}^{\beta_{2}} h(t, \beta) d \beta
$$

that is, the order of integration may be interchanged.

Theorem 1. 14 If $h(t, \beta)$ is continuous as a furction of the two variables t and $\beta, \beta_{1} \leq \beta \leq \beta_{2}$, and is integrable with respect to t, and if
(a) $\frac{\partial h(t, \beta)}{\partial \beta}$ exists and is continuous with respect to β,
(b) $\quad \int_{-\infty}^{\infty} \frac{\partial h(t, \beta)}{\partial \beta} d t$ exists and is uniformly convergent in $\left[\beta_{1}, \beta_{2}\right]$ (and hence is continuous there), then the function

$$
\begin{aligned}
\Phi(\beta) & =\int_{-\infty}^{\infty} h(t, \beta) d t \text { is differentiable in }\left[\beta_{1}, \beta_{2}\right] \text { and } \\
\Phi^{\prime}(\beta) & =\frac{d}{d \beta} \int_{-\infty}^{\infty} h(t, \beta) d t=\int_{-\infty}^{\infty} \frac{\partial h(t, \beta)}{\partial \beta} d t
\end{aligned}
$$

1.2 THE FOURIER TRANSFORM

If the integral (1.0) exists, it can be written as

$$
h(t)=\int_{-\infty}^{\infty} d f \quad\left[e^{2 \pi i f t} \quad \int_{-\infty}^{\infty} h(x) e^{-2 \pi i f x} d x\right]
$$

and letting

$$
\begin{equation*}
H(f)=\int_{-\infty}^{\infty} h(t) e^{-2 \pi i f t} d t \tag{1.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
h(t)=\int_{-\infty}^{\infty} H(f) e^{2 \pi i f t} d f \tag{1.6}
\end{equation*}
$$

The function $H(f)$ is called the Fourier transform of $h(t)$. A sufficient but not necessary condition for the existence of (1.5) is that $h(t)$ be absolutely integrable. To see this, we note that

$$
\left|e^{-2 \pi i f t}\right|=1, \quad\left|h(t) e^{-2 \pi i f t}\right|=|h(t)|
$$

and $h(t)$ absolutely integrable implies that $h(t) e^{-2 \pi i f t}$ is absolutely integrable. Hence $h(t) e^{-2 \pi i f t}$ is integrable for each f and (1.5) exists. By Theorem 1.12, $H(f)$ is continuous for all f. Also it can be shown that $H(f)$ converges to zero as $|f| \longrightarrow \infty$ (see [1]). This condition for the existence of (1.5) is sufficient but not necessary.

The validity of (1.0), and hence of (1.6), is a different
matter. These are valid if $h(t)$ is absolutely integrable and also satisfies one of the following conditions:
(a) $h(t)$ is of bounded variation on every finite interval.
(b) $h(t)$ is piecewise smooth on every finite interval.

These conditions are sufficient but not necessary.
If (1.6) holds, then $h(t)$ is called the inverse Fourier transform of $H(f)$. To denote that two functions are related by (1.5) and (1.6) we write

$$
h(t) \longleftrightarrow H(f)
$$

The Fourier transform is the only type transform we shall use and no confusion should arise if we drop the word "Fourier" and speak of the "transform of $h(t)$ " and the "inverse transform of $H(\cdot f)$ ".

If we interpret the variable t as time, then the variable f is interpreted as frequency (cycles per second). Letting $w=2 \pi f$ in (1.5) and (1.6) yields the following form of the transform pair:

$$
\begin{aligned}
& \bar{H}(w)=\int_{-\infty}^{\infty} h(t) e^{-i w t} d t \\
& h(t)=(1 / 2 \pi) \quad \int_{-\infty}^{\infty} \bar{H}(w) e^{i w t} d w
\end{aligned}
$$

where $\bar{H}(w)=H(f)$ and $w=2 \pi f$ is angular frequency. This form of the transform pair does not possess the symmetry of (1.5) and (1.6) due to the constant $(1 / 2 \pi)$ appearing in the second expression. Symmetry can be obtained by multiplying the first expression by $(2 \pi)^{-\frac{1}{2}}$ and taking a factor of $(2 \pi)^{-\frac{1}{2}}$ under the integral sign in the second, and then replacing $(2 \pi)^{-\frac{1}{2}} \bar{H}(w)$ by $H(w)$ in both expressions. The forms (1.5) and (1.6) suit our purposes best and shall be used. The exponents $\pm 2 \pi i f t$ are cumbersome and we shall use the notation

$$
\begin{equation*}
\exp (x)=e^{x} \tag{1.7}
\end{equation*}
$$

which will avoid some notation problems and is somewhat more tractable.

1.3 SPECIAL FORMS OF THE FOURIER TRANSFORMS

In general, $h(t)$ and $H(f)$ may be complex. If $h(t)$ is complex, letting $h_{l}(t)$ and $h_{2}(t)$ denote its real and imaginary parts, we have

$$
h(t)=h_{1}(t)+i h_{2}(t)
$$

Using $\exp (-2 \pi i f t)=\cos 2 \pi f t-i s i n 2 \pi f t$, from (1.5) we obtain

$$
\begin{aligned}
H(f)= & \int_{-\infty}^{\infty}\left[h_{1}(t) \cos 2 \pi f t+h_{2}(t) \sin 2 \pi f t\right] d t \\
& -i \quad \int_{-\infty}^{\infty}\left[h_{1}(t) \sin 2 \pi f t-h_{2}(t) \cos 2 \pi f t\right] d t
\end{aligned}
$$

Thus $H(f)=H_{1}(f)+i H_{2}(f)$ where

$$
\begin{align*}
& H_{1}(f)=\int_{-\infty}^{\infty}\left[h_{1}(t) \cos 2 \pi f t+h_{2}(t) \sin 2 \pi f t\right] d t \\
& H_{2}(f)=-\int_{-\infty}^{\infty}\left[h_{1}(t) \sin 2 \pi f t-h_{2}(t) \cos 2 \pi f t\right] d t \tag{1.8}
\end{align*}
$$

In a similar manner, we obtain

$$
\begin{align*}
& h_{1}(t)=\int_{-\infty}^{\infty}\left[H_{1}(f) \cos 2 \pi f t-H_{2}(f) \sin 2 \pi f t\right] d f \\
& h_{2}(t)=\int_{-\infty}^{\infty}\left[H_{1}(f) \sin 2 \pi f t+H_{2}(f) \cos 2 \pi f t\right] d f \tag{1.9}
\end{align*}
$$

If $h(t)$ is real, then $h_{2}(t)=0$ and $h_{l}(t)=h(t)$. Then the expressions (1.8) reduce to

$$
\begin{equation*}
H_{l}(f)=\int_{-\infty}^{\infty} h(t) \cos 2 \pi f t d t \tag{1.10a}
\end{equation*}
$$

$$
\begin{equation*}
H_{2}(f)=-\int_{-\infty}^{\infty} h(t) \sin 2 \pi f t d t \tag{1.10b}
\end{equation*}
$$

Replacing f by $-f$ in (1.10a) and (1.10b) we see that

$$
\begin{equation*}
H_{1}(-f)=H_{1}(f) \text { and } H_{2}(-f)=-H_{2}(f) \tag{1.11}
\end{equation*}
$$

Therefore $H_{1}(f)$ is an even function of f and $H_{2}(f)$ is an odd function of f. Then

$$
H(-f)=H_{1}(-f)+i H_{2}(-f)=H_{1}(f)-i H_{2}(f)
$$

and hence

$$
\begin{equation*}
H(-f)=H^{*}(f) \tag{1.12}
\end{equation*}
$$

Conversely, if $H(-f)=H *(f)$, then

$$
H_{1}(f)-i H_{2}(f)=H_{1}(-f)+i H_{2}(-f)
$$

and equating the real and imaginary parts we see that $H_{1}(f)$ is even and $H_{2}(f)$ is odd. Then the integrand in the first integral of (1.9) is even and the integrand in the second is odd. Hence $h_{2}(t)=0$ and $h(t)$ is real. Furthermore,

$$
\begin{equation*}
h(t)=2 \int_{0}^{\infty}\left[H_{1}(f) \cos 2 \pi f t-H_{2}(f) \sin 2 \pi f t\right] d f \tag{1.13}
\end{equation*}
$$

A special case which we shall encounter later is when $H(f)$ is real and even. Then (1.12) holds and putting $H_{2}(f)=0$ in (1.13) we obtain

$$
\begin{equation*}
h(t)=2 \int_{0}^{\infty} H(f) \cos 2 \pi f t d f \tag{1.14}
\end{equation*}
$$

Another special case is when $H(f)$ is purely imaginary and odd.

Then $H(f)=i H_{2}(f), H(-f)=-H(f)=-i H_{2}(f)=H *(f)$ and (1.12) holds. Putting $H_{1}(f)=0$ and $i H(f)=i^{2} H_{2}(f)=-H_{2}(f)$ in (1.13) we obtain

$$
\begin{equation*}
h(t)=2 i \int_{0}^{\infty} H(f) \sin 2 \pi f t d f \tag{1.15}
\end{equation*}
$$

If $h(t)$ is purely imaginary, then $h(t)=i h_{2}(t)$ and

$$
\begin{align*}
& H_{1}(f)=\int_{-\infty}^{\infty} h_{2}(t) \sin 2 \pi f t d t \\
& H_{2}(f)=\int_{-\infty}^{\infty} h_{2}(t) \cos 2 \pi f t d t \tag{1.16}
\end{align*}
$$

Thus $H_{1}(f)$ is odd and $H_{2}(f)$ is even and

$$
\begin{equation*}
H(-f)=H_{l}(-f)+i H_{2}(-f)=-H_{l}(f)+i H_{2}(f)=-H *(f) \tag{1.17}
\end{equation*}
$$

It is easy to show that the converse is true, that is, if $H(f)$ is such that $H(-f)=-H^{*}(f)$, then $h(t)$ is purely imaginary.

1.4 SOME STMPLIE THEOREMS

We present here some simple theorems from the classical theory. These theorems will be restated in the second chapter in a more general setting and proved with less restrictive conditions.

The following theorem is an immediate consequence of the linearity of integration.

Linearity Theorem. If $h(t) \longleftrightarrow H(f), g(t) \longleftrightarrow G(f)$ and if a, b are arbitrary constants, then

$$
\begin{equation*}
\mathrm{ah}(\mathrm{t})+\mathrm{bg}(\mathrm{t}) \longleftrightarrow \mathrm{aH}(\mathrm{f})+\mathrm{bG}(\mathrm{f}) \tag{1.18}
\end{equation*}
$$

Symmetry Theorem. If $h(t) \longleftrightarrow H(f)$, then

$$
\begin{equation*}
\mathrm{H}(\mathrm{t}) \longleftrightarrow \mathrm{h}(-\mathrm{f}) \tag{1.19}
\end{equation*}
$$

Proof: We have

$$
H(f)=\int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t) d t
$$

Replacing f by t and t by $-f$ gives

$$
\begin{aligned}
H(t) & =\int_{\infty}^{-\infty} h(-f) \exp (-2 \pi i t(-f))(-d f) \\
& =\int_{-\infty}^{\infty} h(-f) \exp (2 \pi i f t) d f
\end{aligned}
$$

Scaling Theorem. If $h(t) \longleftrightarrow H(f)$ and a is any non-zero real constant, then

$$
\begin{equation*}
h(a t) \longleftrightarrow \frac{H(f / a)}{|a|} \tag{1.20}
\end{equation*}
$$

Proof: We have

$$
H(f)=\int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t) d t
$$

and replacing f by (f / a) gives

$$
H(f / a)=\int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t / a) d t
$$

Now let $t=a x$. Then $d t=a d x$ and if $a>0$,

$$
H(f / a)=a \quad \int_{-\infty}^{\infty} h(a x) \exp (-2 \pi i f x) d x
$$

If $a<0$, then the order of the integration is reversed and

$$
\begin{aligned}
H(f / a) & =a \int_{\infty}^{-\infty} h(a x) \exp (-2 \pi i f x) d x \\
& =-a \int_{-\infty}^{\infty} h(a x) \exp (-2 \pi i f x) d x
\end{aligned}
$$

Hence, for any $a \neq 0$,

$$
H(f / a)=|a| \int_{-\infty}^{\infty} h(a x) \exp (-2 \pi i f x) d x
$$

Replacing x by t and dividing both sides by $|a|$ completes the proof. First Shifting Theorem. If $h(t) \longleftrightarrow H(f)$ and t_{0} is a real constant, then

$$
\begin{equation*}
h\left(t-t_{0}\right) \longleftrightarrow H(f) \exp \left(-2 \pi i t_{o} f\right) \tag{1.21}
\end{equation*}
$$

Proof: We have

$$
h(t)=\int_{-\infty}^{\infty} H(f) \exp (2 \pi i f t) d f
$$

and replacing t by $t-t_{o}$ gives

$$
\begin{aligned}
h\left(t-t_{0}\right) & =\int_{-\infty}^{\infty} H(f) \exp \left(2 \pi i f\left(t-t_{o}\right)\right) d f \\
& =\int_{-\infty}^{\infty}\left[H(f) \exp \left(-2 \pi i t_{0} f\right)\right] \exp (2 \pi i f t) d f
\end{aligned}
$$

which proves the theorem.
The following theorem is proved in a similar manner.
Second Shifting Theorem. If $h(t) \longleftrightarrow H(f)$ and f_{0} is a real constant, then

$$
\begin{equation*}
h(t) \exp \left(2 \pi i f_{0} t\right) \longleftrightarrow H\left(f-f_{0}\right) \tag{1.22}
\end{equation*}
$$

From (1.20), (1.21), and (1.22), we obtain

$$
\begin{align*}
& h(\text { at }) \exp \left(2 \pi i f_{0} t\right) \longleftrightarrow \frac{1}{|a|} H\left(\frac{f-f_{0}}{a}\right) \tag{1.23}\\
& h\left(a t-t_{0}\right) \longleftrightarrow \frac{1}{|a|} H\left(\frac{f}{a}\right) \exp \left(-2 \pi i t_{0} f / a\right) \tag{1.24}
\end{align*}
$$

Also, letting $a=-1$ in (1.20) gives

$$
\begin{equation*}
h(-t) \longleftrightarrow H(-f) \tag{1.25}
\end{equation*}
$$

First Differentiation Theorem. If $h(t)$ is continuous and $t^{n} h(t)$ is absolutely integrable, then

$$
\begin{equation*}
(2 \pi i t)^{k} h(t) \longleftrightarrow H^{(k)}(f) \tag{1.26}
\end{equation*}
$$

for $k=0,1,2, \cdots, n \cdot\left[H^{(0)}(f) \equiv H(f)\right]$

Proof: Let

$$
A=\max _{|t| \leq 1}\left|(2 \pi)^{n} h(t)\right|
$$

and let

$$
M(t)=\left\{\begin{array}{c}
A \quad|t| \leq 1 \\
\left|(2 \pi t)^{n} h(t)\right| \quad|t|>\perp
\end{array}\right.
$$

By the continuity of $h(t)$ on $[1,-1], A$ is finite and $t^{n} h(t)$ is absolutely integrable by hypothesis. Thus the integral

$$
\int_{-\infty}^{\infty} M(t) d t
$$

converges. Furthermore, for $k=0,1,2, \ldots, n$,

$$
\left|(-2 \pi i t)^{k} h(t) \exp (-2 \pi i f t)\right|=\left|(-2 \pi i t)^{k} h(t)\right| \leq M(t)
$$

for all t and all f. By the Weierstrass M test, the integral

$$
\begin{equation*}
H_{k}(f)=\int_{-\infty}^{\infty}(2 \pi i t)^{k} h(t) \exp (-2 \pi i f t) d t \tag{1.27}
\end{equation*}
$$

exists and is uniformly convergent in $f, k=0,1,2, \ldots, n$.
The integrand in (1.27) satisfies the conditions of Theorem 1.14
for $k=0,1,2, \ldots, n-1$, and hence

$$
\begin{aligned}
H_{k+1}(f)=H_{k}^{(l)}(f) & =\frac{\partial}{\partial f^{\prime}} \int_{-\infty}^{\infty}(-2 \pi i t)^{k} h(t) \exp (-2 \pi i f t) d t \\
& =\int_{-\infty}^{\infty}(-2 \pi i t)^{k+l} h(t) \exp (-2 \pi i f t) d t
\end{aligned}
$$

For $k=O, H_{O}(f)=H(f)=H^{(0)}(f)$, and hence $H_{I}(f)=H^{(1)}(f)$, $H_{2}(f)=H_{1}^{(1)}(f)=H^{(2)}(f), \ldots \ldots, H_{k}(f)=H^{(k)}(f), \ldots \ldots, H_{n}(f)=H^{(n)}(f)$.

Finally, by the continuity and absolute integrability of ($2 \pi i t)^{k} h(t)$ and the Fourier integral theorem, the inversion formula holds for $k=0, l, 2, \ldots \ldots, n$.

Second Differentiation Theorem. If $h(t) \longleftrightarrow H(f)$ and
(I) $h(t)$ is continuous and converges to zero as $|t| \longrightarrow \infty$, and
(2) $h^{(1)}(t)$ is absolutely integrable, then

$$
\begin{equation*}
(2 \pi i f) H(f)=\int_{-\infty}^{\infty} h^{(I)}(t) \exp (-2 \pi i f t) d t \tag{1.28}
\end{equation*}
$$

Proof: We have

$$
H(f)=\int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t) d t
$$

Integrating by parts with

$$
\begin{array}{rlrl}
u & =h(t) & d v & =\exp (-2 \pi i f t) d t \\
d u & =h^{(l)}(t) d t & v & =-(2 \pi i f)^{-l} \exp (-2 \pi i f t)
\end{array}
$$

we obtain

$$
H(f)=(2 \pi i f)^{-I}\left[-\left.h(t) \exp (-2 \pi i f t)\right|_{-\infty} ^{\infty}+\int_{-\infty}^{\infty} h^{(1)}(t) \exp (-2 \pi i f t) d t\right]
$$

and since $h(t) \longrightarrow 0$ as $|t| \longrightarrow \infty$, the first term in the brackets is zero. Multiplying both sides by (2лif), we obtain (1.28).

If $h^{(1)}(t)$ and $h^{(2)}(t)$ satisfy the conditions of the theorem, then integration by parts again yields

$$
(2 \pi i f)^{2} H(f)=\int_{-\infty}^{\infty} h^{(2)}(t) \exp (-2 \pi i f t) d t
$$

Continuing in this manner, if $h^{(n)}(t)$ and $h^{(n+1)}(t)$ satisfy the conditions of the theorem, we obtain

$$
(2 \pi i f)^{n+1} H(f)=\int_{-\infty}^{\infty} h_{1}(n+1)(t) \exp (-2 \pi i f t) d t
$$

Then for $k \leq n, h^{(k)}(t)$ satisfies conditions sufficient for the inversion formula to hold, and we obtain

$$
\begin{equation*}
h^{(k)}(t) \longleftrightarrow(2 \pi i f)^{k} H(f) \tag{1.29}
\end{equation*}
$$

Conjugate Function Theorem. If $h(t) \longleftrightarrow H(f)$, then

$$
\begin{equation*}
h^{*}(t) \longleftrightarrow H^{*}(-f) \tag{1.30}
\end{equation*}
$$

Proof: With $h(t)=h_{1}(t)+i h_{2}(t)$, we have

$$
H(f)=\int_{-\infty}^{\infty}\left[h_{1}(t)+i h_{2}(t)\right] \exp (-2 \pi i f t) d t
$$

and. with $H(f)=H_{1}(f)+1 H_{2}(f)$ and equations (1.8)

$$
\begin{aligned}
H^{*}(f)= & \int_{-\infty}^{\infty}\left[h_{1}(t) \cos 2 \pi f t+h_{2}(t) \sin 2 \pi f t\right] d t \\
& +i \int_{-\infty}^{\infty}\left[h_{1}(t) \sin 2 \pi f t-h_{2}(t) \cos 2 \pi f t\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty}\left[h_{1}(t)-i h_{2}(t)\right][\cos 2 \pi f t+i \sin 2 \pi f t] d t \\
& =\int_{-\infty}^{\infty} h *(t) \exp (2 \pi i f t) d t
\end{aligned}
$$

Replacing f by $-f$ shows that $H *(-f)$ is the transform of $h *(t)$. The validity of the inversion formula can be verified similarly, starting with

$$
h(t)=\int_{-\infty}^{\infty} H(f) \exp (2 \pi i f t) d f
$$

1.5 The Convolution Theorems.

Second only to the transform and inverse transform, the convolution theorems are the most powerful toois in Fourier analysis. These theorems in their generalized form play a central role in filter theory.

Let $g(t)$ and $h(t)$ be functions of a real variable t, and let

$$
\begin{equation*}
q(t)=\int_{-\infty}^{\infty} g(x) h(t-x) d x \tag{1.31}
\end{equation*}
$$

If this integral exists, then $q(t)$ is called the convolution of $g(t)$ and $h(t)$. This is usually denoted by writing $q(t)=\left(g_{*} h\right)(u)$. By letting $\mathrm{z}=\mathrm{t}-\mathrm{x}$ in (1.31) it is easy to show that the convolution is commutative, that is,

$$
\begin{equation*}
(g * h)(t)=(h * g)(t) \tag{1.32}
\end{equation*}
$$

Also, from the linearity property of integration, it follows that

$$
\begin{equation*}
\left(g *\left[h_{1}+h_{2}\right]\right)(t)=\left(g * h_{1}+g * h_{2}\right)(t) \tag{1.33}
\end{equation*}
$$

The following theorem is valid when $g(t)$ and $h(t)$ are absolutely
integrable. The proof is not difficult, but it is long and will not be given here.

Time Domain Convolution Theorem. If $h(t)$ and $g(t)$ are absolutely integrable and $H(f)$ and $G(f)$ are their Fourier transforms, then the convolution $\mathrm{q}(\mathrm{t})=(\mathrm{g} * \mathrm{~h})(\mathrm{t})$ is also absolutely integrable. Furthermore, $Q(f)=G(f) H(f)$.

Under the conditions of the theorem, a change in the order of integration is justified in

$$
Q(f)=\int_{-\infty}^{\infty} d t\left[\exp (-2 \pi i f t) \quad \int_{-\infty}^{\infty} g(x) h(t-x) d x\right]
$$

Hence

$$
Q(f)=\int_{-\infty}^{\infty} d x \cdot\left[g(x) \quad \int_{-\infty}^{\infty} h(t-x) \exp (-2 \pi i f t) d t\right]
$$

Using (1.21) we obtain

$$
\begin{aligned}
Q(f) & =\int_{-\infty}^{\infty} g(x)[H(f) \exp (-2 \pi i f x)] d x \\
& =H(f) \quad \int_{-\infty}^{\infty} g(t) \exp (-2 \pi i f t) d t \\
& =H(f) G(f)
\end{aligned}
$$

The conditions of the above theorem are sufficient but not necessary. If, in addition to the conditions of the theorem, $q(t)$ is bounded on every finite interval, the inversion formula holds and we have

$$
\begin{equation*}
\left(g_{* h}\right)(t) \longleftrightarrow G(f) H(f) \tag{+}
\end{equation*}
$$

If(1.34) holds, the following theorem follows from the symmetry property (1.19).

Frequency Domain Convolution Theorem. If $g(t) \longleftrightarrow G(f)$ and $h(t) \longleftrightarrow H(f)$, then

$$
\begin{equation*}
g(t) h(t) \longleftrightarrow(G * H)(f) \tag{1.35}
\end{equation*}
$$

Parseval's Formula. If (1.35) holds, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} g(t) h(t) d t=\int_{-\infty}^{\infty} G(f) H(-f) d f \tag{1.36}
\end{equation*}
$$

Proof. From (1.35) we have

$$
(G * H I)(f)=\int_{-\infty}^{\infty} G(x) H(f-x) d x=\int_{-\infty}^{\infty} g(t) h(t) \exp (-2 \pi i f t) d t
$$

and (1.36) follows by letting $f=0$ and replacing x by f in the first integral.

Note that if $h(t)$ is real, then by (1.12) we have $H(-f)=H *(f)$ which gives

$$
\int_{-\infty}^{\infty} g(t) h(t) d t=\int_{-\infty}^{\infty} G(f) H^{*}(f) d f
$$

Letting $g(t)=h *(t)$ from (1.30), $G(f)=H^{*}(-f)$ and we have

$$
\begin{align*}
& \int_{-\infty}^{\infty}|h(t)|^{2} d t=\int_{-\infty}^{\infty} H *(-f) H(-f) d f=\int_{-\infty}^{\infty}|H(f)|^{2} d f \tag{1.37}\\
& \text { If we write } H(f) \text { in polar form, }
\end{align*}
$$

$$
\begin{equation*}
H(f)=A(f) \exp (i \theta(f)) \tag{1.38}
\end{equation*}
$$

then the real function $A(f)$ is called the Fourier spectrum of $h(t)$, $A^{2}(f)$ is called the energy spectrum of $h(t)$, and $\theta(f)$ its phase angle. From (1.38) we have $|H(f)|^{2}=A^{2}(f)$, and thus (1.37) can be written as

$$
\begin{equation*}
\int_{-\infty}^{\infty}|h(t)|^{2} d t=\int_{-\infty}^{\infty} A^{2}(f) d f \tag{1.39}
\end{equation*}
$$

CHAPIER II

GENERALIZED FUNCTIONS AND THEIR FOURIER TRANSFORMS

2.0 INTRODUCTION

Several approaches to the definftion of a digital filter are possible. In the choice of approach, one is influenced by purpose and background. The approach we choose here requires the Dirac delta function and some of its properties. This is not proposed to be the shortest or easiest way of arriving at the definition of a digital filter, but it is proposed as one of the clearest and most meaningful approaches.

The Dirac delta function $\delta(t)$ is often defined by one of the following statements:
(A) If $g(t)$ is a continuous function at $t=t_{0}$, then $\delta(t)$ has the property that

$$
\left.\int_{-\infty}^{\infty} g(t) \delta\left(t-t_{0}\right) d t=g^{\prime} \cdot t_{0}\right) ;
$$

(B) $\delta(t)=0$ if $t \neq 0$, and

$$
\int_{-\infty}^{\infty} \delta(t) d t=1
$$

(C) $\delta(t)=n \xrightarrow{l i m} \infty g_{n}(t)$ where $\left\{g_{n}(t)\right\}$ is a sequence of functions satisfying the conditions
(i) if $t \neq 0$, then $n \xrightarrow{\lim } \infty_{n}(t)=0$, and
(ii) $\quad \int_{-\infty}^{\infty} g_{n}(t) d t=1$.

These definitions are meaningless if we attempt to think of $\delta(t)$ as a function in the ordinary sense. By introducing the delta function as a new concept, a generalized function, (A) can be given a precise meaning, but definitions (B) and (C) do not uniquely describe $\delta(t)$.

There is no shortage of theories to justify (A). One particular \perp y suited to our purposes is given by Lighthill [3]. The development is similar to Cantor's extencion of the rational numbers to the real numbers, an analogy we shall return to after making a definition and some comments.

Definition 2.00 A function $g(t)$ of the real variable t is called a test function if
(i) $g(t)$ is everywhere differentiable any number
of times, and
(ii) $g(t)$ and all of its derivatives are $O\left(|t|^{-\mathbb{N}}\right)$
as $|t| \longrightarrow \infty$ for all integers N.
As a reminder, the "big O " notation, $g(t)=O(h(t))$ as $t \longrightarrow a$, means that there exists a positive constant A sich that

$$
|g(t)|<A|h(t)| \text { as } t \longrightarrow a \text {. }
$$

We shall denote the set of all test functions by S. Each $g(t)$ in S is a function of the real variable t, but these functions may be complex-valued. Note that the function $g(t)=0$ is in S, and S is nonempty. A non-trivial example of a function of S is $g(t)=e^{-t^{2}}$. We note that Lighthill calls the functions of S "good functions" but the terminology we have adopted is more commonly used. Some other minor changes in tcrminoiogy will be made.

Cantor extended the rationals to the reals by using equivalence classes of Cauchy sequences of rational numbers. The set analogous to the rationals in Lighthill's development is the set S of test functions. Cantor's scheme was as follows: Let R denote the set of rational numbers and let

$$
C=\left\{\left\{r_{n}\right\} \mid\left\{r_{n}\right\} \text { is a Cauchy sequence of rationals }\right\}
$$

Define a relation on C as follows: If $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ are elements of C, then $\left\{r_{n}\right\} \leadsto\left\{s_{n}\right\}$ if and only if $n \xrightarrow{\lim } \infty_{n}\left(r_{n}-s_{n}\right)=0$. That is, the sequence of rational numbers $\left\{r_{n}-s_{n}\right\}$ must be null. It is easy to show that is an equivalence relation and hence partitions C into disjoint subclasses, called equivalence classes. Let

$$
\overline{\mathrm{R}}=\{r \mid r \text { is an equivalence class determined by } \boldsymbol{m}\}
$$ then the elements of $\overline{\mathrm{R}}$ are called real numbers, and $\overline{\mathrm{R}}$ is called the set of real numbers. If r and s are real numbers, their sum and product are defined as follows: Let $\left\{r_{n}\right\}$ be a sequence of r and $\left\{s_{n}\right\}$ be a sequence of s. Then $r+s$ is the subclass of C containing $\left\{r_{n}+s_{n}\right\}$ and rs is the subclass of C containing $\left\{r_{n} s_{n}\right\}$. Of course, it is necessary to show that $\left\{\mathrm{r}_{\mathrm{n}}+\mathrm{s}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{r}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}}\right\}$ are Cauchy and that $\mathrm{r}+\mathrm{s}$ and r are uniquely determined, that is, if $\left\{r_{n}^{1}\right\}$ and $\left\{s_{n}^{1}\right\}$ are in r and s, then the subclasses determined by $\left\{r_{n}^{\prime}+s_{n}^{i}\right\}$ and $\left\{r_{n}^{\prime} s_{n}^{i}\right\}$ are the same as those determined by $\left\{\mathrm{r}_{\mathrm{n}}+\mathrm{s}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{r}_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}\right\}$. The various field axioms are verified next. Finally, the mapping T defined on R by writing

$$
T(a)=\{a, a, a, \ldots, a, \ldots\}=\bar{a} \text { in } \bar{R}, a \text { in } R
$$

embeds R in $\overline{\mathrm{R}}$.

An outline of Lighthill's construction of the set of generalized functions from the set S of test functions is as follows (new terms are defined later): With S the set of all test functions, let

$$
C=\left\{\quad\left\{g_{n}(t)\right\} \quad \mid \quad\left\{g_{n}(t)\right\} \text { is a regular sequence of test functions }\right\}
$$

Introduce an equivalence relation on C by writing $\left\{g_{n}(t)\right\} \sim\left\{h_{n}(t)\right\}$ if and only if

$$
n \xrightarrow{\lim } \infty \quad \int_{-\infty}^{\infty} g_{n}(t) H(t) d t=n \xrightarrow{\lim } \infty \quad \int_{-\infty}^{\infty} h_{n}(t) H(t) d t
$$

for all $H(t)$ in S. Lct \bar{S} bc the set whose clements arc the cquivalence classes determined by the relation . An element of $\overline{\mathrm{S}}$ is called a generalized function. Let g and h be generalized functions and let $\left\{g_{n}(t)\right\}$ be a sequence of g and $\left\{h_{n}(t)\right\}$ be a sequence of h. Define the sum $\mathrm{g}+\mathrm{h}$ to be the generalized function (subclass of C) determined by the sequence $\left\{\left(g_{n}+h_{n}\right)(t)\right\}$, where $\left(g_{n}+h_{n}\right)(t)=g_{n}(t)+h_{n}(t)$ for all t. For any complex number a, define ag to be the generalized function determined by $\left\{\left(a g_{n}\right)(t)\right\}$, where $\left(a g_{n}\right)(t)=a g_{n i}(t)$ for all t. Show that these definitions are consistent, that is, show that each sequence above is regular and that the definition is independent of the choice of $\left\{g_{n}(t)\right\}$ in g and $\left\{h_{n}(t)\right\}$ in h. Next, show that \bar{S} with this sum and product of a complex number and a generalized function is a linear (vector) space. Finally, embed S in \bar{S}.

An alternate approach is found in functional analysis. There, a generalized function F is a continuous linear functional on the linear space S of test functions, that is, F is a mapping of S into the complex numbers such that

$$
F(a g+b h)=a F(g)+b F(h)
$$

for all g,h in S and all complex numbers a and b. Of course, the use of the word continuous implies that either a topology is explicitly given on S or that convergence in some sense is defined there.

As indicated, we will not use the last approach. However, some notation and terminology from this approach will be helpful in interpreting some definitions and results.

2.1 THE TEST SPACE S

Let V be a set with an operation(+) called addition defined on it and let R be a field (usually the real or complex numbers). V is called a Iinear space over R if
(i) V is a commutative group with respect to + ,
(ii) for each a in R and each x in V a product $a x$ is defined such that ax is in V and for all a, b in R and $a l l x, y$ in V,
a) $a(b x)=(a b) x$
b) $a(x+y)=a x+a y$
c) $(a+b) x=a x+b x$
d) $I \mathrm{x}=\mathrm{x}$ where I is the multiplicative identity of R.

A linear space over R is often called a vector space over R. The elements of R are called scalars and the operation ax is usually called scalar multiplication. The classical example of a linear space is n-dimensional Euclidean space.

The set S of all test functions is a linear space with respect to addition and scalar multiplication defined by

$$
\begin{aligned}
(g+h)(t) & =g(t)+h(t) \\
(a g)(t) & =a g(t)
\end{aligned}
$$

and S is called a test space.
The functions of S are very "well-behaved" as is implied by Lighthill's terminology "good functions". Some of the "good" properties of these functions are
(i) they are everywhere continuous on the real line,
(ii) they are absolutely integrable on the real line,
(iii) they are of bounded variation on every finite interval,
(iv) they are square integrable.

In fact, each g in S satisfies conditions sufficient for the existence of its Fourier transform and for the inversion formula to hold. Every result and theorem of Chapter I applies to functions of S since in each case these functions satisfy sufficient conditions. Thus we can apply the results of Chapter I to test functions without restrictions of any sort.

It is convenient to adopt a notation to denote the operation of taking the transform and inverse transform of a function. For a test function, g, we shall see later that the transform and inverse transform of g are both in S, and hence the operations of taking transforms and inverse transforms can be thought of as mappings of S into S. We let F denote the operation of taking the transform,

$$
F(g)=\int_{-\infty}^{\infty} g(t) \exp (-2 \pi i f t) d t
$$

and let F^{-1} denote the operation of taking the inverse transform,

$$
\mathrm{F}^{-1}(g)=\int_{-\infty}^{\infty} g(f) \exp (2 \pi i f t) d f
$$

We shall use the symbol " f " to denote a real variable called frequency, and this symbol shall not be used to denote a function. The functions of S may be thought of as functions of f, or of t, the symbol used for the real variable being immaterial.

If $g(t)$ is a function such that $g(t) h(t)$ is in S for all $h(t)$ in S, then $g(t)$ is called a multiplier on S. Clearly, every constant function is a multiplier on S.

Let M denote the set of all functions $m(t)$ which are everywhere differcntiablc any number of timcs and such that $m(t)$ and all of its derivatives are $O\left(|t|^{N_{O}}\right)$ as $|t| \longrightarrow \infty$ for some integer N_{0}. We show that every function of M is a multiplier on S. Theorem 2.10 If $m(t)$ is in M and $h(t)$ is in S, then $m(t) h(t)$ is in S. Proof: We have

$$
\frac{d^{p}(m(t) h(t))}{d t^{p}}=\sum_{j=0}^{p}\left(\frac{p}{j}\right)_{m}^{(j)}(t) h(p-j)(t)
$$

It suffices to show each term in the right side is in S. From the definition of M, we have that there exist numbers $A>0, K>0$, and an integer \mathbb{N} such that

$$
\left|\mathrm{m}^{(j)}(\mathrm{t})\right|<\mathrm{A}|\mathrm{t}|^{\mathbb{N}} \text { for all } \mathrm{t} \text { such that }|\mathrm{t}|>\mathrm{K} .
$$

From the definition of S, we have that if N ' is any integer, then there exist numbers $A^{\prime}>0, K^{\prime}>0$ such that

$$
\left|h^{(p-j)}(t)\right|<A^{\prime}|t|^{-N^{\prime}} \text { for all } t \text { such that }|t|>K^{\prime}
$$

Then for all t such that $|t|>\max \left\{K, K^{\prime}\right\}$,

$$
\left|m^{(j)}(t) h^{(p-j)}(t)\right|<A A^{\prime}|t|^{N-N^{\prime}}
$$

But $N \sim N^{\prime}$ is arbitrary because N^{\prime} is arbitrary. Thus $m(t) h(t)$ is in S. Note that if a function is contained in one of the sets M or S, then every derivative of that function is contained in the same set. Thus, if $m(t)$ is in M and $h(t)$ is in S, then $m^{(j)}(t) h^{(k)}(t)$ is in S for all integers $j, k \geq 0$. A familiar class of functions contained in M is the set of all polynomials.

The following theorem lists some of the properties which the functions of S possess.

Theorem 2.11 If $h(t)$ is in S, then
(i) $\quad F(h)=H(f)$ is in S
(ii) $\quad F^{-1}(h)=g(t)$ is in S
(iii) $h(-t)$ is in S
(iv) $h *(t)$ is in S
(v) $h(a t+b)$ is in S, a, b, constants, $a \neq 0$.

Proof: For part (i), note that the conditions of Theorem I.I4 are satisfied by

$$
H(f)=\int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t) d t
$$

and each of the derivatives $H^{(p)}(f)$. Also, we may integrate by parts repeatedly. Differentiating p times and integrating by parts n times, we have

$$
\begin{aligned}
\left|H^{(p)}(f)\right| & =\left|(2 \pi i f)^{-n} \int_{-\infty}^{\infty} \frac{d^{n}}{d t^{n}}\left\{(-2 \pi i t)^{p} h(t)\right\} \exp (-2 \pi i f t) d t\right| \\
& \leq \frac{(2 \pi)^{p-n}}{|f|^{n}} \int_{-\infty}^{\infty}\left|\frac{d^{n}}{d t^{n}}\left\{t^{p} h(t)\right\}\right| d t
\end{aligned}
$$

Now $t^{p} h(t)$ is in S by Theorem 2.10, and hence the nth derivative of $t^{p} h(t)$ is in S. Thus the integral on the right side above exists and is finite, and we have

$$
H^{(p)}(f)=O\left(|f|^{-n}\right) .
$$

Part (ii) is proved by replacing $\exp (-2 \pi i f t)$ by $\exp (2 \pi i f t)$ and interchanging the roles of f and t in the proof of (i).

For part (iii), if we let $h(t) \longleftarrow-\rightarrow H(f)$, then by (i), both $H(f)=$ $F(h)$ and the function

$$
F(H)=\int_{-\infty}^{\infty} H(f) \exp (-2 \pi i f t) d f=h(-t)
$$

are in S (see(1.19)).
For part (iv), we have that $h(t)$ is everywhere differentiable any number of times, and it is obvious that $h *(t)$, the complex conjugate of $h(t)$, also has this property. To complete this part, all we need do is note that $\left|h^{(n)}(t)\right|=\left|h^{*}(n)(t)\right|$ for all $n \geq 0$.

To show the last part, let m be a non-negative integer and N be any positive integer. Then there exist numbers $A_{m}>0, K_{m}>0$ such that for all t such that $|t|>K_{m}$,

$$
\left|h^{(m)}(t)\right|<A_{m}|t|^{-\mathbb{N}}
$$

Letting $g(t)=h(a t+b)$, we have $g(t)$ differentiable any number of times and for all t such that $|a t+b|>K_{m}$,

$$
\begin{aligned}
\left|g^{(m)}(t)\right| & =\left|a m_{h}^{(m)}(a t+b)\right| \\
& <|a|^{m} A_{m}|a t+b|^{-N} \\
& =|a|^{m-N_{A}}|t+(b / a)|^{-N}
\end{aligned}
$$

Note that it suffices to show that $|t+(b / a)|^{-1}=O\left(|t|^{-1}\right)$. To do this, let $c=b / a$ and choose t such that $|t|>2|c|$. Then $|c / t|<1 / 2$, and $-1 / 2<c / t<l / 2$. Adding 1 to each member of this inequality gives $1 / 2<1+c / t<3 / 2$, or taking reciprocals, $2 / 3<1 /(1+c / t)<2$. Thus

$$
\left|\frac{1}{1+c / t}\right|<2,
$$

and hence

$$
\begin{aligned}
& \left|\frac{t}{t+c}\right|<2, \\
& \left|\frac{1}{t+c}\right|<\frac{2}{|t|},
\end{aligned}
$$

or $|t+c|^{-1}<2|t|^{-1}$, and hence $|t+c|^{-N}<2^{N}|t|^{-N}$ for $|t|>2|c|$. Finally, for all t such that $|t|>2|c|$ and $|a t+b|>K_{m}$, we have

$$
\left|g^{(m)}(t)\right|<|a|^{m-N_{A_{m}}}|t+c|^{-N}<2^{N}|a|^{m-N_{A}} A_{m}|t|^{-N}
$$

which completes the proof.

2.2 GENERALIZED FUNCTIONS

We now define the class of sequences of functions of S which play
a role in the construction of generalized functions similar to that of the Cauchy sequences of rational numbers in the construction of the real numbers.

Definition 2.20 A sequence $\left\{g_{n}(t)\right\}$ of test functions is called regular if the limit

$$
\begin{equation*}
n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} g_{n}(t) G(t) d t \tag{2.00}
\end{equation*}
$$

exists and is finite for all test functions $G(t)$ in S.
We denote by C the class of all regular sequences and note that C is not empty since

$$
\begin{align*}
n \xrightarrow{\lim } \int_{-\infty}^{\infty} \exp \left(-t^{2} / n^{2}\right) G(t) d t & =\int_{-\infty}^{\infty} n \xrightarrow{\text { lim }}\left\{\exp \left(-t^{2} / n^{2}\right)\right\} G(t) d t \\
& =\int_{-\infty}^{\infty} G(t) d t \tag{2.01}
\end{align*}
$$

and hence the sequence $\left\{\exp \left(-t^{2} / n^{2}\right)\right\}$ is regular.

Definition 2.21 A sequence $\left\{h_{n}(t)\right\}$ in C is said to be equivalent to the sequence $\left\{g_{n}(t)\right\}$ in C, denoted by writing $\left\{h_{n}(t)\right\} \boldsymbol{\sim}\left\{g_{n}(u)\right\}$, if and only if

$$
n \xrightarrow{\underline{i j}} \infty \quad \int_{-\infty}^{\infty} h_{n}(t) G(t) d t=n \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} g_{n}(t) G(t) d t
$$

for every $G(t)$ in S.
The limits and the integrals in the above definition exist, so we could rewrite the condition for equivalence as

$$
n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty}\left\{h_{n}(t)-g_{n}(t)\right\} G(t) d t=0
$$

for every $G(t)$ in s. This resembles the null condition taken in the construction of the reals.

The relation is clearly an equivalence relation, that is, we have
(i) $\left\{h_{n}(t)\right\}\left\{h_{n}(t)\right\}$ for all regular sequences,
(ii) if $\left\{h_{n}(t)\right\} \nsim\left\{g_{n}(t)\right\}$, then $\left\{g_{n}(t)\right\} \sim\left\{h_{n}(t)\right\}$,
(iii) if $\left\{h_{n}(t)\right\} \leadsto\left\{g_{n}(t)\right\}$ and $\left\{g_{n}(t)\right\} \propto\left\{k_{n}(t)\right\}$, then $\left\{h_{n}(t)\right\} \sim\left\{k_{n}(t)\right\}$.

Thus
partitions C into disjoint subclasses, the equivalence classes determined by . We let \bar{s} denote the collection of all the subclasses of C determined by

Definition 2.22 An element s of \bar{S} is called a generalized function.
Thus a generalized function is a class of equivalent regular sequences, that is, if $\left\{s_{n}(t)\right\}$ is regular, then the class s of all regular sequences equivalent to $\left\{s_{n}(t)\right\}$ is a generalized function. A sequence $\left\{s_{n}(t)\right\}$ in the class s is called a representative of the generalized function s.

Note that if s is a generalized function, then the limit,

$$
n \xrightarrow{\lim } \infty \quad \int_{-\infty}^{\infty} s_{n}(t) G(t) d t
$$

is a complex number whose value is independent of the choice of representative $\left\{s_{n}(t)\right\}$ of s. However, the limit does vary with $G(t)$ in S.

This leads us to make the following definition.

Definition 2.23 Let s be a generalized function and let $\left\{s_{n}(t)\right\}$ be a representative of s. Then for each $G(t)$ in S, we define

$$
\begin{equation*}
s(G)={ }_{n} \xrightarrow{\lim } \infty \quad \int_{-\infty}^{\infty} s_{n}(t) G(t) d t \tag{2.02}
\end{equation*}
$$

We now see that a generalized function s can be thought of as a mapping of the set S into the complex numbers (see Figure 2.1). We shall use this interpretation and the mapping notation in preference to the "integral" notation used by Lighthill, the latter being somewhat confusing at times.

FIGURE 2.1

As an example, let I denote the generalized function with representative $\left\{\exp \left(-t^{2} / n^{2}\right)\right\}$, then from (2.01) and above we have that

$$
I(G)=\int_{-\infty}^{\infty} a(t) d t,
$$

and hence I is a mapping which maps each $G(t)$ in S onto its integral over the interval $(-\infty, \infty)$.

Let r and s be generalized functions and let $\left\{r_{n}(t)\right\}$ and $\left\{s_{n}(t)\right\}$ be representatives of r and s, respectively. Thinking of r and s as sets, to say that r and s are equal means that r and s are the same subclass of C. Hence the representatives of these generalized functions must be equivalent because they belong to the same class, and we have that for every $G(t)$ in S,

$$
\begin{aligned}
r(g) & =n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} r_{n}(t) G(t) d t \\
& =n \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} s_{n}(t) G(t) d t \\
& =s(G)
\end{aligned}
$$

But this is the familiar requirement for writing $r=s$ where r and s are interpreted as mappings of S into the complex numbers. Hence it is clear that if r and s are generalized functions, then $r=s$ if and only if $r(G)=s(G)$ for every $G(t)$ in S.

Definition 2.24 Let r and s be generalized functious and let $\left\{r_{n}(t)\right\}$ and $\left\{s_{n}(t)\right\}$ be representatives of r and s, respectively.
(i) The sum of the generalized functions r and s, denoted by $\mathrm{r}+\mathrm{s}$, is defined to be the generalized function with representative $\left\{r_{n}(t)+s_{n}(t)\right\}$;
(ii) The derivative of the generalized function r, denoted by r^{\prime}, is defined to be the generalized function with representative $\left\{r_{n}^{\prime}(t)\right\}$;
(iii) $r_{a, b}$ is defined to be the generalized function with representative $\left\{r_{n}(a t+b)\right\}$;
(iv) For each $m(t)$ in M, the product $m r$ is defined to be the generalized function with representative $\left\{m(t) r_{n}(t)\right\}$;
(v) The Fourier transform Fr of the generalized function r is defined to be the generalized function with represcntative $\left\{F\left(r_{n}\right)\right\}$. The inverse Fourier transform $F^{-1} r_{r}$ is defined to be the generalized function with representative $\left\{F^{-1}\left(r_{n}\right)\right\}$.

We must show that these definitions are consistent, that is, we must show that each one uniquely determines a generalized function. To do this, we show that
(a) each sequence named is a sequence of test functions,
(b) each sequence named is regular and hence defines a generalized function, and
(c) that the definitions are independent of the choice of representatives of r and s, that is, the generalized functions defined are unique.

Part (a) follows from previous remarks and Theorems 2.10 and 2.17. We. now verify (b) and (c) for each part of the definition.

Part (i) Let $G(t)$ be in S. Then
$n \xrightarrow{l i m} \int_{-\infty}^{\infty}\left\{r_{n}(t)+s_{n}(t)\right\} G(t) d t={ }_{n} \lim _{\infty} \int_{-\infty}^{\infty}\left\{r_{n}(t) G(t)+s_{n}(t) G(t)\right\} d t$

$$
=n \xrightarrow{\lim } \infty\left[\int_{-\infty}^{\infty} r_{n}(t) G(t) d t+\int_{-\infty}^{\infty} s_{n}(t) G(t) d t\right.
$$

$$
\begin{align*}
= & \xrightarrow{l i m} \tag{2.03}\\
\infty & \int_{-\infty}^{\infty} r_{n}(t) G(t) d t \\
& +{ }_{n} \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} s_{n}(t) G(t) d t
\end{align*}
$$

Now each limit in the last line on the right exists and is independent of the choice of representative of x and s. Hence the limit on the left side exists and is independent of the choice of representatives $\left\{r_{n}(t)\right\}$ and $\left\{s_{n}(t)\right\}$. This verifies (b) and (c).

In terms of the notation (2.02), (2.03) yields

$$
(r+s)(G)=r(G)+s(G)
$$

for all $G(t)$ in S. Thus $r+s$ is just the sum of the mappings r and s. Part (ii) With $U=G(t)$ and $d V=r_{n}^{\prime}(t) d t$, integrating by parts one time, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} r_{n}^{\prime}(t) G(t) d t & =\left.r_{n}(t) G(t)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} r_{n}(t) G(t) d t \\
& =-\int_{-\infty}^{\infty} r_{n}(t) G^{\prime}(t) d t
\end{aligned}
$$

Letting $n \longrightarrow \infty$ in both sides, since $\left\{r_{n}(t)\right\}$ is regular and $G^{\prime}(t)$ is in S, the limit in the right side exists and is independent of the representative $\left\{r_{n}(t)\right\}$ of r. Thus the left side has the same properties.

In our adopted notation, letting $n \longrightarrow \infty$ in (2.04) yiclds

$$
\begin{equation*}
r^{\prime}(G)=-r\left(G^{\prime}\right) \tag{2.05}
\end{equation*}
$$

for all $G(t)$ in S.

Part (iii) By making a change of variable, we have for each $r_{n}(t)$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} r_{n}(a t+b) G(t) d t=|a|^{-1} \int_{-\infty}^{\infty} r_{n}(t) G((t-b) / a) d t \tag{2.06}
\end{equation*}
$$

By (v) of Theorem 2.ll, $G((t-b) / a)$ is in S. Since $\left\{r_{n}(t)\right\}$ is regular, the limit as $n \longrightarrow \infty$ of the right side exists and is independent of the chojce of the representative of r. Therefore, the left side also has these properties.

Letting $\bar{G}(t)=G((t-b) / a)$ and taking the limit in both sides of (2.06) yields

$$
\begin{equation*}
r_{a, b}(G)=r(\bar{G}) \tag{2.07}
\end{equation*}
$$

for all $G(t)$ in S.
Part (iv) This part follows easily from

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\{m(t) r_{n}(t)\right\} G(t) d t=\int_{-\infty}^{\infty} r_{n}(t)\{m(t) G(t)\} d t, \tag{2.08}
\end{equation*}
$$

noting that $\left\{r_{n}(t)\right\}$ is regular, $m(t) G(t)$ is in S : and letting $n \longrightarrow \infty$ in both sides. In the mapping notation, we have that for evcry $G(t)$ in S,

$$
\begin{equation*}
m r(G)=r(m \cdot G) \tag{2.09}
\end{equation*}
$$

where $m \cdot G$ is the ordinary function $(m \cdot G)(t)=m(t) G(t)$.
Part (v) Recall that for ordinary functions if $h(t) \longleftrightarrow H(f)$ and $g(t) \longleftrightarrow G(f)$, then by (1.19), $\mathrm{H}(\mathrm{t}) \longleftrightarrow \mathrm{h}(-\mathrm{f})$; by (1.25), $h(-t) \longleftrightarrow H(-f)$; and by Parseval's formula (1.36),

$$
\int_{-\infty}^{\infty} g(t) h(t) d t=\int_{-\infty}^{\infty} G(f) H(-f) d f .
$$

Using (1.19) and (1.25), several different forms of Parseval's formula are obtained. One form of interest to us here is

$$
\begin{equation*}
\int_{-\infty}^{\infty} g(t) h(-t) d t=\int_{-\infty}^{\infty} G(f) H(f) d f \tag{2.10}
\end{equation*}
$$

In what follows, we shall not assume a fixed role for the variables f and t as has been previously taken. We have to this point written t.he transform as a function of f and the inverse transform as a function of t. However, the roles of f and t are interchangeable in (1.5) and (1.6). That is, whether we have the transform or the inverse transform is determined by the sign of the exponent in the integrals of (1.5) and (1.6), not on the manner in which the variables are denoted.

Parseval's formula is valid for test functions, and hence if $H(f)$ is in S and $h(t) \longleftrightarrow H(f)$, then $h(t)$ is in S and from (2.10) we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} F\left(r_{n}\right) H(f) d f=\int_{-\infty}^{\infty} r_{n}(t) h(-t) d t \tag{2.1.1}
\end{equation*}
$$

By interchanging the roles of f and t in (1.19) and using (iii) of Theorem 2.11, we have $h(-t)=F(H)$ is in S. The sequence $\left\{r_{n}(t)\right\}$ is regular, so the limit as $n \longrightarrow \infty$ in the right side of (2.11) exists and is independent of the representative of r. Hence the limit of the left side exist and is independent of the representative of r. In the mapping notation, this yields

$$
F r(H)={ }_{n} \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} F\left(r_{n}\right) H(f) d f
$$

$$
\begin{align*}
& =n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} r_{n}(t) h(-t) d t \\
& ={ }_{n} \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} r_{n}(t) F(H) d t \tag{2.12}\\
& =r(F(H)),
\end{align*}
$$

that is, the image of H under $F r$ is the same as the image of $F(H)$ under the mapping determined by r .

For the second part, we consider the functions of the representative sequence of r as functions of the variable f. Then $F^{-1}\left(r_{n}\right)$ is a function of t for each n, and by Parseval's formula,

$$
\begin{equation*}
\int_{-\infty}^{\infty} F^{-1}\left(r_{n}\right) h(t) d t=\int_{-\infty}^{\infty} r_{n}(f) H(-f) d f \tag{2.13}
\end{equation*}
$$

For each $h(t)$ in $S, H(f)=F(h)$ is in S. Thus so is $H(-f)$, and letting $n \longrightarrow \infty$ in both sides of (2.13) shows that $F^{-1}{ }_{r}$ is a uniquely determined generalized function.

Now, by (1.25), $H(-f)=F(h(-t))$, and by making a change in the variables in (1.5), we find that $F(h(-t))=F^{-1}(h)$. In the mapping notation, this yields that for all $h(t)$ in S,

$$
\begin{align*}
F^{-1} r(h) & ={ }_{n} \xrightarrow{l i m} \infty \quad \int_{-\infty}^{\infty} F^{-1}\left(r_{n}\right) h(t) d t \\
& =n \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} r_{n}(f) H(-f) d f \\
& =n \xrightarrow{l i m} \infty \quad \int_{-\infty}^{\infty} r_{n}(f) F^{-1}(h) d f \tag{2.14}\\
& =r\left(F^{-1}(h)\right) .
\end{align*}
$$

This gives an interpretation of $F^{-1} r$ similar to the one for $F r$ above. Applying F^{-1} to (2.13), applying F to (2.14), and noting that $F\left(F^{-1}(H)\right)=H=F^{-1}(F(H))$ for all H in S, we have that for each r in \bar{S},

$$
\begin{aligned}
& F^{-1} \operatorname{Fr}(H)=F^{-1} r(F(H))=r\left(F^{-1}(F(H))\right)=r(H) ; \\
& F^{-I} r(H)=\operatorname{Fr}\left(F^{-1}(H)\right)=r\left(F\left(F^{-1}(H)\right)\right)=r(H) .
\end{aligned}
$$

Thus we see that if F is thought of as a mapping of \bar{S} into itself, then F^{-1} is the inverse mapping of F, that is,

$$
\mathrm{FF}^{-1}=I_{S}=F^{-1} F
$$

where I_{S} is defined by $I_{S}(r)=r$ for all r in \bar{S}.
We have already noted that every constant function $m(t)=a$ is in M and thus if r is a generalized function, by Definition 2.24, part (iv), a•r is a generalized function. In part (i) of the same definition, a sum is defined on $\overline{\mathrm{S}}$. It is easy to verify the following theorem.

Theorem 2.20 The set \bar{S} of all generalized functions with addition as defined in (i) of Definition 2.24 and with scalar multiplication defined by letting $m(t)=a$ in (iv) of Definition 2.24 is a linear space over the complex numbers.

We have already noted that each generalized function in $\overline{\mathrm{S}}$ determines a mapping of the space S of all test functions into the complex numbers. Such a mapping is usually called a functional. We now show that these functionals are linear.

Let r be in \bar{S} and let $\left\{r_{n}(t)\right\}$ be a representative of r. Then if
$G(t)$ and $H(t)$ are elements of s, and a, b are complex numbers, we have

$$
\begin{aligned}
r(a G+b H) & ={ }_{n} \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} r_{n}(t)\{a G(t)+b H(t)\} d t \\
& =a \cdot{ }_{n} \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} r_{n}(t) G(t) d t+b \cdot{ }_{n} \xrightarrow{l i m} \infty \int_{-\infty}^{\infty} r_{n}(t) H(t) d t \\
& =a \cdot r(G)+b \cdot r(H)
\end{aligned}
$$

Hence the mapping determined by r is a linear functional on S.
Note that by reapplying part (ii) of Definition 2.24 to the derivativer' of r, we obtain $r^{\prime \prime}=\left(r^{\prime}\right)^{\prime}$; the second derivative of the generalized function r (note that the proof of consistency is valid with $r_{n}(t)$ and $r_{n}^{\prime}(t)$ replaced by $r_{n}^{\prime}(t)$ and $r_{n}^{\prime \prime}(t)$, respectively). In fact, since each function of the sequence $\left\{r_{n}(t)\right\}$ representing r is differentiable any number of times, we may reapply part (ii) and its proof of consistency any number of times. Thus, by induction, the kth derivative of a generalized function is defined, and we see that every generalized function has derivatives of all orders. We denote the kth derivative of r by the symbol $r^{(k)}$.

We have shown that every generalized function r has a Fourier transform $s=\operatorname{Fr}$. Applying F^{-1} to both sides, we have $\mathrm{F}^{-1} \mathrm{~s}=\mathrm{F}^{-1} \mathrm{Fr}=$ $I_{S}(r)=r$, and the generalized functions r and s form a transform pair. In the notation of the first chapter, we have $\mathrm{r} \longleftrightarrow \longrightarrow$ s.

Theorem 2.21 Let r be a generalized function and let s be its Fourier transform, that is, $r \longleftrightarrow$ s. Then

Proof: We shall prove part (iv). The proofs of the other parts are done in a similar manner.

Let $\left\{r_{n}(t)\right\}$ be a representative of r. Then by part (v) of Definition 2.24, $\left\{\mathrm{s}_{\mathrm{n}}(\mathrm{f})\right\}$ where

$$
s_{n}=F\left(r_{n}\right), n=1,2,3, \ldots \ldots
$$

is a representative of the generalized function s. Each $s_{n}(f)$ is a test function and (1.26) holds. Thus,

$$
\begin{equation*}
s_{n}^{(k)}=F\left((2 \pi i t)^{k_{r_{n}}}\right), n=1,2,3, \ldots \ldots \tag{2.19}
\end{equation*}
$$

By part (iv) of Definition 2.24 , the sequence $\left\{(2 \pi i t)^{k} r_{n}(t)\right\}$ represents the generalized function($2 \pi i t)^{k_{r}}$. From part (ii) of Definition 2.24 and the comments preceding this theorem, the sequence $\left\{\mathrm{s}_{\mathrm{n}}^{(\mathrm{k})}(\mathrm{f})\right\}$ represents the generalized function $s^{(k)}$. Therefore, by (2.19) and part (v) of Definition 2.24,

$$
(2 \pi i t)^{k}{ }_{r} \longleftrightarrow s^{(k)}, k=1,2,3, \ldots \ldots
$$

Let $h(t)$ be an ordinary function having the property that $h(t) G(t)$ is integrable on $(-\infty, \infty)$ for every $G(t)$ in S, and write

$$
\begin{equation*}
\bar{h}(G)=\int_{-\infty}^{\infty} h(t) G(t) d t \tag{2.20}
\end{equation*}
$$

It is easy to see that this defines a linear functional on S, for if
a and b are complex numbers and $G(t)$ and $H(t)$ are in S, then from the linearity of integration, we have that

$$
\bar{h}(a G+b H)=a \bar{h}(G)+b \bar{h}(H) .
$$

This naturally leads to the question of whether or not the ordinary function $h(t)$ determines a generalized function in the above manner. To answer this, we must determine if there exists a generalized function \bar{h} such that if $\left\{h_{n}(t)\right\}$ is a representative of \bar{h}, then

$$
\bar{h}(G)=n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} h_{n}(t) G(t) d t=\int_{-\infty}^{\infty} h(t) G(t) d t .
$$

Lighthill, [3], pp. 22-23, shows that if $h(t)$ is an ordinary function such that $\left(1+t^{2}\right)^{-N} h(t)$ is absolutely integrable on ($-\infty, \infty$) for some integer N, then there exists a regular sequence $\left\{h_{n}(t)\right\}$ such that for all $G(t)$ in S ,

$$
n \xrightarrow{\lim } \infty \quad \int_{-\infty}^{\infty} h_{n}(t) G(t) d t=\int_{-\infty}^{\infty} h(t) G(t) d t,
$$

where the integral on the right side exists in the ordinary sense because

$$
\int_{-\infty}^{\infty} h(t) G(t) d t=\int_{-\infty}^{\infty}\left\{\left(1+t^{2}\right)^{-\mathbb{N}_{h}}(t)\right\}\left\{\left(1+t^{2}\right)^{\mathbb{N}_{G}}(t)\right\} d t,
$$

with $\left(1+t^{2}\right)^{-N} N_{h(t)}$ absolutely integrable for some N and $\left(1+t^{2}\right)^{N_{G}(t)}$ a test function. It is easy to see that the set of all such functions $h(t)$ forms a linear space K and that K is embedded in \bar{S} by the mapping Φ which maps each $h(t)$ onto the class of all sequences equivalent to $\left\{h_{n}(t)\right\}$ (see Figure 2.2).

Definition 2.25 If $h(t)$ is an ordinary function such that ($1+t^{2}$) $-\mathrm{N}_{\mathrm{h}}(\mathrm{t})$ is absolutely integrable, then the inage under Φ of $h(t)$ in \bar{S} is called the generalized function defined by $h(t)$ and is denoted by the symbol \bar{h}.

Figure 2.2

Let $h(t)$ be an ordinary function which defines a generalized function $\overline{\mathrm{h}}$. We already know that the generalized function $\overline{\mathrm{h}}$ has a generalized derivative (\bar{h})'. Suppose that $h(t)$ is differentiable and that $h^{\prime}(t)$ defines a generalized function $\left(h^{\prime}\right)$. Then we have the following theorem.

Theorem 2.22 Let $h(t)$ and $h^{\prime}(t)$ be ordinary functions which define generalized functions \bar{h} and $\left(\overline{h^{\prime}}\right)$, respectively. Then the generalized functions ($\overline{\mathrm{h}})$ ' and ($\overline{\mathrm{h}^{\prime}}$) are equal.

Proof: From (2.05), we have that for the generalized function $\overline{\mathrm{h}}$ and $(\bar{h})^{\prime}$,

$$
(\bar{h})^{\prime}(G)=-\bar{h}\left(G^{r}\right) \text { for all } G(t) \text { in } S .
$$

Now $h^{\prime}(t)$ defines (h') by

$$
\overline{\left(h^{\gamma}\right)}(G)=\int_{-\infty}^{\infty} h^{\prime}(t) G(t) d t .
$$

We note that it suffices to show that $\left(\overline{h^{\prime}}\right)(G)=-\bar{h}\left(G^{r}\right)$ for all $G(t)$ in S. Due to the conditions on the ordinary function $h(t)$ and $h^{2}(t)$, each of the integrals

$$
\int_{-\infty}^{\infty} h^{\prime}(t) G(t) d t, \quad \int_{-\infty}^{\infty} h(t) G(t) d t \text {, and } \quad \int_{-\infty}^{\infty} h(t) G^{\prime}(t) d t
$$

exist (finite). Integrating the first by parts, we have

$$
\int_{-\infty}^{\infty} h^{\prime}(t) G(t) d t=\left.\underset{b}{Z} \xrightarrow[\infty]{\infty} h(t) G(t)\right|_{-a} ^{b}-\int_{-\infty}^{\infty} h(t) G^{\prime}(t) d t
$$

Hence

$$
b \xrightarrow{\lim } \infty \quad h(b) G(b) . \quad \text { and } \quad a \xrightarrow{\lim } \infty \quad h(-a) G(-a)
$$

must both be finite. But the existence of the integral $\int_{-\infty}^{\infty} h(t) G(t) d t$ implics that both limits are zcro. Therefore

$$
\overline{\left(h^{\prime}\right)}(G)=\int_{-\infty}^{\infty} h^{\prime}(t) G(t) d t=-\int_{-\infty}^{\infty} h(t) G^{1}(t) d t=-\bar{h}\left(G^{s}\right)=(\bar{h})^{\prime}(G)
$$

for all $G(t)$ in S, and hence $\left(\overline{h^{1}}\right)=(\bar{h})^{\prime}$.

Theorem 2.23 If $h(t)$ is an ordinary function which is absolutely integrable on ($-\infty, \infty$)--so that its Fourier transform $H(f)$ exists by the classical Fourier integral theorem--then the Fourier transform of the generalized function \bar{h} defined by $h(t)$ is the generalized function \bar{H} defined by $H(f)$.

Proof: We have that

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|\left(1+f^{2}\right)^{-1} H(f)\right| d f & =\int_{-\infty}^{\infty}\left|\left(1+f^{2}\right)^{-1} \int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t) d t\right| d f \\
& \leq \int_{-\infty}^{\infty}\left(1+f^{2}\right)^{-1} d f \quad \int_{-\infty}^{\infty}|h(t)| d t \\
& <\infty
\end{aligned}
$$

Hence $\left(1+f^{2}\right) H(f)$ is absolutely integrable on ($-\infty, \infty$) and does define a generalized function. Let $g(t)$ be any test function and let $G(f)$ be its Fourier transform. Then we have

$$
\begin{aligned}
\bar{H}(G) & =\int_{-\infty}^{\infty} h(f) G(f) d f \\
& =\int_{-\infty}^{\infty} h(t) g(-t) d t \\
& =\int_{-\infty}^{\infty} h(t) F(G) d t \\
& =\bar{h}(F(G)) \\
& =\overline{F h}(G)
\end{aligned}
$$

where we have used Parseval's formula and (2.12). Since this holds for all $G(t)$ in S, we have $\overline{F h}=\bar{H}$ and the theorem is proved.

2.3 THE DIRAC DETTA FUNCTION AND ITS TRANSFORM

We now show that the sequence $\left\{\left(n / \pi^{\frac{1}{2}}\right) \exp \left(-n t^{2}\right)\right\}$ is regular and represents the important Dirac delta function 8 . This generalized function has the property that for every $H(t)$ in S,

$$
\begin{equation*}
\delta(H)=H(O) \tag{2.21}
\end{equation*}
$$

To prove this, we shall need the following def'inite integrals:

$$
\begin{aligned}
& \text { (a) } \quad \int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} \exp \left(-n t^{2}\right) d t=1 ; n=1,2,3, \ldots . . \\
& \text { (b) } \quad \int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} t \exp \left(-n t^{2}\right) d t=(n \pi)^{\frac{1}{2}}
\end{aligned}
$$

To establish (2.21), we must show that if $H(t)$ is a test function, then

$$
n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} \exp \left(-n t^{2}\right) H(t) d t=H(0)
$$

Multiplying both sides of (a) by $H(0)$, we may write

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty}(n / \pi) \exp \left(-n t^{2}\right) H(t) d t-H(0)\right| & =\left|\int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} \exp \left(-n t^{2}\right)\{H(t)-H(0)\} d t\right| \\
& =\left|\int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} t \exp \left(-n t^{2}\right) \frac{\{H(t)-H(0)\}}{t} d t\right| \\
& \leq \int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}}|t| \exp \left(-n t^{2}\right)\left|\frac{H(t)-H(0)}{t} d t\right|
\end{aligned}
$$

Now by the Mean Value Theorem for derivatives, on each interval [$0, t$] (or $[t, 0]$) there exists a $\beta_{t}, 0<\beta_{t}<t\left(t<\beta_{t}<0\right)$, such that

$$
H^{\prime}\left(\beta_{t}\right)=\frac{H(t)-H(0)}{t}
$$

Now $H^{\prime}(t)$ is in S and hence is bounded on the real line, so we have for each t

$$
A=\sup _{t}\left\{\left|H^{\prime}(t)\right|\right\} \geq\left|H^{\prime}\left(\beta_{t}\right)\right|=\left|\frac{H(t)-H(0)}{t}\right|
$$

Putting into the above and then using (b) gives

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} \exp \left(-n t^{2}\right) H(t) d t-H(0)\right| & \leq A \int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}}|t| \exp \left(-n t^{2}\right) d t \\
& =A(n \pi)^{\frac{1}{2}}
\end{aligned}
$$

and this last expression tends to zero as $n \longrightarrow \infty$. Hence we have

$$
\delta(H)=n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty}(n / \pi)^{\frac{1}{2}} \exp \left(-n t^{2}\right) H(t) d t=H(0)
$$

It is well known (see [4]) that $(n / \pi)^{\frac{1}{2}} \exp \left(-n t^{2}\right)$ and $\exp \left(-\pi^{2} f^{2} / n\right)$ form an ordinary Fourier transform pair, that is,

$$
\left(n / \pi^{\frac{1}{P}} e\left(-n t^{2}\right) \longleftrightarrow \exp \left(-\pi^{2} f^{2} / n\right)\right.
$$

and hence the sequence $\left\{\exp \left(-\pi^{2} f^{2} / n\right)\right\}$ is a representative of the Fourier transform of the generalized function δ. Now for any test function $H(f)$, we have

$$
\begin{equation*}
n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} \exp \left(-\pi^{2} f^{2} / n\right) H(f) d f=\int_{-\infty}^{\infty} I \cdot H(f) d f=I(H) \tag{2.22}
\end{equation*}
$$

where I is the generalized function of the example following Definidion 2.23. But from (2.22), we see that I is the generalized function defined by the ordinary function $h(t)=1$ for all t. Thus, by Derinition 2.25, we have that $I=\bar{I}$, and hence $F(\delta)=\bar{I}$ and $F^{-1}(\bar{I})=\delta$. More briefly,

$$
\begin{equation*}
\delta \longleftrightarrow \overline{1} \tag{2.23}
\end{equation*}
$$

From (2.23) and (2.16), we have

$$
\begin{equation*}
\delta_{1,-t_{0}} \longleftrightarrow \overline{\exp }\left(-2 \pi i t_{0} f\right) \tag{2.24}
\end{equation*}
$$

Note that $\exp \left(-2 \pi i t_{o} f\right)$ does define a generalized function because $\left(1+t^{2}\right)^{-1} \exp \left(-2 \pi i t_{o} f\right)$ is absolutely integrable.

From (2.24) and Theorem 2.21,

$$
\begin{equation*}
\overline{\exp }\left(2 \pi i t f_{0}\right) \longleftrightarrow \delta_{I,-f_{0}} \tag{2.25}
\end{equation*}
$$

Putting $f_{o}=0$ in (2.25) yields

$$
\begin{equation*}
\overline{\mathrm{I}} \longleftrightarrow \delta \tag{2.26}
\end{equation*}
$$

First noting that cos at and sin at define generalized functions, and then writing $\cos 2 \pi t f_{o}=\frac{1}{2}\left[\exp \left(2 \pi i t f_{o}\right)+\exp \left(-2 \pi i t f_{o}\right)\right]$, using (2.25) and the linearity of the Fourier transform, we obtain

$$
\begin{equation*}
\overline{\cos } 2 \pi t f_{0} \longleftrightarrow \frac{1}{2}\left[\delta_{1,-f_{0}}+\delta_{1, f}\right]_{0} \tag{2.27}
\end{equation*}
$$

Writing $\sin 2 \dot{\pi t f} f_{0}=\frac{1}{2 i}\left[\exp \left(2 \pi i t f_{0}\right)-\exp \left(-2 \pi i t f_{0}\right)\right]$, in a similar manner we find that

$$
\begin{equation*}
\overline{\sin } 2 \pi t f_{0} \longleftrightarrow \frac{I}{2 i}\left[\delta_{1,-f_{0}}-\delta_{1, f_{0}}\right] \tag{2.28}
\end{equation*}
$$

Hence the generalized functions $\overline{\sin } 2 \pi t f_{0}$ and $\overline{\cos } 2 \pi t f_{0}$ defined by the ordinary functions $\sin 2 \pi t f_{0}$ and $\cos 2 \pi t f_{o}^{\prime}$ have Fourier transforms, a property which the ordinary functions do not have.

2. 4 COMMENTS ON NOTATION

It has been mentioned that in [3] Lighthill uses an "integral"
notation for $s(G)$, s in \bar{S}, G in S. There, to denote the number $s(G)$, the symbol

$$
\begin{equation*}
\int_{-\infty}^{\infty} s(t) G(t) d t, \tag{2.29}
\end{equation*}
$$

is used, that is,

$$
\begin{equation*}
s(G) \equiv \int_{-\infty}^{\infty} s(t) G(t) d t \equiv n \xrightarrow{\text { lim }} \infty \quad \int_{-\infty}^{\infty} s_{n}(t) G(t) d t \tag{2.30}
\end{equation*}
$$

In general, the expression (2.29) has no meaning as an integral, in fact, the notation $s(t)$ has no meaning in general since s is not an ordinary function. However, for the space K of ordinary functions $h(t)$ such that $\left(1+t^{2}\right)^{-N} h(t)$ is absolutely integrable for some N, each quantity in the notation

$$
\begin{equation*}
\bar{h}(G)=\int_{-\infty}^{\infty} h(t) G(t) d t=n^{l i m} \infty \quad \int_{-\infty}^{\infty} h_{n}(t) G(t) d t \tag{2.31}
\end{equation*}
$$

has a well-defined meaning. Furthermore, the integral notation is preferred here because it is more explicit than the notation $\overline{\mathrm{h}}(\mathrm{G})$. This, along with some manipulative advantages of the integral notation, leads us to make the following changes in notation.

Definition 2.40 A generalized function s will be denoted by the symbol $s(t)$ and for each G in $S, s(G)$ will be denoted by (2.29). Furthermore, for each $h(t)$ in K, the symbol $h(t)$ will be used to denote both the ordinary function $h(t)$ and the generalized function \bar{h} defined by $h(t)$.

We shall now point out some changes which this makes in previously
encountered generalized functions. We now have that
(1) The generalized function $r_{a, b}$ is now denoted by the symbol $r(a t+b)$ in order to be consistent with Definition 2.40, for we have

$$
\int_{-\infty}^{\infty} r(t) G(t) d t=n \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} r_{n}(t) G(t) d t
$$

and the defining sequence for $r a, b$ is obtained by replacing t by $a t+b$ in each $r_{n}(t)$, hence

$$
\begin{equation*}
\int_{-\infty}^{\infty} r(a t+b) G(t) d t={ }_{n} \xrightarrow{l i m} \infty \quad \int_{-\infty}^{\infty} r_{n}(a t+b) G(t) d t \tag{2.32}
\end{equation*}
$$

(2) The transform pair of (2.23) are now written as

$$
\begin{equation*}
\delta(t) \longleftrightarrow 1 \tag{2.33}
\end{equation*}
$$

(3) The transform pairs (2.24) through (2.28) are now written as

$$
\begin{align*}
\delta\left(t-t_{0}\right) & \longleftrightarrow \exp \left(-2 \pi i t_{0} f\right) \tag{2.34}\\
\exp \left(2 \pi i t f_{0}\right) & \longleftrightarrow \delta\left(f-f_{0}\right) \tag{2.35}\\
1 \longleftrightarrow & \longleftrightarrow(f) \tag{2.36}\\
\cos 2 \pi t f_{0} & \longleftrightarrow \frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right] . \tag{2.37}\\
\sin 2 \pi t f_{0} & \longleftrightarrow \frac{1}{2 i}\left[\delta\left(f-f_{0}\right)-\delta\left(f+f_{0}\right)\right] \tag{2.38}
\end{align*}
$$

(4) For each $H(t)$ in S, in place of (2.21) we now have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(t) H(t) d t=H(0) \tag{2.39}
\end{equation*}
$$

2.5 EQUALITY OF ORDINARY AND GENERALIZED FUNCTIONS ON AN INTERVAI

In (B) of Section 2.1, it was stated that $\delta(\mathrm{t})$ is sometimes described as having the property that $\delta(t)=0$ i.f $t \neq 0$. We can now give a more precise meaning to this part of (B).

Definition 2.50 Let $g(t)$ be an ordinary function such that, for any test function $G(t)$ which is zero outside of the interval (a, b), $g(t) G(t)$ is integrable on $(a, b), a<b$. If $s(t)$ is a generalized function such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} s(t) G(t) d t=\int_{a}^{b} g(t) G(t) d t \tag{2.40}
\end{equation*}
$$

then we define $s(t)=g(t)$ for $a<t<b$.
In the sense of this definition, we have $\delta(t)=0$ for $0<t<\infty$. For suppose $G(t)=0$ for all $t \leq 0, G(t)$ in S. Then $G(0)=0$ and we have

$$
\int_{-\infty}^{\infty} \delta(t) G(t) d t=G(0)=0=\int_{0}^{\infty} 0 \cdot G(t) d t
$$

where the first equality is obtained from (2.39). In a similar manner, we find that $\delta(t)=0$ for $-\infty<t<0$. Thus, in the sense of Definition 2.50, $\delta(t)=0$ if $t \neq 0$.

2.6 CONVOLUTION OF GENERALIZED FUNCTIONS

We shall not attempt a complete discussion of the convolution of two generalized functions. A convolution of generalized functions cannot in general be defined without imposing some restrictions on one of the functions. A complete discussion may be found in [5] and [8].

One immediate problem we would encounter in such a discussion would be the lack of the concepts of convergence in S and continuity of generalized functions. For a proof of the continuity in a certain sense of every generalized function defined here, see [6].

Convolution of a generalized function and a test function

The convolution of a generalized function and a test function is derived from a previously defined generalized function. Putting $\mathrm{a}=1$ and $\mathrm{b}=-t$ in the definition of the generalized function $\mathrm{s}_{\mathrm{a}, \mathrm{b}}$, we obtain for each G in S,

$$
\begin{align*}
s_{l,-t}(G) & ={ }_{n} \xrightarrow{\lim } \infty \int_{-\infty}^{\infty} s_{n}(x-t) G(x) d x \\
& =\int_{-\infty}^{\infty} s(x-t) G(x) d x \tag{2.41}
\end{align*}
$$

Fixing G and letting t vary, we see that this defines an ordinary function of t. The convolution of s in \bar{S} and G in S is defined to be the ordinary function

$$
\begin{equation*}
s(t) * G(t)=s_{1,-t}(G) \tag{2.42}
\end{equation*}
$$

By making a change of variable in (2.41), we see that

$$
\begin{align*}
s(t) * G(t) & ={ }_{n} \xrightarrow{l i m} \infty \quad \int_{-\infty}^{\infty} s_{n}(x) G(t+x) d x \\
& =\int_{-\infty}^{\infty} s(x) G(t+x) d x \tag{2.43}
\end{align*}
$$

In the last lines of (2.41) and (2.43), we have reverted to the integral notation.

Note that if G is any function of S, then

$$
\begin{align*}
\delta(t) * G(t) & =\int_{-\infty}^{\infty} \delta(x) G(t+x) d x \\
& =G(t) \tag{2.44}
\end{align*}
$$

Convolution of generalized functions

Let r and s be generalized functions and suppose $s(t) * G(t)$ is in S for all G in S. The convolution of r and s is defined by

$$
\begin{equation*}
(r * s)(G)=r(s * G) \tag{2.45}
\end{equation*}
$$

When using the $r(t), s(t)$ notation, the convolution will be denoted by writing $r(t) * s(t)$. The corresponding integral notation is obtained as follows. We have

$$
\begin{equation*}
(r * s)(G)=\int_{-\infty}^{\infty}(r(t) * s(t)) G(t) d t \tag{2.46}
\end{equation*}
$$

and

$$
\begin{align*}
(r * s)(G) & =r(s * G) \\
& =\int_{-\infty}^{\infty} r(x)\left[\int_{-\infty}^{\infty} s(t-x) G(t) d t\right] d x \tag{2.47}\\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} r(x) s(t-x) d x\right] G(t) d t
\end{align*}
$$

Comparing (2.46) and (2.47), we have in the integral notation that

$$
\begin{equation*}
r(t) * s(t)=\int_{-\infty}^{\infty} r(x) s(t-x) d x \tag{2.48}
\end{equation*}
$$

As noted above, $\delta(t) * G(t)=G(t)$ for all G in S, and hence for any $r(t)$ in \bar{S}, we have

$$
\begin{equation*}
r * \delta(G)=r(\delta * G)=r(G) \tag{2.49}
\end{equation*}
$$

Therefore, $r(t) * \delta(t)=r(t)$ for every generalized function $r(t)$. In the integral notation, (2.49) yields

$$
\begin{equation*}
r(t)=\int_{-\infty}^{\infty} r(x) \delta(t-x) d x \tag{2.50}
\end{equation*}
$$

We have already shown that $F(\delta(t))=1$, and hence for any $s(t)$ in $\overline{\mathrm{S}}$ we have that

$$
\begin{equation*}
F(s(t) * \delta(t))=F(s(t)) \cdot l=F(s(t)) * F(\delta(t)) . \tag{2.51}
\end{equation*}
$$

Clearly we have

$$
s(t) * \delta\left(t-t_{0}\right)=s\left(t-t_{0}\right)
$$

and by (2.16) and (2.34)

$$
\begin{aligned}
& F\left(s\left(t-t_{0}\right)\right)=\exp \left(-2 \pi i f t_{o}\right) F(s(t)), \\
& F\left(\delta\left(t-t_{0}\right)\right)=\exp \left(-2 \pi i f t_{0}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
F\left(s(t) * \delta\left(t-t_{0}\right)\right)=F(s(t)) F\left(\delta\left(t-t_{0}\right)\right) \tag{2.52}
\end{equation*}
$$

Suppose that $\Phi(t)$ is a finite linear combination of delta functions, that is,

$$
\begin{equation*}
\Phi(t)=\sum_{j=-M}^{N} a_{j} \delta\left(t-t_{j}\right) \tag{2.53}
\end{equation*}
$$

where the a_{j} and x_{j} are constants. Then it is easy to show that convolution is linear, and hence if $s(t)$ is in \bar{S}

$$
\begin{equation*}
s(t) * \Phi(t)=\sum_{j=-M}^{N} a_{j} s\left(t-t_{j}\right) \tag{2.54}
\end{equation*}
$$

Applying F to both sides, using its linearity and (2.52), we obtain

$$
\begin{equation*}
F(s(t) * \Phi(t))=F(s(t)) F(\Phi(t)) \tag{2.55}
\end{equation*}
$$

Letting $r(f)=F(s(t))$ and $q(f)=F(\Phi(t))$, applying F^{-I} to both sides of (2.55) and using (2.54), we obtain

$$
\begin{equation*}
F^{-I}(r(f) q(f))=\sum_{j=-M}^{N} a_{j} s\left(t-t_{j}\right) \tag{2.56}
\end{equation*}
$$

2.7 TRIGONOMETRIC SERIES

If $s_{z}(t)$ is a generalized function for each value of the parameter z and if $s(t)$ is a generalized function such that

$$
\begin{equation*}
z^{l} \xrightarrow{\lim } a \quad \int_{-\infty}^{\infty} s_{z}(t) G(t) d t=\int_{-\infty}^{\infty} s(t) G(t) d t \tag{2.57}
\end{equation*}
$$

for all $G(t)$ in S, then $s_{z}(t)$ is said to converge to $s(t)$ and we write

$$
z^{\lim } a_{z}(t)=s(t)
$$

With this definition of convergence in \bar{S}, we have the following theorem (see [3] for a proof).

Theorem 2.70 The trigonometric series

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} a_{n} \exp (\text { inst } / p) \tag{2.58}
\end{equation*}
$$

converges in the sense of (2.57) to a generalized function $s(t)$ if and only if $a_{n}=O\left(|n|^{N}\right)$ for some N as $|n| \longrightarrow \infty$. If (2.58) converges, then its Fourier transform is

$$
\begin{equation*}
r(f)=\sum_{n=-\infty}^{\infty} a_{n} \delta(f-n / 2 p) \tag{2.59}
\end{equation*}
$$

Also, $s(t)=0$ only if $a_{n}=0$ for all n.
The function $r(f)$ is called a "row of deltas" of spacing $1 / 2 p$. This function is represented graphically by drawing vertical lines of amplitudes a_{n} at the points $f=n / 2 p$ (see Figure 2.3). This repre-

FIGURE 2.3
sentation arises from the equality in the sense of Definition 2.50 of $r(f)$ and an ordinary function which is zero on ($n / 2 p,(n+1) / 2 p)$. If $g(t)$ is an ordinary periodic function which has a Fourier series
representation, then the a_{n} are the Fourier coefficients (see [3])

$$
a_{n}=(1 / 2 p) \quad \int_{-p}^{p} g(t) \exp (-i n \pi t / p) d t
$$

This is equivalent to the statement that convergence of a trigonometric series in the ordinary sense implies convergence in the sense of (2.57) and that the limits are the same. The converse is not true, for by Theorem 2.70, the series

$$
\sum_{n=-\infty}^{\infty} \cos (n \pi t / p)
$$

converges in the sense of (2.57), but obviously not to an ordinary function.

CHAPIER III

FILIERS

3.0 LINEAR SYSTEMS

A linear system, for our purposes, is a linear operator (mapping) L of \bar{S} into \bar{S}. That is, if $g(t), h(t)$ arc in \bar{S} and a, b are scalars, then

$$
\begin{equation*}
L\{a g(t)+b h(t)\}=a L\{g(t)\}+b L\{h(t)\} \tag{3.0}
\end{equation*}
$$

We have already encountered some linear operators on \bar{S}. The Fourier transform and inverse Fourier transform are both linear operators on \bar{S}. Another example is the operation of taking the generalized derivative of a generalized function.

Under certain conditions, a linear system L is completely characterized by the effect of applying L to the set of generalized functions of the form $\delta(t-x)$. That is, suppose that for every value of the parameter x , we have $L\{\delta(t-x)\}=h_{x}(t)$, and that the family of generalized functions $h_{x}(t)$ is known. Let $g(t)$ be an arbitrary element of \bar{S}, and let $r(t)=L\{g(t)\}$. The function $g(t)$ is usually called the input of the linear system L, and the function $r(t)$ is called the output of L. From (2.50) we have

$$
\begin{equation*}
g(t)=\int_{-\infty}^{\infty} g(x) \delta(t-x) d x \tag{3.1}
\end{equation*}
$$

and applying L to both sides, we obtain

$$
r(t)=L\left\{\int_{-\infty}^{\infty} g(x) \delta(t-x) d x\right\}
$$

Assuming that (3.0) is sufficient to write

$$
L\left\{\int_{-\infty}^{\infty} g(x) \delta(t-x) d x\right\}=\int_{-\infty}^{\infty} L\{g(x) \delta(t-x)\} d x
$$

then

$$
\begin{aligned}
r(t) & =\int_{-\infty}^{\infty} g(x) L\{\delta(t-x)\} d x \\
& =\int_{-\infty}^{\infty} g(x) h_{x}(t) d x
\end{aligned}
$$

Suppose that L satisfies the condition:
(A) If $L\{g(t)\}=r(t)$ and t_{o} is real constant, then

$$
\mathrm{L}\left[g\left(t-t_{o}\right)\right\}=r\left(t-t_{0}\right) \text {, i.e., } L \text { is time-invariant. }
$$

Then if $L\{\delta(t)\}=h(t), L\left(\delta\left(t-t_{0}\right)\right\}=h\left(t-t_{0}\right)$ and

$$
\begin{equation*}
r(t)=\int_{-\infty}^{\infty} g(x) h(t-x) d x \tag{3.2}
\end{equation*}
$$

that is, the output of L is given in terms of the input and a unique function $h(t)$. The function $h(t)$ is called the impulse response or weight function of the linear system L, and its Fourier transform

$$
\begin{equation*}
H(f)=\int_{-\infty}^{\infty} h(t) \exp (-2 \pi i f t) d t \tag{3.3}
\end{equation*}
$$

is called the system or transfer function of L.
Note that (3.2) is the convolution $g(t) * h(t)$. If $r(t) \longleftrightarrow R(f)$ $g(t) \longleftrightarrow G(f)$, then using (3.2) and assuming that the convolution theorem holds for these generalized functions, we have

$$
r(t)=g(t) * h(t) \longleftrightarrow G(f) H(f)
$$

and

$$
\begin{align*}
& R(f)=G(f) H(f) \tag{3.4}\\
& r(t)=\int_{-\infty}^{\infty} G(f) H(f) \exp (2 \pi i f t) d f
\end{align*}
$$

That is, the Fourier transform of the output of the linear system L is equal to the product of the transforms of the input and the weight tunction $h(t)$. We also note that if $G\left(f^{\prime}\right)$ is the transform of an input and $R(f)$ is the transform of a desired output, then from (3.4) the transfer function of the linear system L giving the desired output is

$$
\begin{equation*}
H(f)=\frac{R(f)}{G(f)} . \tag{3.5}
\end{equation*}
$$

$H(f)$ may in general be complex \{see (1.38)\}

$$
H(f)=A(f) \exp (i \theta(f))
$$

where $A(f)$ and $\theta(f)$ have already been defined in the classical case as the Fourier spectrum and phase angle of $h(t)$, respectively.

Definition 9. A linear system I which satisfies (A) is called a filter if $A(f)$ is small in some sense on certain parts of the frequency axis. A low-pass filter is a filter for which $A(f)$ is small for $|f|>f_{c}$ where f_{c} is called the cut-off frequency. A band-pass filter is a filter for which $A(f)$ is small outside the intervals [$\left.\bar{f}_{j}, f_{j}\right]$, $j=1,2, \ldots \ldots, n$. A frequency \bar{f} is said to be passed by a filter if $A(\bar{f})$ is not smail.

3.1 IDEAL LOW-PASS FILITERS

Ideal smoothing filter.
This, by defintion, is a low-pass filter which passes all frequencies f such that $|f| \leq f_{c}$ without change and deletes all frequencies greater than f_{c}. No phase shif't is involved, and hence $\theta(f)=0$. Thus

$$
H(f)=A(f)= \begin{cases}1 & |f| \leq f_{c} \tag{3.6}\\ 0 & |f|>f_{c} .\end{cases}
$$

See figure 3.1.

FIGURE 3.1

The corresponding weight function ïs

$$
\begin{align*}
h(t) & =\int_{-f_{c}}^{f_{c}} \exp (2 \pi i f t) d f \tag{3.7}\\
& =2 \int_{0}^{f_{c}} \cos 2 \pi f t d f \\
& =\frac{\sin 2 \pi f_{c} t}{\pi t}
\end{align*}
$$

If $g(t)$ is the input to this filter, then the output is

$$
r(t)=\int_{-\infty}^{\infty} g(z) h(t-z) d z
$$

which has transform \{see (3.4)\}

$$
R(f)= \begin{cases}G(f) H(f) & |f| \leq f_{c} \\ 0 & |f|>f_{c}\end{cases}
$$

where $g(t) \longleftrightarrow G(f)$.

Ideal smoothing and differentiating filter.
By (2.17), if $g(t) \longleftarrow \longrightarrow G(f)$, then for $n=1,2, \ldots \ldots$, we have

$$
\begin{equation*}
g^{(n)}(t) \longleftrightarrow(2 \pi i f)^{n^{\prime}} G(f) \tag{3.8}
\end{equation*}
$$

From (3.5) we see that to find the nth derivative of an input $g(t)$ the transfer function must be $(2 \pi i f)^{n}$. Then, in order to smooth using the ideal filter and find the nth derivative, the transfer function is given by

$$
H(f)= \begin{cases}(2 \pi i f)^{n} & |f| \leq f_{c} \tag{3.9}\\ 0 & |f|>f_{c}\end{cases}
$$

and the weight function is

$$
\begin{equation*}
h_{n}(t)=\int_{-f_{c}}^{f_{c}}(2 \pi i f)^{n} \exp (2 \pi i f t) d f \tag{3.10}
\end{equation*}
$$

But differentiating (3.7) n times, we have

$$
\begin{equation*}
h^{(n)}(t)=\int_{-f_{c}}^{f_{c}}(2 \pi i f)^{n} \exp (2 \pi i f t) d f \tag{3.11}
\end{equation*}
$$

and so

$$
\begin{equation*}
h_{n}(t)=h^{(n)}(t) \tag{3.12}
\end{equation*}
$$

Thus to find the weight function of the ideal smoothing and differentiating filter we simply differentiate the weight function of the smoothing filter the appropriate number of times. Then the output of the filter is given by

$$
\begin{equation*}
g^{(n)}(t)=\int_{-\infty}^{\infty} g(z) h^{(n)}(t-z) d z \tag{3.13}
\end{equation*}
$$

3.2 THE SAMPLING THEOREM

Ideal filters of the type discussed above are not physically realizable because of the jump discontinuities at $\pm f_{c}$. Furthermore, in digital filtering the input consists of a finite number of equally spaced values $g_{m}, M \leq m \leq N$, which we may assume are samples of some function $g(t)$ for $t=m \Delta t=\frac{m}{f_{s}}$. We may also assume that $g(t)$ defines a generalized function, for, recalling Definition 2.25 and Theorem 2.23, this does not place a serious restriction on $g(t)$. It is obvious that $g(t)$ is not uniquely determined by the values g_{m}, and hence the set of values g_{m} are associated with a subset $G_{M N}$ of \bar{S}.

If we know that the samples g_{m} arise from a function $g(t)$ whose transform $G(f)$ is zero for $|f|>f_{\beta}$, then the subset $G_{M N}$ of \bar{S} is reduced to a subset $G_{M N}^{I} \subset G_{M N}$. In this case $g(t)$ is said to be band-limited.

Theorem 8. Shannon's sampling theorem (see [9]).
If $g(t)$ is band-limited, i.e., if $g(t) \longleftrightarrow G(f)$ where

$$
\begin{equation*}
G(f)=0 \quad|f|>f_{\beta} \tag{3.14}
\end{equation*}
$$

then $g(t)$ can be uniquely determined from its values

$$
\begin{equation*}
g_{n}=g\left(\frac{n}{2 f_{\beta}}\right) \tag{3.15}
\end{equation*}
$$

at a sequence of equidistant points of distance $\frac{l}{2 f_{\beta}^{f}}$ apart.
Furthermore

$$
\begin{equation*}
g(t)=\sum_{n=-\infty}^{\infty} g_{n} \frac{\sin \pi\left(2 f_{\beta} t-n\right)}{\pi\left(2 f_{\beta}^{t-n}\right)} . \tag{3.16}
\end{equation*}
$$

Proof: We first compute the g_{n}. We have, using (3.14),

$$
g(t)=\int_{-f_{\beta}}^{f_{\beta}} G(f) \exp (2 \pi i f t) d f
$$

hence

$$
\begin{equation*}
g_{n}=g\left(\frac{n}{2 f_{\beta}}\right)=\int_{-f_{\beta}}^{f_{\beta}} G(f) \exp \left(n \pi i f / f_{\beta}\right) d f \tag{3.17}
\end{equation*}
$$

Expanding $G(f)$ in a Fourier series on $\left(-f_{\beta}, f_{\beta}\right)$ we have

$$
\begin{equation*}
G(f)=\sum_{n=-\infty}^{\infty} G_{n} \exp \left(-n \pi i f / f_{\beta}\right), \quad-f_{\beta}<f<f_{\beta}, \tag{3.18}
\end{equation*}
$$

wherc

$$
\begin{equation*}
G_{n}=\frac{1}{2 f_{\beta}} \int_{-f_{\beta}}^{f_{\beta}} G(f) \exp \left(n \pi i f / f_{\beta}\right) d f \tag{3.19}
\end{equation*}
$$

comparing (3.17) and (3.19), we have

$$
G_{n}=\frac{g_{n}}{2 f_{\beta}}
$$

The function

$$
\bar{G}(f)=\sum_{n=-\infty}^{\infty} \frac{g_{n}}{2 f_{\beta}} \exp \left(-n \pi i f / f_{\beta}\right),-\infty<f<\infty
$$

is the periodic extension of $G(f)$ and

$$
\bar{G}(f)=G(f) \quad \text { for }-f_{\beta}<f<f_{\beta} .
$$

Hence we may write

$$
G(f)=H(f) \bar{G}(f)
$$

where

$$
H(f)= \begin{cases}1 & |f| \leq f_{\beta} \\ 0 & |f|>f_{\beta}\end{cases}
$$

Now (see (3.6) and (3.8))

$$
\begin{equation*}
\frac{\sin 2 \pi f_{\beta} t}{\pi t} \longleftrightarrow H(f) \tag{3.20}
\end{equation*}
$$

So we have

$$
\begin{aligned}
G(f) & =H(f) \sum_{n=-\infty}^{\infty} \frac{g_{n}}{2 f_{\beta}} \exp \left(-n \pi i f / f_{\beta}\right) \\
& =\infty \sum_{n=-\infty} \frac{g_{n}}{2 f_{\beta}} H(f) \exp \left(-n \pi i f / f_{\beta}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g(t) & =\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty} \frac{g_{n}}{2 f_{\beta}} H(f) \exp \left(-n \pi i f / f_{\beta}\right)\right] \exp (2 \pi i f t) d f \\
& =\sum_{n=-\infty}^{\infty} \frac{g_{n}}{2 f_{\beta}} \int_{-\infty}^{\infty} H(f) \exp \left(-n \pi i f / f_{\beta}\right) \exp (2 \pi i f t) \operatorname{df} .
\end{aligned}
$$

Applying the First Shifting Theorem gives

$$
\begin{aligned}
g(t) & =\sum_{n=-\infty}^{\infty} \frac{g_{n}}{2 f_{\beta}} \frac{\sin 2 \pi f_{\beta}\left(t-n / 2 f_{\beta}\right)}{\pi\left(t-n / 2 f_{\beta}\right)} \\
& =\sum_{n=-\infty}^{\infty} g_{n} \frac{\sin \pi\left(2 f_{\beta} t-n\right)}{\pi\left(2 f_{\beta} t-n\right)}
\end{aligned}
$$

If f_{S} is any number such that $f_{s} \geq 2 f_{\beta}$, then the theorem remains true if in the proof the periodic function $\bar{G}(f)$ is assumed to be of $\operatorname{period} f_{s}$, and $H\left(f^{\prime}\right)=I$ for $\left|\Psi^{\prime}\right| \leq \frac{f_{s}}{2} ; H\left(f^{\prime}\right)=0,\left|\Psi^{\prime}\right|>\frac{f_{s}}{2}$.
Therefore

$$
\begin{equation*}
g(t)=\sum_{n=-\infty}^{\infty} g_{n} \frac{\sin \pi\left(f_{s} t-n\right)}{\pi\left(f_{s} t-n\right)} \tag{3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n}=g\left(\frac{n}{f_{s}}\right) . \tag{3.22}
\end{equation*}
$$

If the g_{n} are known, as assumed above, for $M \leq n \leq N$, then the function

$$
\begin{equation*}
g_{M N}(t)=\sum_{n=M}^{N} \frac{\sin \pi\left(f_{s} t-n\right)}{\pi\left(f_{s} t-n\right)} \tag{3.23}
\end{equation*}
$$

differs from each function $\bar{g}(t)$ of $G_{M N}^{I}$ by

$$
\begin{equation*}
\epsilon_{\mathrm{g}}(t)=\sum_{n=-\infty}^{M-1} \bar{g}_{n} \frac{\sin \pi\left(f_{s} t-n\right)}{\pi\left(f_{s} t-n\right)}+\sum_{n=\mathbb{N}+1}^{\infty} \bar{g}_{n} \frac{\sin \pi\left(f_{s} t-n\right)}{\pi\left(f_{s} t-n\right)} \tag{3.24}
\end{equation*}
$$

where $\bar{g}_{n}=\bar{g}\left(\frac{n}{\mathbf{P}_{s}}\right)$. Hence, at least in the cases where the series in. (3.21) converges uniformly to $g(t)$, the maximum difference

$$
\begin{equation*}
\operatorname{Max}_{t}\left|\epsilon \epsilon_{\mathrm{F}}(\mathrm{t})\right|=\max _{\mathrm{t}}\left|g(\mathrm{t})-\mathrm{g}_{\mathrm{MN}}(\mathrm{t})\right| \tag{3.25}
\end{equation*}
$$

can be made as small as we please by taking a sufficient number of terms in $g_{M N}(t)$. Thus we can associate with the samples $\left\{g_{n}\right\}$ a unique function $g(t)$ in the sense that (3.25) can be made arbitrarily small by taking a sufficient number of samples.

3.3 DEFINITION OF A DIGITAL FILIER

Supposc that the sampled function $g(t)$ is band-limitcd. Then $G(f)=0$ for $|f|>f_{\beta}$. If $H(f)$ is a desired transfer function, then $H(f) G(f)=0$ for $|f|>f_{\beta}$. Thus if $\bar{H}(f)$ is a periodic extension of $H(f)$ with period $f_{s} \geq 2 f_{\beta}$, we have the transform $R(f)$ of the output $r(t)$ given by

$$
\begin{equation*}
R(f)=H(f) G(f)=\bar{H}(f) G(f), \tag{3.26}
\end{equation*}
$$

for all f.

If $H(f)$ is such that $\bar{H}(f)$ can be written as a trigonometric series,

$$
\begin{equation*}
\stackrel{\rightharpoonup}{H}(f)=\sum_{n=-\infty}^{\infty} a_{n} \exp \left(2 n \pi i f / f_{s}\right) \tag{3.27}
\end{equation*}
$$

with $a_{n}=O\left(|n|^{N}\right)$ for some N as $|n| \longrightarrow \infty$, then, by Theorem 2.70, $\bar{H}(f) \in \bar{S}$ and is the transform of

$$
\begin{equation*}
\bar{h}(t)=\sum_{n=-\infty}^{\infty} a_{n} \delta\left(t+n / f_{s}\right) \tag{3.28}
\end{equation*}
$$

Now $g(t)$ is time sampled. In order to obtain a time sampled version of the output $r(t)$ we might define a convolution $g(t) * \bar{h}(t)$ and extcnd (2.54) and (2.55) to functions $\Phi(t)=\bar{h}(t)$. Assuming that we did this, we would have

$$
r(t)=\sum_{n=-\infty}^{\infty} a_{n} g\left(t+n / f_{s}\right)
$$

which would yield the sampled version of $r(t)$ for $t=m / t_{s}$ as

$$
r\left(m / f_{s}\right)=\sum_{n=-\infty}^{\infty} a_{n} g\left((m+n) / f_{s}\right)
$$

which is impossible to use digitally since it requires infinitely many samples.

Alternately, let

$$
\begin{equation*}
H_{M \mathbb{N}}(f)=\sum_{n=M}^{\mathbb{N}} a_{n} \exp \left(2 n \pi i f / f_{s}^{*}\right) \tag{3.29}
\end{equation*}
$$

be a trigonometric polynomial which approximates $H(f)$ in some sense. Then (3.29) is the transform of

$$
\begin{equation*}
h_{M N}(t)=\sum_{n=M}^{N} a_{n} \delta\left(t+n / f_{s}\right) \tag{3.30}
\end{equation*}
$$

and by (2.54) the convolution $g(t) *_{M N}(t)$ is defined for all $g(t) \in \bar{S}$. Also (2.55) holds. Thus

$$
\begin{equation*}
R(f)=G(f) H(f) \doteq G(f) H_{M N}(f)=\bar{R}(f) \tag{3.31}
\end{equation*}
$$

and $\bar{r}(t) \longleftrightarrow \bar{R}(f)$ is given by

$$
\begin{aligned}
\bar{r}(t) & =g(t) * h_{M N}(t) \\
& =\sum_{n=M}^{N} a_{n} \int_{-\infty}^{\infty} g(z) \delta\left(t-z+n / f_{s}\right) d z \\
& =\sum_{n=M}^{N} a_{n} g\left(t+n / f_{s}\right) .
\end{aligned}
$$

For $t=m / f_{s}, \bar{r}_{m}=\bar{r}\left(m / f_{s}\right), g_{m}=\left(m / f_{s}\right)$, we have

$$
\begin{equation*}
\bar{r}_{m}=\sum_{n=M}^{N} a_{n} g_{m+n} \tag{3.32}
\end{equation*}
$$

This is the fundamental formula of digital filtering.
Note that any pair (3.29) and (3.30) determine a linear operator L on \bar{S} which satisfies condition (A) and which, on the subspace G_{S} of all band-limited functions $g(t)$ with $2 f_{\beta} \leq f_{s}$, acts as a low-pass filter. Now any finite set of constants a_{n} determines a generalized
function (3.30), which determines (3.29) and hence a linear operator L.

Definition 3. Let $a_{n}, M \leq n \leq N$, be any set of constants. Then the linear system \bar{I} determined by the a_{n} is called a digital or numerical filter. The constants a_{n} are called the weights of the digital filter.

Application of $\overline{\mathrm{L}}$ must be limited to the subspace G_{S}. Otherwise "frequency folding" occurs, i.e., frequencies in the intervals

$$
\left(\frac{(2 n-1) f_{s}}{2}, \frac{(2 n+1) f_{s}}{2}\right), n= \pm I, \pm 2, \cdots, \text { are folded back into the }
$$

$\left(-\frac{f}{2}, \frac{f}{2}\right)$. For example, suppose the input contains a frequency component $A \cos 2 \pi\left(f_{0}+k f_{s}\right) t$ where $f_{0}<\frac{f_{s}}{2}$ and k is a. positive integer. Then if we sample at $t=n / f_{s}$,

$$
\begin{aligned}
\operatorname{Acos} 2 \pi\left(f_{0}+k f_{s}\right) n / f_{s} & =A \cos \left[2 \pi f_{0} n / f_{s}+2 n k \pi\right] \\
& =A \cos \left(2 \pi f_{0} n / f_{s}\right) .
\end{aligned}
$$

The sample values would be the same as those obtained from a component Acos $2 \pi f_{0} t$ for $t=n / f_{s}$. Hence the filter treats the frequency $f_{0}+\mathrm{kf}_{\mathrm{s}}>\mathrm{I}_{\mathrm{s}} / 2$ in the same manner as $f_{\mathrm{O}^{\circ}}$

3.4 EVEN AND ODD TRANSFER FUNCTIONS

In most cases of interest here, the transfer function $H(f)$ is either even or odd. Hence the trigonomctric polynomial $H_{M N}(f)$ which approximates $H(f)$ can be written in terms of $\cos 2 n \pi f / f_{s}$ and $\sin 2 n \pi f / f_{s}$ respectively. If we take $M=-N$ some advantages are gained. Let

$$
\begin{equation*}
H_{M N}(f)=H_{N N}(f)=\sum_{n=-N}^{N} a_{n} \exp \left(2 \pi n i f / f_{s}\right) . \tag{3.33}
\end{equation*}
$$

For even functions,

$$
\begin{equation*}
H_{N}(f)=a_{0}+2 \sum_{n=1}^{N} a_{n} \cos 2 n \pi f / f_{s} . \tag{3.34}
\end{equation*}
$$

For odd functions,

$$
\begin{equation*}
H_{N}(f)=2 i \sum_{n=1}^{N} a_{n} \sin 2 n \pi f / f_{s} . \tag{3.35}
\end{equation*}
$$

Two quastions now arise:
(1) given $H(f)$, how are the weights a_{n} to be chosen, and
(2) what is the error introduced by the approximation $\bar{R}(f)=R(f)\}$

3.5 METHODS OF FILTER APPROXIMATION

If $H(f)$ is an ordinary function, there are several methods of approximating $H(f)$ and obtaining the weights a_{n}. One of these methods--the Min-Max technique--is given by Martin [ll]. Essentially, it assumes continuity of $H(f)$ in which case, if $Q_{n}(f)$ is a set of N continuous and linearly independent functions on $\left[-\frac{f_{s}}{2}, \frac{f_{s}}{2}\right]$, then there exists a polynomial

$$
P_{N}(f)=a_{1} Q_{I}(f)+\cdots+a_{N} Q_{\mathbb{N}}(f)
$$

which deviates the least from $H(f)$ on ($-\frac{f_{s}}{2}, \frac{f_{s}}{2}$), i.e.,
$\max _{f \in\left(-\frac{f_{S}}{2}, \frac{f_{s}}{2}\right)}\left|H(f)-P_{N}(f)\right| \leq \max f_{f}\left|H(f)-\sum_{i=1}^{N} x_{n} Q_{n}(f)\right|$
for any numbers $x_{1}, x_{2}, \ldots, x_{N}$. The $Q_{n}(f)$ are obtained after putting a constraint (or constraints) on a trigonometric polynomial (3.33). $P_{N}(f)$ is then fitted at a finite number of points to $H(f)$ in the above sense. A good approximation of the a_{n} is obtained by an iterative process, but the technique is long and complex, and not very versatile. That is, any change in $H(f)$ necessitates a complete repetition of the process for finding the a_{n}.

The method we shall use assumes that $H(f)$ can be approximated by a Fourier series,

$$
\begin{equation*}
\bar{H}(f)=\sum_{n=-\infty}^{\infty} h_{n} \exp \left(2 n \pi i f / f_{s}\right), \tag{3.36}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{n}=l / f_{s} \quad \int_{-f_{2} / 2}^{f_{s} / 2} H(f) \exp \left(-2 n \pi i f / f_{s}\right) d f, \tag{3.37}
\end{equation*}
$$

and $H_{N}(f)$ is taken to be the truncated series for $H(f)$,

$$
\begin{equation*}
H_{N}(f)=\sum_{n=-N}^{N}!\quad h_{n} \exp \left(2 n \pi i f / f_{S}\right) \tag{3.38}
\end{equation*}
$$

This gives a function which is the best fit to $H(f)$ in the least mean square sense. (See [1]for a discussion of Fourier series.)

Noting that, since $H(f)=0$ for $|f|>\frac{f_{S}}{2}$, the inverse transform
of $H(f)$ is

$$
\begin{equation*}
h(t)=\int_{-f_{s} / 2}^{f_{s} / 2} H(f) \exp (-2 \pi i f t) d f, \tag{3.39}
\end{equation*}
$$

and comparing (3.39) and (3.37), we see that

$$
\begin{equation*}
h_{n}=1 / f_{s} h\left(-n / f_{s}\right) \tag{3.40}
\end{equation*}
$$

This is the basic formula for computing the $h_{n}=a_{n}$ to use in (3.32). Therefore (3.32) can be written as

$$
\begin{equation*}
\bar{r}_{\mathrm{m}}=\sum_{\mathrm{n}=-\mathrm{N}}^{\mathrm{N}} h_{\mathrm{n}} \mathrm{~g}_{\mathrm{m}+\mathrm{n}} \tag{3.41}
\end{equation*}
$$

The Min-Max technique uses a finite number of values of the transfer function $H(f)$, while the second approach assumes that $H(f)$ is given for all f, and hence the h_{n} may be computed from (3.37), or from (3.40) if $h(t)$ is computed first. In some applications, $H(f)$ is known at only a finite number of points and this second method is not applicable. In particular, the case sometimes arises that

$$
H(f)=A(f) \exp (i \theta(f))
$$

and only values of $A(f)$ and $\theta(f)$ are known at equally spaced points on the interval ($0, f_{s} / 2$). A method for computing the h_{n} for such a filter is discussed in Appendix B.

3.6 ERROR ANALYSIS

With an approximation $H_{N}(f)$ of $H(f)$, (3.31) becomes

$$
R(f)=G(f) H(f)=G(f) H_{N}(f)=\bar{R}(f),
$$

and so

$$
R(f)-\bar{R}(f)=G(f)\left[H(f)-H_{N}(f)\right] .
$$

This gives the pointwise error between the spectrum of the desired output and the spectrum of the actual output.

For a complex frequency component $g_{0}(t)=A \exp \left(2 \pi i f f_{0} t\right)$ in the input we have

$$
g_{0}(t)=A \exp \left(2 \pi i f_{0} t\right) \longleftrightarrow A \cdot \delta\left(f-f_{0}\right)=G\left(f_{0}\right)
$$

and

$$
R\left(f_{0}\right)=A \cdot \delta\left(f-f_{0}\right) H\left(f_{0}\right),
$$

also

$$
\bar{R}\left(f_{0}\right)=A \cdot \delta\left(f-f_{0}\right) H_{N}\left(f_{0}\right) .
$$

Denoting the difference in the outputs by $\in\left(f_{o}, t\right)$ we have

$$
\begin{aligned}
\left|\epsilon\left(f_{0}, t\right)\right| & =\left|\int_{-\infty}^{\infty} A \cdot \delta\left(f-f_{0}\right) \quad H\left(f_{0}\right)-H_{N}\left(f_{0}\right) \exp (2 \pi i f t) d f\right| \\
& =\left|A \exp \left(2 \pi i f_{0} t\right) H\left(f_{0}\right)-H_{N}\left(f_{0}\right)\right| \\
& =\left|A \exp \left(2 \pi i f_{0} t\right)\right| \cdot\left|\in\left(f_{0}, \mathbb{N}\right)\right|
\end{aligned}
$$

where $\in\left(f_{o}, \mathbb{N}\right)=H\left(f_{o}\right)-H_{N}\left(f_{o}\right)$.
In the time sampled version:

$$
\begin{equation*}
\left|\in\left(f_{o}, n / f_{s}\right)\right|=\left|A \exp \left(2 \pi i f_{0} n / f_{s}\right)\right| \cdot\left|\epsilon\left(f_{o}, N\right)\right| . \tag{3.42}
\end{equation*}
$$

Thus the magnitude of the error in a component of the actual sampled output is given in terms of the magnitude of the corresponding component of the input function, and of the magnitude of the error in the approximation of $\mathrm{H}(f)$.

Approximations of \in,

$$
\begin{equation*}
\epsilon=\max _{f}|\epsilon(f, N)|=\max _{f}\left|H(f)-H_{N}(f)\right| \tag{3.43}
\end{equation*}
$$

derived mathematically are usually found to be so large as to render them useless in applications. In applications of the smoothing filter discussed later, acceptable values of \in are in the range . $005 \leq \in \leq .01$, or referred to unity, $\frac{1}{2} \%$ and 1%. When speaking of percent error we will always mean \in referred to unity. For a given $H(f)$, an N is found empirically such that $H_{N}(f)$ approximates $H(f)$ within the desired limits.

However, satisfying the requirement that . $005 \leq \in \leq$. O. does not imply the output error is within these bounds (see Chapter VII).

3.7 THE GIBBS ' PHENOMENON

When approximating an ideal or designed transfer function $H(f)$ having one or more jump discontinuities with a truncated Fourier series, there exist oscillations in the approximating transfer function $H_{N}(f)$ near the discontinuities of $H(f)$ due to the Gibbs' phenomenon (see [12]). No matter how large N is taken, ϵ cannot be brought within the acceptable range $.005 \leq \epsilon \leq .01$.

To avoid this difficulty $H(f)$ is first approximated by a function which is continuous. In most cases, this imposes a restriction on the input $g(t)$. The particular cases of interest here shall be dealt with in the next chapter.

CHAPIER IV

FIITER DESIGN

4.0 ASSUMPIIONS ABOUT THE INPUT

In order to apply a digital filter to a set of samples $\left\{g_{n}\right\}$, we have made two assumptions about the data:
I. It arises from a function $g(t)$ which defines a generalized function, and
II. $g(t)$ is band-limited.

In many cases of interest, the Fourier spectrum $G(f)$ of a signal $g(t)$ consists of a desired signal spectrum in an interval $\left[-f_{c}, f_{c}\right]$, an unwanted signal spectrum (noise spectrum) in intervals $\left[-f_{\beta},-f_{c}\right.$) and $\left(f_{c}, f_{\beta}\right]$, and $G(f)=0$ for $|f|>f_{\beta}$. When applying a low-pass filter, elimination of the unwanted spectrum is desired. Hence the ideal filter transfer function, $H_{I}(f)$, is such that $H_{I}(f)=0$, $|f|>f_{c}$. Usually $H_{I}\left(\pm f_{c}\right) \neq 0$ and $H_{I}(f)$ has jump discontinuities at $f= \pm f_{c}$. If the truncated Fourier series of $H_{I}(f)$ is used to approximate $H_{I}(f)$, then, due to the Gibbs' phenomenon, large oscillations persist in a neighborhood of $\pm f_{c}$. Furthermore, the amplitude of these oscillations remains constant with increasing N. The truncated Fourier series is continuous everywhere because it is a finite sum of everywhere continuous functions. Since $H_{I}\left(f_{c}\right) \neq O$, we expect that the truncated series, $H_{N}(f)$, is such that $H_{N}\left(f_{c}\right) \neq 0$. Then, by continuity, $H_{N}(f)$ is non-zero on some interval ($f{ }_{c}, f{ }_{c}+\Delta f$) where $\Delta f>0$ and depends on N. Any unwanted frequencies which appear in this interval are passed--though somewhat attenuated--by
the approximating filter. Hence, in addition to the large oscillations which appear near $\pm f_{c}$, unwanted frequencies arbitrarily close to $\pm f_{c}$ cannot be eliminated by increasing \mathbb{N}. This undesirable property must be tolerated because it is a property of any truncated Fourier series such that $H_{N}\left(f_{c}\right) \neq 0$. However, the large oscillations are caused by non-uniform convergence of the Fourier series of $H_{I}(f)$. This can be remedied by redefining $H_{I}(f)$ so that it is a continuous function. We choose to do this on the intervals $\left(-f_{c}-\Delta f^{\prime},-f_{c}\right)$ and $\left(f_{c}, f_{c}+\Delta f\right)$ for some $\Delta f>0$. Any unwanted frequencies in these intervals will be passed to some extent by the filter, but, as pointed out above, this cannot be avoided anyway. However, in many applications unwanted frequencies do not appear near ${ \pm f_{c}}$. Therefore, we make the following third assumption about the data:
III. The desired signal spectrum and the unwanted spectrum of $g(t)$ are disjoint.

Then there exists a $\Delta f>0$ such that the signal spectrum $G(f)=0$ on ($-f_{c}-\Delta f,-f_{c}$) and $\left(f_{c}, f_{c}+\Delta f\right)$. Letting $f_{T}=f_{c}+\Delta f$, we may modify $H_{I}(f)$ on $\left[-f_{T},-f_{c}\right)$ and $\left(f_{c}, f_{T}\right]$ to obtain a function $H(f)$ continuous for all f and thereby eliminate the Gibbs' phenomenon. $H(f)$, as defined on the intervals $\left[-f_{T},-f_{c}\right)$ and $\left(f_{c}, f_{T}\right]$, is called the roll-off of the filter, and the frequency f_{T} is called the termination frequency.

4.1 FIITER DESIGN BY CONVOLUTION

The usual approach to the design of a filter is to select the ideal transfer function $H_{I}(f)$ on $\left[-f_{c}, f_{c}\right]$ and then to specify the roll-off. This gives the filter transfer function $H(f)$ from which
the weight function $h(t)$ is found. The weights of the filter to be used in (3.41) are then computed from (3.40). In addition to not being very versatile, this approach usually involves some rather long and tedious integration in determining $h(t)$.

We propose a different approach to the design which simplifies the integration and gives considerable freedom in varying the rolloff shape of the filter. We shall use the convolution theorem of Chapter I:

$$
\begin{equation*}
k(t) g(t) \longleftrightarrow \int_{-\infty}^{\infty} k(z) G(f-z) d z \tag{4.1}
\end{equation*}
$$

where $g(t) \longleftrightarrow G(f)$ and $k(t) \longleftrightarrow K(f)$.
Before continuing, we notc that filters for simultaneously performing smoothing and differentiation can be found from the weight-transfer functions, $h(t)$ and $H(f)$, of the smoothing filter by applying (2.17) in a manner analogous to that in the ideal case [see Section (3.1)]. That is, to smooth and find the $n-t h$ derivative, the transfer function is

$$
\begin{equation*}
Y^{n}(f)=(2 \pi i f)^{n} H(f) . \tag{4.2}
\end{equation*}
$$

With

$$
y^{n}(t) \longleftrightarrow Y^{n}(f)
$$

we have

$$
\begin{equation*}
y^{n}(t)=h^{(n)}(t) \tag{4.3a}
\end{equation*}
$$

where

$$
h(t) \longleftrightarrow \longrightarrow H(f) .
$$

$$
\text { In }(4.3 a) \text {, let } t=-x / f_{s} . \text { Then } t^{n}=\left(-x / f_{s}\right)^{n} \text { and } d t^{n}=\left(-1 / f_{s}\right)^{n} d x^{n}
$$

Hence

$$
\begin{aligned}
y^{n}\left(-x / f_{s}\right) & =\frac{d^{n} h\left(-x / f_{s}\right)}{\left(-I / f_{s}\right)^{n_{d x}}} \\
& \left.=(-1)^{n_{f_{s}}} n^{n} \frac{d^{n} h\left(-x / f_{s}\right.}{d x^{n}}\right)
\end{aligned}
$$

Using (3.40) to compute the weights of the filter, we have

$$
\begin{aligned}
y_{k}^{n} & =1 / f_{s} y^{n}\left(-k / f_{s}\right) \\
& =1 /\left.f_{s} y^{n}\left(-x / f_{s}\right)\right|_{x=k} \\
& =\left.(-1)^{n_{s}}{ }_{s}^{n} \frac{\left\{d^{n} 1 / f_{s} h\left(-x / f_{s}\right)\right\}}{d x^{n}}\right|_{x=k}
\end{aligned}
$$

We now see that we may write

$$
\begin{equation*}
y_{k}^{n}=(-I)^{n_{f}}{ }_{s} \frac{d^{n} h_{k}}{d k^{n}} \tag{4.3b}
\end{equation*}
$$

where $h_{k}=I / f_{s} h\left(-k / f_{s}\right)$ and, for purposes of differentiating, k is treated as a variable in the right side of (4.3b)

Returning to the problem of designing the filter, we conclude from the above that we may restrict ourselves to the design of smoothing filters. Hence suppose that

$$
\begin{equation*}
H(f)=\int_{-\infty}^{\infty} K(z) G(f-z) d z . \tag{4.4}
\end{equation*}
$$

Ideally, for smoothing we want $H(f)$ to be continuous, and

$$
H(f)=\left\{\begin{array}{l}
1,0 \leq f \leq f_{c} \tag{4.5}\\
\text { monotonic decreasing }, f_{c}<f<f_{T}, \\
0, f \geq f_{c}, \\
H(-f), f<0 .
\end{array}\right.
$$

We attempt to find functions $G(f)$ and $K(f)$ such that $H(f)$ given by (4.4) has these properties. Then the weight function $h(t)$ is given by

$$
\begin{equation*}
h(t)=k(t) g(t) \tag{4.6}
\end{equation*}
$$

In the following, we choose $G(t)$ to be the function

$$
G(f)= \begin{cases}1, & |f| \leq\left(f_{c}+f_{T}\right) / 2 \tag{4.7a}\\ 0 & |f|>\left(f_{c}+f_{T}\right) / 2\end{cases}
$$

Then comparing with (3.6) and (3.7), we see that the corresponding weight function is

$$
\begin{equation*}
g(t)=\frac{\sin \pi\left(f_{T}+f_{c}\right) t}{\pi t} \tag{4.7~b}
\end{equation*}
$$

Noting that $G(f-z)=0$ for $|f-z|>\left(f_{T}+f_{c}\right) / 2$, (4.4) becomes

$$
H(f)=\int_{f-\left(f_{T}+f_{c}\right) / 2}^{f+\left(f_{T}+f_{c}\right) / 2} \begin{gather*}
K(z) d z \tag{4.8}
\end{gather*}
$$

To find $H\left(f_{0}\right), K(z)$ is integrated over an interval of length $\left(f_{T}+f_{c}\right)$ with f_{0} as its mid-point. Note that any function $K(z)$ which is zero for $|z|>\left(f_{T}-f_{c}\right) / 2=\Delta f / 2$ and is an even function of z with area 1 on $[-\Delta f / 2, \Delta f / 2]$ yields a satisfactory $H(E)$.

Filter 1. The Ormsby smoothing filter ($p=1$).
$\operatorname{In}(4.8)$ let

$$
K(f)=K_{\nu}(f)= \begin{cases}1 / \Delta f & |f| \leq \Delta f / 2 \tag{4.9}\\ & |f|>\Delta f / 2\end{cases}
$$

See Figure 4.1.

FIGURE 4.1

Therı

$$
k_{I}(t)=\int_{-\Delta f / 2}^{\Delta f / 2}(I / \Delta f) \exp (2 \pi i f t) d f
$$

$$
\begin{aligned}
& =2 / \Delta f \int_{0}^{\Delta f / 2} \cos (2 \pi f t) d f \\
& =I / \pi \Delta f t \quad[\sin 2 \pi f t]_{0}^{\Delta f / 2} \\
& =\frac{\sin \pi \Delta f t}{\pi \Delta f t},
\end{aligned}
$$

and with $g(t)$ from (4.7b), we have from (4.6)

$$
\begin{align*}
h_{1}(t) & =k_{1}(t) g(t) \\
& =\frac{\sin \pi \Delta f t \sin \pi\left(f_{T}+f_{c}\right) t}{\pi^{2} \Delta \Gamma t^{2}} \tag{4.10}
\end{align*}
$$

Changing to the angular frequency $w=2 \pi f, \Delta w=2 \pi \Delta f, W_{T}=2 \pi f_{T}$, $w_{c}=2 \pi f_{c}$, we have

$$
h_{1}(t)=\frac{2 \sin \frac{\Delta w t}{2} \sin \frac{\left(w_{T}+w_{c}\right) t}{2}}{\pi \Delta w t^{2}}
$$

and applying a well-known trigonometric identity

$$
\begin{equation*}
h_{1}(t)=\frac{\cos w_{c} t-\cos w_{T} t}{\pi \Delta w t^{2}} . \tag{4.11}
\end{equation*}
$$

This is the weight function given by Ormsby [14]for $p=1$. The corresponding transfer function, as a function of f, is

$$
H_{1}(f)= \begin{cases}1, & |f| \leq f_{c}, \\ 0, & |f|>f_{T}, \\ \left(f+f_{T}\right) / \Delta f, & -f_{T} \leq f<-f_{c}, \\ \left(f_{T}-f\right) / \Delta f, & f_{c}<f \leq f_{T} .\end{cases}
$$

$$
H_{1}(f) \text { has a straight line roll-off (see Figure 4.2). }
$$

FIGURE 4.2

Note that $\frac{d H_{1}(f)}{d f}$ is discontinuous at $\pm f_{c}$ and $\pm f_{T}$.

Filter 2. The Martin-Graham smoothing filter.
In (4.8) let

$$
K(f)=K_{2}(f)= \begin{cases}(\pi / 2 \Delta f) \cos (\pi f / \Delta f), & |f| \leq \Delta f / 2, \tag{4.12}\\ 0, & |f|>\Delta f / 2 .\end{cases}
$$

See Figure 4.3

FIGURE 4.3

Then

$$
\begin{aligned}
k_{2}(t) & =\int_{-\Delta f / 2}^{\Delta f / 2}(\pi / 2 \Delta f) \cos (\pi f / \Delta f) \exp (2 \pi i f t) d f \\
& =(\pi / \Delta f) \int_{0} \cos (\pi f / \Delta f) \cos 2 \pi f t a f \\
& =(\pi / \Delta f)\left[\frac{\sin ((\pi / \Delta f)-2 \pi t) f}{a((\pi / \Delta f)-2 \pi t)}+\frac{\sin ((\pi / \Delta f)+2 \pi t) f}{2((\pi / \Delta f)+2 \pi t)}\right] \\
& =(1 / 2 \Delta f)\left[\frac{\sin ((\pi / 2)-\pi \Delta f t)}{((1 / \Delta f)-2 t)}+\frac{\sin ((\pi / 2)+\pi \Delta f t)}{((1 / \Delta f)+2 t)}\right] \\
& =(1 / 2 \Delta f)\left[\frac{\cos \pi \Delta f t}{((1 / \Delta f)-2 t)}+\frac{\cos \pi \Delta f t}{(1 / \Delta f)+2 t)}\right] \\
& =\frac{\cos \pi \Delta f t}{\left(1-4 \Delta f^{2} t^{2}\right)} \cdot
\end{aligned}
$$

Then with $g(t)$ from (4.7b), we have from (4.6)

$$
\begin{align*}
h_{2}(t) & =k_{2}(t) g(t) \\
& =\frac{\cos \pi \Delta f t \sin \pi\left(f_{T}+f_{c}\right) t}{\pi t\left(1-4 \Delta f^{2} t^{2}\right)}, \tag{4.13}
\end{align*}
$$

where $\Delta \mathrm{f}^{2}=(\Delta \mathrm{f})^{2}$. We shall also use the notation $\Delta w^{2}=(\Delta w)^{2}$.
Letting $w=2 \pi f$ in (4.13) gives

$$
h_{2}(t)=\frac{\cos (\Delta w t / 2) \sin \left(\left(w_{T}+w_{c}\right) t / 2\right)}{\pi t\left(1-\Delta w^{2} t^{2} / \pi^{2}\right)}
$$

and using a well-known trigonometric identity gives, after simplifying,

$$
\begin{equation*}
h_{2}(t)=\frac{\pi\left(\sin w_{c} t+\sin w_{T} t\right)}{2 t\left(\pi^{2}-\Delta w^{2} t^{2}\right)} \tag{4.14}
\end{equation*}
$$

This is the form of the weight function given by Graham [13].
The form given by Martin [10], [11] is obtained from (4.13) by going to the frequency ratio $\tau=f / f_{s}, \tau_{c}=f_{c} / f_{S}, \tau_{T}=f_{T} / f_{s}$, $\tau_{\mathrm{d}}=\Delta f / \mathrm{f}_{\mathrm{s}}(=2 h$ in Martin's notation), and computing

$$
\begin{align*}
h_{n} & =\left(1 / f_{s}\right) n_{2}\left(-n / f_{s}\right) \\
& =\left(1 / f_{s}\right)\left[\frac{\cos \pi\left(\tau_{d} f_{s}\right)\left(-n / f_{s}\right) \sin \pi f_{s}\left(\tau_{c}+\tau_{T}\right)\left(-n / f_{s}\right)}{\pi\left(-n / f_{s}\right)\left(1-4 \tau_{d}^{2} f_{s}^{2} n^{2} / f_{s}^{2}\right)}\right] \\
& =\frac{\cos n \pi \tau_{d} \sin n \pi\left(2 \tau_{c}+\tau_{d}\right)}{n \pi\left(1-4 \tau_{d}^{2} n^{2}\right)} . \tag{4.15}
\end{align*}
$$

The relation $\tau_{T}=\tau_{c}+\tau_{d}$ was used in obtaining the last line. This is a convenient expression for computing the weights h_{n} of the filter. The value of h_{0} is computed by using L'Hospital's rule,
and

$$
\begin{equation*}
h_{0}=2 \tau_{c}+\tau_{d}=\left(f_{T}+f_{c}\right) / f_{s} \tag{4.16}
\end{equation*}
$$

The same procedure must be used for finding \dot{h}_{m} if $m=1 / 2 \tau_{d}$ for then (4.15) assumes the indeterminate form $0 / 0$. In this case, we have

$$
\begin{equation*}
h_{m}=\left(\tau_{d} / 2\right) \cos \left(\pi \tau_{c} / \tau_{d}\right)=\left(\Delta f / 2 f_{s}\right) \cos \left(\pi f_{c} / \Delta f\right) \tag{4.17}
\end{equation*}
$$

The transfer function of this filter, in terms of f, is

$$
H_{2}(f)= \begin{cases}1 & |f| \leq f_{c}^{\prime}, \tag{4.18}\\ 0, & |f|>f_{T}, \\ \left(1+\cos \pi\left(f-f_{c}\right) / \Delta f\right), & f_{c}<f<f_{T}^{\prime} \\ & \\ \left(1+\cos \pi\left(f^{\prime}+f_{c}^{\prime}\right) / \Delta I^{\prime}\right), & -f_{T}<f<-f_{c}^{\prime}\end{cases}
$$

See Figure 4.4.
Alternate expressions for the roll-off are

$$
\left(I+\cos \pi\left(f-f_{c}\right) / \Delta f\right)=\cos ^{2} \pi\left(f-f_{c}\right) / 2 \Delta f
$$

and

$$
\left(1+\cos \pi\left(f+f_{c}\right) / \Delta f\right)=\cos ^{2} \pi\left(f+f_{c}\right) / 2 \Delta f .
$$

Note that $H_{2}(f)$ has one continuous derivative, and $\frac{d^{2} H_{2}(f)}{d f^{2}}$ is discontinuous at $\pm f_{T}$ and $\pm f_{c}$.

4.2 COMPARISON OF THE PERFORMANCE OF THE ORMSBY AND MARTIN-GRAHAM

SMOOTHING FILITERS.
A comparison of the above filters can be drawn by expressing $H_{1} N_{N}(f)$ and $H_{2} \prime_{N}(f)$, the truncated Fourier series for $H_{1}(f)$ and $H_{2}(f)$, respectively, in integral form. We expand $K_{1}(f)$ and $K_{2}(f)$ in a Fourier series, then truncating these series gives:

$$
\begin{align*}
& H_{1}, N(f)= \int^{f+\left(f_{T}+f_{c}\right) / 2} K_{I} \prime_{N}(z) d z \\
& f-\left(f_{T}+f_{c}\right) / 2 \tag{4.19}\\
& f+\left(f_{T}+f_{c}^{\prime}\right) / 2
\end{align*}
$$

Since $K_{1}{ }^{\prime} N(z)$ is the truncated series of a function with jump discontinuities at $\pm \Delta f / 2$ [see (4.9)], the Gibbs' phenomenon is present. Hence overshoot is present near $\pm \Delta f / 2$, the amplitude of which can
not be reduced by increasing N. We can expect some relatively large oscillations to be present, at least for small values of N, in $H_{l} M_{N}(f) . K_{2}(z)$ is continuous, and the amplitude of the oscillations of $K_{Q^{\prime} N}(z)$ decreases monotonically with increasing N. Hence we expect the Martin-Graham filter to perform better than the Ormsby ($p=1$) filter. The results of comparative programs where the truncated series (4.19) and (4.20) were computed at equidistant points indicate that this conclusion is true. For $\epsilon=.01$, over 50% more weights were required by the Ormsby filter.

4.3 SOME NEW SMOOTHING FILITRRS

We shall give, without performing the details of integration, several new designs which are of some interest.

Filter 3. Let

$$
K_{3}(f)= \begin{cases}(2 / \Delta f) \cos ^{2}(\pi f / \Delta f) & |f| \leq \Delta f / 2 \tag{4.21}\\ 0 & |f|>0\end{cases}
$$

Then

$$
\begin{aligned}
& k_{3}(t)=\frac{1}{1-\Delta f^{2} t^{2}} \cdot \frac{\sin \pi \Delta f t}{\pi \Delta f t} \\
& h_{3}(t)=k_{3}(t) g(t)
\end{aligned}
$$

$$
\begin{align*}
& =\left(\frac{1}{1-\Delta f^{2} t^{2}}\right)\left(\frac{\sin \pi \Delta f t \sin \pi\left(f_{T T}+f_{c}\right) t}{\pi^{2} \Delta f t^{2}}\right) \\
& =\frac{1}{1-\Delta f^{2} t^{2}} \cdot h_{1}(t) \tag{4.22}
\end{align*}
$$

where $h_{1}(t)$ is the Ormsby weight function (4.10). The roll-off of $H_{3}(f)$ is given by

$$
1 / 2 \pi \sin 2 \pi\left(f-f_{c}\right) / \Delta f+\left(f_{T}-f\right) / \Delta f \quad f_{c}<f \leq f_{T},
$$

and $\mathrm{H}_{3}(f)$ has two continuous derivatives. (see Figure 4.5)

Filter 4. Let

$$
K_{L}(f)= \begin{cases}(3 \pi / 4 \Delta f) \cos ^{3}(\pi f / \Delta f), & |f| \leq \Delta f / 2 \tag{4.23}\\ 0 & |f|>\Delta f / 2\end{cases}
$$

Then

$$
k_{4}(t)=\frac{9}{9-4 \Delta x^{2} t} \cdot \frac{\cos \pi \Delta f t}{\left(1-4 \Delta f^{2} t^{2}\right)}
$$

and

$$
\begin{aligned}
h_{4}(t) & =k_{L}(t) g(t) \\
& =\frac{9}{9-4 \Delta f^{2} t^{2}}\left[\frac{\cos \pi \Delta f t}{1-4 \Delta f^{2} t^{2}} \cdot \frac{\sin \pi\left(f_{T_{T}}+f_{c}\right) t}{\pi t}\right]
\end{aligned}
$$

$$
\begin{equation*}
=\frac{9}{9-4 \Delta f^{2} t^{2}} \quad h_{2}(t), \tag{4.24}
\end{equation*}
$$

where $h_{2}(t)$ is the Martin-Graham weight function (4.13). The transfer function $H_{4}(f)$ has three continuous derivatives and the roll-off is given by:

$$
H_{L}(f)=\frac{9}{16} \cos \left(\frac{\pi\left(f-f_{c}\right)}{\Delta f}\right)-\frac{1}{16} \cos \left(\frac{3 \pi\left(f-f_{c}\right)}{\Delta f}\right)+\frac{1}{2}
$$

for $f_{c}<f \leq f_{T}$. This is shown in Figure 4.5.

FIGURE 4.5

Filter 5. Let

$$
K_{5}(f)= \begin{cases}(3 / 2 \Delta f)\left(1-\left(4 f^{2} / \Delta f^{2}\right)\right), & |f| \leq \Delta f / 2 \tag{4.25}\\ & \\ 0, & |f|>\Delta f / 2\end{cases}
$$

This gives a weight function, where $\Delta \mathrm{f}^{3}=(\Delta \mathrm{f})^{3}$,
$h_{5}(t)=\frac{3}{2 \pi^{4} \Delta f^{3} t^{4}}\left[\sin \pi\left(f_{T^{\prime}}+f_{c}\right) t\right] \cdot[2 \sin \pi \Delta f t-2 \pi \Delta f t \cos \pi \Delta f t]$.
The roll-off of $H_{5}(f), f_{c}<f \leq f_{T}$, is a third degree polynomial and is essentially the same as that of $\mathrm{H}_{2}(\mathrm{f})$.

Using the quantity ϵ defined by (3.42) as a measure of the performance of a filter to compare the above filters, one is led to the following conclusions:

1) The Martin-Graham filter gives $\epsilon=.01$ with smaller \mathbb{N} than any of the others. In fact, out of numerous designs none has been found which gives $\epsilon=.01$ for smaller \mathbb{N} than this filter. The performance of filter 5 is essentially the same, the ϵ values differing slightly in the third decimal place.
2) Filters 3 and 4 give values of $\epsilon \leq .005$ for smaller \mathbb{N} than the Martin-Graham filter and filter 5.
3) In no case did the Ormsby filter perform as well as the other filters.

In comparison with the Martin-Graham filter, the only advantage filter 5 has is that no special evaluation for $h_{n}, n \neq 0$, is required; h_{0} is the same for all the above filters. In addition to the improved performance for $\epsilon \leq .005$, useable error bounds can be found for filters 3 and 4 without resorting to empirical methods.

4.4 SOME SMOOTHING ERROR BOUNDS

Except for filter 5, each of the above weight functions are of the form

$$
h(t)=\frac{k(t)}{P(t)}
$$

where $k(t)$ is an expression containing sums and products of trigonometric functions of t and $P(t)$ is a polynomial in t. The Fourier coefficients of $H(f)$ somputed from $h(t)$ retain this character,

$$
h_{n}=\left(I / f_{s}\right) h\left(-n / f_{s}\right)=\left(I / f_{s}\right) \frac{k\left(-n / f_{s}\right)}{P\left(-n / f_{s}\right)}
$$

Now the error as a function of f and N is

$$
\begin{aligned}
\in(f, N) & =H(f)-H_{N}(f) \\
& =2 \sum_{n=N+1}^{\infty} h_{n} \cos 2 n \pi\left(f / f_{s}\right) \\
& =\left(2 / f_{s}\right) \sum_{n=N+1}^{\infty} \frac{k\left(-n / f_{s}\right)}{P\left(-n / f_{s}\right)} \cos 2 n \pi\left(f / f_{s}\right)
\end{aligned}
$$

Letting $A=\max _{n, f}\left|k\left(-n / f_{s}\right) \cos 2 n \pi\left(f / f_{s}\right)\right|$, we have

$$
\begin{equation*}
\epsilon=\max _{f}|\epsilon(f, \mathbb{N})| \leq\left(2 A / f_{s}\right) \sum_{n=N+1}^{\infty}\left|\frac{1}{P\left(-n / f_{s}\right)}\right| \tag{4.27}
\end{equation*}
$$

If $|P(t)|>0$ for $t>\left(N / f_{s}\right)$, the sum in (4.27) can be approximated by

$$
\left|\int_{\mathbb{N}}^{\infty} \frac{d x}{P\left(-x / f_{s}\right)}\right|
$$

Martin-Graham bound

The above method gives (see Figure 4.6)

$$
\begin{equation*}
\epsilon \leq I / \pi \log \frac{4 N^{2} \Delta f^{2}}{4 N^{2} \Delta f^{2}-f_{s}^{2}} \tag{4.28}
\end{equation*}
$$

For $\epsilon=.01$, the predicted value of N is

$$
\begin{equation*}
N \geq 2.85 \mathrm{f}_{\mathrm{s}} / \Delta \mathrm{f} \tag{4.29}
\end{equation*}
$$

and for $\epsilon=.005$

$$
\begin{equation*}
N \geq 4 f_{s} / \Delta f=4 / \tau_{d} \tag{4.30}
\end{equation*}
$$

These values of N are much too large. It has been determined empirically that $N \geq 1.25 f_{s} / \Delta f=1.25 / \tau_{d}$ gives $.005<\epsilon<.01$.

Filter 3.
For this filter,

$$
\begin{equation*}
\epsilon \leq \frac{1}{\pi^{2}}\left\{\log \left[\frac{N \Delta f+f_{s}}{N \Delta f-f_{s}}\right]-2 f_{s} / N \Delta f\right\} \tag{4.31}
\end{equation*}
$$

For $\epsilon=.01$, the predicted value of N is

$$
\begin{equation*}
N \geq 2 f_{s} / \Delta f=2 / \tau_{d} \tag{4.32}
\end{equation*}
$$

and for $N \geq 3 f_{s} / \Delta f=3 / \tau_{d}, \in<.003$ (see Figure 4.6)
Filter 4.
For this filter

$$
\begin{align*}
& \epsilon \leq \frac{1}{8 \pi} \quad\left\{9 \log \left[4 \pi^{2} N^{2} \Delta f^{2}-\pi^{2} f_{s}^{2}\right]-16 \log 2 \pi N \Delta f\right. \\
&\left.-\log \left[4 \pi^{2} N^{2} \Delta f^{2}-9 \pi^{2} f_{s}^{2}\right]\right\} \tag{4.33}
\end{align*}
$$

For $\epsilon=.01$, the predicted value of N is the same as in (4.32).
For $N \geq 3 f_{s} / \Delta f,(4.33)$ gives $\in<.0014$ (see Figure 4.6).

4.5 SMOOTHING FILTER CONSIRAINIS

In general, a signal $g(t)$ may have a polynomial content, and in such cases $g(t)$ is not band-limited. Denoting the polynomial content of $g(t)$ by $P(t)$, if

$$
\begin{equation*}
g(t)=\bar{g}(t)+P(t) \tag{4.34}
\end{equation*}
$$

where $\bar{g}(t)$ is a band-limited function, then the weights can be constrained so that the sampled values $P(m \Delta t), \Delta t=1 / f_{s}$, are passed without error.

Wc rccall that the output of a digital filter is given by

$$
r_{m}=\sum_{n=-N}^{N} h_{n} g_{m+n}
$$

Applying this to the sampled version of (4.34) gives

$$
\begin{align*}
r_{m} & =\sum_{n=-\bar{N}}^{N} h_{n}\left[\bar{g}_{m+n}+P[(m+n) \Delta t]\right] \\
& =\sum_{n=-N}^{N} h_{n} \bar{g}_{m+n}+\sum_{n=-\bar{N}}^{N} h_{n} P[(m+n) \Delta t] . \tag{4.35}
\end{align*}
$$

Since $\bar{g}(t)$ is band-limited, the first term on the right side of (4.35) poses no problems. We want the second term to be $P(m \Delta t)$. Assuming that $P(t)$ is of degree p,

$$
\begin{equation*}
P(t)=\sum_{j=0}^{p} a_{j} t^{j} . \tag{4.36}
\end{equation*}
$$

We want

$$
\begin{aligned}
P(m \Delta t) & =\sum_{j=0}^{p} a_{j}(m \Delta t)^{j} \\
& =\sum_{n=-N}^{N} h_{n} \sum_{j=0}^{p} a_{j}(m+n)^{j} \Delta t^{j} .
\end{aligned}
$$

Interchanging the summation gives

$$
\begin{equation*}
\sum_{j=0}^{p} a_{j}(m \Delta t)^{j}=\sum_{j=0}^{p} a_{j} \sum_{n=-N}^{N} h_{n}(m+n)^{j} \Delta t^{j} \tag{4.37}
\end{equation*}
$$

We see from (4.37) that it suffices to consider the k th term

$$
m^{k} \Delta t^{k}=\sum_{n=-N}^{N} h_{n}(m+n)^{k} \Delta t^{k}
$$

or dividing by Δt^{k},

$$
m^{k}=\sum_{n=-N}^{N} h_{n}(m+n)^{k}
$$

Expanding $(m+n)^{k}$ and summing each term gives

$$
\begin{align*}
m^{k}=m^{k} & \sum_{n=-N}^{N} h_{n}+k m^{k-1} \sum_{n=-N}^{N} n h_{n}+\cdots \cdot \\
& +\left(\frac{k}{r}\right) m^{k-r} \quad \sum_{n=-N}^{N} n_{n}^{r} h_{n}+\cdots+\sum_{n=-N}^{N} n^{k} h_{n} \cdot \tag{4.38}
\end{align*}
$$

From (4.38) we see that it suffices to have
A:

$$
\begin{equation*}
\sum_{n=-N}^{N} i_{n}^{1} n_{n}=1 \tag{4.39}
\end{equation*}
$$

B:

$$
\begin{equation*}
\sum_{n=-\mathbb{N}}^{\mathbb{N}} n^{j_{h}}=0, \quad j=1,2, \ldots ., p \tag{4.40}
\end{equation*}
$$

The transfer function of a digital smoothing filter which approximates smoothing filters of the types discussed in Section 4.1 is an even function of f and can be written in the form

$$
\begin{equation*}
H_{n}(f)=h_{0}+2 \sum_{n=1}^{N} h_{n} \cos 2 n \pi\left(f / f_{s}\right) . \tag{4.41}
\end{equation*}
$$

The weights are related by $h_{n}=h_{n}$. Hence for odd integers j,

$$
n^{j_{h}}=-(-n)^{j_{h}}{ }_{-n}
$$

or

$$
n^{j_{h}}+(-n)^{j}{ }_{h}-n=0
$$

and

$$
\begin{equation*}
\sum_{n=-\tilde{N}}^{N} n^{j_{n}}=0 \tag{4.42}
\end{equation*}
$$

Thus (4.40) is satisfied for all odd integers j without imposing any conditions on the $h_{n} \cdot \operatorname{If}(4.39)$ is satisfied, the filter passes a first degree polynomial exactly. If, in addition, (4.40) is satisfied for $j=2$, the filter passes a third degree polynomial exactly, etc. Practical considerations usually limit j to 2, i.e., $p=3$.

The simplest way to satisfy (4.39) is to use new weights

$$
\begin{equation*}
\bar{h}_{n}=\frac{h_{n}}{\sum_{n=-N}^{N} h_{n}} \tag{4.43}
\end{equation*}
$$

If N is chosen so that $.005 \leq \epsilon \leq .01$, the new weights usually do not change ϵ significantly.

For $j \geq 2$ the usual approach is to derive the constrained weights \bar{h}_{n} so that the mean square error between the unconstrained transfer function $H_{N}(f)$ and the constrained transfer function

$$
\begin{equation*}
\bar{H}_{N}(f)=\bar{h}_{0}+2 \sum_{n=0}^{N} \bar{h}_{n} \cos 2 n \pi\left(f / f_{s}\right) \tag{4.44}
\end{equation*}
$$

is minimized.
Note that (4.39) is equivalent to the condition

$$
\begin{equation*}
\overline{\mathrm{F}}_{\mathrm{N}}(0)=1, \tag{4.45}
\end{equation*}
$$

and (4.40) is equivalent to the conditions

$$
\begin{equation*}
\left.\frac{d^{j} \overline{\bar{H}_{N}}(f)}{d f^{j}}\right|_{f=0}=0, \quad I \leq j \leq p \tag{4.46}
\end{equation*}
$$

Taking the case $p=3$ and using a Lagrangian multiplier, we wish to find weights \bar{h}_{n} in terms of the h_{n} such that

$$
R=\int_{0}^{f_{s} / 2}\left[\bar{H}_{\mathbb{N}}(f)-H_{N}(f)\right]^{2} \quad d f+\lambda \sum_{n=1}^{N} n^{2} \bar{h}_{n}
$$

is minimized, i.e., $\frac{\partial R}{\partial \bar{h}_{m}}=0,0 \leq m \leq N$, and such that $\bar{H}_{N}(f)$ satisfies
(4.45) and (4.46) for $p=3$.

$$
\begin{equation*}
\frac{\partial R}{\partial \bar{h}_{m}}=2 \int_{0}^{f_{s} / 2}\left[\bar{H}_{N}(f)-H_{N}(f)\right] \frac{\partial \bar{H}_{N}(f)}{\partial \bar{h}_{m}} d f+\lambda m^{2} \tag{4.47}
\end{equation*}
$$

The condition (4.45) is incorporated in the following way:

$$
{\overline{H_{N}}}_{N}(0)=\bar{h}_{0}+2 \sum_{n=1}^{N} \bar{h}_{n}=1
$$

so

$$
\begin{equation*}
\bar{h}_{0}=1-2 \sum_{n=1}^{N} \bar{h}_{n} . \tag{4.48}
\end{equation*}
$$

Hence

$$
\bar{H}_{N}(f)-H_{N}(f)=1+2 \sum_{n=2}^{N} \bar{h}_{n}\left(\cos 2 n \pi f / f_{s}-1\right)-H_{N}(f)
$$

Therefore

$$
\frac{\partial \bar{H}_{N}}{\partial \bar{h}_{m}}=2\left(\cos 2 m \pi f / f_{s}-1\right),
$$

and

$$
\begin{array}{r}
\frac{\partial R}{\partial \bar{h}_{m}}=4 \int_{0}^{f_{s} / 2}\left[1+2 \sum_{n=1}^{N} \bar{h}_{n}\left(\cos 2 n \pi f / f_{s}-1\right)-h_{0}-2 \sum_{n=1}^{N} h_{n} \cos 2 n \pi f / f_{s}\right] \\
{\left[\cos 2 m \pi f / f_{s}-1\right] d f+\lambda m^{2} .}
\end{array}
$$

Let $\theta=2 \pi f / f_{s}$, then $d f=\left(f_{s} / 2 \pi\right) d \theta$ and

$$
\begin{aligned}
& \frac{\partial R}{\partial \bar{h}_{m}}=2 f_{s} / \pi \int_{0}^{\pi}\left[1-2 \sum_{n=1}^{N} \bar{h}_{n}-h_{0}+2 \sum_{n=1}^{N}\left(\bar{h}_{n}-h_{n}\right) \cos n \theta\right][\cos m \theta-1] d \theta+\lambda m^{2} . \\
& =2 f_{s} / \pi \int_{0}^{\pi}\left\{\left[1-2 \sum_{n=1}^{N} \bar{h}_{n}-h_{0}\right][\cos m \theta-1]+2 \sum_{n=1}^{N}\left(\bar{h}_{n}-h_{n}\right) \cos n \theta \cos m \theta\right. \\
& \left.-2 \sum_{n=1}^{N}\left(\bar{h}_{n}-h_{n}\right) \cos n \theta\right\} \alpha \theta+\lambda m^{2} \\
& =2 f_{s} / \pi\left\{-\pi\left[1-2 \sum_{n=1}^{N} \bar{h}_{n}-h_{0}\right]+\pi\left(\bar{h}_{m}-h_{m}\right)\right\}+\lambda m^{2} .
\end{aligned}
$$

Setting this equal to zero gives

$$
2 f_{s}\left[h_{0}-1+2 \sum_{n=1}^{N} \bar{h}_{n}+\bar{h}_{m}-h_{m}\right]+\lambda_{m}^{2}=0
$$

From (4.48) we see that we can replace $2 \sum_{n=1}^{N} \bar{h}_{n}-1$ by $-\bar{h}_{0}$.

Thus

$$
2 f_{s}\left\{\left[h_{0}-\bar{h}_{0}+\bar{h}_{m}-h_{m}\right]\right\}+\lambda m^{2}=0
$$

Let $\delta=\overline{\mathrm{h}}_{0}-\mathrm{h}_{0}$, then

$$
\begin{equation*}
\bar{h}_{m}-h_{m}=\delta-\frac{\lambda m^{2}}{2 f_{s}} \tag{4.49}
\end{equation*}
$$

Sumaing both sides of (4.49) from 1 to N, then multiplying both sides by 2 , and adding δ to both sides gives

$$
\delta+2 \sum_{m=1}^{N} \bar{h}_{m}-2 \sum_{m=1}^{N} h_{m}=(2 N+1) \delta-\frac{\lambda}{f_{s}} \sum_{m=1}^{N} m^{2}
$$

or using (4.45) and reverting to the n subscript,

$$
\begin{equation*}
(2 N+1) \delta-\frac{\lambda}{f_{s}} \sum_{n=1}^{N} i^{2}=1-h_{0}-2 \sum_{n=1}^{N} h_{n} \tag{4.50}
\end{equation*}
$$

Multiplying both sides of (4.49) by m^{2}, summing from l to N, using (4.46)--(or 4.40 with $j=2$)--and reverting to the n subscript gives

$$
\begin{equation*}
\delta \sum_{n=1}^{N} n^{2}-\frac{\lambda}{2 f_{s}} \sum_{n=1}^{N} n^{4}=-\sum_{n=1}^{N} n^{2} n_{n} \tag{4.51}
\end{equation*}
$$

We solve (4.50) and (4.51) for δ and λ.
Let

$$
\begin{aligned}
& Q_{1}=1-n_{0}-2 \sum_{n=1}^{N} n_{n} \\
& Q_{n}=\sum_{n=1}^{N} n^{2} n_{n}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}=\sum_{n=1}^{N} n^{2} \\
& s_{2}=\sum_{n=1}^{N} n^{4}
\end{aligned}
$$

Then

$$
\begin{equation*}
\lambda=\frac{2 f_{s}\left[S_{1} Q_{1}+(2 R+1) Q_{2}\right]}{(2 N+1) S_{2}-2 S_{1}{ }^{2}} \tag{4.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\frac{Q_{1} S_{2}+2 S_{1} Q_{2}}{(2 N+1) S_{2}-2 S_{1}^{2}} \tag{4.53}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{h}_{0}=h_{0}+\delta \tag{4.54a}
\end{equation*}
$$

and from (4.49), for $n \geq 1$

$$
\begin{align*}
\bar{h}_{n} & =h_{n}+\delta-\frac{n^{2}}{2 f_{s}} \lambda \tag{4.54b}\\
& =h_{n}+\frac{Q_{1} S_{2}+2 S_{1} Q_{2}-n^{2}\left[S_{1} Q_{1}+(2 N+1) Q_{2}\right]}{(2 N+1) S_{2}-2 S_{1}^{2}}
\end{align*}
$$

Note that

$$
(2 N+1) S_{2}-2 S_{1}^{2}=\frac{N(N+1)(2 N-1)(2 N+3)(2 N+1)^{2}}{90}
$$

The constraint for $p=1$ is obtained by letting $\lambda=0$ in (4.54b). Then we have

$$
\bar{h}_{\mathrm{n}}=\mathrm{h}_{\mathrm{n}}+\delta, \quad \mathrm{n}=0,1, \ldots, N
$$

where

$$
\begin{aligned}
\delta & =\frac{1-h_{0}-2 \sum_{n=1}^{N} h_{n}}{2 N+1} . \\
& =\frac{1-H_{N}(0)}{2 N+1} .
\end{aligned}
$$

4.6 BAND-PASS FILITER

The ideal single band band-pass smoothing filter transfer function is

$$
B_{I}(f)= \begin{cases}1 & f_{c} \leq f \leq \bar{f}_{c} \tag{4.55}\\ 0 & 0 \leq f<f_{c}, f>\bar{f}_{c} \\ B_{I}(-f) & f<0\end{cases}
$$

See Figure 4.7.

Note that $B_{I}(f)$ can be written as the difference of two ideal smoothing filter transfer functions $[\operatorname{see}(3.6)] H_{1}(f)$ and $H_{2}(f)$, where $H_{2}(f)$ has cut-off \bar{f}_{c} and $H_{l}(f)$ has cut-off f_{c}. Then the weight function $b(t)$ is

$$
\begin{equation*}
b(t)=h_{2}(t)-h_{1}(t) \tag{4.56}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{1}(t) \longleftrightarrow H_{1}(f), \\
& h_{2}(t) \longleftrightarrow H_{2}(f),
\end{aligned}
$$

and

$$
b(t) \longleftrightarrow B_{1}(f)
$$

A useable design is obtained by taking the difference of two low-pass smoothing filters of the types discussed in section 4.1 and Section 4.3. The difference of two Martin-Graham filters, each with roll-off length Δf gives a satisfactory filter. The weight function of the resulting band-pass filter is then given by (4,56) with h_{l} (t) and $h_{2}(t)$ the weights of the Martin-Graham filters. The weights of the corresponding digital filter are given by (3.40) and (4.56),

$$
\begin{align*}
b_{n} & =\frac{1}{f_{s}} b\left(\frac{-n}{f_{s}}\right) \\
& =\frac{1}{f_{s}}\left[h_{2}\left(\frac{-n}{f_{s}}\right)-h_{l}\left(\frac{-n}{f_{s}}\right)\right] \tag{4.57}
\end{align*}
$$

Now suppose $B\left(f ; f_{0}\right)$ is a band-pass smoothing filter with the mid-points of the "pass bands" at $\pm f_{0}$, "pass band" width $2 \overline{\Delta f}$, and roll-off width Δf. For purposes of illustration, we assume that $B\left(f ; f_{0}\right)$ has the Martin-Graham type roll-off [see (4.18)]. Let

$$
H(f)= \begin{cases}1 & 0 \leq f \leq \overline{\Delta f} \tag{4.58}\\ \frac{1}{2}\left[1+\cos \frac{(f-\overline{\Delta f}) \pi}{\Delta f}\right] & \overline{\Delta f}<f \leq \overline{\Delta f}+\Delta f \\ 0 & f>\overline{\Delta f}+\Delta f \\ H(-f) & f<0\end{cases}
$$

See Figure 4.8.

Figure 4.8.

Then $H(f)$ is the transform of

$$
\begin{equation*}
h(t)=\frac{\sin 2 \pi \overline{\Delta f}+\sin 2 \pi(\Delta f+\overline{\Delta f}) t}{2 \pi t\left(1-4 \Delta f^{2} t^{2}\right)} . \tag{4.59}
\end{equation*}
$$

For $f \geq 0$

$$
B\left(f ; f_{0}\right)=H\left(f-f_{o}\right),
$$

and for $\mathrm{f}<0$

$$
B\left(f ; f_{0}\right)=H\left(f+f_{0}\right) .
$$

Thus

$$
\begin{equation*}
B\left(f ; f_{o}\right)=H\left(f-f_{o}\right)+H\left(f+f_{0}\right), \tag{4.60}
\end{equation*}
$$

(see Figure 4.9).

Taking the inverse transform of each side and using the shift theorem (1.22) (or its generalized equivalent) gives

$$
\begin{align*}
b\left(t ; t_{0}\right) & =h(t)\left(\exp \left(2 \pi i f_{0} t\right)+\exp \left(-2 \pi i f_{0} t\right)\right) \\
& =2 h(t) \cos 2 \pi f_{0} t . \tag{4.6I}
\end{align*}
$$

The weights of the corresponding digital filter are given by

$$
\begin{equation*}
b_{n}\left(f_{0}\right)=2 h_{n} \cos 2 \pi n \frac{f_{0}}{f_{s}} \tag{4.62}
\end{equation*}
$$

where $h_{n}=\frac{l}{f_{s}} h\left(\frac{-n}{f_{s}}\right)$.
For a given f_{0}, the weights can be computed from (4.62) more quickly than from (4.57). If several successive filtering operations are to be performed for a set of f_{0} values, say f_{1}, f_{2}, . . , f_{k}, then, using (4.62),

$$
\mathrm{b}_{\mathrm{n}}\left(\mathrm{f}_{j}\right)=2 h_{\mathrm{n}} \cos 2 n \pi \frac{\mathrm{f}_{j}}{\mathrm{f}_{\mathrm{s}}}, \quad j=1,2, \ldots, k
$$

But in order to use (4.57) the functions $h_{1}(t)$ and $h_{2}(t)$ must be changed for each new value of f_{j} and the entire expression must be recomputed.

From (4.62) we see that the error ϵ^{\prime} of a band-pass smoothing filter may be as much as twicc the error ϵ of the smoothing filter whose transfer function is $H(f)$.

In a manner analogous to the ideal smoothing case in Section 3.1, the transfer function of a filter which will simultaneously "band-pass" filter and find the $n^{\text {th }}$ derivative is

$$
\begin{equation*}
B^{n}(f)=(2 \pi i f)^{n} B(f) \tag{4.63}
\end{equation*}
$$

where $B(f)$ is the transfer function of a band-pass smoothing filter. Then if $b(t) \longleftrightarrow B(f)$.

$$
\begin{equation*}
b^{(n)}(t)=b^{n}(t) \longleftrightarrow B^{n}(f) \tag{4.64}
\end{equation*}
$$

and the weights [see the derivation of (4.3b)] are given by

$$
\begin{equation*}
b_{k}^{n}=(-1)^{n}\left(f_{s}\right)^{n} \frac{d^{n} b_{k}}{d k^{n}} \tag{4.65}
\end{equation*}
$$

where $b_{k}=\frac{l}{f_{s}} b\left(\frac{-k}{f_{s}}\right)$.
The weight function of a filter having several pass bands, each of equal pass width and roll-off width, can easily be found from (4.61). Let $\pm f_{1}, \pm f_{2}, \cdots, \pm f_{k}$ be the mid points of the pass bands, and denote the transfer function by $B\left(f ; f_{1}, f_{2}, \ldots, f_{k}\right)$

Then the weight function is

$$
\begin{equation*}
b\left(t ; f_{1}, f_{2}, \ldots, f_{k}\right)=2\left\{\sum_{j=1}^{k} \cos 2 \pi f_{j} t\right\} h(t) . \tag{4.66}
\end{equation*}
$$

The weights are given by

$$
\begin{align*}
b_{n} & =\frac{1}{f_{s}} b\left(\frac{-n}{f_{s}} ; f_{1}, f_{2}, \ldots, f_{k}\right) \\
& =2 h_{n}\left\{\sum_{j=1}^{k} \cos 2 n \pi \frac{f_{j}}{f_{s}}\right\} . \tag{4.67}
\end{align*}
$$

CHAPTER V

FILIERS FOR SMOOTHTING AND DIFFERENTIATION

5.0 MARTIN-GRAHAM FILIERS

We shall call a filter a Martin-Graham filter if its transfer function either uses the Martin-Graham roll-off [see (4.18)] or is derivable from a transfer function having the Martin-Graham roll-off.

In Section 4.1, we discussed the Martin-Graham smoothing filter and found its weight function $h(t)$ [see (4.13)]. From $h(t)$ and the formula (3.40) for computing the weights of the approximating digital filter, we found the weights h_{n} [see (4.15)]. which are used in the basic formula of digital filtering,

$$
\begin{equation*}
\bar{r}_{m}=\sum_{n=-\mathbb{N}}^{\mathbb{N}} h_{n} g_{m+n} \tag{3.41}
\end{equation*}
$$

where the g_{j} are the input data values and the \bar{r}_{j} are the smoothed output values.

A Martin-Graham band-pass smoothing filter is easily obtained from the smoothing case and the discussion of Section 4.6.

In this chapler, we shall derive the weights of Martin-Graham filters for smoothing and differentiation. When referring to a set of data $\left\{g_{m}\right\}$, we assume that the data arises from a function $g(t)$ such that

1) $g(t)=\bar{g}(t)+p(t)$, where $p(t)$ is a polynomial in t,
2) $\bar{g}(t)$ satisfies conditions I - III of Section 4.0 ,
3) $g_{m}=g\left(\frac{m}{f_{s}}\right)$ where f_{s} is greater than twice the highest frequency in $\bar{g}(t)$.

Let g_{M} be the first data value and g_{M} be the last. If $p(t)$ is not identically zero for $\frac{M}{f_{s}} \leq t \leq \frac{\bar{M}}{f_{s}}$, then, in order to pass $p(t)$ or differentiate it, constraints are necessary. Those for smoothing are in Section 4.5. A general procedure is given in Appendix A for the derivative cases, and the constraints for passing the first derivative of $p(t)$ will be given in the next section.

2.1 SMOOTHING AND FIRST DERIVATIVE FILIER

We have shown the transfer function of a filter which will
smooth and find the first derivative to be

$$
Y^{I}(f)=(2 \pi i f) H(f)
$$

where $H(f)$ is any smoothing filter transfer function [Put $n=1$ in (4.2)]. Note that $Y^{l}(f)$ inherits the cut-off, f_{c}, and termination, f_{T}, frequencies from $H(f)$.

Putting $n=1$ in ($4.3 b$), we obtain the weights of this filler in terms of the smoothing weights

$$
\begin{equation*}
\mathrm{y}_{\mathrm{k}}^{1}=-f_{\mathrm{s}} \frac{\mathrm{dh}}{\mathrm{k}} \tag{5.1}
\end{equation*}
$$

where $h(t) \longleftrightarrow H(f)$ and $h_{k}=\frac{1}{f_{S}} h\left(\frac{-k}{f_{S}}\right)$.
The Martin-Graham smoothing filter weights giren by (4.15) in terms of the frequency ratio, $T=\frac{W}{2 \pi f_{S}}=\frac{f}{f_{S}}$, are

$$
\begin{aligned}
h_{k} & =\frac{\cos k \pi \tau_{d} \sin k \pi\left(2 \tau_{c}+\tau_{d}\right)}{k \pi\left(1-4 \tau_{d} k^{2}\right)} \\
& =\frac{\sin 2 \pi \tau_{T} k+\sin 2 \pi \tau_{c}^{k}}{2 \pi k\left(1-4 \tau_{d}^{2} k^{2}\right)}, \\
\tau_{d} & =\frac{\Delta f}{f_{s}}, \tau_{c}=\frac{f_{c}}{f_{s}}, \tau_{r T}=\frac{f_{T}}{f_{S}}
\end{aligned}
$$

Then

$$
\begin{align*}
y_{k}^{I} & =-f_{s} \frac{\tau_{T} \cos 2 \pi \tau_{T} k+\tau_{c} \cos 2 \pi \tau_{c} k}{k\left(1-4 \tau_{d}{ }^{2}{ }^{2}\right)}-\frac{h_{k}\left(1-12 \tau_{d}{ }^{2}{ }_{k}^{2}\right)}{k\left(1-4 \tau_{d}^{2}{ }^{2}{ }^{2}\right)} \\
& =-f_{s} \frac{\tau_{T} \cos 2 \pi \tau_{T} k+\tau_{c} \cos 2 \pi \tau_{c} k-h_{k}\left(1-12 \tau_{d}{ }^{2}{ }^{2}\right)}{k\left(1-4 \tau_{d}{ }^{2}{ }^{2}\right)} \tag{5.2}
\end{align*}
$$

Note that $y_{-k}^{I}=-y_{k}^{1}$, and by applying L^{\prime} Hospital's rule, $y_{0}^{1}=0$. Also note that for $k=\frac{1}{2 \tau_{d}}, y_{k}^{l}$ must be computed by using L'Hospital's rule. [See Section 5.4.]

In a manner analogous to that of Section 4.5 , we find that in order to pass exactly the derivative of $P(t)$ of degree p the following conditions must be satisfied by the approximating filter transfer function

$$
\begin{equation*}
Y_{N}^{I}(f)=2 i \quad \sum_{n=1}^{N} y_{n}^{l} \sin 2 n \pi f / f_{s} \tag{5.3}
\end{equation*}
$$

(1) $Y_{N}^{1}(0)=0$
(2) $\left.\frac{\mathrm{dy}_{\mathrm{N}}^{\mathrm{l}}(f)}{\mathrm{df}}\right|_{\mathrm{W}=0}=i$
(3) $\frac{d^{P} Y_{N}^{I}(f)}{d f^{p}}=0$ for $p>1$.

Since $\frac{d^{p} Y_{N}^{l}(f)}{d f^{p}}$ is odd for all even $p \geq 0,(1)$ and (3) are automatically satisfied for even integers $p \geq 0$. In particular, if $p(t)$ is of degree 2, we need to satisfy only (2). The constrained weights $\bar{y}_{\mathrm{lk}}^{1}$ are given by

$$
\begin{align*}
& \bar{y}_{k}^{1}=y_{k}^{1}+\frac{k Q_{1}}{Q_{2}}, \quad \mathrm{k} \geq 1 \tag{5.4}\\
& \bar{y}_{k}^{I}=-\bar{y}_{k}^{1}
\end{align*}
$$

where

$$
\begin{aligned}
& Q_{1}=\frac{f_{s}}{2}-\sum_{n=1}^{N} r y_{n}^{1} \\
& Q_{2}=\sum_{n=1}^{N} n^{2} .
\end{aligned}
$$

(See $\left[1_{4}\right]$ for the derivation for $p=4$ from which the case $p=2$ follows easily.)

The constrained transfer function is

$$
\begin{equation*}
\bar{Y}_{N}(f)=2 i \sum_{n=1}^{N} \frac{1}{\bar{Y}_{n}} \sin \frac{2 n \pi f}{f_{s}} \tag{5.5}
\end{equation*}
$$

In order to smooth and differentiate a set of data $\left\{g_{m}\right\}$ where the polynomial content is of degree 2 or less, put $h_{n}=\bar{y}_{n}$ in (3.41). This gives

$$
\begin{equation*}
\bar{r}_{\mathrm{m}}=\sum_{\mathrm{n}=-\mathrm{N}}^{\mathrm{N}} \overline{\mathrm{y}}_{\mathrm{n}}^{1} g_{\mathrm{m}+\mathrm{n}} \tag{5.6}
\end{equation*}
$$

If we let ${\hat{h_{k}}}_{k}=\frac{h_{k}}{f_{s}}$, then $\hat{y}_{k}=\frac{y_{k}^{l}}{f_{s}}$ and $\frac{\hat{y}_{y_{k}}^{l}}{\bar{y}_{k}}=\frac{\bar{y}_{k}}{f_{s}}$. Then

$$
\begin{equation*}
\bar{Y}_{\mathrm{N}}(f)=2 i f_{s} \sum_{n=1}^{N} \frac{\bar{y}_{k}}{} \sin \frac{2 n \pi f}{f_{s}} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{r}_{m}=f_{s} \sum_{n=-\mathbb{N}}^{N} \hat{\bar{y}}_{n} g_{m+n} \tag{5.8}
\end{equation*}
$$

Using $\frac{\Lambda^{I}}{\underline{y}_{n}}=-\frac{\Lambda^{I}}{y_{n}}$, we have

$$
\begin{equation*}
\bar{r}_{m}=f_{s} \quad \sum_{n=1}^{N} \frac{\Lambda^{l}}{y_{n}}\left[g_{m+n}-g_{m \sim n}\right] \tag{5.9}
\end{equation*}
$$

Writing

$$
Y^{\perp}(f)=2 \pi i f H(f)=2 \pi f H(f) \exp (i \pi / 2),
$$

we see that $Y^{1}(f)$ has a phase shift of $\pi / 2=90^{\circ}$, i.e., $\theta(f)=\pi / 2$. $2 \pi f H(f)$ is shown in Figure 5.1 for the Martin-Graham smoothing and first derivative filter.
$|2 \pi f H(f)|$

Other first derivative filters with different roll-offs have been examined and in each case it was found that the Martin-Grahan filter yielded the same or a more accurate result.

In an attempt to avoid the lengthy computation of (5.1) for the weights y_{k}^{l}, a "three-point derivative" of the smoothing weights h_{k} has been examined. Let

$$
\begin{equation*}
\theta_{k}=\frac{h_{k+1}-h_{k-1}}{\frac{2}{f_{s}}} \tag{5.10}
\end{equation*}
$$

With $H(f)$ the transform of the weight function $h(t)$ from which the h_{k} are computed, we have

$$
\theta_{k}=\frac{f_{s}}{2}\left[h_{k+1}-h_{k-1}\right]
$$

$$
\begin{align*}
& =1 / 2 \quad\left[h\left((-k-1) / f_{s}\right)-h\left((-k+1) / f_{s}\right)\right] \\
& =1 / 2 \int_{-f_{s} / 2}^{f_{s} / 2} H(f)\left[\exp \left(-2 \pi i(k+1) f / f_{s}\right)-\exp \left(-2 \pi i(k-1) f / f_{s}\right)\right] d f \\
& =1 / 2 \int_{-f_{S} / 2}^{f_{S} / 2} H(f) \exp \left(-2 \pi i k f / f_{s}\right) \quad\left[\exp \left(-2 \pi i f / f_{s}\right)-\exp \left(2 \pi i f / f_{s}\right)\right] d f \\
& =\int_{-f_{s} / 2^{\prime}}^{f_{s} / 2}\left[\frac{\exp \left(2 \pi i f / f_{s}\right)-\exp \left(-2 \pi i f / f_{s}\right)}{2 i}\right]\left[-i H(f) \exp \left(-2 \pi i k f / f_{s}\right)\right] d f \\
& \theta_{k} \quad=I / f_{s} \int_{-f_{s} / 2}^{f_{s} / 2} \frac{-\sin 2 \pi f / f_{s}}{2 \pi f / f_{s}}[(2 \pi i f) H(f)] \exp \left(-2 \pi i k f / f_{s}\right) d f . \tag{5.11}
\end{align*}
$$

The actual weights are

$$
y_{k}^{I}=I / f_{s} \int_{-f_{s} / 2}^{f_{s} / 2}(2 \pi i f) H(f) \exp \left(-2 \pi i k f / f_{s}\right) d f
$$

Comparing (5.11) and (5.12), we see that if we define a weight $\tilde{y}_{k}=-\theta_{k}$, then the transfer function of the \tilde{y}_{k} is

$$
\frac{\sin 2 \pi f / f_{s}}{2 \pi f / f_{s}^{\prime}}(2 \pi i f) H(f)
$$

which is the product of the desired transfer function and

$$
\frac{\sin 2 \pi f / f_{s}}{2 \pi f / f_{s}} .
$$

Now

$$
y_{k}^{1 .}-\tilde{y}_{k}=1 / f_{s} \int_{-f_{s} / 2}^{f_{s} / 2}(2 \pi i f) H(f)\left[1-\frac{\sin 2 \pi f / f_{s}}{2 \pi f / f_{s}}\right] \exp \left(-2 \pi i k f / f_{s}\right) d f
$$

and

$$
1-\frac{\sin 2 \pi f / f_{s}}{2 \pi f / f_{s}} \doteq 0
$$

for $\left|f / f_{s}\right|$ small. If the cut-off f_{c} is small, then $H(f)$ in the above integral becomes zero for f / f_{s} relatively small. Then the \widetilde{y}_{k} are good approximations of the y_{k}^{l}. It has been found empirically that for filters such that $f_{c} / f_{s} \leq . I$, the \tilde{y}_{k} give an acceptable output.

5.2 BAND-PASS SMOOTHING AND FIRST DERIVATIVE FILTER

We have shown that the transfer function of a band-pass filter which will smooth and find the first derivative to be

$$
B^{l}(f)=2 \pi i f B(f)
$$

where $B(f)$ is any band-pass smoothing filter transfer function
[put $n=1$ in (4.63)]. Note that $B^{l}(f)$ has the same cutoff and termination frequencies as $B(f)$. $B(f)$ may be designed by either of the methods discussed in Section 4.6.

Putting $n=1$ in (4.65), we obtain the weights of this filter in terms of the band-pass smoothing weights

$$
b_{k}^{l}=-f_{s} \frac{d b_{k}}{d_{k}}
$$

where $b(t) \longleftrightarrow B(f)$ and $b_{k}=\frac{1}{f_{s}} b\left(\frac{-k}{f_{s}}\right)$.
If the b_{k} are obtained by taking the difference [see (4.57)] of the weights of two low pass filters, say h_{k}^{\prime} and $h_{k}^{\prime \prime}$, then

$$
\begin{equation*}
b_{k}^{I}=-f_{s}\left\{\frac{d h_{k}^{\prime \prime}}{d k}-\frac{d h_{k}^{\prime}}{d k}\right\} \tag{5.13}
\end{equation*}
$$

When the b_{k} are obtained by the second method [see (4.62)], we have

$$
\begin{align*}
b_{k}^{I} & =-2 f_{s} \frac{d}{d k}\left\{h_{k} \cos 2 k \pi \frac{f_{0}}{f_{s}}\right\} \tag{5.14}\\
& =-2 f_{s}\left\{\frac{-h_{k} 2 \pi f_{0}}{f_{s}} \sin 2 k \pi \frac{f_{0}}{f_{s}}+\frac{d h_{k}}{d k} \cos 2 k \pi \frac{f_{0}}{f_{s}}\right\} \\
& =4 \pi f_{o} h_{k} \sin 2 k \pi \frac{f_{0}}{f_{s}}-2 f \frac{d h_{s}}{d k} \cos 2 k \pi \frac{f_{0}}{f_{s}}
\end{align*}
$$

To obtain a Martin-Graham filter of this type by the first method, we simply select two Martin-Graham smoothing filters with transferweight functions $h^{\prime}(t) \longleftrightarrow H^{\prime}(f)$ and $h^{\prime \prime}(t) \longleftrightarrow H^{\prime \prime}(f)$ and compute the weights b_{k}^{l} by (5.13). To use the second method, the appropriate

Martin-Graham filter with $h(t) \longleftrightarrow H(f)$ is selected and the weights h_{k}^{1} are computed by (5.14). These weights are used for the h_{k} in (3.47). Note that a factor of f_{s} can be removed from the sum (3.41) in a manner analogous to the first derivative case [see (5.7) and (5.8)].

(a) Smoothing transfer functions

(c) Derivative transfer functions derived from H^{\prime} and $H^{\prime \prime}$.

(b) Band-pass: $H^{\prime \prime}(f)-H^{\prime}(f)$

(d) Band-pass derivative:

$$
Y^{2}(f)-Y^{1}(f)
$$

Figure 5.2.

5.3 SMOOTHING AND SECOND DERIVATIVE FILITER

Letting $n=2$ in (4.2), we find that the transfer function of a filter which will smooth and find the second derivative is

$$
\begin{equation*}
Y^{2}(f)=-(2 \pi f)^{2} H(f) \tag{5.15}
\end{equation*}
$$

where $H(f)$ is any smoothing filter transfer function.
Putting $n=2$ in (4.3b), we find that the weights of the filter in terms of the smoothing weights are

$$
\begin{equation*}
y_{k}^{2}=f_{s}^{2} \frac{d^{2} h_{k}}{d k^{2}} \tag{5.16}
\end{equation*}
$$

where $h(t) \longleftrightarrow H(f)$ and $h_{k}=\frac{l}{f_{S}} h\left(\frac{-k}{f_{s}}\right)$.
Using the Martin-Graham smoothing weights given by (4.15) in terms of $\tau=\frac{W}{2 \pi f_{S}}=\frac{f}{f_{S}}$ and (5.16) gives

$$
\left.\begin{array}{r}
y_{k}^{2}=\frac{f_{s}^{2}}{k\left(1-4 \tau_{d}^{2} k^{2}\right)}\left\{24 \tau_{d}^{2} k h_{k}+\frac{2 y_{k}^{1}}{f_{s}}\left(1-12 \tau_{d}^{2} k^{2}\right)-2 \pi\left(\tau_{T}^{2} \sin 2 \pi \tau_{T} k\right.\right. \tag{5.17}\\
\\
\left.+\tau_{c}^{2} \sin 2 \pi \tau_{c}^{k}\right)
\end{array}\right\}
$$

where y_{k}^{l} is given by equation (5.2). This gives the weights to be used in (3.4I). Note that a factor of f_{s}^{2} may be removed in this case.

For $k=0$, using L'Hospital's rule gives

$$
\begin{equation*}
y_{o}^{2}=f_{s}^{2}\left[8 \tau_{d}^{2}\left(\tau_{T}+\tau_{c}\right)-\frac{4 \pi^{2}}{3}\left(\tau_{T}^{3}+\tau_{c}^{3}\right)\right] \tag{5.18}
\end{equation*}
$$

For $k=\frac{l}{2 \tau_{d}}, L$ Hospital's rule must be used to compute h_{k}. [See Section 5.4.]

A constraint is developed in Appendix A to improve the fit of the approximating transfer function at some specific frequency ratio $\bar{\tau}$ 。

5.4 FIRSI AND SECOND DERIVATIVE WEIGHTS FOR $1 / 2 \tau_{\mathrm{d}}$ AN INTEGER

In cases where τ_{d} is such that $I / 2 \tau_{d}$ is an integer, say m, then $h_{m}, h_{-m}, y_{m}^{I}, y_{-m}^{1}, y_{m}^{2}$, and y_{-m}^{2} assume the indeterminate form $0 / 0$ and these weights must be computed by using L'Hospital's rule. The value of h_{m} in this case is given by (4.17) and h_{-m} is obtained from $h_{m}=h_{-m}$.

Application of L^{\prime} Hospital's rule to the first derivative weight expression y_{m}^{1} when $m=1 / 2 \tau_{d}$ yi.elds

$$
\begin{equation*}
y_{m}^{I}=\left(f_{s} / 2\right)\left\{\pi \tau_{d}\left(\tau_{d}+2 \tau_{c}\right) \sin \left(\pi \tau_{c} / \tau_{d}\right)+\left(3 \tau_{d}^{2} / 2\right) \cos \left(\pi \tau_{c} / \tau_{d}\right)\right\} \tag{5.19}
\end{equation*}
$$

The first derivative weight function is odd, and hence we have

$$
y_{-m}^{1}=-y_{m}^{I}
$$

Application of L'Hospital's rule to the second derivative weight expression $y_{m}^{2}=I / 2 \tau_{d}$ yields

$$
\begin{align*}
y_{m}^{2}= & f_{s}^{2}\left\{3 \pi \tau_{d}^{2}\left(\tau_{d}+2 \tau_{c}\right) \sin \left(\pi \tau_{c} / \tau_{d}\right)\right. \tag{5.20}\\
& \left.+\left(7 \tau_{d}^{3}-2 \pi^{2}\left[\tau_{c} \tau_{d}\left(\tau_{c}+\tau_{d}\right)+\tau_{d}^{3} / 3\right]\right) \cos \left(\pi \tau_{c} / \tau_{d}\right)\right\}
\end{align*}
$$

The second derivative weight function is even, and hence we have

$$
y_{-m}^{2}=y_{m}^{2}
$$

CHAPIER VI

FIITERS FOR INIEGRATION AND INTERPOLATION

6.0 INIEGRATING FILITERS

Let $A \exp (2 \pi i f t)$ be a component of an input to a filter. Assuming that the constant of integration is zero, the indefinite integral of this component is $(2 \pi i f)^{-l} A \exp (2 \pi i f t)$. If this is to be the output of the filter, then, using (3.5), we find that the transfer function must be

$$
\begin{equation*}
X(f)=(2 \pi i f)^{-1} \tag{6.0}
\end{equation*}
$$

Suppose that $g(t)$ is the input to a filter, and that $g(t) \longleftarrow \longrightarrow(f)$. Letting $k^{\prime}(t)=g(t)$, assuming that the constant of integration is zero, and that $k(t)$ satisfies conditions sufficient for the Fourier integral theorem to hold, we have

$$
\begin{equation*}
k(t) \longleftrightarrow(2 \pi i f)^{-1} G(f) \tag{6.1}
\end{equation*}
$$

If we also smooth, we have

$$
\begin{equation*}
\overline{\mathrm{k}}(\mathrm{t}) \longleftrightarrow(2 \pi i f)^{-1} \mathrm{H}(\mathrm{f}) \mathrm{G}(\mathrm{f}) \tag{6.2}
\end{equation*}
$$

where $H(f)$ is the smoothing filter transfer function. From (6.2) we see that the transfer function of a filter which will simultaneously smooth and give the indefinite integral is

$$
\begin{equation*}
Y^{(-1)}(f)=(2 \pi i f)^{-1} H(f) \tag{6.3}
\end{equation*}
$$

Note that the smoothed output, $\bar{g}(t)$, of the smoothing filter acting alone on $g(t)$ is the inverse transform of $H(f) G(f)$, and that

$$
\begin{equation*}
\bar{k}(t)=\int_{a}^{t} \bar{g}(\beta) d \beta \tag{6.4}
\end{equation*}
$$

where we assume $\bar{k}(a)=0$.
For the transfer functions, $H_{j}(f), j=1,2, \ldots, 5$, of the smoothing filters discussed in Chapter IV, $Y^{(-1)}(f)$ has an infinite discontinuity at $f=0$. Hence, in order to approximate $Y^{(-I)}\left(f^{\prime}\right)$ with a truncated Fourier series, we must modify $Y^{(-I)}(f)$ on an interval containing zero. To avoid some integrals which cannot be evaluated in closed form, we shall consider only the case $j=1$, i.e., an Ormsby type filter.

Let $\Delta f>0$ and

$$
Y^{(-1)}(f)=(2 \pi i)^{-1}\left\{\begin{array}{lll}
f(\Delta f)^{-2} & , & |f|<\Delta f \tag{6.5}\\
f^{-I} \\
& , & \Delta f \leq f \leq f_{c} \\
\frac{f_{T}-f}{f_{c^{\Delta f}}} & , & f_{c}<f \leq f_{T} \\
0 & , & |f|>f_{T}
\end{array}\right.
$$

and $Y^{(-1)}(-f)=-Y^{(-1)}(f)$ for $f<0$. See Figure 6.2

The weights in terms of the frequency ratio $\tau=\frac{f}{f_{s}}, \tau_{d}=\frac{\Delta f}{f_{s}}$, $\tau_{c}=\frac{f_{c}}{f_{S}}, \tau_{T}=\frac{f_{T}}{f_{S}}$, are

$$
\begin{align*}
y_{n}^{(-1)} & =\frac{1}{2 \pi^{2} \tau_{d}{ }^{f}}\left[\frac{\cos 2 n \pi \tau_{d}}{n}-\frac{\sin 2 n \pi \tau_{d}}{2 \pi \tau_{d} n^{2}}\right. \\
& -\frac{\tau_{d} \cos 2 n \pi \tau_{c}}{\tau_{c}{ }^{n}}+\frac{\left(\sin 2 n \pi \tau_{\tau}-\sin 2 n \pi \tau_{c}\right)}{2 \pi \tau_{c} n^{2}} \\
& \left.-2 \pi \tau_{d}\left[\operatorname{Si}\left(2 n \pi \tau_{c}\right)-\operatorname{si}\left(2 n \pi \tau_{d}\right)\right]\right], \tag{6.6}
\end{align*}
$$

where

$$
S i(x)=\int_{0}^{x} \frac{\sin y}{y} d y=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(2 k-1)}{(2 k-1)!(2 k-1)}
$$

A definite integral
From (6.4) we have

$$
\bar{k}(t+a)-\bar{k}(t-a)=\int_{t-a}^{t+a} \bar{g}(\beta) d \beta
$$

and by (6.2) and the First Shifting Theorem,

$$
\overline{\mathrm{k}}(\mathrm{t}+\mathrm{a})-\overline{\mathrm{k}}(\mathrm{t}-\mathrm{a}) \longleftrightarrow(2 \pi i f)^{-1} \mathrm{G}(\mathrm{f}) \mathrm{H}(\mathrm{f})[\exp (2 \pi i a f) \exp (-2 \pi i a f)]
$$

or

$$
\begin{equation*}
\bar{k}(t+a)-\bar{k}(t-a) \longleftrightarrow \frac{\sin 2 \pi a f}{\pi f} H(f) G(f) \tag{6.7}
\end{equation*}
$$

Thus, if $H(f)$ is a smoothing filter transfer function, the transfer function of a filter which will simultaneously smooth and give the integral of the input over $[t-a, t+a]$ is

$$
\begin{equation*}
Y^{(-1)}(f)=\frac{\sin 2 \pi a f^{\prime}}{\pi f} H(f) \tag{6.8}
\end{equation*}
$$

Let
then

$$
x(t)= \begin{cases}1 & |t| \leq a \tag{6.9}\\ 0 & |t|>a\end{cases}
$$

$$
\begin{equation*}
x(t) \longleftrightarrow x(f)=\frac{\sin 2 \pi a f}{\pi f} \tag{6.10}
\end{equation*}
$$

Applying the convolution theorem gives

$$
\begin{align*}
y^{(-1)}(t) & =\int_{-\infty}^{\infty} h(z) x(t-z) d z \\
& =\int_{t-a}^{t+a} h(z) d z \tag{6.11}\\
& =\int_{-a}^{a} h(t-z) d z
\end{align*}
$$

where $y^{(-1)}(t) \longleftrightarrow Y^{(-1)}(f)$ and $h(t) \longleftrightarrow H(f)$.

By (3.40), the weights of the corresponding filter are

$$
y_{n}^{(-1)}=\frac{1}{f_{s}} \int_{\frac{-n}{f_{s}}-a}^{\frac{-n}{f_{s}}+a} h(z) d z
$$

Choosing $h_{1}(t)$, the Ormsby smoothing filter weight function, we have

$$
\begin{align*}
y^{(-1)}(t) & =\frac{1}{\pi \Delta f}\left\{\begin{array}{l}
t\left(\sin 2 \pi f_{c} t \sin 2 \pi f_{c} a-\sin 2 \pi f_{T} t \sin 2 \pi f_{T} a\right) \\
\pi\left(t^{2}-a^{2}\right)
\end{array}\right. \\
& +\frac{a\left(\cos 2 \pi f_{c} t \cos 2 \pi f_{c} a-\cos 2 \pi f_{T} t \cos 2 \pi f_{T} a\right)}{\pi\left(t^{2}-a^{2}\right)} \tag{6.13}\\
& -f_{c}\left[\operatorname{Sin}\left(2 \pi f_{c}[t+a]\right)-\operatorname{Si}\left(2 \pi f_{c}[t-a]\right)\right]
\end{align*}
$$

$$
\left.+f_{T}\left[S i\left(2 \pi f_{T}[t+a]\right)-\operatorname{Si}\left(2 \pi f_{T}[t-a]\right)\right]\right\}
$$

Using the frequency ratio $\tau=\frac{f}{f_{s}}$, letting $a=\frac{b}{f_{s}}$, and computing the weights by (3.40), we have

$$
\begin{align*}
& y_{n}^{(-1)}=\frac{1}{\pi^{2} \tau_{d^{f} s}}\left\{\frac{n(\sin 2 n \pi \tau}{} \frac{\sin 2 \pi \tau c^{b-\sin 2 n \pi \tau} T \sin 2 \pi \tau}{} T^{b}\right) \\
& \left.+\frac{b(\cos 2 n \pi \tau}{} c^{\cos 2 \pi \tau} c^{b-\cos 2 n \pi T} T \cos 2 \pi \tau T^{b}\right)\left(n^{2}-b^{2}\right) \quad \\
& -\pi \tau c^{[S i(2 \pi \tau} c^{[n+b])}-\operatorname{Si}\left(2 \pi \tau c^{[n-b])]}\right. \tag{6.14}\\
& \left.+\pi T_{T}\left[S i\left(2 \pi \tau_{T}[n+b]\right)-S i\left(2 \pi T_{T}[n-b]\right)\right]\right\} .
\end{align*}
$$

6.1 INTERPOLATING FIEITERS

If $g(t)$ is a function with Fourier transform $G(f)$, then by replacing t_{o} by $-t_{o}$ in (1.21) we obtain

$$
\begin{equation*}
g\left(t+t_{o}\right) \longleftrightarrow G(f) \exp \left(2 \pi i t_{o} f\right) \tag{6.15}
\end{equation*}
$$

From this and (3.5), we see that the transfer function of a filter with output $g\left(t+t_{0}\right)$ is

$$
\frac{G(f) \exp \left(2 \pi i t_{0} f\right)}{G(f)}=\exp \left(2 \pi i t_{0} f\right)
$$

Suppose that $g(t)$ is band-limited, and let $h(t) \longleftrightarrow H(f)$ be the weight and transfer functions of a filter, then

$$
\begin{equation*}
g\left(t+t_{0}\right) * h(t) \longleftrightarrow G(f) \exp \left(2 \pi i t_{0} f\right) H(f) \tag{6.16}
\end{equation*}
$$

But applying (1.2l) to $h(t)$ as we did to $g(t)$ above, we have that

$$
\begin{equation*}
h\left(t+t_{o}\right) \longleftrightarrow H(f) \exp \left(2 \pi i t_{o} f\right) \tag{6.17}
\end{equation*}
$$

Hence

$$
\begin{equation*}
g(t) * h\left(t+t_{o}\right) \longleftrightarrow \longrightarrow G(f) \exp \left(2 \pi i t_{0} f\right) H(f) \tag{6.18}
\end{equation*}
$$

Comparing (6.16) and (6.18), we have

$$
\begin{equation*}
g(t) * h\left(t+t_{o}\right)=g\left(t+t_{o}\right) * h(t) \tag{6.19}
\end{equation*}
$$

From this we see that the operations of filtering and shifting the output by a constant t_{o} can be accomplished by shifting the weight function by t_{0}. Letting $\bar{g}(t)$ denote the smoothed output of the
filter with weight function $h(t)$, we have

$$
\bar{g}(t)=g(t) * h(t)
$$

and

$$
\begin{equation*}
\bar{g}\left(t+t_{0}\right)=g(t) * h\left(t+t_{0}\right) \tag{6.19}
\end{equation*}
$$

Now $\bar{g}\left(t+t_{o}\right)$ is the output of a filter with transfer function $\exp \left(2 \pi i t_{o} f\right) H(f)$, and from (6.17) we see that the corresponding weight function is $h\left(t+t_{0}\right)$. Then from (3.40), the weights of the filtcr are

$$
\begin{equation*}
\bar{h}_{n}=\left(I / f_{s}\right) h\left(-n / f_{s}+t_{o}\right) \tag{6.20}
\end{equation*}
$$

The corresponding digital filter has for its output

$$
\begin{equation*}
\bar{g}_{\mathrm{m}}^{\prime}=\sum_{\mathrm{n}=-\mathrm{N}}^{\mathrm{N}} \bar{h}_{\mathrm{n}} \mathrm{~g}_{\mathrm{m}+\mathrm{n}} \tag{6.21}
\end{equation*}
$$

where \bar{g}_{m}^{\prime} is an approximation of $\bar{g}\left(m / f_{s}+t_{o}\right)$, that is, it is an interpolated value of $\bar{g}(t)$ between \bar{g}_{m} and \bar{g}_{m+1} for $0<t_{o}<I / f_{s}$.

Note that (6.21) uses only the assumed known sample values g_{n} of the input $g(t)$. The weights \bar{h}_{n} are computed from the known weight function. Also, it is important to note that the weights are no longer either even or odd functions of n, that is, $\bar{h}_{-n} \neq \bar{h}_{n}$, and $\bar{h}_{-\mathrm{n}} \neq-\overline{\mathrm{h}}_{\mathrm{n}}$.

Choosing $h(t)$ to be the appropriate Martin-Graham weight function, and using (6.20), we may compute weights to simultaneously smooth and interpolate; smooth, differentiate, and interpolate; or band-pass filter and interpolate.

In the first two cases, if the cutoff frequency can be chosen greater than the largest frequency f_{β} present in the data, that is, if $f_{\beta} \leq f_{c}<f_{s} / 2$, then choosing $f_{T}=f_{s} / 2$ to maximize the roll-off length, we obtain filters which interpolate for raw data values between known data values in the first case, and which differentiate and interpolate without smoothing in the second case.

There is a relation between the weights for interpolating with $t_{0}>0$ and the weights for interpolating with $t_{0}^{\prime}=-t_{0}$ which is sometimes usef'ul. Suppose the weight function $h(t)$ of the original filter is an even function of t. Then

$$
\begin{equation*}
\bar{h}_{\mathrm{n}}=\left(I / \mathrm{f}_{\mathrm{s}}\right) h\left(-n / f_{\mathrm{s}}+t_{0}\right)=\left(I / f_{s}\right) h\left(n / f_{s}-t_{0}\right)=\bar{h}_{-n}^{1} \tag{6.22}
\end{equation*}
$$

where the \bar{h}_{-n} are the weights for interpolation with t_{o} replaced by $-t_{0}$. When $\bar{h}_{-N}, \bar{h}_{-N+1}, \cdots, \bar{h}_{-1}, \bar{h}_{0}, \bar{h}_{1}, \ldots, \bar{h}_{N-1}, \bar{h}_{N}$ are the weights for interpolating with $t_{0}>0$, then the weights for interpolating with t_{0} replaced by $-t_{0}$ are $\bar{h}_{-\mathbb{N}}^{\prime}=\bar{h}_{N}, \bar{h}_{-N+1}^{r}=\bar{h}_{N-1}, ~ . ~ . ~, ~$ $\bar{h}_{-1}^{1}=\bar{h}_{1}, \bar{h}_{0}^{1}=\bar{h}_{0}, \bar{h}_{I}^{\prime}=\bar{h}_{-1}, \cdots, \bar{h}_{N-I}^{\prime}=\bar{h}_{-N+I}, \bar{h}_{N}^{\prime}=\bar{h}_{-N}$.

For $h(t)$ an odd function of t, we obtain the relation

$$
\begin{equation*}
\bar{h}_{\mathrm{n}}=-\bar{h}_{-\mathrm{n}}^{1} . \tag{6.23}
\end{equation*}
$$

As was the case previously, when using Martin-Graham filters for filtering and interpolating, there are values of $m,{ }^{\top}{ }_{d}$, and t_{o} which make the denominator of the weight expressions zero. In these cases, the weights \bar{h}_{m} require special attention. Letting $t_{o}=\Phi / f_{s}$ in the weight expressions for these filters, we see that this will be true when m is an integer such that

$$
\begin{equation*}
\mathrm{m}-\Phi=0 \text {, or } \mathrm{m}-\Phi= \pm\left(1 / 2 \tau_{\mathrm{d}}\right) \tag{6.24}
\end{equation*}
$$

Using the Martin-Graham smoothing weight function (4.13), the weight equation (6.20), and replacing t_{o} by Φ / f_{s}, we find that the weights for smoothing and interpolating are

$$
\begin{equation*}
\bar{h}_{n}=\frac{\cos \left(\pi \tau_{d}(n-\Phi)\right) \sin \left(\pi\left(2 \tau_{c}+\tau_{d}\right)(n-\Phi)\right)}{\pi(n-\Phi)\left(1-4 \tau_{d}^{2}(n-\Phi)^{2}\right)} \tag{6.25}
\end{equation*}
$$

We now see that no special evaluation of this expression when (6.24) holds is necessary. That is, the values of $m-\Phi$ given in (6.24) are those which make the denominator of (6.25) zero and we have already determined what the value of this expression is in this case. These are given by (4.16) tor $\mathrm{m}-\Phi=0$ and by (4.17) for $\mathrm{m}-\Phi= \pm\left(1 / 2 \tau_{d}\right)$. Hence, t'or $m=\Phi$,

$$
\overline{\mathrm{h}}_{\mathrm{m}}=2 \tau_{c}+\tau_{d},
$$

and for $m=\Phi \pm\left(I / 2 \tau_{d}\right)$,

$$
\bar{h}_{m}=\left(\tau_{d} / 2\right) \cos \left(\pi \tau_{c} / \tau_{d}\right) .
$$

Similar reasoning applies to the derivative filters. In Chapter VII, a sample program and some tabulated results for smoothing and interpolation; smoothing, first derivative, and interpolation; and smoothing, second derivative, and intcrpolation are given. Values of Φ uscd there are .25 and .5. This corresponds to interpolation for values one-quarter and one-half the length of the sampling interval from known values, respectively. A check for the special cases in (6.24) is included in the program.

CHAPIER VII

APPLICATIONS
7.0 EDITING AND DETERMINATION OF DIGITAL FIITER PARAMETERRS.

In order to apply a digital filter to a set of data $\left\{\mathrm{f}_{\mathrm{m}}\right\}$, we assume that the data values are obtained by taking equally spaced samples of a function $g(t)$ which satisfies the three conditions of section 5.0. A variety of problems may arise from the methods used to obtain the samples, and editing may be necessary. Conmon problems are missing values and "bad" values, i.e., values grossly in error. Since these can affect the output considerably, it is important to replace them in some manner. The common practice is to consider the "bad" values as missing values and then replace each missing value by linear interpolation between the nearest data values on each side of the missing value. (See [in]).

Next, the following parameters must be determined:
A. The largest frequency, f_{β}, which is present in the data. This is commonly found by visually determining the shortest period in the data.
B. The sampling frequency, f_{s}, which must be at least $2 f_{\beta}$.
C. The cut-off frequency, f_{c}, which is chosen to be at least as great as the highest frequency of interest present in the data.
D. The termination frequency, f_{T}. This should be chosen such that either, (1) no frequencies present in the data are in the interval (f_{c}, f_{T}) or, (2) frequencies appearing in (f_{c}, f_{T}) have no significant amplitude.
E. The value of N and hence the number of weights, $2 N+1$, of the filter.

From the above, the corresponding frequency ratios may be found from $r=\frac{f}{f_{s}} \quad$ That is, $\tau_{c}=\frac{f_{c}}{f_{s}}, \tau_{T}=\frac{f_{T}}{f_{s}}, \tau_{d}=\frac{\Delta f}{f_{s}}$.

7. 1 EMPIRICAL ERROR BOUNDS FOR MARTIN-GRAHAM FILITERS

Empirical error bounds are found by recovering the digital filter's transfer function, i.e., computing

$$
H_{N}\left(f_{j}\right)=\sum_{n=-N}^{N} h_{n} \exp \left(2 n \pi i f_{j} / f_{s}\right)
$$

$j=1,2, \ldots, k$, for various values of the parameters of Section 7.0. The recovered values are then compared with the designed or ideal transfer function values at the f_{j}. An expression for the error ϵ is then determined in terms of N and the other parameters.

The following error bounds were obtained by transfer function recoveries and comparison with bounds obtained by the method of section 4.4 .
I. Martin-Graham smoothing filter.

For a maximum error $\in[\operatorname{see}(3.43)]$ of about .01, take

$$
\begin{equation*}
\mathrm{N} \geq \frac{1.25}{\tau_{\mathrm{d}}}=\frac{1.25 \mathrm{f}_{\mathrm{s}}}{\Delta \mathrm{f}} \tag{7.1}
\end{equation*}
$$

This gives a maximum error of 1% (\in referred to unity) between the actual transfer function and the designed transfer function. Note that the error does not change with τ_{c}, ${ }^{\top} d$ held constant.

The bound given by the method of Section 4.4 was compared With the results of computation with τ_{c} values ranging from .025 to $.2, T_{d}$ values ranging from .021 to .11 , and N values up to 100. It was found to be about 5 times too large. Hence, in terms of the frequency ratio,

$$
\begin{equation*}
\epsilon \doteq \frac{1}{5 \pi} \log \frac{4 N^{2} \tau_{d}^{2}}{4 N^{2} \tau_{d}^{2}-1} \tag{7.2}
\end{equation*}
$$

where "log" denotes the natural logarithm.
II. Martin-Graham first derivative filter.

Comparison of recoveries for $f \geq f_{T}$, i.e., where $Y^{\mathcal{l}}(f)$ is ideally zero, and the bound obtained by the method of Section 4.4 yielded, over the same range of frequencies ratio and N values given above, the expression

$$
\epsilon^{\prime} \stackrel{f_{s}}{4}\left[\left(\tau_{c}+\tau_{T}\right) \log \frac{4 N^{2} \tau^{2}}{4 N^{2} T_{d}^{2}-1}+\frac{2}{\pi N\left(4 N^{2} \tau_{d}^{2}-1\right)}\right]
$$

III. Martin-Graham second derivative filter.

As above, the following expression was found

$$
\begin{equation*}
\epsilon^{\prime \prime} \doteq \frac{f_{s}^{2}}{2}\left[\pi\left(\tau_{c^{2}+\tau_{T}^{2}}^{2}\right) \log \frac{4 N^{2} \tau_{d}^{2}}{4 N^{2} \tau_{d}^{2}-1}+\frac{{ }^{\tau} c^{+\tau} T}{N\left(4 N^{2} \tau_{d}^{2}-1\right)}\right] \tag{7.4}
\end{equation*}
$$

IV. Martin-Graham band-pass filters.

The error can be as much as the sum of the errors in the low-pass filters from which the band-pass filter is derived (see Section 4.6). Hence, in band-pass smoothing the error may be twice that obtained with a low-pass smoothing filter having the same roll-off length Δf.

The values of \in given by (7.3) become too large for small T^{T}, but are still useable for $\tau_{d}=.021$. The values of $\in^{\prime \prime}$ given by (7.4) are too small for large τ and small τ_{c}. The actual value may be as much as $\frac{4}{3} \epsilon^{\prime \prime}$ for τ_{d} values from .07 to .11 and τ_{c} values of .025 to .07. However, it is still useable. E^{\prime} and $\epsilon^{\prime \prime}$ are values for the error on the rejection band $|f| \geq f_{T}\left(|\tau| \geq \tau_{T}\right)$. The error on the pass-band $|f| \leq f_{c}\left(|\tau| \leq \tau_{c}\right)$ is essentially the same. For the first derivative filter, the amplitude at f_{c} ideally is $2 \pi f_{c}=2 \pi f_{s} T_{c}$. For an error of I \% of $2 \pi f_{c}$, we need

$$
\begin{aligned}
& \epsilon^{\prime}=.01\left(2 \pi f_{s}{ }^{T} c\right) \\
& =(.02) \pi \tau_{c}{ }^{f}{ }_{s} \\
& =(.08)\left(\pi \tau_{c}\right) \frac{f}{4} \text {. }
\end{aligned}
$$

Comparing with (7.3), we see that N must be taken such that

$$
\begin{equation*}
(.08)_{\pi \tau_{c}} \doteq\left(\tau_{c}+\tau_{T}\right) \log \frac{4 N^{2} \tau_{d}{ }^{2}}{4 N^{2} \tau_{d}{ }^{2}-1}+\frac{2}{\pi N\left(2 N^{2} \tau_{d}{ }^{2}-1\right)} \tag{7.5}
\end{equation*}
$$

For the second derivative, the amplitude at f_{c} ideally is $4 \pi^{2} f_{c}{ }^{2}=$ $4 \pi^{2} f_{s} \tau_{c}{ }^{2}$. Similar to the above, we find that for an error of 1% of $4 \pi^{2} f_{c}{ }^{2}$, we need to take N such that

$$
\begin{equation*}
(.08) \pi^{2} \tau_{c}{ }^{2} \doteq \pi\left(\tau_{c}{ }^{2}+\tau_{T}{ }^{2}\right) \log \frac{4 N^{2} \tau_{d}{ }^{2}}{4 N^{2} \tau_{d}{ }^{2}-1}+\frac{\tau_{c}{ }^{+\tau_{T}}}{N\left(4 N^{2} \tau_{d}{ }^{2}-1\right)} \tag{7.6}
\end{equation*}
$$

7. 2 SAMPIF PROGRAM AND RESULTS FOR THE MARTIN-GRAHAM SMOOTHING AND

 DERIVATIVE FILTERSWhen the data has been edited and the parameters of Section 7.0 have been determined, the filtering can be performed. The weights of the filter are computed from the appropriate weight expression and (3.40). If the data has a polynomial content, then these weights are constrained appropriately (see Section 4.5, Section 5.1, and Appendix A). Finally, the output of the filter is computed using (3.45).

As an example, we take as the input function

$$
\begin{equation*}
g(t)=a_{1} \cos 2 \pi f t_{1} t+a_{2} \sin 2 \pi f_{2} t+a_{3} \cos 2 \pi f_{3} t+a_{4} \tag{7.7}
\end{equation*}
$$

Using the Martin-Graham filters, in this section we shall perform the operations of smoothing; smoothing and finding the first derivative; and smoothing and finding the second derivative. The same function will be used in the next sections for interpolation and integration. The time-sampled version of $g(t)$ is

$$
g_{n}=g\left(n / f_{s}\right)=a_{1} \cos 2 \pi f_{1} n / f_{s}+a_{2} \sin 2 \pi f_{2} n / f_{s}+a_{3} \cos 2 \pi f_{3} n / f_{s}+a_{4}
$$ and going to the frequency ratio, $T=f / f_{S}$, we have

$$
\begin{equation*}
g_{n}=a_{1} \cos 2 \pi n \tau_{1}+a_{2} \sin 2 \pi n \tau_{2}+a_{3} \cos 2 \pi n \tau_{3}+a_{4} \tag{7.8}
\end{equation*}
$$

The following program was run in extended precision (lo digits) on the IBM 1130 computer. The program is sectioned by comment cards which state whal each part of the program computes. Table 7.l gives. the frequencies used for the various runs. In each run, the input component with frequency f_{3} is to be removed by the filters. Table 7.2 gives the frequency ratios, coefficients of the terms in (7.8), coefficients of the terms of the desired output, and the parameter values for each run. The value of N used, and hence the number of weights for each run, is given by the last two digits in the run number. That is, Run 2.20 reads, 'Run 2 with $N=20^{\prime \prime}$. The symbolism selected for the program is as follows:

FS: The sampling rate f_{S}.
HO: The center smoothing weight, h_{0}.
DDHO: The center smoothing and second derivative weight, y_{0}^{2}.
$H(I): T h e ~ s m o o t h i n g ~ w e i g h t s ~ h_{i}, i \neq 0$.
$\mathrm{DH}(\mathrm{I})$: The smoothing and first derivative weights $y_{i}^{\frac{1}{\prime}}$, $i \neq 0$. $\mathrm{DDH}(\mathrm{I}):$ The smoothing and second derivative weights $\mathrm{y}_{\mathrm{i}}^{2}$, i $\neq 0$.

TFI: The recovered transfer function for smoothing.
TF2: The recovered transfer function for smoothing and the first derivative (divided by 2π).

TF3: The recovered transfer function for smoothing and the second derivative (divided by $4 \pi^{2}$).
$Z(I):$ The input samples g_{i}.
$R(I)$: The desired smoothed output (used for headings for both desired and actual outputs).
 headings for both desired and actual outputs).

DDR(I): The desired smoothed second derivative output (used for headings for both desired and actual outputs).

The a_{i}, T_{i}, etc. are denoted by $A A, R A$, etc., $A B, R B$, etc. in the program.
The following weight properties are used in the program:

1) Smoothing: $h_{-n}=h_{n}$,
2) First derivative: $y_{-n}^{1}=-y_{n}^{1}$,
3) Second derivative: $y_{-n}^{2}=y_{n}^{2}$.

The results for each run follow the program. In each run, one term of the input is to be removed by filtering. The desired output is obtained by taking the coefficient of that term in (7.8) to be zero. Some of the frequencies were chosen near cut-off and termination of the filters. This is where the largest error is obtained in the transfer functions. See Figure 7.1 and Figure 7.2 for graphs of the recovered transfer functions, the input, and the smoothing filter output. The output of the smoothing filter is so near the desired output that they coincide in the scale of the figure.

Tabular values for Run 3.20 , Run 4.30 and Run 5.30 are used in the
next section on interpolation and are not used in this section. The values for Run 1.20 and Run 2.30 are used in both the sections.

FREQ.	RUN 1.20	RUN 2.30	RUN 3.20	RUN 4.30	RUNT 5.30
f_{1}	. 5	. 5	. 5	. 5	. 5
f_{2}	. 9	2.0	. 9	2.0	. 9
f_{3}	2.0	4.0	2.0	4.0	2.0
f_{S}	10.0	10.0	10.0	10.0	10.0
f_{c}	1.0	2.0	1.0	2.0	1.0
$\Delta \mathrm{f}$. 6	. 6	. 6	. 6	. 4
f_{T}	1.6	2.6	1.6	2.6	1.4

Table 7.1

PROGRAM SYMBOLS AND PARAMETER VALUES

FREQ. PROGRAM RATIO STMBOIS

PARAMETER VALUES
RUN 1.20 RUN 2.30 RUN 3.20 RUN 4.30 RUN 5.30

τ_{c}	TC	.1	.2	.1	.2	.1
τ_{T}	RT	.16	.26	.16	.26	.14
τ_{d}	TD	.06	.06	.06	.06	.04
τ_{1}	RA	.05	.05	.05	.05	.05
τ_{2}	RB	.09	.2	.09	.2	.09
τ_{3}	RC	.2	.4	.2	.4	.2
a_{1}	AA	1.0	1.0	1.0	1.0	1.0
a_{2}	AB	1.0	2.0	2.0	2.0	1.0
a_{3}	AC	.5	1.5	.5	1.5	.5
a_{4}	AD	.5	1.0	.5	1.0	.5
	$\mathrm{BA} *$	1.0	1.0	1.0	1.0	1.0
	BB	1.0	2.0	1.0	2.0	1.0
	BC	0.0	0.0	0.0	0.0	0.0
	BD	.5	1.0	.5	1.0	.5
Φ	TX	.25	.25	.5	.5	.5

Table 7.2

* $\mathrm{BA}, \mathrm{BB}, \mathrm{BC}$, and BD are the coefficients for the desired outputs.

```
SAMPLE PROGRAM, WEIGHTS, RECOVERY, FILTERING OF DATA, SMOOTHING, FIRST AND SECOND DERIVATIVES
IBM 1130 FORTRAN IV LA, VGUAGE
DINENSION H(30), DH(30),DDH(30), Z(101)
DIMENSION R(40),DR(40),DDR(40)
1 FORMAT (4F10.0)
2 FORMAT(A4,A4)
3 FORMAT (1H1:5X:A4,A4:3OH RECOVERED TRANSFER FUNCTIONS/)
4 FORMAT ( \(5 \mathrm{X}, 1 \mathrm{HF}, 7 \mathrm{X}, 3 \mathrm{HTF} 1,13 \mathrm{X}, 3 \mathrm{HTF} 2,13 \mathrm{X}, 3 \mathrm{HTF} 3\) )
5 FORMAT(/////6X,A4,A4,28H INPUT ON RAiNGE OF INTEREST//
6 FORMAT(19X,1HT,8X,5HZI(T))
7 FORMAT(1H1,5X,A4,A4,16H DESIRED OUTPUT/)
8 FORMAT(5X,1HT,7X,4HR(T),1IX,5HDR(T),10X,6HDDR(T))
9 FORMAT(1H1,5X,A4,A4,15H ACTUAL OUTPUT/)
10 FORVAT (IX,F7.3,3E15.7)
11 FORMAT(16X,F7.3,E15.7)
\(P=3.14159\)
READ PROBLEM PARAMETERS
\(12 \operatorname{READ}(2,2)\) RUN,XNUM
READ (2,1) XN,TC,TD
READ \((2,1)\) RA,RB,RC,FS
\(\operatorname{READ}(2,1) \mathrm{AA,AB}, A C, A D\)
\(\operatorname{READ}(2,1) \quad B A, B E \cdot B C, B D\)
\(N=X N\)
COMPUTATION OF THE UNCONSTRAINED WEIGHTS
THE FACTORS -FS AND FS**2 OF THE FIRST AND SECOND derivative weights will be introduced later
computation of the center weights
\(H O=2 . * T C+T D\)
\(R T=T C+T D\)
DDHO \(=8 . *\left(T D^{*} * 2 *(R T+T C)-P * * 2 *(R T * * 3+T C * * 3) / 6.\right)\)
computation of the remaining weights
DO \(13 \mathrm{I}=1, \mathrm{~N}\)
\(X=I\)
\(H(I)=S I N(H O * X * P) /(X * P)\)
\(H(I)=H(I) * \cos (T D * X * P) /(1 .-4 . * T D * * 2 * X * 2)\)
\(D H(I)=R T * \cos (2 . * R T * X * P)+T C * \cos (2 * * T C * X * P)\)
\(D H(I)=D H(I)-H(I) *(1 .-12\). \(* T D * * 2 * X *+2)\)
\(D H(I)=D H(I) /(X *(1 .-4 * * T D * * 2 * * * * 2))\)
```



```
DDH(I) = DDI!(I)-2•*P*TC**2*SIN(2.*TC*P*X)
\(\operatorname{DDH}(I)=D D H(I)-2 \cdot * P * R T * * 2 * S I N(2 * * R T * P * X)\)
\(13 \operatorname{DDH}(\mathrm{I})=D D H(I) /(X *(1 .-4 * * T D * 2 * \times * * 2))\)
COMPUTATION OF CONSTRAINED S, VOOTHING wEIGHTS
DERIVATIVE WEIGHTS ARE NOT CONSTRAINED
```

```
        SA=0
        DO 14 I=1,N
    14SA=SA+H(I)
    FN=2*N+1
    SA=1.-(HO+2.*SA)
    SA=SA/FN
    DO 15 I=IgN
    15 H(I) =H(I)+SA
    HO=HO+SA
    WRITE(3,3) RUN:XNUM
    WRITE(3,4)
    ZA=100.*TC-1.
    ZB=2A+6.
    ZC=2B+100**TD
    ZD=2C+6.
    DO 26 K=1.57
    TFI=0.
    TF2=0.
    TF3=0.
    X=K
    IF(X-ZA) 16,17,17
    16 Y=K-1
    Y=.01*Y
    GO TO 24
    17 IF(X-2B) 18,19,19
    18 Y=Y+.005
        GO TO 24
    19 IF(X-ZC) 20,21,21
    20 Y=Y+.01
        GO TO 24
    21 IF(X-ZD) 22,23,23
    22 Y =Y+.005
        GO TO 24
    23Y=Y+.01
    24 CONTINUE
        DO 25 I=1,N
        X=I
        X=2.* **P*Y
        TFI=TF1+2.*H(I)*COS(X)
        TF2=TF2+2.*DH(I)*SIN(X)
    25TF3=TF3+2.*DDH(I)*COS(X)
        TFl=HO+TFI
        TF2=-FS*TF2/(2.*P)
        TF3=FS** 2*(DDHO+TF3)/(4.*P**2)
        Y1=Y*FS
    26 WRITE(3,10) Y1,TFl,TF2,TF3
C
C
                    GENERATION OF SAMPLE INPUT DATA
        MA=N+1
        v}=2*N+4
```

```
        DO 27 I=1,M
        T=I-MA
        CA=COS(2**P*RA*T)
        S=SIN(2**P*RB*T)
        CC=COS(2.*P*RC*T)
    27 Z(I)=AA*CA +AB*S+AC*CC+AD
WRIte input on the range of interest
WRITE(3,5) RUN,XNUM
WRITE(3,6)
DO \(28 \mathrm{I}=1,40\)
\(T=I-1\)
\(Y=T / F S\)
\(J=I+20\)
28 WRITE(3,11) Y,Z(J)
COMPUTATION OF DESIRED OUTPUTS
WRITE 3,7 ) RUN, XNUM
WRITE(3,8)
DO 29 I \(=1,40\)
\(T=I-1\)
\(C A=\cos (2 . * P * R A * T)\)
S=SIN(2•*P*RB*T)
\(C C=\operatorname{Cos}(2 . * P * R C * T)\)
\(R(I)=B A * C A+B B * S+B C * C C+B D\)
DDR(I) \(=-4 * *(P * F S) * * 2 *(B A * R A * * 2 * C A+B B * R B * * 2 * S+B C * R C * * 2 * C C)\)
\(C A=S I N(2 \cdot * P * R A * T)\)
\(S=\operatorname{Cos}(2 . * P * R B * T)\)
\(C C=S I N(2 . * P * R C * T)\)
DR(I) \(=-2 \cdot * P * F S *(B A * R A * C A-B B * R B * S+B C * R C * C C)\)
\(Y=T / F S\)
29 WRITE(3,10) Y:R(I),DR(I),DDR(I)
COMPUTATION OF THE ACTUAL OUTPUT
WRITE(3.9) RUN, XNUM
WRITE(3,8)
DO \(31 K=1,40\)
M \(\mathrm{M}=\mathrm{K}-1\)
\(M C=N+1\)
\(S A=0\).
\(S B=0\).
\(S C=0\).
\(T=M B\)
\(T=T / F S\)
DO \(30 \quad I=1, N\)
\(K A=M C-I\)
\(K B=I+M B\)
\(K C=14 C+I+\operatorname{MB} B\)
\(S A=S A+H(K A) * Z(K B)+H(I) * Z(K C)\)
\(S B=S B-D H(K A) * Z(K B)+D H(I) * Z(K C)\)
\(30 S C=S C+D D H(K A) * Z(K B)+D D H(I) * Z(K C)\)
```

$K D=N C+N B$
$S A=H O * Z(K D)+S A$
C THE FACTORS -FS AND FS**2 ARE INTRODUCED HERE C

SB=-FS*SB
SC=FS**2*(DDHO*Z(KD)+SC)
31 WRITE(3,10) T,SA,SB,SC
GO TO 12
32 CALL EXIT
END

RUN 1.20 RECOVERED TRANSFER FUNCTIONS
F
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.750
0.800
0.850
0.900
0.950
1.000
1.100
$1.200 \quad 0.7502907 \mathrm{E} 00$
$1.300 \quad 0.5007748 \mathrm{E} 00$
$1.400 \quad 0.2500291 E 00$
1.500 0.7292437E-01
$1.600-0.3242715 \mathrm{E}-02$
$1.650-0.1137795 \mathrm{E}-01$
$1.700-0.8413781 E-02$
$1.750-0.1139287 E-02$
$1.800 \quad 0.5260366 \mathrm{E}-02$
$1.8500 .7969893 \mathrm{E}-02$
1.900 0.6575732E-02
2.000 -0.2177529E-02
$2.100-0.5887906 \mathrm{E}-02$
$2.200-0.5841164 E-03$
2.300 0.4631496E-02
2.400 0.2607105E-02
2.500 -0.2762178E-02
$2.600-0.363136 C E-02$
2.700 0.6433748E-C 3
2.800 0.3587548E-02
2.900 0.1261190E-02
3.000 -0.2625765E-02
3.100 -0.2540651E-02
3.200 0.1093053E-02
$3.3000 .2954239 E-02$
$3.400 \quad 0.5538661 E-03$
$3.500-0.2492955 E-02$
$3.600-0.1872954 \mathrm{E}-02$
3.700 0.1361831E-02
$3.800 \quad 0.2536092 \mathrm{E}-02$
3.900 0.7613562E-04
$4.000-0.2406083 E-02$
4.100 -0.1394519E-02
4.200 0.1572296E-02
4.300 0.2227681E-02
$4.400-0.3086174 E-03$
$4.500-0.2359755 E-02$
$4.600-0.1006163 E=02$
TF 1
$0.1000000 E 01$ 0.9979708 E $0.9951461 E 00$ 0.9968977 E 00 $0.1002811 E 01$ C.1005624E 01 0.1000225 E 01 0.9928568 E 00 $\begin{array}{ll}0.9926648 E & 00 \\ 0.9962421 E & 00\end{array}$ 0.1002821 E 01 0.1009538 E 01 0.1002304 E 01

$$
0.1004446 \mathrm{E} \text { O1 -0.1005558E U1 }
$$

$$
0.1025274 \mathrm{E} 01-0.1127162 \mathrm{E} 01
$$

$$
0.9021662 \mathrm{E} \quad 00-0.1081105 \mathrm{E} \quad 01
$$

$$
0.6448855 E \quad 00-0.8382299 E \quad 00
$$

$$
0.3447629 \mathrm{E} \text { OO }=0.4841259 \mathrm{E} 00
$$

$$
\text { C.1126013E 00 } \quad 0.1697427 E 00
$$

$$
0.1952202 \mathrm{E}-02-0.2021546 \mathrm{E}-02
$$

$$
-0.1382274 E-01
$$

$$
-0.1354452 \mathrm{E}-01
$$

$$
-0.5759337 \mathrm{E}-02
$$

$$
0.2660113 \mathrm{E}-02
$$

$$
0.7606103 \mathrm{E}-02
$$

$$
0.7890945 \mathrm{E}-02
$$

$$
-0.3734135 E-04
$$

$$
-0.5253134 \mathrm{E}-02
$$

$$
-0.1658775 \mathrm{E}-02
$$

$$
0.3213084 E-02
$$

$$
0.2442886 \mathrm{E}-02
$$

$$
-0.1478645 \mathrm{E}-02
$$

$$
-C .2470295 E-02
$$

$$
0.1206043 \mathrm{E}-03
$$

$$
0.2025167 E-02
$$

$$
0.7712017 \mathrm{E}-03
$$

$$
-0.1304567 E-02
$$

-C.1199737E-02

$$
0.5405387 E-03
$$

$$
0.1225777 E-02
$$

$$
0.9670234 \mathrm{E}-04
$$

$$
-0.9674295 \mathrm{E}-03
$$

$$
-0.4999757 E-03
$$

$$
0.5857003 E-03
$$

$$
\begin{array}{r}
0.6547356 \mathrm{E}-03 \\
-0.2048472 \mathrm{E}-03
\end{array}
$$

$$
-0.2048472 \mathrm{E}-03
$$

$$
-0.6350356 \mathrm{E}-03
$$

$$
\begin{array}{r}
-0.9081311 \mathrm{E}-04 \\
0.484005 \mathrm{EE}-03
\end{array}
$$

$$
0.4840 こ 50 \mathrm{E}-03
$$

$$
0.2544710 \mathrm{E}-03
$$

$$
-0.3063226 E-03
$$

$$
\begin{array}{r}
-0.3104730 E-03 \\
\hline
\end{array}
$$

$$
0.1595017 \mathrm{E}-03
$$

TF3
-0.1311312E-02
$-0.1094588 \mathrm{E}-01$
-0.3935141E-01
$-0.8744310 \mathrm{E}-01$
$-0.1586992 \mathrm{E} 00$
$-0.2532428 E 00$
-0.3641147E 00
-0.4871102E 00
-0.5559792E 00
-0.6327757E 00
$-0.7189744 E 00$
$-0.8136282 E 00$
-0.9120918E 00
$0.2441104 \mathrm{E}-01$
$0.2445817 E=01$
$0.1072304 \mathrm{E}-01$
-0.5231769E-02
-0.1545016E-01
$-0.1675595 \mathrm{E}-01$
-0.4022046E-03
0.1261440E-01
$0.4961693 \mathrm{E}-02$
-0.8373012E-02
-0. $0.7743576 \mathrm{E}-02$ $0.3784080 \mathrm{E}-02$ $0.8551128 \mathrm{E}-02$ C.7060655E-03
$-0.7317515 \mathrm{E}-02$
-0.4210880E-02
$0.4600845 E-02$
0.6161725E-02
-0.1195917E-02
-0.6406264E-02
$-0.2188057 \mathrm{E}-02$
0.4918593E-02
0.4641884E-02
-0. $2248612 \mathrm{E}-02$
-0.5593535E-02
-0.7416088E-C3
$0.5042111 \mathrm{E}-02$
O. $3403408 \mathrm{E}-02$
-0.3103943E-02
-0.4999321E-02
$0.3360198 \mathrm{E}-03$
$0.5054315 \mathrm{E}-02$ 0.2348410 E-02

```
4.700 C.1772230E-כ2 0.3071723E-03 -0.3751266E-02
4.800 0.1984118E-02 -0.5821355E-04 -0.4346328E-02
4.900 -0.6548489E-C3 -0.2841886E-03 0.1405878E-02
5.000 -0.2343314E-C2 -0.1845173E-07 0.5127026E-02
```

RUN l.2J INPUT ON RANGE OF INTEREST

T	ZI(T)	
0.000	$0.200000 E$	01
0.100	$0.2141391 E$	01
0.200	$0.1809336 E$	01
0.300	$0.1675391 E$	01
0.400	$0.1734038 E$	01
0.500	$0.1309020 E$	01
0.600	$0.9680893 E-01$	
0.700	$-0.1221256 E$	01
0.800	$-0.1695813 E$	01
0.900	$-0.1226329 E$	01
1.000	$-0.5877891 E$	00
1.100	$-0.3593391 E$	00
1.200	$-0.2317749 E$	00
1.300	$0.3840030 E$	00
1.400	$0.1343508 E$	01
1.500	$0.1809017 E$	01
1.600	$0.1331661 E$	01
1.700	$0.4959050 E$	00
1.000	$0.2199592 E$	00
1.900	$0.6369729 E$	00
2.000	$0.1048940 E$	01
2.100	$0.9681456 E$	00
2.200	$0.7791751 E$	00
2.300	$0.1109043 E$	01
2.400	$0.1807841 E$	01
2.500	$0.2030006 E$	01
2.600	$0.1189845 E$	01
2.700	$-0.6648854 E-01$	
2.800	$-0.8388498 E$	00
2.900	$-0.9339736 E$	00
3.000	$-0.9510520 E$	00
3.100	$-0.1265121 E$	01
3.200	$-0.1398078 E$	01
3.300	$-0.6797079 E$	00
3.400	$0.7135751 E$	00
3.500	$0.1808997 E$	01
3.600	$0.1961560 E$	01
3.700	$0.1559595 E$	01
3.800	$0.1386260 E$	01
3.900	$0.1542770 E$	01

	R(T)	DR(T)	UDR(T)
0	500000E	0.5654862 E 01	869587E
0.100	0.1986882 E O1	0.3803755 E 01	2652090E
0.200	0.2213843 E 01	0.5611491 E 00	2E 02
0.300	0.2079900 El	-0.3250332E OI	3752652E 02
0.400	0.1579532 E 01	-0.6592364E O1	-0.2768897E
0.500	0.8090205 E 00	-0.8519679E 01	-0.98816
0.6	5770258E-01	-0.8465039E O1	埕
0.70	-0.8167500E 00	-0.6412636E O1	0.2911167 E
0.800	-0.1291302E O1	-0.2906222E 01	0.3939568 E
0.900	-0.1380833E 01	0.1110859 E	0.3911847 E
1.000	-0.1087	0.4574855 E 01	0.2866559 E 02
-1	-0.5138531E 00	0.6614497 E	$0 \cdot 1139459 \mathrm{~L}$
1.200	$0.1727297 E 00$	$0.6801981 E 01$	-0.7420417E
1.300	0.7885156 E 00	0.5265874 E 01	-0.2222074E
1.400	0.1189006 E 01	0.2632792 El	-0.2886
1.50	0.1309017 E O1	0.1822216E 00	-0.25
1.600	0.1177144 E 01	-0.2269908E O1	-0.1482174E
1.700	0.9004082 E 00	-0.3013099E 01	0.1905620 E
1.800	0.6244733 E 00	-0.2275657E O1	. 1390524 E
1.	0.4824740 E	0.4	0.2158624 E 02
2.0	0.5489405 E 00	0.1747413 E	0.2054288 上
2.100	0.8136265 E 00	$0.3386321 E 01$	0.1099.689E 02
2.200	$0.1183676 \mathrm{E} ~ O 1$	0.3763698 E 01	-0.3976525E
2.30	0.1513559 E 01	0.2575110 ECl	-0.1941627E
2.4	0.1653344 E	0.4225793 E	-0.3004919E 02
2.5	$0.1500006 \mathrm{O}^{\text {OL }}$	-0.3141522E 01	-0.31
2.600	0.1035324E 01	-C.6017803E O1	-0.2394987E
2.700	0.3380115 E 00	-0.7658254E 01	0.7814574 E
2.800	-0.4343325E 00	-0.7456880E O1	0.1199203 E
2.900	-0.1088467E 01	-0.5328023E	0.2976937 E
3.0	-0.1451052t	-0.1747550E	0.4028182 E
3.100	-0.1419645E 01	0.2377005 E 01	0.4035951 E
3.200	-0.9935802E 00	0.5968716 E O1	0.2987515 E 02
3.300	-0.2751891E 00	0.8096265 E 01	0.1179374 E 02
3.400	0.5590838 E 00	0.8245612 E 01	-0.8721251E
3.5	$0.1308997 E$ Ol	$0.6465511 E$ O1	. 2586990 E
3.600	0.1807033 E 01	0.3343007 E 01	OE
3.700	0.1964092 E 01	-0.1825450E OO	-0.3382345E 02
3.800	0.1790780 E 01	-0.3108737E 01	-0.2339037E J2
3.900	0.1388281 E 01	72874E	E

RUN 1.20 ACTUAL OUTPUT

. 000	1504535E 01	0.5672180 E 01	O23143E
0.100	0.1997006 E 01	0.3810961 El	2674775E
0.200	0.2227905 E 01	0.5542731 E 00	3717136E
. 300	0.2093550 E O1	2280E 01	34 E
0.400	$0.1588283 E 01$	526684E 01	0.2786
. 500	0.8108793 E 00	-0.8560511E O1	2 E
. 800	-0.6214910E-01	-0.8504871E 01	0.1104908 E
. 700	-0.8261282E 00	-0.6444131E O1	0.2927188 E
. 800	$0.1304341 E 01$.2923855E O1	0.3962049 E
0.900	-0.1395387E O1	109594 E 01	0.39
.	-0.1100108E 01	.4588866E O1	.2884398E
. 100	-0.520.1376E 00	$0.6639421 E 01$	0.1149700 E
1.200	0.1736555 E 00	0.6831545 E 01	-0.7405311E
. 300	0.7944491 EO	0.5293857 E 01	0.2229
1.400	196451 E 01	. $2654761 E$	-0.2899620E
. 500	0.1315645 E 01	-0.1680404E 00	-0.2602011E
1.600	0.1182057 E 01	-0.2262730E 01	-0.1494237E
. 700	0.9028076 E 00	-0.3010334E 01	0.1226907 E
. 800	0.6233748 E 00	-0.2274032E 01	$0.1388026 E$
1.900	82478E 00	-0.4324276E O	0.
2.000	0.5444044 E 00	0.1752765 E 01	$0.2051726 E$
2.100	0.8125589 E 0	0.3392249 E O1	OE
2.200	0.1187912 E 01	$0.3766631 E 01$	-0.4081605E
2.300	0.1521807 E 01	0.2571003 E 01	-0.1957196E
2.400	0.1662799 E 01	$0.2825790 \mathrm{E}-01$	-0.3023803E
2.500	0.1508456 E 01	-0.3165883E O1	-0.3215459E
2.600	0.1041303 E 01	-0.6050140E 01	9 E
2.	0.3396478 E 00	4 E 01	0.
2.800	-0.4391971E 00	-0.7488450E OI	0.1209409 E
2.900	-0.1100232E 01	-0.5349008E 01	$0.2995409 E$
3.000	-0.1466836E 01	-C.1752902E O1	0.4051224 E
3.100	-0.1434570E 01	0.2388952 E 01	$0.4059167 E$
3.200	-0.1003779E 01	0.5995729 E 01	$0.3005731 E$
3.300	-0.2794016E 00	0.8132917 E 01	$0.1187637 E$
3.400	0.5605205 E 00	0.8284772 E C1	-0.8762754E
3.500	0.1315625 E O1	0.5500052 E 01	$2601960 E$
3.600	0.1817954 E 01	0.3367375 E O1	$3517496 E$
	0.1976637 E OI	O7E 00	
3.800	0.1800806 E 01	4E 01	
0	0.1392695 E 01		

RUN 2.30 RECOVERED TRANSFER FUNCTIONS

	TFI	TF2	TF3
0.000	0.1000000 E 31	E	
	0	E	
	0.9993164 E 00		
.	$0.1001067 E 01$	0.3001236 E 00	
0.40	0.1000089 E 01	0.4003138 E 00	E 00
0.500	3 E	0.4994860 E	
	2 E 01	0.6000685 E 00	
	0.1000775 E 01		
. 8	0.9988035 E 00	0.7992988 ECO	-0.6339328E 00
0.900	0.9999858 E 00	0.8996904 E 00	OE
1.000	316 E Ol	$1001210 \mathrm{E}^{\text {O1 }}$	1006855 E
1.100	0.9990952 E 00	0.1099378 E	
	E 0		
- 3	0.1001651 E 01	0.1301818 E 01	7E
. 4	0.9997751 E JO	0.1400028 E 01	39E
1.500	467E 00	7 O	
	773E 01	$1 E$	
	0.1001004 E OI	849E	-0.
-	0.9981318 E OO	$0.1747196 E 01$	5E
1.800	0.9964056 E 00	0.1793940 E OI	.3222829E
1.850	7E 00	1846379 E	
	5 E CI	$0.1904661 E 01$	
1.9	0.1006047 E O1	0.1961278 E 01	-0.3830481E
2.00	0.1000527 E 01	0.2000879 E 01	28E
2.100	0.9296782 E 00	2890E 01	2E
2.	0.7532773 E OO	E	-0.3643926E
	E	$3 E$	-0.2652270E
	0.2464820 E OO	0.5920952 E	-0.1418133E
2.5	$0.6976558 \mathrm{E}-01$	$0.1745989 \mathrm{E} \quad 00$	-0.4318729E 00
2.6	$0.8834037 \mathrm{E}-04$	-0.4770605E-03	.4970335E-02
2.650	-0.5385111E-02	1	3295904E-01
	-0.2528228E-02		
	$0.1466907 \mathrm{E}-02$	OE-02	-0.
2.	0.2877506E-02	$0.8649288 \mathrm{E}-02$	-0.
2.	0.1536750E-02	-02	
	-0.6649908E-03	-0.2629067E-02	
	-0.12	-0.3980459E-02	
	0.1751021E-03		-0.1U50756E-02
3.3	-0.9239686E-03	-0.3733852E-O2	
3.4	$0.4036508 \mathrm{E}-03$	-02	
	0.4		
	-0.		
3.700	-0.3001862E-04	$0.5204254 \mathrm{E}-03$	0
3.800	$0.4488020 \mathrm{E}-03$	$0.2477033 \mathrm{E}-02$	-0.2605461E-02
	-0.2276487E-03	$0.2106855 \mathrm{E}-02$	$0.1393238 \mathrm{E}-02$
4.000	-0.2248208E-03	-0.8951134E-03	0.11
	0.2968816E-03		
-	0.1809746E-04		
4.300	-0.2370779E-03	-0.1864251E-02	$0.1318255 \mathrm{E}-02$
	$0.1030652 \mathrm{E}-03$	$0.2077714 \mathrm{E}-02$	$0.6394788 \mathrm{E}-03$
4.500	0.1345563E-03		
	0.1337616E-03		0.7678554E-03

4.700	$-0.5112099 E-04$	$0.1153040 E-02$	$0.1630979 E-03$
4.800	$0.1197832 E-03$	$0.1465714 E-02$	$-0.5972868 \mathrm{E}-03$
4.900	$0.9760027 E-05$	$-0.2141209 E-02$	$-0.3583842 \mathrm{E}-04$
5.000	$-0.1094264 E-03$	$-0.1822910 E-06$	$0.4454670 E-03$

RUN 2.30 INPUT ON RANGE OF INTEREST

T	ZI(T)
0.000	0.1500021 El
0.100	0.7375208 E 00
0.200	0.1830 U9CE
0.300	-0.2998620E 00
0.400	-0.2424638E OI
0.500	0.2500011 E 01
0.600	0.1997600 E O1
0.700	0.3226885 E 01
0.800	$0.1096962 \mathrm{E} \mathrm{O1}$
0.900	-0.1164579E 01
1.000	0.3500000 E 01
1.100	0.2539645 E
1.200	0.3448110 E
1.300	0.8757551 E 00
1.400	-0.1806630E O1
1.500	0.2497990 O1
1.600	0.1379579 E 01
1.700	0.2051303 E
1.800	-0.5210227E 00
1.900	-0.3066717E O1
2.000	0.1499978 E 01
2.100	0.7375435 E 00
2.200	0.1330061 E 01
2.300	-0.2997712E
2.400	-0.2424694E 01
2.500	0.2499964 E 01
2.600	$0.1997619 E 01$
2.700	0.3226855 E 01
2.800	$0.1097054 \mathrm{E} \mathrm{O1}$
2.900	-0.1164631E 01
3.000	0.3499957 E 01
3.100	0.2639671 E
3.200	C.3448087E 01
3.300	0.8753545 E 00
3.400	-0.1806676E 31
3.500	0.2499953 El
3.500	C.1379608E 01
3.700	0.2051281 E 01
3.800	-0.5209245E 00
90	066766E

PUN 2.30 DESIRED OUTPUT

000	2000000E Cl	0.2513272 E	02	869587 E
0.100	0.3853168 E 01	0.6795659 E	01	7555E 03
0.200	0.2984591 O1	-0.2217934E	02	1936235E 03
0.300	0.4122205 E 00	-0.2287444E	02	0.1798363 E 03
400	0.5930976 ECO	0.4778507	01	2973196E 03
. 500	0.9999907 E 00	0.2199113 E	02	
0.630	0.2593093 E 01	0.4778758 E	01	973186E 03
0	0.1587798 E 01	-0.2287429E	02	0.1798390E
0	-0.9845724E 00	-0.2217950E	02	1936208 E
-	-0.1853174E 01	-6795397E	01	66E 03
. 000	-C.2122949E-04	0.2513271 E	02	0.9872940 E 01
1.100	0.1951048 E O1	0.8737512 E	01	-0.2909814E 33
1.200	0.1366572 E 01	-0.1848603E	02	569E 03
1.300	-0.7633362E 00	-0.1779140E	02	0.1914360 E
1.400	-0.1211142E 01	-1075390E	02	3
1.500	0.9999641 E 0	0.2827431 E	02	2
1.600	0.3211115 E O1	0.1075467 E	02	-0.3034173E 03
1.700	0.2763381 E 01	-0.1779092E	02	-0.1914441E
1.800	0.6334746 E 00	-0.1848648E	02	$0.1776488 \mathrm{E} \quad 03$
1.900	$0.4892945 \mathrm{E}-01$.8736775E	1	0
2.000	$0.1999957 E 01$	0.2513273 E	02	-0.9862882E
2.100	.3853157E OI	0.6796182 E	01	5E
-	$0.2984628 \mathrm{E} \mathrm{O1}$	-0.2217901E	2	OE
2.3	0.4122592 E 00	0.2287474 E	02	0.1798308 E 03
2.400	-0.5931057E 00	0.4778004 E	01	0.2973217 E 03
2.500	0.9999535 E 00	0.2199113 E	. 02	$0.8317557 \mathrm{E}-02$
2.600	0.2593085 E 01	0.4779262 E	01	0.2973166 E
2.700	0.1587837 E 01	-0.2287398E	02	-0.1798445E 03
2.	-0.9845349E 00	-0.2217983E	02	3 E
2.900	-0.1853186E 01	0.6794873 E	01	0.3097586 E 03
3.000	-0.6375927E-04	$0.2513269 E$	02	0.9879656 El
3.100	0.1951033 E O1	0.8738004 E	01	-0.2909793E 03
3.200	0.1366603 E O1	-0.1848573E	02	-0.1776623E
3.30	-0.7633061E 00	-0.1779173E	02	$0.1914306 E$
3.40	0.1211160 E 01	0.1075339 E	2	$0.3034226 E 03$
3.500	0.9999163 E 00	0.2827430 E	02	$0.1183093 E-01$
3.600	$0.3211097 E 01$	0.1075519 E	02	O.3034151E 03
	$0.2763411 E 01$	-0.1779059E	02	-0.1914494E 03
	0.6335058 E 00	O.1848678E	02	
3.900	0	0.8736282 E	01	0.2909866 E .03

RUN 2.30 ACTUAL OUTPUT

T			
. 000	0.1998525 E 01	0.2514377 E 02	792138 E
0.100	0.3853364 E J1	0.6805032 E 01	103277E 03
0.200	$0.2984187 E 01$	-0.2219441E 02	-0.1939563E 03
0.300	0.4108270 E 00	-0.2287275E 02	0.1800844 E 03
0.400	-0.5941806E 00	0.4780036 ECl	0.2976198 E 03
0.500	0.9996534 E 00	0.2200541 E 02	0.1595349 E 00
0.600	0.2594722 E 01	0.4790205 E 01	0.2981915 E 03
0.700	0.1588983 E 01	-0.2238864E 02	-0.1805052E 03
0.800	-0.9843770E 00	-0.2217853E 02	0.1935356 E 03
0.900	-0.1852824E 01	0.6794853 E 01	0.3097560 E 03
1.000	$0.7791440 \mathrm{E}-03$	$0.2514376 E 02$	0.9473095 E
1.100	0.1953407 E 01	0.8744890E 01	-0.2920075E 03
1.200	0.1368009 E 01	-0.1850490E 02	-0.1783759E 03
1.300	-0.7633923E 00	-0.1779494E 02	0.19
. 400	-0.1211522E 01	0.1074929 E 02	.3035731E 03
1.500	0.9996268 E 00	$0.2828213 \mathrm{E} ~ 02$	-0.1561212E 00
1.600	0.3212040 E O1	$0.1075998 \mathrm{E} ~ 02$	-0.3041426E 03
1.700	0.2763229 E 01	-0.1781050E 02	$0.1918297 E 03$
1	0.6318294 E .00	-C.1848930E 02	$0.1779497 E 03$
1.900	0.4711614E-01	$0.8734235 E^{01}$	0.2914379 E
2.000	0.1998482E 01	0.2514379 E 02	-0.9785417E
2.100	0.3853352 E 01	0.5805556 E 01	-0.3103256E O3
2.200	0.2984224 E 01	-0.2219408E 02	0.1939618 E 03
2.300	0.4108657 E 00	-0.2287305E 02	0.1800790 E
2.400	-0.5941886E 00	0.4779534 E 01	0.2976218 E 03
2.500	0.9996162 E 00	0.2200541 E 02	-0.1528632E CO
2.600	0.2594714 E 01	0.4790708 E 01	-0.2981894E 03
2.700	0.1589022 E 01	-0.2288834E 02	-0.1805107E 03
2.800	-0.9843394E 00	-0.2217886E 02	0.1935301 E 03
2.900	-0.1852835E 01	$0.6794329 E 01$	0.3097580 E 03
3.000	0.7366263E-03	0.2514375 E 02	0.9479817 E O1
3.100	0.1953392 E 01	0.8745383 E 01	-0.2920054E 03
3.200	0.1368040 E O1	-0.1850460E 02	-0.1783813E 03
3.300	-0.7633623E 00	-0.1779526E 02	0.1913982 E 03
3.400	-0.1211540E 01	0.1074878 E 02	$0.3035752 E 03$
3.500	0.9995790 O 0	0.2828213 E 02	-0.1493541E 00
3.600	$0.3212022 E 01$	0.1076049 E 02	-0.3041405E 03
3.700	0.2763259 E 01	-0.1781018E 02	-0.1918351E 03
3.800	0.6318605 E 00	-0.1848960E 02	0.1779443 E 03
3.900	$0.4710128 \mathrm{E}-01$	0.8733744 E 01	0.2914400 E O3

7. 3 SAMPIE PROGRAM AND RESULTS FOR THE MARTIN-GRAHAM INIPRPOLATING

FILTERS

The program of the preceding section yields a program for interpolation when suitably modified. The necessary changes made to obtain the program in this section include:

1. Provision has been made for the special cases given in (6.24). However, the weight subscript values which satisfy $m \rightarrow \Phi= \pm 1 / 2 T_{d}$ are computed externally and read into the program. This is done because of errors introduced by truncation in the computer which cause $m-\Phi+1 / 2 \tau_{d}$ to be non-zero when it should be zero. This is essentially a programming problem, and it could be handled by choosing a small $\in>0$ and using the special formulas when $\left|m-\Phi \pm I / 2 \tau_{\mathrm{d}}\right|<\epsilon$. The value of ϵ chosen will depend on the particular computer being used. Of course, we could avoid this problem by using Filter 5 of Chapter IV. As noted there, the performance of this filter is essentially the same as the Martin-Graham filter and no special evaluation is necessary except when $m-\Phi=0$ (this includes $\Phi=0$).
2. Statements for computing the weights $h_{0}, y_{0}^{1}, y_{0}^{2}, h_{m}, y_{m}^{l}$, and y_{m}^{2} when (6.24) holds are included. We chose to compute these in every run whether needed or not, and they are designated HO, DHO, DDHO, HM, DHM, and DDHM in the program.
3. The loop for computing the weights for interpolation uses exactly the same weight expressions as the loop in the first program. In this case, the loop's upper index is $2 N+1$
instead of N because the symmetry of the weights is lost in interpolation. The shift of Φ units is provided by subtracting Φ from $m(T X$ from X in the program). This is what allows use of the same weight expressions. Note that taking $\Phi=0$ (TX $=0$) gives the weights for filtering without interpolation, and hence this loop can be used for computing both ordinary filtering weights and weights for filtering and interpolation. The loop also contains statements to handle the use of the special weight expressions. If (6.24) is not satisfied for any subscript values m, then $N A$ and $N B$ must be read in as values which will make $(N+N A-I+l)$ and $(N+N B-\dot{I}+1)$ non-zero for all values of I. I has maximum value $2 N+l$, and hence any integer greater than $N+l$ will suffice for $N A$ and $N B$ in this case. When (6.24) holds for certain subscript values, then NA is to be the negative value for which (6.24) holds and NB the positive value for which (6.24) holds. This is necessary to determine the correct sign for the first derivative weight DHM in each case. In Run 5.30 , NA $=-12$ and $N B=13$.
4. The transfer functions for interpolation are all complex functions and the recovery of these functions has been omitted.
5. Printing of the input has been omitted.
6. The same loop for computing the desired output has been used with the argument being shifted by Φ.
7. The loop for computing the actual output was modified to allow for the unsymmetric nature of the weights used in interpolation.

The desired output and actual output is listed for five runs. The parameter values used for each run are given in Tables 7.1 and 7.2. In each run, the input component with frequency f_{3} is to be removed by the filters. The Φ values used are .25 and .5 , so that the val ues interpolated for are one-quarter and one-half the length of the sampling interval to the right of the center input value. That is, letting the output of the filter without interpolation be

$$
r_{j}=\sum_{n=-\mathbb{N}}^{N} h_{n} g_{j+n}
$$

and the output with interpolation be

$$
\bar{r}_{j}=\sum_{n=-\mathrm{N}}^{N} \bar{h}_{n} g_{j+n}
$$

then \bar{r}_{j} is $\overline{\Phi f}_{s}$ units to the right of r_{j}.
To interpolate for values Φf_{S} units to the left of r_{j}, the weight relations (6.22) and (6.23) may be uscd to eliminate recomputation of the weights. This can be accomplished in the sample program by using the following loop for computing the actual output.

$$
\begin{gathered}
\text { DO } 30 I=1, \mathrm{NN} \\
\mathrm{~J}=I+\mathrm{K}-1 \\
\mathrm{IF}(\mathrm{TX}) 40,41,40 \\
40 \mathrm{II}=\mathrm{NN}-\mathrm{I}+1 \\
\mathrm{SAI}=\mathrm{SAI}+\mathrm{H}(\mathrm{II}) * Z(\mathrm{~J}) \\
\mathrm{SBI}=\mathrm{SBI}-\mathrm{DH}(I I) * Z(\mathrm{~J}) \\
\mathrm{SCI}=\mathrm{SCI}+\mathrm{DDH}(\mathrm{II}) * Z(J) \\
4 I \mathrm{SA}=\mathrm{SA}+\mathrm{H}(I) * Z(J)
\end{gathered}
$$

$$
\begin{aligned}
S B & =S B+D H(I) * Z(J) \\
30 S C & =S C+D D H(I) * Z(J) \\
S B I & =-F S * S B I \\
S B & =-F S * S B \\
S C I & =S C l * F S * * 2 \\
S C & =S C * F S * * 2
\end{aligned}
$$

Provisions for initializing and printing SAl, SBl, and SCI must also be made. The IF statement is included to eliminate duplicate outputs when using the loop for filtering without interpolation ($\Phi=0$).
SAMPLE PROGRAF FILTERING $\because I T H$ INTERPOLATIUN
SMOOTHING, FIRST AND SECOND DERIVATIVES

DIMENSION H(61), DH(61),DDH(61),Z(101) DIMENSION R(40), DR(40),DDR(40)
1 FORNAT (4F10.0)
2 FORMAT (A4, A4)
3 FORMAT (3I5)
7 FORMAT(IHI,5X,A4,A4,16H DESIRED OUTPUT/)
8 FCRRMAT $(5 X, 1 H T, 7 X, 4 H R(T), 11 X, 5 H D R(T), 10 X, 6 H D D R(T))$
9 FORMAT $(1 H 1,5 X, A 4, A 4,15 H$ ACTUAL OUTPUT/)
10 FORMAT(1X,F7.3,3E15.7)
$P=3.14159$

READ PROBLEX PARANETERS
$12 \operatorname{READ}(2,2)$ RUN,XNUMi
READ(2,1) XN,TC,TD,TX
READ (2,1) RA,RE,RC,FS
READ (2,1) $A A, A B, A C, A D$
READ 2,1 ; $B A, B B, B C, B D$
NA AND NB ARE SURSCRIPTS OF THOSE WEIGHTS FOR WHICH SPECIAL EVALUATION IS NECESSARY

READ (2,3) $N A, N B$
$N=X N$
COMPUTATION OF THE UNCONSTRAINED WEIGHTS
THE FACTORS -FS AND FS**2 OF THE FIRST AND SECOND DERIVATIVE WEIGHTS WILL BE INTRODUCED LATER
$R T=T C+T D$
$\mathrm{HO}=2 * * T C+T D$
$D H O=0$ 。
$D D H O=8 \cdot * T D * * 2 *(R T+T C)-4 \cdot * P * * 2 / 3 \cdot *(R T * * 3+T C * * 3)$
$H M=T D / 2 * * \operatorname{COS}(P * T C / T D)$

THE MINUS SIGN IS NECESSARY IN DHVi BECAUSE WE HAVE REMOVED A FACTOR OF -FS FROM EACH DERIVATIVE WEIGHT
$D H M=-(P * T D *(T D+2 * * T C) * S I N(P * T C / T D)+3 * * T D * * 2 * C O S(P * T C / T D)) / 2$. $D D H M=(7 . * T D * * 3-2$ **P**2*(TC*TD*(TC+TD)+TD**3/3.)) *COS(P*TC/TD) $D D H M=D D H M+3 * * P * T D * * 2 *(T D+2 * * T) * S I N(P * T C / T D)$
$N N=2 * N+1$
DO $13 \mathrm{I}=1$, NN
$X=I-N-1$
$X=X-T X$
IF(X) 51,50,51
$50 \mathrm{H}(\mathrm{I})=\mathrm{HO}$
$D H(I)=D H O$
DDH(I) = DDHO
GO TO 13
51 IF $(N+N A-I+1) 53,52,53$
$52 H(I)=H M$
$D H(I)=-D H M$
$\operatorname{DDH}(I)=D O H: M$
GO TO 13
$53 \mathrm{IF}(\mathrm{N}+\mathrm{NB}-\mathrm{I}+1) 55,54,55$
$54 \mathrm{H}(\mathrm{I})=\mathrm{HM}$
$D H(I)=D H M$
DOH(I) $=$ ODHM
GO TO 13
$55 H(I)=S I N(H O * X * P) /(X * P)$
$H(I)=H(I) * \operatorname{Cos}(T D * X * P) /(1 .-4 . * T D * * 2 * X * 2)$
$D H(I)=R T * \operatorname{Cos}(2 \cdot * R T * X * P)+T C * \operatorname{COS}(2 * * T C * X * P)$
$D H(I)=D H(I)-H(I) *(1 .-12 * * T D * * 2 * X * * 2)$
$D H(I)=D H(I) /(X *(1 .-40 * T D * * 2 * X * * 2))$
DDH(I) $=-2 . * D H(I) *(1,-12 * T D * * 2 * X * * 2)+24 * * T D * * 2 * X * H(I)$
$\operatorname{DDH}(I)=D D H(I)-2 \bullet * P * T C * 2 * S I N(2 . * T C * P * x)$
$\operatorname{DDH}(I)=D D H(I)-2 * * P * R T * * 2 * S I N(2 . * K T * P * X)$
DDH(I) $=$ DDH(I) $/(X *(1 .-4 \cdot * T D * * 2 * X * * 2))$
13 CONT INUE
generation of sairple input data
M $A=N+1$
$i=2 * N+40$
DO $27 \mathrm{I}=1$, iv
$T=I-i n A$
$C A=\cos (2 \cdot * P * R A * T)$
$S=\operatorname{SIN}(2 . * P * R B * T)$
$C C=\cos (2 * * P * R C * T)$
$27 Z(I)=A A * C A+A B * S+A C * C C+A D$

COMPUTATION OF DESIRED OUTPUTS

WRITE(3,7) RUN: XNUM
WRITE(3,8)
DO $29 \mathrm{I}=1,40$
$T=1-1$
$T=T+T X$
$C A=\cos (2 \cdot * P * R A * T)$
S=SIN(2.*P*RB*T)
$C C=\operatorname{Cos}(2 . * P * R C * T)$
$R(I)=B A * C A+B B * S+B C * C C+B D$
DDR(I) $=-4$ **(P*FS)**2*(BA*RA**2*CA+bB*Rb**2*S+らC*RC**2*C()
$C A=S I N(2 \cdot * P * R A * T)$
$S=\operatorname{COS}(2 . * P * R B * T)$
$C C=S I N(2 \cdot * P * R C * T)$
DR(I) $=-2 \cdot * P * F S *(B A * R A * C A-B B * R Q * S+E C * R C * C C)$
$Y=T / F S$
29 :WRITE(3,10) Y,R(I),DR(I),DDR(I)
computation of the actjal cutput
WRITE(3,9) RUNOXNUV:
WRITE(3,y)

```
    DO 31 K=1:40
    MB=K-1
    SA=0.
    SB=0.
    SC=0.
    T=MB
    T=(T+TX)/FS
    DO 30 I=1,NN
    J=I+K-1
    SA=SA+H(I)*Z(J)
    SB=SB+DH(I)*Z(J)
30SC=SC+DDH(I)*Z(J)
    THE FACTORS -FS AND FS**2 ARE INTRODUCED HERE
    SB=-FS*SB
    SC=SC*FS**2
31 WRITE(3,10) T,SA,SB,SC
    pAUSE
    GO TO 12
32 CALL EXIT
    END
```

RUN 1.20 DESIRED OUTPUT

T	R(T)	DR(T)	ODR(T)
0.025	637818E O1	C.5351961E O1	434482E O2
0.125	0.2073327 E O1	0.3097759 OL	-0.2988599E 02
0.225	0.2216199 El	-0.3775347E 00	-0.3806872E 02
0.325	0.1987057 E 01	-0.4170801E 01	-0.3600096E 02
0.425	0.1406450 E 01	-0.7237290E 01	-0.2382530E O2
0.525	0.5934738 E 00	-0.8702560E 01	-0.4723590E O1
0.625	-0.2653625E 00	-0.8126870E 01	0.1601407 E U2
0.725	-0.9675943E 00	-0.5640479E 01	0.3257205 E 02
0.825	-0.1351528E O1	-0.1907884E 01	$0.4035715 E 02$
0.925	-C.1341003E 01	$0.2068331 E 01$	0.3737358 E 02
1.025	-0.9648516E 00	C.5244037E 01	0.2480251 E 02
1.125	-0.3454269E 00	0.6839658 E 01	0.6609569 E 01
1.225	0.3400074 E 00	0.6562417 E 01	-0.1169485E 02
1.325	0.9129402 E 0	0.4677525 E 01	-0.2475618E 02
1.425	0.1245775 E O1	0.1908088 E 01	-0.2900906E 02
1.525	0.1296586 E 01	-C.8033547E CO	-0.2373833E 02
1.625	0.1116132 E 01	-0.2596151E 01	-0.1124212E O2
1.725	0.8255349 E 0	-0.2961104E 01	0.3948057 E 01
1.825	$0.5722126 E 00$	-0.1894210E 01	0.1654082 E 02
1.925	0.4784087 E 00	$0.1128211 \mathrm{E}^{0} 0$	0.2218744 E 02
2.0	C.5988859E 00	0.2241276 E 01	0.1887761E 02
2.125	0.9013744 E 00	0.3619314 E 01	0.7590124 E 01
2.225	0.1276106 E 01	0.3613879 El	-0.8006871E 01
2.325	$0.1571517 E 01$	0.2047774 E 01	-0.2271295E 02
2.425	0.1644850 E 01	-C.7276661E 00	-0.3144828E 02
2.525	0.1411572 E 01	-0.3928616E 01	-0.3088420E 02
2.625	0.8777371 E 00	-0.6574944E 01	-0.2053925E 02
2.725	0.1446102 E 00	-0.7793754E 01	-0.2993331E O1
2.825	-0.6164962E 00	-0.7095955E 01	0.1685274 E 02
2.925	-0.1211989E 01	-0.4539264E 01	0.3324809 E 02
3.025	-0.1482024E 01	-0.7258547E OO	0.4134038 E 02
3.125	-0.1347767E O1	0.3366154 E 01	0.3866184 E 02
3.225	-0.8354293E 00	0.6666752 E 01	0.2589256 E 02
3.325	-0.6962841E-01	0.8327211 E 01	0.6663772 E 01
3.425	0.7619902 E 00	0.7966818 E 01	-0.1353896E 02
3.525	0.1462207 E O1	0.5778070 E 01	-0.2903459E 02
3.625	0.1879593 E 01	0.2458884 E 01	-0.3565577E 02
3.725	0.1949135 E 01	-C.1006309E 01	-0゙.3198193E 02
3.825	$0.1706126 E 01$	-0.3648266E 01	-0.1971893t 02
3.925	0.1269598 E	-0.4803969E 01	-0.3112830E 01

RUN 1.20 ACTUAL OUTPUT

| T | R(T) | DR(T) | | DDR(T) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.025 | $0.1645196 E$ | 01 | $0.5365969 E$ | 01 | -0.1444303 E | 02 |
| 0.125 | 0.2085801 E | 01 | 0.3100372 E | 01 | -0.3002462 E | 02 |
| 0.225 | 0.2232048 E | 01 | -0.3900173 E | 00 | -0.3825466 E | 02 |
| 0.325 | 0.2002062 E | 01 | -0.4198776 E | 01 | -0.3623316 E | 02 |
| 0.425 | 0.1416376 E | 01 | -0.7276670 E | 01 | -0.2404929 E | 02 |
| 0.525 | 0.5965244 E | 00 | -0.8745769 E | 01 | -0.4843942 E | 01 |
| 0.625 | -0.2684384 E | 00 | -0.8165518 E | 01 | 0.1606258 E | 02 |
| 0.725 | -0.9752920 E | 00 | -0.5667804 E | 01 | 0.3277412 E | 02 |
| 0.825 | -0.1362462 E | 01 | -0.1919801 E | 01 | 0.4064327 E | 02 |
| 0.925 | -0.1353011 E | 01 | 0.2073037 E | 01 | 0.3768262 E | 02 |
| 1.025 | -0.9743336 E | 00 | 0.5263395 E | 01 | 0.2510072 E | 02 |
| 1.125 | -0.3488280 E | 00 | 0.6868403 E | 01 | 0.6856093 E | 01 |
| 1.225 | 0.3436755 E | 00 | 0.6593228 E | 01 | -0.1156772 E | 02 |
| 1.325 | 0.9214365 E | 00 | 0.4703687 E | 01 | -0.2480119 E | 02 |
| 1.425 | 0.1255661 E | 01 | 0.1925944 E | 01 | -0.2920605 E | 02 |
| 1.525 | 0.1305589 E | 01 | -0.7938837 E | 00 | -0.2399836 E | 02 |
| 1.625 | 0.1123397 E | 01 | -0.2592850 E | 01 | -0.1147678 E | 02 |
| 1.725 | 0.8303442 E | 00 | -0.2960987 E | 01 | 0.3771034 E | 01 |
| 1.825 | 0.5736964 E | 00 | -0.1894297 E | 01 | 0.1641314 E | 02 |
| 1.925 | 0.4769812 E | 00 | 0.1149186 E | 00 | 0.2210921 E | 02 |
| 2.025 | 0.5972460 E | 00 | 0.2246207 E | 01 | 0.1886403 E | 02 |
| 2.125 | 0.9030666 E | 00 | 0.3624881 E | 01 | 0.7628645 E | 01 |
| 2.225 | 0.1282765 E | 01 | 0.3615464 E | 01 | -0.7978300 E | 01 |
| 2.325 | 0.1581786 E | 01 | 0.2040599 E | 01 | -0.2276006 E | 02 |
| 2.425 | 0.1655958 E | 01 | -0.7459885 E | 00 | -0.3157423 E | 02 |
| 2.525 | 0.1421372 E | 01 | -0.3957067 E | 01 | -0.3102409 E | 02 |
| 2.625 | 0.8848663 E | 00 | -0.6609727 E | 01 | -0.2062175 E | 02 |
| 2.725 | 0.1473961 E | 00 | -0.7829313 E | 01 | -0.2992994 E | 01 |
| 2.825 | -0.6199315 E | 00 | -0.7125638 E | 01 | 0.1592924 E | 02 |
| 2.925 | -0.1221819 E | 01 | -0.4556328 E | 01 | 0.3340488 E | 02 |
| 3.025 | -0.1495326 E | 01 | -0.7254911 E | 00 | 0.4159112 E | 02 |
| 3.125 | -0.1359797 E | 01 | 0.3384594 E | 01 | 0.3898044 E | 02 |
| 3.225 | -0.8425124 E | 00 | 0.6699155 E | 01 | 0.2618887 E | 02 |
| 3.325 | $-0.7065820 \mathrm{E}-01$ | 0.8366367 E | 01 | 0.6832387 E | 01 | |
| 3.425 | 0.7665408 E | 00 | 0.8005024 E | 01 | -0.1354440 E | 02 |
| 3.525 | 0.1471727 E | 01 | 0.5808911 E | 01 | -0.2918478 E | 02 |
| 3.625 | 0.1893066 E | 01 | 0.2477922 E | 01 | -0.3589650 E | 02 |
| 3.725 | 0.1963911 E | 01 | -0.1000987 E | 01 | -0.3227905 E | 02 |
| 3.825 | 0.1718232 E | 01 | -0.3655303 E | 01 | -0.2004334 E | 02 |
| 3.925 | 0.1276141 E | 01 | -0.4818810 E | 01 | -0.3403159 E | 01 |

RUN 2.30 DESIRED OUTPUT

	R(T)	DR(T)		ODR(T)	
. 02	0.2514950 E O	15 E		-0.1074349	
0.125	0.3923879 E O1	202200E	01	-0.324	
0.225	0.2373444 E 01	0.2594291 E	02		
0.325	-0.9553063E-01	0.1745135 E	02	0.25	
25	0.3845928 E 00	$0.1171776 E$	02	0.25320	
5	E 01		02		
0.625	0.2617318 El	0.2902285 E	01	-0.3120	
0.725	0.9686020 E 00	-0.2629146E	02	-0.91188	
0.825	-0.1470662E 01	-0.1641430E	02	0.263922	
. 925	-0.1590414E 01	0.1403904 E	02	0.26510	
. 0225	0.6210957 E 00	0.2414919 E	02	-0.8775	
1.125	$0.2076119 E 01$	$0.1202526 E$	0	-0.30670	
. 225	0.8576506 E 00	-0.2186224E	02	-0.9009	
1.325	-0.1140519E 01	-0.1209428E	02	0.2606	
. 425	-0.8515008E 00	0.1782711 E	0	0	
. 5	0.1696458 E 01	0.2703466 E	02	-0.	
1.625	0.3382679 OL	0.2902889 E	01	-0.31	
1.725	0.2267513 El	-0.2151360E	02	-0.10401	
. 825	0.2346264 E 00	-0.1313154E	02	0.24709	
1.925	0.3543106 E 00	0.15505	0	0.	
2.025	0.2614910 O1	0.2365633 E	02	-0.	
2.125	0.3923881 E 01	0.1201650 E	01	-0.32494	
2.225	0.2378488 E1	-C.2594273E	02	-0.10510	
2.325	-0.9550111E-01	-0.1745178E	02	0.2	
2.425	-0.3846126E 00	0.1	02	0.	
2.525	0.1539530 E 01	0.2077093 E	02	-0.96	
2.625	0.2617323 E 01	-C.2901757E	01	-0.31204	
2.725	0.9686465 E 00	-0.2629131E	02	-0.91194	
2.825	-0.1470634E 01	-0.1641474E	02	0.2	
2.925	-0.1590438E 01	0.1403859	02	0.	
3.025	0.6210549 E 00	0.2414934 E	02	-0.87	
3.125	0.2076117 E 01	0.1203044 E	01	-0.3	
3.225	0.8576876 E 00	-0.2186209E	02	-0.94101	
3.325	-0.1140498E 01.	-0.1209472	02	0.26065	
3.	-0.8515309E 00	0.1782668 E	02	- 25782	
3.525	0.1696412 E 01	0.2703483 E	02	-0.9835886	
3.625	0.3382674 ECl	$0.2903430 E$	01	-0.3196036	
3.725	0.2267549 El	-0.2151342E	02	-0.10401	
	0.2346485 E 00	-0.1313196E	02		
25	0.	0.1550521E	02	0.2459201	

RUN 2.30 ACTUAL OUTPUT

. 02			
	$0.3925231 E 01$		
2	0.2378706 E .01	02	-0.1051581E 03
. 325	.9571261E-01	OE C2	$0.2505466 E 03$
425	00	02	
	0.1540655 E 01	OE 02	
. 7	$0.9703921 E 00$	02	
. 8	-0.1469351E 01	7E 02	0.2637756 E O
0.925	OE O1	$3777 E$	6E 0
1.025	相	14815E 02	
1		0.1183964 E	
. 2	0.8595701 E 00	-0.2189610E 02	
,	-0.1139556E 01	09786E 02	0.2605240 E O
1.425	00	4 E 02	
		03660E 02	
		0.2889903 O	
. 725	E 01	-0.2153983E 02	-0.1040709E 0
. 8	.2340952E 00	-0.1312619E 02	$1 E$
. 9	E 00	1 E 02	0.246287 Uヒ
	E	3	
. 1	0.3925233 E 01	OE 01	-0.3255331E
2.2	0.2378750 E O1	-0.2596355E 02	-1U51645t
2.325	0.9568308E-01	62E 02	0.2505426 E
2.425	0.3845207 E 00	2F 02	0.2533726 E
	0.1540620 E 01	$0.2077876 E 02$	
. 6	0.2620088 E 01	-0.2912802E O1	,
2.7	0.9704366 E 00	0.2631974 E 02	
,	-0.1469323E O1	2 E 02	
	-0.1589034E O1	732 E	
	0.2079477 El		
. 225	0.8596071 E 0	-0.2189595E 02	-0.9051971E
25	-0.1139536E 01	-0.1209831E 02	56201E
	-0.8509201E 00	O2	0.2578989 E
	0.1697344 E O1	$0.2703676 \mathrm{E} \quad 02$	
	-		
	O		
	0.2341173 E 00	-0.1312661E 02	0.2473892 E
	0.3535827 E 00		

RUN 3.20 DESIRED OUTPUT

T		DR(T)	DDR(T)
0.050	1766679E O1	$0.4938876 \mathrm{ECl}^{\text {Cl }}$	1866949E 02
- 0.150	$0.2141117 E 01$	0.2313379 E O1	. 3278050 E
0.250	0.2194795 E 01	-0.1336816E O1	.385626IE 02
0.350	0.1871746 El	-0.5044983E C1	-0.3382819E 02
0.450	$0.1218520 E 01$	-0.7779930E 01	-0.1951801E 02
0.550	$0.3749803 E 00$	-0.8754983E 01	0.5394089 E
0.650	-0.4630277E 00	-0.7666565E 01	2075845E
0.750	-0.1098110E O1	-0.4788715E 01	0.3547091 E
0.850	-0.1386567E 01	-0.8941116E 00	0.4052941 E 02
0.950	-0.1277845E 01	0.2974423 E 01	C.3501531E 02
1.050	-0.8264314E 00	0.5811985 E 01	0.2058021 E
1.150	-0.1728700E 00	0.6944924 E 01	$0.1818384 \mathrm{E} \mathrm{O1}$
1.250	0.4999934 E 00	0.6220047 E 01	-0.1563247E 02
1.350	$0.1021921 E 01$	0.4032777 E O1	-0.2672656E 02
1.450	0.1284444 E 01	0.1187430 E O1	. 2854307 E
1.550	0.1269343 E 01	-0.1365276E O1	- 0.2114330 E
1.650	0.1048102 E 01	-0.2830577E 01	-0.7490256E 01
1.750	0.7531204 ECO	-0.2817U90E 01	U.7538406E 01
1.850	0.5302667 E 00	-0.1452336E Ol	0.1873035 E 02
1.9	$0.4881806 E 00$	0.6690398 E 00	0.2221362 E
2.050	$0.6606031 E 00$	0.2687022 E 01	0.1670003 E 02
2.150	0.9938517 E Jo	0.3763516 E 01	0.3906191 El
2.250	0.1363534 E 01	0.3363824 E 01	-0.1198093E 02
2.350	0.1615299 E O1	0.1442648 E 01	-0.2562756E 02
2.4	0.1616731 E O1	0.1525188 E O1	-0.3225165E
2.550	0.1303869 E 01	-0.4680505E 01	-0.2916358E 02
2.650	$0.7073371 E 00$	-0.7040914E 01	-0.1666674E 02
2.750	-0.5065416E-01	-0.7806685E 01	$0.1976008 \mathrm{E} ~ 01$
2.850	-0.7881384E 00	-0.6616079E 01	U.2149321E 02
2.950	-0.1314759E OI	-0.3670047E OI	$0.3619575 E$
3.050	-0.1487195E Cl	0.3137219 E 00	0.4170975 E 02
3.150	-0.1251760E C1	0.4304714 E C1	0.3631849 E 02
3.250	-0.6611172E 00	0.7259899 ECl	0.2149681 E 02
3.350	0.1400939 EO	0.8428938 E 01	0.1471941 E 01
3.450	0.9564504 E 00	0.7571182 E Ol	-0.1805476E 02
3.550	0.1597300 E 01	0.5018523 E 01	-0.3163064E 02
3.650	0.1925902 E Ol	0.1565717 E 01	-0.3568807E 02
3.750	0.1914219 E O1	-0.1777057E O1	-0.2959067E 02
3.850	0.1609163 E 01	$092371 E 01$	-0.1577006E 02
. 950	0.1148966 E 21	E 01	3350 E O1

RUN 3.20 ACTUAL OUTPUT

	R(T)		
050	774376E 0	950708E	873413E
. 150	2153616 E 01	20E O1	3287326E
	01	E	
	01	$0.5079988 \mathrm{E} \mathrm{O1}$	
.	.1227372E 01	E 01	-0.1981448E 02
. 550	0.3769149 E 00	0.8801300 E 01	0.3959359 E
0.650	-0.4670542E 00	970E 01	2080606E
	-0.1106445E 01	E O1	.3563456E O
	-0.1397744E 01	.9009312E 00	
- 9	-0.1289674E O1	5E 01	0.3525874 E 02
.	-0.8353605E 00	41E 01	. $2086821 E$
.	-0.1754956E 00	18 E 01	0.2073010 O
	0.5044458 E 00	01	
.	-	3E 01	-
. 4	0.1294705 E 01	0.1199263 E 01	.2882790E
. 5	0.1278515 E O1	-0.1362002E 01	.2143419E
1.650	1055399E O1	9E 01	-i. 7724943 E 0
	7578907E 00	0.2821063 E 01	
	0.5317099 E 00		
	$0.4867821 E 00$	2 E 00	. 2210497 E
.	0.6590886 E 00	E 01	. 167
	0.9	3770613 E 01	0.4005763 E
		$0.3365614 \mathrm{E} ~ 01$	
.	E 01	E 01	
.	0.1627319 E 01	13E 01	E
	0.1312906 E	OE 01	
	0.7135680 E UO	2E	
	-0.4877054E-01	0.7843221E 01	
. 8	-0.7923162E 00	8 E 01	$2146376 E$
	-0.1324989E OL	3684793E 01	
	-0.1500422E O1		
	-0.1263242E	4330678E 01	0.3664585 E 0
	-0.6673232E	0.7298474 E O1	176670E
3. 350	0.1400626 E 00	. 8470385 E 01	0.1567866 E
	$0.9619329 E 00$.7607867E 01	$0.1812337 E$
	0.1607544 E O1	5045543E 01	
	0.1943788 E O1	0.1579341 E 01	
	E		
	,	E 01	

	$R(T)$	DR(T)	
050	163258E 01	35E 02	62E 03
0.150	0.3793120 E 01	-0.9192650E 01	3091631E 03
0.250	0.1707112 E 01	2735415E 02	-0.6979695E 01
0.350	-0.4481194E 00	-0.1056570E 02	0.2958880 O3
0.450	-0.1914259E-01	0.172 .2981 E 02	0.1840956 E 03
0.550	0.2019128 E 01	$0.1722997 E 02$	-0.1840929E 03
0.650	0.2448128 E Ol	$0.1056545 E 02$	-0.2958891E 03
0.750	$0.2929105 E 00$	0.2735416E 02	1 El
0.850	-0.1793112E OI	-0.9192911E 01	$0.3091621 E 03$
0.950	-0.1163274E 01	0.1984118 E 02	C.1953889E 03
1.050	0.1187863 E 01	0.2082440 E 02	-0.1758874E 03
1.150	0.2011112 E 01	-0.6339902E 01	-0.2915764E 03
1.250	0.2929174 ECO	-0.2291128E 02	0.6974684 E O1
1.350	-0.1356097E O1	-0.4967608E 01	0.3048484 E 03
1.450	-0.3320337E 00	C.2343547E 02	0.1871862 E 03
1.550	0.2331974 E 01	0.2343595 E 02	-0.1871780E O3
1.65	0.3356110 E O1	835E 01	. 3048515 E 03
1.750	0.1707140 E O1	-0.2291127E 02	-0.6984689E 01
1.850	-0.1109660E-01	-0.6340641E O1	J.2915733E 03
1.950	0.8120834 E 00	0.2082396 E 02	0.1758955 E 03
-	0.3163224 E 01.	0.1984168 E 02	-0.1953808E 03
150	$0.3793136 \mathrm{E}^{01}$	0.9192128 E 01	652E 03
2.250	$0.1707158 \mathrm{E} \mathrm{O1}$	0.2735414 E 02	-0.6986441E O1
2.350	-0.4481015E 00	-0.1056520E 02	0.2958859 E 03
2.450	-0.1917173E-01	0.1722950 O2	$0.1841009 E 03$
2.550	0.2019098 E 01	0.1723028 E 02	-0.1840875E 03
2.650	0.2448146 E 01	-0.1056495E 02	-0.2958912E 03
2.750	0.2929568 E 00	-0.2735417E 02	$0.6969575 \mathrm{E} \mathrm{O1}$
2.850	-0.1793097E Ol	-0.9193434E 01	0.3091600503
2.950	-0.1163308E 01	0.1984085 E 02	0.1953944 E 03
3.050	0.1187828 E 01	0.2082470 E 02	-0.1758819E 03
3.150	$0.2011123 E 01$	-0.6339408E 01	-0.2915785E 03
3.250	0.2929561 E 00	-0.2291129E 02	0.6968016 E 01
3.350	-0.1356089E 01	-0.4968124E 01	0.3048464 E 03
3.450	-0.3320733E.00	$0.2343516 E 02$	0.1871917 E 03
3.550	0.2331934 E 01	0.2343627 E 02	-0.1871725E 03
3.650	0.3356118 E 01	-0.4966319E 01	-0.3048535E 03
3.750	0.1707179 E O1	-0.2291125E 02	-0.5991364E 01
3.850	-0.1108587E-01	-0.6341135E 01	0.2915713 E 03
3.950	0.8120483E 00	0.2082366 E 02	0.1759009 E

RUN 4.30 ACTUAL OUTPUT

05	$0.3163427 E$ O1	0.1984857 E	02	5E	
0.150	E	$333 E$	0	-3096701E	03
	17E 0		2	-0.6916901E	01
	-0.4479947E 00	-0.1055026E	2	- 29616	3
	-0.1877438E-01	0.1724259E	2	-	
	$0.2020320 E 01$	0.1722880 E	02	-	3
	0.2450356 E 01	-0.1059710E	2	-0.2966246E	
	E		2		
		-0.9193114E	1	$0.3092147 E$	
		0.1983878 E	O2	0.1953192 E	
	189780 E		02	-0.1764403E	
	. 2013714 E 01		1		
	-.293859700	-	2	OE	
	-0.1355187E	-	1	7	
	-0.3314098E 00	$0 \cdot 2343695$ E	02	$0.1872595 E$	03
	332868 E O1	0.2342993 E	02		3
	. 3357515 E 01	-	1	-0.305	3
	0.1706830 E O1	-	02	-0.	01
			. 01	0.2919293 E	3
	0.8117026 E 00		2		
	$0.3163394 E 01$		02	-0	
	0.3794168 E	-0.911710	0	-	3
	0.1706863 E	-0.2737616E	02	-0.	
	-0.4479768E 00	-0.1055076E	02	0.2961652 E	
	-0.1880399E-01		02	0.1842232 E	
	0.202 U91E 01		02	-0.1845021	
	0.2450374 E 01	-0.1059660E	02	-0.2966267	
	$0.2939142 \mathrm{E} \quad 00$	-0.2739076E	2	3E	
	-0.1791785E 01	-0.9193637E	1	- 3092126	
	-0.1151935E O1	0.1983845 E	02		
	0.1189745 E O1	$0.2081029 E$	02	-0	
	0.2013724 E 01	-0.6381064E	01	-0.2923852E	
	0.2938985 E 00	-0.2295367E	2	$0.5794329 E$	
	-0.1355179E O1.	. 4969322 E	01	U.3U49757E	03
	-C.3314494E 00	. $2343664 E$	02	0.1872650 E	
	0.2332828E O1	0.2343024 E	02	-0.1875301E	3
	0.3357524 E 01	-0.4995904E	01	-0.3U54318E	3
	0.1706868 E 01	-0.2293905E	02	-0.6925717E	
	-0.1136279E-C1	-0.6326689E	01	U.2919273E	3
	$0.8116673 E 00$		0		

RUN 5.30 DESIRED OUTPUT

. 050	0.1766679 El	0.4938876 E 01	866949E
0.150	$0.2141117 E 01$	0.2313379 El	-0.3278050E
0.250	0.2194795 E 01	-0.1336816E 01	-0.3856261E
50	0.1871746 E 01	3 E	
50	0.1218520 E 01	OE 0	
0.550	0.3749803 E 00	-0.8754983E 01	0.5394089 E
0.650	-0.4630277E UO	-0.7666565E 01	0.2075845 E
0.750	-0.1098110E O1	-0.4788715E 01	0.3547091 E
.	-0.1386567E 01	6E	
. 9	-0.1277845E 01	. $2974423 E$	0.3501531
1.050	-0.8264314E 00	0.5811985 ECl	0.2058021 E
1.150	-C.1728700E 00	0.6944924 El	0.1818384 E
1.250	0.4999934 E 0	0.6220047 E 01	-0.1563247E
. 350	0.1021921 ECl	232777E	-0.2672656E
-	0.1284444 E 01	187430E O1	-0.2854307E
1.550	0.1269343 E 01	5278E O1	-0.2114330E
1.650	0.1048102 E 01	-C.2830577E Cl	0.7490256 E
1.750	0.7531204 E JO	-0.2817090E O1	. 7538406
1.850	0.5302667 E 00	-0.1452336E O1	0.1873035 E
1.950	0.4881806 E 00	0.6690398 E 00	$0.2221362 E$
2.050	0.6606031500	0.2687022 E 01	0.1670003 E
2.150	$0.9938517 E 00$	0.3763516 E 01	-3906191E
2.250	$0.1363534 E$ O1	3363824 E 01	-0.1198093E
2.350	0.1615299E O1	1	-0.2.562756E
2.	0.1616731 E 01	525188E 01	-0.322
2.550	0.1303869 E 01	-0.4680505E 01	-0.2916398E
2.650	$0.7073371 E 00$	-0.7040914E 01	-0.1656674E
2.750	-0.5065416E-01	-U.7806685E O1	0.1976008 E
2.	-0.7881384E UO	6	0.2149321 E
2.950	-0.1314759E U1	-0.3670047E 01	0.3619575 E
3.050	-0.1487195E 01	0.3137219 E 00	0.4170975 E
3.150	-0.1251760E 31	0.43 C4714E 01	0.3631849 E
3.250	-0.6611172E 00	C.7259899E 01	0.2149681 E
3.350	0.1400939 EO	0.8428938 E 01	$0.1471941 E$
3.450	$0.9564504 E C O$	0.7571182 El	-0.1805476E
3.550	0.1597300 E U1	0.5018522 E O1	-0.3163054E
3.650	0.1729902E U1	0.1565717 E O1	-0.3568807E
3.	$0.1914219 E$ U1	-0.1777057E	.2959067E
	0.1609163 E	-	

RUIV 5.30 ACTUAL OUTPUT

0.150	$0.2139609 E 01$	0.2320372 E O1	E
0.250	0.2196410 ECl	226E 01	3 E
0.350	1374763 E O1	7 E O1	-0.3381265E 02
	1F	-	-0.1957212E 02
			4111782E 00
0.6	-0.4592694E 00	8 E 01	92E 02
. 7	-0.1093578E O1	3226E O1.	5
0.850	-0.1382604E O1	653E 00	34260 E 02
		. 2959144 E OI	
.	-0.8237377	5E O1	22E 02
-1	-0.1685263E CO	0.6925314 E Ol	.1810723E
. 2	C.5059884E 00	6195520 E 01	-0.1564504E C2
1.350	C.1027705E OI	33E 01	
	0.1288331 E O1	2 E 01	
. 5	3 E	6E C1	144 E 02
. 6	0.1049060 E C1	-0.2827500E 01	9090E
. 7	0.7528389 E 00	.2815910E O1	5587 E
1.850	5275501E 00		
	0.4827871 E 00	6627890E 00	$22530 E 02$
	00	8 E 01	1328E
.	0.9895827 E 00	. 3767041 ECl	O.4052523E O
2.250	0.1362264 E 01	3365698 E OI	
. 350	5E1	.1443381E 01	-0.2551871E
	0.1618903 E	E 01	-0.3215389E O
- 5	$0.1307665 \mathrm{E} \mathrm{O}^{0}$	-0.4659297E OI	5 E
2.6	0.7134020 E OO	-C.7012595E 01	1677362 E
. 7	-0.4319079E-01	+130E 01	1713680 E
	-0.7815321E 00		
	-0.1310492E 01	E	
	-0.1484557E OI	. 3082342 E 00	5E
3.1	-0.1249042E O1	1059E 01	5 E
	-0.6578129E 00		
	$0.1429601 E 00$	E 01	
	$0 \cdot 9281022 \mathrm{E}$. 7536420 E	
.	0.1598452 E 01	0.4997765 E DI	0.3146130 E
3.650	0.1931647 E O1	0.1558773 E 01	3556241E 02
	0.1916124 E 01	-0.1778140E 01	-2956319E 02
	0.1509352 E 01	-0.4091518E O1	0.1580219 E 02

7.4 SAMPLP PROGRAM AND RESULIS FOR INDEFINITE INTEGRATION WITH

SMOOTHING

The following program for indefinite integration with smoothing was run with the input given by (7.7) and parameter values as follow: $a_{1}=1.5, a_{2}=2.0, a_{3}=1.5, a_{4}=0, f_{1}=0.7, f_{2}=0.9, f_{3}=2.0$, $f_{s}=10, f_{c}=1.0$, and $\Delta f=0.6$ (Δf both the inner and outer roll-off length). In terms of the frequency ratio, the input frequencies are .07, .09, and 0.2. Also $\tau_{c}=0.1, \tau_{d}=.06$, and $\tau_{T}=.16$.

N was taken to be 25 , and hence $2 N+1=51$ weights were used. The number of terms used in computing the sine integral was 25--which is too many for small values of the argument. For large values of the argument, the first terms of the series may become large enough to cause loss of significance, and computation of the sine integral in this case should be approached with caution.

A transfer function recovery is provided in this case. This may be compared with the designed transfer function of this filter in Section 6.0.

Indefinite integration with smoothing
DIMENSION TERMA（50），TER：1E（50），H（30），Z（101）
1 FORMAT（4F10．0）
2 FORMAT（15X，F7．3，E20．7）
3 FORMAT（IHI，37HINDEFINITE INTEGRATION WITH SMOOTHING／）
4 FORN：AT（20X，23HF TRANSFER FUNCTION／）
5 FORMAT（／／／／／IX，32HDESIRED OUTPUT AND ACTUAL OUTPUT／／
6 FORMAT（17X，1HT， $8 \mathrm{X}, 14 \mathrm{HDESIRED}$ OUTPUT， $6 \mathrm{X}, 13$ HACTUAL OUTPUT／） $\mathrm{P}=3.14159$

READ PROBLEM PARAMETERS
READ（2，1）XM，XN，TC，TD
READ（2，1）RA，RB，RC，FS
$\operatorname{READ}(2,1) \mathrm{AA}, \mathrm{AB}, \mathrm{AC}$
READ（2，1）BA，BB，BC
$M=X M$
$N=X N$
$R T=T C+T D$
COMPUTATION OF SINE INTEGRAL
$\operatorname{TERMA}(1)=1$ 。
$\operatorname{TERMB}(1)=1$ 。
DO $9 \quad \mathrm{I}=1, \mathrm{~N}$
$\mathrm{X}=\mathrm{I}$
$X A=2 \cdot * X * P * T C$
$X B=2 * * X * P * T D$
DO $7 \mathrm{~K}=1$ ， M
$Y=K$
$J=K+1$
$Y=(2 * * Y-1) /.(2 * * Y *(2 * * Y+1) * * 2$,
TERMA $(J)=-X A * * 2 * \operatorname{TERMA}(K) * Y$
$7 \operatorname{TERMB}(J)=-X B * * 2 * \operatorname{TERMB}(K) * Y$
$S A=0$ 。
$S B=0$ ．
DO $8 \quad \mathrm{~J}=1 \mathrm{M}$
SA $=$ SA + TERMA（J）
8 SB＝SB＋TERMB（J）
computation of the filter weights
$A=2 \cdot * P * T D *(X B * S B-X A * S A)$
$A=A+\operatorname{Cos}(2 * * P * X * T D) / X-S I N(2 . * P * X * T D) /(2 * * P * T D * X * * 2)$ $A=A+(S I N(2 * * P * X * R T)-S I N(2 * * P * X * T C)) /(2 * * P * T C * X * * 2)$
$9 H(I)=A-T D * \operatorname{Cos}(2 * * P * X * T C) /(T C * X)$
TRANSFER FUNCTION RECOVERY
WRITE（3，3）
WRITE（3．4）
DO $11 K=1,51$
$H X=0$ ．

```
    Y=K-1
    Y=.01*Y
    DO 10 I=1,N
    X=I
10 HX=HX+2**H(I)*SIN(2.*P*X*Y)
    HX=HX/(2**P**2*TD*FS)
    Y=Y*FS
11 WRITE(3,2) Y,HX
    GENERATION OF SAMPLE INPUT DATA
    M}A=N+
    MB=2*N+40
    DO 12 I=1,MB
    T=I -MA
    CA=COS(2.*P*RA*T)
    S=SIN(2**P*RB*T)
    CC=COS(2.*P*RC*T)
12Z(I)=AA*CA+AB*S+AC*CC
COMPUTATION OF DESIRED AND ACTUAL OUTPUTS
    WRITE(3,5)
    WRITE(3,6)
    DO 14 K=1,40
    MA=K-1
    MB=N+1
    SA=0.
    T=M|
    CA=SIN(2.*P*RA*T)
    S=COS(2**P*RB*T)
    CC=SIN(2.HP*RC*T)
    W=(1./(2**P*FS))*((BA*CA/RA)-(BG*S/RB)+(BC*CC/RC))
    T=T/FS
    DO 13 I=1:N
    KA=MB-I
    KB=I +MA
    KC=MA+MB+I
13 SA=SA-H(KA)*Z(KB)+H(I)*Z(KC)
    SA=SA/(2.*P**2*TD*FS)
14 WRITE(3,16) T,w,SA
15 PAUSE
16 FORMAT (13X,F7.3.2E20.7)
    CALL EXIT
    END
```

INDEFINITE INTEGRATION WITH SMOOTHING

F
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000
2.100
2.200
2.300
2.400
2.500
2.600
2.700
2.800
2.900
3.000
3.100
3.200
3.300
3.400
3.500
3.600
3.700
3.800
3.900
4.000
4.100
4.200
4.300
4.400
4.500
4.600
4.700
4.800
4.900
5.000

TRANSFER FUNCTION
0.0000000 E 00
$-0.4835658 \mathrm{E}-01$
$-0.8780948 \mathrm{E}-01$
-0.1277766E 00
-0.1789851E 00
$-0.2279376 \mathrm{E} 00$
-0.2476159E 00
-0.2315462E 00
$-0.2007518 \mathrm{E} 00$
-0.1757450E OO
-0.1565062E 00
$-0.1339059 \mathrm{E} 00$
-0.1067456E 00
$-0.7933023 \mathrm{E}-01$
-0.5228427E-01
-0.2565890E-01
-0.5420293E-02
0.2290246E-02
$0.6325266 \mathrm{E}-03$
-0.1412288E-02
-0.2060364E-03
0.9969801E-03
$0.8562479 \mathrm{E}-04$
-0.7656668E-03
-0.3707978E-04
$0.6189613 \mathrm{E}-03$
$0.1383451 \mathrm{E}-04$
-0.5182999E-03
-0.1719720E-05
$0.4456929 \mathrm{E}-03$
-0.4721969E-05
-0.3915387E-03
0.7956620E-05
$0.3501991 \mathrm{E}-03$
-0.9256311E-05
$-0.3181395 \mathrm{E}-03$
$0.9363038 \mathrm{E}-05$
$0.2930673 \mathrm{E}-03$
-0.8737031E-05
-0.2734517E-03
$0.7676857 \mathrm{E}-05$
$0.2582632 \mathrm{E}-03$
-0.6377806E-05
-0.2468168E-03
0.4938406E-05
0.2386498E-03
-0.3382480E-O5
-0.2334196E-03
0.1717076E-05
0.2308705E-03
0.1579199E-07

DESIRED OUTPUT AND ACTUAL OUTPUT

T	DESIRED OUTPUT
0.000	-0.3536779E 00
0.100	-0.1534097E 00
0.200	$0.1121917 E 00$
0.300	0.3746589 E 0
0.400	$0.5604481 E 00$
0.500	$0.6122803 E 00$
0.600	0.5068678 E 00
0.700	0.2635254 E 00
0.800	-0.5927271E-01
0.900	-0.3788076E 00
1.000	-0.6104846E 00
1.100	-0.6913374E 00
1.200	-0.5978873E 00
1.300	-0.3531308E 00
1.400	-0.2054097E-01
1.500	$0.3132720 E 00$
1.600	$0.5623014 E 00$
1.700	$0.6645101 E 00$
1.800	0.5981959 E 00
1.900	0.3868218 E 00
2.000 .	0.9117493E-01
2.100	-0.2086029E 00
2.200	-0.4357007E 00
2.300	-0.5374080E OO
2.400	-0.4981004E 00
2.500	-0.3410508E 00
2.600	-0.1190831E 00
2.700	$0.1026215 \mathrm{E} \quad 00$
2.800	0.2660714 E 00
2.900	$0.3364188 \mathrm{E} \quad 00$
3.000	0.3097564 E 00
3.100	0.2109084 E 00
3.200	0.8255693E-01
3.300	-0.3031365E-01
3.400	-0.9537795E-01
3.500	-0.1024980E 00
3.600	-0.6495364E-01
3.700	-0.1235776E-01
3.800	0.2197467E-01
3.900	0.1462374E-01

ACTUAL OUTPUT

$-0.3514901 E \quad 00$
-0.1485978E OU
$0.1181381 E \quad 00$
0.3802788 E 00
0.5649213 E 00
$0.6152744 \mathrm{E} \quad 00$
0.5080646 E OU
$0.2626033 E$ OU
-0.6217347E-01
-0.3828688E 00
-0.6146804E 00
$-0.6950833 E 00$
-0.6010847E 00
$-0.3556196 E 00$
-0.2175848E-01
$0.3139244 \mathrm{E} \quad 00$
0.5648551 E 00
$0.6683750 E$ OO
0.6026798 E 00
$0.3914806 E 00$
0.9553805E-01
$-0.2054478 E \quad 00$
$-0.4349084 E \quad 00$
$-0.5396085 \mathrm{E} 00$
$-0.5028978 E 00$
$-0.3473235 \mathrm{E} \quad 00$
$-0.1256373 E \quad 00$
$0.9682514 E-01$
$0.2621591 E 00$
$0.3356144 E O O$
0.3127672 E 00
$0.2172432 E \quad 00$
0.9059381E-01
-0.2251394E-01
-0.8934363E-01
-0.9927360E-01
-0.6530841E-01
-0.1659110E-01
0.1457962E-O1
$0.5923016 E-02$

BIBLIOGRAPHY

1. Tolstov, Georgi P., Fourier Series, Prentice-Hall, Englewood Cliffs, N. J., 1962.
2. Titchmarsh, Edward Charles, Introduction to the Theory of Fourier Integrals, The Clarendon Press, Oxford, 1937.
3. Lighthill, M., Introduction to Fourier Analysis and Generalized Functions, Cambridge (Eng.), University Press, 1958.
4. Campbell, G. A., and Foster, R. M., Fourier Integrals for Practical Applications, Van Nostrand, Princeton, N. J., 1947.
5. Friedman, Avner, Generalized Functions and Partial Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1963.
6. Schwartz, Laurent, Theorie des distributions, Volumes 1 and 2, Hermann et Cie, Paris, $1950-1$.
7. Temple, George, "Generalised functions", Proc. Roy. Soc. A, 228, 175-90, 1955.
8. Gel'fand, I. M., and Shilov, G. E., Generalized Functions, Academic Press, N. Y., 1964.
9. Papoulis, Athanasios, The Fourier Integral and Its Applications, McGraw-Hill, N. Y., 1962.
10. Martin, Marcel A., "Frequency Domain Applications in Data Processing", GE Technical Information Series, 57SD340, May, 1957.
11. Martin, Marcel A., "Digital Filters for Data Processing", GE Technical Information Series, 62SD484, October, 1962.
12. Carslaw, Horatio Scott, Introduction to the Theory of Fourier Series and Integrals, Dover, N. Y., $1 \overline{930}$.
13. Graham, Ronald J., "Determination and Analysis of Numerical Smoothing Weights", NASA Technical Report, R-179, 1963.
14. Ormsby, Joseph F. A., "Design of Numerical Filters with Applications to Missile Data Processing", Journal of the Association for Computing Machinery, Vol. 8, No. 3, July, 1961.
15. Wiley, C. R., Jr., Advanced Engineering Mathematics, McGraw-Hill, N. Y., 1960.
16. Friant, R. J., Jr., "Practical Digital Data Smoothing", GE Technical Information Series, R58EMH29, June, 1958.
17. Fleck, J. T., and Fryer, W. D., "An Exploration of Numerical Filtering Techniques", Cornell Aeronautical Laboratory, Inc., Report No. XA-869-P-1.
18. Anders, Edward B., et al., "Digital Filters", NASA CR-136, National Aeronautics and Space Administration, Washington, December, 1964.

In order to develop constraints on the weights h_{k} such that the recovered transfer function \bar{H} has an exact fit at some specified frequency \bar{r} we need to consider two separate cases.* The first is
when H is of the form $H(r)=h_{0}+2 \sum_{n=1}^{N} h_{n} \cos 2 \pi n r, r=\frac{f}{f_{s}}=\frac{w}{2 \pi f_{s}}$.
The second is when $H(r)$ is of the form $H(r)=2 i \sum_{n=1}^{N} h_{n} \sin 2 \pi n r$.
A. 1 Constraints at one point

$$
\text { Case I. Suppose } \bar{H}(r)=\bar{h}_{0}+2 \sum_{n=1}^{N} \bar{h}_{n} \cos 2 \pi n r \text {, }
$$

then

$$
\bar{H}^{\prime}(r)=-4 \pi \sum_{n=1}^{N} n \bar{h}_{n} \sin 2 \pi n r .
$$

We wish to impose the following constraints:

$$
\begin{aligned}
\bar{H}(\bar{r}) & =F(\bar{r}), \\
\bar{H}^{\prime}(\bar{r}) & =F^{\prime}(\bar{r}),
\end{aligned}
$$

i.e.,

$$
\bar{h}_{0}+2 \sum_{n=1}^{N} \bar{n}_{n} \cos 2 \pi n \bar{r}-F(\bar{r})=0
$$

* This is a reprint of Appendix A of NASA CR-136. The symbol r is used here to denote the frequency ratio f / f_{s}. Also, the symbol F is used here to denote a function of r.

$$
4 \pi \sum_{n=1}^{N} n \bar{h}_{n} \sin 2 \pi n \bar{r}+F^{\prime}(\bar{r})=0 .
$$

In order to minimige the error between H and \bar{H} under the above constraints we define

$$
R=\int_{0}^{\frac{1}{2}}[\bar{H}(r)-H(r)]^{2} d r+\alpha\left[4 \pi \sum_{n=1}^{N} \bar{L}_{n} \sin 2 \pi n \bar{F}+F^{\prime}(\bar{r})\right]
$$

Since

$$
\begin{aligned}
& \bar{h}_{0}=F(\bar{r})-2 \sum_{n=1}^{N} \bar{h}_{n} \cos 2 \pi n \bar{r}, \\
& R=\int_{0}^{\frac{1}{2}}\left[F(\bar{r})+2 \sum_{n=1}^{N} \bar{h}_{n}(\cos 2 \pi n r-\cos 2 \pi n \bar{r})-h_{0}-2 \sum_{n=1}^{N} h_{n} \cos 2 \pi n r\right]^{2} d r \\
& \\
& +\alpha\left[4 \pi \sum_{n=1}^{N} n \bar{h}_{n} \sin 2 \pi n \bar{r}+F^{\prime}(\bar{r})\right] . \\
& \begin{aligned}
\frac{\partial R}{\partial \bar{h}_{k}}= & R \int_{0}^{\left[F(\bar{r})+2 \sum_{n=1}^{\frac{1}{2}} \bar{h}_{n}(\cos 2 \pi n r-\cos 2 \pi n \bar{r})-h_{0}-2 \sum_{n=1}^{N} h_{n} \cos 2 \pi n r\right]} \\
& {[\cos 2 \pi k r-\cos 2 \pi k \bar{r}] d r+\alpha[4 \pi k \sin 2 \pi k \bar{r}] . }
\end{aligned}
\end{aligned}
$$

Let $\frac{\partial R}{\partial \bar{h}_{k}}=0, k=1, \ldots, N$, then

$$
-\frac{1}{2} F(F) \cos 2 \pi k F+\frac{\bar{h}_{k}}{2}+\sum_{n=1}^{N} \bar{h}_{n} \cos 2 \pi n F \cos 2 \pi k F+\frac{h_{0}}{2} \cos 2 \pi k F-\frac{h_{k}}{2}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\bar{h}_{k}-h_{k}\right)+\left[\sum_{n=1}^{N} \bar{h}_{n} \cos 2 \pi n \bar{r}-\frac{F(\bar{r})}{2}\right] \cos 2 \pi k \bar{r} \\
&+\frac{h_{0}}{2} \cos 2 \pi k \bar{r}=-\alpha[\pi k \sin 2 \pi k \bar{r}] .
\end{aligned}
$$

Let $\delta=\left(\bar{h}_{0}-h_{0}\right)$, then

$$
\begin{equation*}
\left(\bar{h}_{k}-h_{k}\right)=\delta \cos 2 \pi k \bar{r}-2 \alpha[\pi k \sin 2 \pi k \bar{r}] \tag{AMI}
\end{equation*}
$$

Multiply (A.1) by ($2 \cos 2 \pi k \bar{r}$). Summing from 1 to N gives

$$
2 \sum_{k=1}^{N}\left(\bar{h}_{k}-h_{k}\right) \cos 2 \pi k \bar{r}=2 \delta \sum_{k=1}^{N} \cos ^{2} 2 \pi k \bar{r}-4 \alpha \sum_{k=1}^{N} \pi k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r},
$$

adding ($\bar{h}_{0}-h_{0}$) to both sides gives

$$
\begin{aligned}
& \left(\bar{h}_{0}-h_{0}\right)+2 \sum_{k=1}^{N}\left(\bar{h}_{k}-h_{k}\right) \cos 2 \pi k \bar{r} \\
& =\delta+2 \delta \sum_{k=1}^{N} \cos ^{2} 2 \pi k \bar{r}-4 \alpha \sum_{k=1}^{N} \pi k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r} .
\end{aligned}
$$

Let

$$
\Delta_{1}=h_{0}+2 \sum_{n=1}^{N} h_{n} \cos 2 \pi n \bar{r}-F(\bar{r}) .
$$

Hence

$$
\Delta_{1}=\left(h_{0}-\bar{h}_{0}\right)+2 \sum_{n=1}^{N}\left(h_{n}-\bar{h}_{n}\right) \cos 2 \pi n \bar{r},
$$

so

$$
\Delta_{1}=4 \alpha \sum_{n=1}^{N} \pi n \cos 2 \pi n r \sin 2 \pi n \bar{r}-\delta-2 \delta \sum_{n=1}^{N} \cos ^{2} 2 \pi n \bar{r} .
$$

Now multiply (A.1) by $2 k \sin 2 x k \bar{r}$. Sumaing fram 1 to N gives
$2 \sum_{k=1}^{N} k\left(\bar{h}_{k}-h_{k}\right) \sin 2 \pi k \bar{r}=28 \sum_{k=1}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r}-4 \alpha \sum_{k=1}^{N} \pi k^{2} \sin ^{2} 2 \pi k F$.
Let

$$
\Delta_{2}=-4 \pi \sum_{n=1}^{N} n h_{n} \sin 2 \pi n \bar{r}-F^{\prime}(\bar{r}) .
$$

Hence

$$
\Delta_{2}=4 \pi \sum_{n=1}^{N} n\left(\bar{h}_{n}-h_{n}\right) \sin 2 \pi n \bar{r}
$$

So

$$
\begin{aligned}
\Delta_{2} & =4 \pi \delta \sum_{k=1}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r}-8 \pi^{2} \alpha \sum_{k=1}^{N} k^{2} \sin ^{2} 2 \pi k \bar{r} . \\
\text { Let } Q_{1} & =2 \sum_{k=1}^{N} \cos ^{2} 2 \pi k \bar{r}, \\
Q_{2} & =4 \pi \sum_{k=1}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r}, \\
Q_{3} & =8 \pi^{2} \sum_{k=1}^{N} k^{2} \sin ^{2} 2 \pi k \bar{r} .
\end{aligned}
$$

Then

$$
\Delta_{1}=Q_{2} \alpha-\left(1+Q_{1}\right) \delta
$$

and

$$
\Delta_{2}=-Q_{3} \alpha+Q_{2} \delta .
$$

Solving we find that

$$
\begin{align*}
& \delta=\frac{\Delta_{1} Q_{3}+\Delta_{2} Q_{2}}{Q_{2}^{2}-\left(1+Q_{1}\right) Q_{3}}, \tag{A.2}\\
& \alpha=\frac{\Delta_{1} Q_{2}+\Delta_{2}\left(1+Q_{1}\right)}{Q_{2}^{2}-\left(1+Q_{1}\right) Q_{3}} . \tag{A.3}
\end{align*}
$$

Therefore the constrained weights are

$$
\begin{aligned}
& \bar{h}_{0}=h_{0}+\delta, \\
& \bar{h}_{k}=h_{k}+\delta \cos 2 \pi k \bar{r}-\alpha 2 \pi k \sin 2 \pi k \bar{r}, \quad k \geq 1,
\end{aligned}
$$

where δ and α are as defined in (A.2) and (A.3).

$$
\text { Case II. Suppose } \bar{H}(r)=2 i \sum_{n=1}^{N} \bar{h}_{n} \sin 2 \pi n r \text {, }
$$

then

$$
\bar{H}^{\prime}(r)=4 \pi i \sum_{n=1}^{N} n \bar{h}_{n} \cos 2 \pi n r .
$$

We wish to impose the following constraints

$$
\begin{aligned}
\overline{\mathrm{H}}(\bar{r}) & =F(\bar{r}), \\
\overline{\mathrm{H}}^{\prime}(\bar{r}) & =F^{\prime}(\bar{r}),
\end{aligned}
$$

i.e.,

$$
2 \sum_{n=1}^{N} \bar{h}_{n} \sin 2 \pi n \bar{r}-\frac{F(\bar{r})}{i}=0
$$

and

$$
4 \pi \sum_{n=1}^{N} n \bar{h}_{n} \cos 2 \pi n \bar{r}-\frac{F^{\prime}(\bar{r})}{i}=0 .
$$

In order to minimize the error between H and \bar{H} under the above conditions we define

$$
R=\int_{0}^{\frac{1}{2}}[\bar{H}(r)-H(r)]^{2} d r+\alpha\left[4 \pi \sum_{n=1}^{N} n \bar{h}_{n} \cos 2 \pi n \bar{r}-\frac{F^{\prime}(\bar{r})}{i}\right]
$$

Since

$$
\text { Let } \frac{\partial R}{\partial \bar{h}_{k}}=0, k=2, \ldots, N
$$

$$
\text { Now } \int_{0}^{\frac{1}{2}} \frac{\sin 2 \pi r}{\sin 2 \pi \bar{r}}\left[\frac{F(r)}{1}=2 \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n \bar{r}\right]\left[\sin 2 \pi k r-\frac{\sin 2 \pi r \sin 2 \pi k r}{\sin 2 \pi \bar{r}}\right] d r
$$

$$
=-\frac{F(\bar{r})}{4 i} \frac{\sin 2 \pi k \bar{r}}{\sin ^{2} 2 \pi \bar{r}}+\frac{\sin 2 \pi k \bar{r}}{2 \sin ^{2} 2 \pi \bar{r}} \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n \bar{r}
$$

$$
\begin{aligned}
& \frac{F(\bar{r})}{i}-2 \sum_{n}^{N} \bar{n}_{n} \sin 2 \pi n \bar{r} \\
& \bar{h}_{1}=\frac{\sum_{n=2}^{n}}{2 \sin 2 \pi \bar{r}}, \\
& R=\int_{0}^{\frac{1}{2}}\left[\frac{\sin 2 \pi r}{\sin 2 \pi \bar{r}}\left[\frac{F(\bar{r})}{i}-2 \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n \bar{r}\right]+2 \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n r\right. \\
& \left.-2 \sum_{n=1}^{N} h_{n} \sin 2 \pi n r\right]^{2} d r+\alpha\left[4 \pi \sum_{n=1}^{N} n \bar{h}_{n} \cos 2 \pi n \bar{r}-\frac{F(\bar{r})}{i}\right] \\
& \frac{\partial R}{\partial \bar{h}_{k}}=2 \int_{0}^{\frac{1}{2}}\left[\frac{\sin 2 \pi r}{\sin 2 \pi \bar{r}}\left[\frac{F(\bar{r})}{i}-2 \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n \bar{r}\right]+2 \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n r\right. \\
& \left.-2 \sum_{n=1}^{N} h_{n} \sin 2 \pi n r\right]\left[\frac{-2 \sin 2 \pi r \sin 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}+2 \sin 2 \pi k r\right] d r+4 \pi \alpha k \cos 2 \pi k \bar{r} .
\end{aligned}
$$

Also $\int_{0}^{\frac{1}{2}} \sum_{n=2}^{N}\left[\bar{h}_{n}-h_{n}\right] \sin 2 \pi n r\left[\sin 2 \pi k r-\frac{\sin 2 \pi r \sin 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}\right] d r=\frac{1}{4}\left[\bar{h}_{k}-h_{k}\right]$,

Hence

$$
\begin{aligned}
& \frac{1}{4}\left[2 \sum_{n=2}^{N} \bar{h}_{n} \sin 2 \pi n \bar{r}-\frac{F(\bar{r})}{i}\right] \frac{\sin 2 \pi k \bar{r}}{\sin ^{2} 2 \pi \bar{r}}+\frac{1}{4}\left[\bar{h}_{k}-h_{k}\right]+\frac{h_{l}}{4} \frac{\sin 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}} \\
& =-\frac{\alpha}{4} \pi k \cos 2 \pi k \bar{r} \\
& \left(h_{l}-\bar{h}_{l}\right) \frac{\sin 2 \pi \bar{r} k}{\sin 2 \pi \bar{r}}+\left(\bar{h}_{k}-h_{k}\right)=-\alpha \pi k \cos 2 \pi k \bar{r} .
\end{aligned}
$$

Let $\delta=\bar{h}_{1}-h_{1}$, then

$$
\begin{equation*}
\bar{h}_{k}-h_{k}=\delta \frac{\sin 2 \pi \bar{r} k}{\sin 2 \pi \bar{r}}-\alpha \pi k \cos 2 \pi k \bar{r} \tag{A.4}
\end{equation*}
$$

Multiplying (A.4) by $2 \sin 2 \pi k \bar{r}$ and summing from 2 to N gives

$$
2 \sum_{k=2}^{N}\left(\bar{h}_{k}-h_{k}\right) \sin 2 \pi k \bar{r}=2 \delta \sum_{k=2}^{N} \frac{\sin ^{2} 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}-\alpha 2 \sum_{k=2}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r} .
$$

Adding $2\left(\bar{h}_{1}-h_{1}\right)$ sin $2 \pi \bar{r}$ to both sides yields

$$
2 \sum_{k=1}^{N}\left(\bar{h}_{k}-h_{k}\right) \sin 2 \pi k \bar{r}=28 \sum_{k=1}^{N} \frac{\sin ^{2} 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}-2 \alpha \sum_{k=2}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r} .
$$

Let $\Delta_{1}=2 \sum_{k=1}^{N} h_{k} \sin 2 \pi k \bar{r}-F(\bar{r})$.

Since
or

$$
\begin{aligned}
F(\bar{r}) & =2 \sum_{k=1}^{N} \bar{h}_{k} \sin 2 \pi k \bar{r} \\
\Delta_{1} & =2 \sum_{k=1}^{N}\left(h_{k}-\bar{h}_{k}\right) \sin 2 \pi k \bar{F}
\end{aligned}
$$

$$
\Delta_{1}=2 \alpha \sum_{k=2}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r}-2 \delta \sum_{k=1}^{N} \frac{\sin ^{2} 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}} .
$$

Multiplying (A.4) by $4 \pi k \cos 2 \pi k \vec{r}$ and summing from 2 to N gives

$$
4 \pi \sum_{k=1}^{N}\left(\bar{h}_{k}-h_{k}\right) k \cos 2 \pi k \bar{r}=4 \pi \delta \sum_{k=1}^{N} \frac{k \sin 2 \pi k \bar{r} \cos 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}-4 \alpha \sum_{k=2}^{N} \pi^{2} k^{2} \cos ^{2} 2 \pi k \bar{r},
$$

adding $4 \pi\left(\bar{h}_{1}-h_{1}\right) \cos 2 \pi \bar{r}$ to both sides of the above equation gives

$$
4 \pi \sum_{k=1}^{N}\left(\bar{h}_{k}-h_{k}\right) k \cos 2 \pi k \bar{r}=4 \pi \delta \sum_{k=1}^{N} \frac{k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}-4 \alpha \sum_{k=2}^{N} \pi^{2} k^{2} \cos ^{2} 2 \pi k \bar{r} .
$$

Let $\Delta_{2}=4 \pi \sum_{k=1}^{N} k h_{k} \cos 2 \pi k \bar{r}-F^{\prime}(\bar{r})$.
Since $F^{\prime}(\bar{r})=4 \pi \sum_{k=1}^{N} k \bar{h}_{k} \cos 2 \pi k \bar{r}$.

$$
\Delta_{2}=4 \pi \sum_{k=1}^{N}\left(h_{k}-\bar{h}_{k}\right) k \cos 2 \pi k \bar{r} .
$$

Hence

$$
\Delta_{2}=4 \pi \delta \sum_{k=1}^{N} \frac{k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}-4 \alpha \pi^{2} \sum_{k=2}^{N} k^{2} \cos ^{2} 2 \pi k \bar{r} .
$$

Let

$$
\begin{aligned}
& Q_{1}=2 \sum_{k=1}^{N} \frac{\sin ^{2} 2 \pi k \bar{r}}{\sin 2 \pi \bar{r}}, \\
& Q_{2}=2 \sum_{k=1}^{N} k \cos 2 \pi k \bar{r} \sin 2 \pi k \bar{r} \\
& Q_{3}=\frac{2 \pi Q_{2}}{\sin 2 \pi \bar{r}} \\
& Q_{4}=4 \pi^{2} \sum_{k=1}^{N} k^{2} \cos ^{2} 2 \pi k \bar{r} .
\end{aligned}
$$

Then

$$
\Delta_{1}=\alpha\left(Q_{2}-\cos 2 \pi \bar{r} \sin 2 \pi \bar{r}\right)-\delta Q_{2},
$$

and

$$
\Delta_{2}=-\alpha\left(Q_{4}-4 \pi^{2} \cos ^{2} 2 \pi \bar{r}\right)+\delta Q_{3} .
$$

Solving for δ and α we find that

$$
\begin{align*}
& \delta=\frac{\Delta_{1}\left(Q_{4}-4 \pi^{2} \cos ^{2} 2 \pi \bar{r}\right)+\Delta_{2}\left(Q_{2}-\cos 2 \pi \bar{r} \sin 2 \pi \bar{r}\right)}{Q_{3}\left(Q_{2}-\cos 2 \pi \bar{r} \sin 2 \pi \bar{r}\right)-Q_{2}\left(Q_{4}-4 \pi^{2} \cos ^{2} 2 \pi \bar{r}\right)} \tag{A.5}\\
& \alpha=\frac{\Delta_{1} Q_{3}-\Delta_{2} Q_{2}}{\left.Q_{3}\left(Q_{2}-\cos 2 \pi \bar{r} \sin 2 \pi \bar{r}\right)-Q_{2}\left(Q_{4}-4 \pi^{2} \cos ^{2} 2 \pi \bar{r}\right)\right)} . \tag{A.6}
\end{align*}
$$

Therefore the constrained weights are

$$
\begin{aligned}
& \bar{h}_{I}=h_{I}+\delta \\
& \bar{h}_{k}=h_{k}+\delta \frac{\sin 2 \pi \bar{r} k}{\sin 2 \pi \bar{r}}-\alpha \pi k \cos 2 \pi k \bar{r}, \quad k \geq 20
\end{aligned}
$$

The procedure discussed in Chapter III for obtaining the weights of a digital filler assumes that the transfer function is given for all values of the frequency f. In some applications, the values of $H(f)=$ $A(f) \exp (i \Phi(f))$ are known at only a finite number of points. In particular, the known values are sometimes the values of $A(f)$ and $\Phi(f)$ at a finite number of points on $\left[0, \mathrm{f}_{\mathrm{S}} / 2\right]$. In this case, the filter weights must be determined by other means.

The method given here is a simple extension of harmonic analysis as presented in most advanced engineering mathematics and numerical analysis books to complex-valued functions.

Let $H(f)$ be a complex-valued function which is periodic with period f_{s}, and suppose that the values of $H(f)$ are known at $M+1$ equally spaced points on $\left[-f_{s} / 2, f_{s} / 2\right]$, say

$$
f_{j}=-f_{S} / 2+j\left(f_{S} / M\right) \quad, j=0, I, 2, \ldots, M
$$

We wish to approximate $H(f)$ by a finite trigonometric sum of the form

$$
\begin{equation*}
\sum_{n=-N_{1}}^{N_{2}} h_{n} \exp \left(2 n \pi i f_{j} / f_{s}\right) \tag{B.1}
\end{equation*}
$$

where the h_{n} are to be chosen such that

$$
\begin{equation*}
R=\sum_{j=0}^{M-1}\left[H\left(f_{j}\right)-\sum_{n=-N_{l}}^{N_{2}} h_{n} \exp \left(2 n \pi i f_{j} / f_{s}\right)\right]^{2} \tag{B.2}
\end{equation*}
$$

is a minimum. This, of course, is minimization in the least squares sense. A necessary condition for R minimum is

$$
\begin{equation*}
\frac{\partial R}{\partial h_{k}}=0 \tag{B.3}
\end{equation*}
$$

for each $k,-N_{1} \leq k \leq N_{2}$. For each k

$$
\frac{\partial R}{\partial h_{k}}=2 \sum_{j=0}^{M-I}\left[H\left(f_{j}\right)-\sum_{n=-N_{1}}^{N_{2}} h_{n} \exp \left(2 n \pi i f_{j} / f_{s}\right)\right] \exp \left(2 k \pi i f_{j} / f_{s}\right)
$$

Setting $\frac{\partial R}{\partial h_{k}}=0$ gives $\mathbb{N}_{I}+N_{2}+1$ equations

$$
\begin{equation*}
\sum_{j=0}^{M-1} H\left(f_{j}\right) \exp \left(2 k \pi i f_{j} / f_{s}\right)-\sum_{n=-N_{l}}^{N_{2}} h_{n} \exp \left(2(n+k) \pi i f_{j} / f_{s}\right)=0 \tag{B.4}
\end{equation*}
$$

in $N_{1}+N_{2}+1$ unknowns, the h_{n} 's.
From (B.4) we have

$$
\begin{equation*}
\sum_{j=0}^{M-1} H\left(f_{j}\right) \exp \left(2 k \pi i f_{j} / f_{s}\right)-\sum_{n=-N_{l}}^{N_{2}}\left[h_{n} \sum_{j=0}^{M-I} \exp \left(2(n+k) \pi i f_{j} / f_{s}\right)\right]=0 \tag{B.5}
\end{equation*}
$$

For each n ,

$$
\begin{aligned}
\sum_{j=0}^{M-1} \exp \left(2(n+k) \pi i f_{j} / f_{s}\right) & =\sum_{j=0}^{M-1} \exp \left(2(n+k) \pi i\left\{-f_{s} / 2+j\left(f_{s} / M\right)\right\} / f_{s}\right) \\
& =\sum_{j=0}^{M-1} \exp \left(2(n+k) \pi i\left(j / M-\frac{1}{2}\right)\right. \\
& =\sum_{j=0}^{M-1} \exp (2(n+k) j \pi i / M) \exp (-(n+k) \pi i) \\
& =(-1)^{n+k} \sum_{j=0}^{M-1} \exp (2(n+k) \pi j i / M)
\end{aligned}
$$

for $n=-k$,

$$
\sum_{j=0}^{M-1} \exp (2(n+k) \pi i j / M)=\sum_{j=0}^{M-I} I=M
$$

Suppose $n \neq-k$. Employing the identity

$$
\sum_{i=0}^{n} z^{i}=\frac{1-z^{n+1}}{1-z}
$$

$$
\begin{aligned}
\sum_{j=0}^{M-1} \exp (2(n+k) \pi j i / M) & =\sum_{j=0}^{M-1}\{\exp (2(n+k) \pi i / M)\}^{j} \\
& =\frac{1-\left\{\exp (2(n+k) \pi i / M\}^{M}\right.}{1-\exp (2(n+k) \pi i / M)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-\exp (2(n+k) \pi i)}{1-\exp (2(n+k) \pi i / M)} \\
& =\frac{1-\cos 2(n+k) \pi-\sin 2(n+k) \pi}{1-\exp (2(n+k) \pi i / M)} \\
& =0
\end{aligned}
$$

if ($n+k) / M$ is not an integer. This condition is always satisfied if $\mathrm{M}>\mathrm{n}+\mathrm{k}$ or synonymously if

$$
\begin{equation*}
M>\max \left\{N_{1}+N_{2}, 2 N_{1}, 2 N_{2}\right\}=\max \left\{2 N_{1}, 2 N_{2}\right\} \tag{B.6}
\end{equation*}
$$

If condition (B.6) holds, then each of the equations (B.5) reduces to

$$
\sum_{j=0}^{M-1} H\left(f_{j}\right) \exp \left(2 k \pi i f_{j} / f_{s}\right)-M_{-k}=0,
$$

or

$$
h_{-k}=I / M \sum_{j=0}^{M-1} H\left(f_{j}\right) \exp \left(2 k \pi i f_{j} / f_{s}\right)
$$

Hence, replacing k by $-k$,

$$
\begin{equation*}
h_{k}=I / M \sum_{j=0}^{M-I} H\left(f_{j}\right) \exp \left(-2 k \pi i f_{j} / f_{s}\right) \tag{B.7}
\end{equation*}
$$

Note that condition (B.6) requires that the number of intervals of equal length into which the period of $H(f)$ is divided is greater than twice the larger of the integers \mathbb{N}_{1} and \mathbb{N}_{2}, or synonymously, the number $M+1$ of equally spaced points is greater than or equal to $\max \left\{2 N_{1}, 2 N_{2}\right\}$.

The following discussion shows that the h_{n} 's which give the least squares minimization are those computed by the trapezoidal rule from the formula (3.37) for the Fourier coefficients of $H(f)$. Equation (B.7) can be written as

$$
\left.\left.\begin{array}{rl}
h_{k} & =(I / M)\left[H\left(f_{0}\right) \exp \left(-2 k \pi i f_{0} / f_{s}\right)+\sum_{j=1}^{M-I} H\left(f_{j}\right) \exp \left(-2 k \pi i f_{j} / f_{s}\right)\right] \\
& =(I / M)\left[H\left(-f_{s} / 2\right) \exp (k \pi i)+\sum_{j=1}^{M-I} H\left(f_{j}\right) \exp \left(2 k \pi i f_{j} / f_{s}\right)\right] \tag{B.8}\\
= & (I / M)\left[\left(\frac{I}{2}\right) H\left(-f_{s} / 2\right) \exp (k \pi i)\right.
\end{array}\right)+\sum_{j=1}^{M-1} H\left(f_{j}\right) \exp \left(-2 k \pi i f_{j} / f_{s}\right)\right] .
$$

The last equality of $(B .8)$ is possible since $H\left(-f_{S} / 2\right)=H\left(f_{S} / 2\right)$ and $\exp (k \pi i)=\exp (-k \pi i)$.

By applying the trapizoidal rule to (3.37), we have

$$
\begin{aligned}
& 1 / f_{s} \int_{-f_{s} / 2}^{f_{S} / 2} H(f) \exp \left(-2 k \pi i f / f_{s}\right) d f \doteq \\
&\left(I / f_{s}\right)\left\{\frac { f _ { s } / M } { 2 } \left[H\left(-f_{s} / 2\right) \exp \left\{(-2 k \pi i)\left(f_{s} / 2\right) / f_{s}\right\}\right.\right. \\
&+2 \sum_{j=1}^{M-1} H\left(-f_{s} / 2+j \frac{f}{M}\right) \exp \left\{(-2 k \pi i)\left(-f_{s} / 2+j\left(f_{s} / M\right)\right) / f_{s}\right\} \\
&\left.\left.+H\left(f_{s} / 2\right) \exp \left\{(-2 k \pi i)\left(f_{s} / 2\right) / f_{s}\right\}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
=(1 / M)\left[\left(\frac{1}{2}\right) H\left(-f_{s} / 2\right) \exp (k \pi i)\right. & +\sum_{j=1}^{M-1} H\left(f_{j}\right) \exp \left(-2 k \pi i f_{j} / f_{s}\right) \\
& \left.+\left(\frac{1}{2}\right) H\left(f_{s} / 2\right) \exp (-k \pi i)\right] \tag{B.9}
\end{align*}
$$

which is identical to (B.8). Hence the coefficients for the least squares minimization can be computed by applying the trapezoidal rule to (3.37).

Writing $H(f)$ in polar form, we have

$$
H(f)=A(f) \exp (i \Phi(f))
$$

where $A(f)$ and $\Phi(f)$ are real. These are called the gain and phase functions, respectively, of the filter. In practice, the gain $A(f)$ and phase $\Phi(f)$ are specified on $\left[0, f_{s} / 2\right]$. Now a necessary and sufficient condition for the weights of a filter to be real is that

$$
H(-f)=H *(f)
$$

where $H^{*}(f)$ denotes the complex conjugate of $H(f)$. If $A(f)$ is extended such that it is an even function on $\left[-f_{s} / 2, f_{s} / 2\right]$, then

$$
H(-f)=A(-f) \exp (i \Phi(-f))=A(f) \exp (-i \Phi(f))=H *(f)
$$

and the corresponding weights are real. The formula for the weights can be written in a more useful form in this case. From (3.37), we have

$$
h_{n}=1 / f_{s} \int_{-f_{s} / 2}^{f_{s} / 2} H(f) \exp \left(-2 n \pi i f / f_{s}\right) d f
$$

$$
\begin{aligned}
& =I / f_{S} \int_{-f_{S} / 2}^{0} H(f) \exp \left(-2 n \pi i f / f_{S}\right) d f+I / f_{S} \int_{0}^{f} H(f) \exp \left(-2 n \pi i f / f_{s}\right) d f \\
& =-1 / f_{s} \int_{0}^{-f_{s} / 2} H(f) \exp \left(-2 n \pi i f / f_{s}\right) d f+I / f_{s} \int_{0}^{f} H(2) \exp \left(-2 n \pi i f / f_{s}\right) d f \\
& =I / f_{s} \int_{0}^{f}{ }_{0} / 2 \quad H(-f) \exp \left(2 n \pi i f / f_{s}\right) d f+I / f_{s} \int_{0}^{f} H(f) \exp \left(-2 n \pi i f / f_{s}\right) d f \\
& =I / f_{s} \int_{0}^{f}{ }_{S} / 2 *(f) \exp \left(2 n \pi i f / f_{s}\right) d f+I / f_{s} \int_{0}^{f} H(f) \exp \left(-2 n \pi i f / f_{s}\right) d f \\
& =I / f_{s} \int_{0}^{f}\left[\begin{array}{l}
\text { s } \\
\end{array} H^{*}(f) \exp \left(-2 n \pi i f / f_{s}\right)+H(f) \exp \left(-2 n \pi i f / f_{s}\right)\right] d f \\
& =2 / f_{s} \int_{0}^{f} \operatorname{Se} / 2 \quad \operatorname{Re}\left[H(f) \exp \left(-2 n \pi i f / f_{s}\right)\right] d f \text {, where } \operatorname{Re}\left[H(f) \exp \left(-2 n \pi i f / f_{s}\right)\right]
\end{aligned}
$$

denotes the real part of $H(f) \exp \left(-2 n \pi i f / f_{s}\right)$.
Hence,

$$
\begin{aligned}
& h_{n}=2 / f_{s} \int_{0}^{f} / 2 \\
& \operatorname{Re}\left[A(f) \exp (i \Phi(f)) \exp \left(-2 n \pi i f / f_{s}\right)\right] d f \\
&=2 / f_{s} \int_{0}^{f_{s} / 2} \operatorname{Re}\left[A(f) \exp \left(i \Phi(f)-2 n \pi i f / f_{s}\right)\right] d f
\end{aligned}
$$

$$
\begin{equation*}
=2 / f_{s} \int_{0}^{f_{s} / 2} A(f) \cos \left[2 n \pi f / f_{s}-\Phi(f)\right] d f \tag{B.10}
\end{equation*}
$$

Now the h_{n} 's which give the least squares minimization may be computed by applying the trapezoidal rule to (B.10)

Subdivide the closed interval $\left[0, \mathrm{f}_{\mathrm{s}} / 2\right]$ into $\mathbb{N} \geq \mathrm{M}$ subintervals of equal length, and let $f_{j}=j\left(f_{s} / N\right), j=0,1,2, \ldots$. . N. Then $f_{j+1}-f_{j}=$ $f_{s} / \mathbb{N}, j=0,1$, . . , $N-1$. By applying the trapezoidal rule to (B.10),

$$
\begin{aligned}
& \int_{0}^{f} / 2 A(f) \cos \left[2 n \pi f / f_{s}-\Phi(f)\right] d f \\
& =f_{s} / 2 N \quad\left\{A(0) \cos \Phi(0)+2 \sum_{j=1}^{N-1} A\left(f_{j}\right) \cos \left[2 n \pi f_{j} / f_{s}-\Phi\left(f_{j}\right)\right]+\right. \\
& \left.A\left(f_{S} / 2\right) \cos \left[n \pi-\Phi\left(f_{s} / 2\right)\right]\right\}
\end{aligned}
$$

So that

$$
\begin{array}{rl}
h_{n} & =2 / f_{s} \int_{0}^{f} / 2 \tag{B.11}\\
s & A(f) \cos \left[2 n \pi f^{\prime} / f_{s}-\Phi(f)\right] d f \\
& =1 / N\left\{A(0) \cos \Phi(0)+2 \sum_{j=1}^{N-1} A\left(f_{j}\right) \cos \left[2 n \pi f_{j} / f_{s}-\Phi\left(f_{j}\right)\right]+\right. \\
\left.A\left(f_{s} / 2\right) \cos \left[n \pi-\Phi\left(f_{s} / 2\right)\right]\right\}
\end{array}
$$

The function $\Phi(f)$ is odd, and hence we must have $\Phi(0)=0$. Using this and applying a trigonometric identity to the last term, we have

$$
\begin{aligned}
h_{n}=(I / \mathbb{N})\{A(0) & +2 \sum_{j=1}^{N-1} A\left(f_{j}\right) \cos \left[2 n \pi f_{j} / f_{s}-\Phi\left(f_{j}\right)\right] \\
& \left.+(-I)^{n}\left(f_{s} / 2\right) \cos \left(\Phi\left(f_{s} / 2\right)\right)\right\}
\end{aligned}
$$

This yields the weights to be used in (3.41) to give the output of a digital filter which approximates the original filter.

APPENDIX 0

DETERMINATION OF FREQUENCY CHARACTERISTICS IN SAMPLED DATA

By

Edward B. Anders

Given a set of tabulated data which is periodic and admits a finite trigonometric expansion, one may determine the frequencies present in the data and the coefficients of these frequency components by using the following theorems. The procedure is extremely simple and is based on a simple numerical integration procedure--the trapezoidal rule.

Theorem 1: Let

$$
\begin{equation*}
h(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{2 \pi}{f_{s}} n t+b_{n} \sin \frac{2 \pi}{f_{s}} n t\right) \tag{c.l}
\end{equation*}
$$

where f_{s} is the fundamental period of $h(t)$. If $h(t)$ is sampled at the $N+l$ equally spaced points of $\left[-\frac{f_{S}}{2}, \frac{f_{S}}{2}\right]$ including the end points, then

$$
\frac{1}{2} h\left(-\frac{f}{2}\right)+\sum_{P=-\frac{N}{2}+1}^{\frac{N}{2}-1} h\left(\frac{f}{N} P\right)+\frac{1}{2} h\left(\frac{f}{2}\right)=\left\{\begin{array}{c}
N\left(a_{0}+\sum_{\beta=1}^{\infty} a_{\beta N}\right), N \text { even } \tag{C.2}\\
N\left(a_{0}+\sum_{\beta=1}^{\infty}(-1)^{\beta} a_{B N}\right), N \text { odd }
\end{array}\right.
$$

Note: $\sum_{k=\beta}^{\epsilon}$ means $k=\beta, \beta+1, \cdots, \beta+n$ where $\beta+n \leq \epsilon, \beta+n+1>\epsilon$.
Proof: Since $\sin x$ is odd, all terms of (C.l) containing $\sin \frac{2 \pi}{f} n t$ vanish. Thus, we are concerned only with terms containing $\cos _{f_{s}}^{2 \frac{5}{\pi}} n t$, $\mathrm{n}=0,1$, If N is even, then P is an integer and for integral β, we obtain

$$
a_{\beta N} \cos \frac{2 \pi}{f_{S}} \beta N\left(\frac{f_{N}}{N} P\right)=a_{\beta N} \cos 2 \pi \beta P=a_{\beta N}
$$

If N is odd, P is an odd multiple of $\frac{1}{2}$, say $P=m\left(\frac{1}{2}\right), m$ odd, and for integral β, we obtain

$$
a_{\beta N} \cos \frac{2 \pi}{f_{S}} \beta N\left(\frac{f_{N}}{\mathbb{N}} P\right)=a_{\beta N} \cos \pi \beta m=(-1)^{\beta} a_{\beta N}
$$

To complete the proof we must consider two cases:
I) When \mathbb{N} is even, $n \neq \beta N, \beta=0,1, . . . \quad$.
II) When N is odd and $n \neq \beta N, \beta=0,1$, . . .

Case I: Consider the set of points $0, \frac{f_{s}}{N}, 2 \frac{f_{s}}{N}, \ldots, \frac{N}{2}\left(\frac{f_{s}}{N}\right)$. Substituting these $\frac{N}{2}+1$ points into a term of (C.l) where $n \neq \beta N$, $\beta=0,1$, . . ., multiplying the first and last such quantity by $\frac{1}{2}$ and adding we obtain

$$
\frac{1}{2} a_{n} \cos \frac{2 \pi}{f_{s}} n(0)+a_{n} \sum_{m=1}^{\frac{N}{2}-1} \cos \frac{2 \pi}{f_{s}} \frac{f_{s}}{N}+\frac{1}{2} a_{n} \cos \frac{2 \pi}{f_{s}} n \frac{f^{f}}{N} \frac{N}{2}
$$

$$
\begin{aligned}
& =a_{n}\left(\frac{1}{2}+\sum_{m=1}^{\frac{N}{2}} \cos \frac{2 \pi}{f_{s}} \frac{f_{s}}{s_{N}}-\frac{1}{2} \cos \pi n\right) \\
& =a_{n}\left(\frac{\sin \left(\frac{N}{2}+\frac{1}{2}\right) \frac{2 \pi n}{N}}{2 \sin \frac{\pi n}{N}}-\frac{1}{2} \cos \pi n\right) \\
& =a_{n}\left(\frac{\sin \pi n \cos \frac{\pi n}{N}+\cos \pi n \sin \frac{\pi n}{N}}{2 \sin \frac{\pi n}{N}}-\frac{1}{2} \cos \pi n\right)=0 .
\end{aligned}
$$

Case II: Consider the $\frac{N+1}{2}$ points $\frac{1}{2} \frac{f_{s}}{N}, \frac{3}{2} \frac{f_{s}}{N}$, . . , $\frac{N}{2} \frac{f_{s}}{N}$.
Substituting as in Case I but multiplying only the last by $\frac{1}{2}$ and adding we obtain, for $n \neq \beta N, \beta=0,1, .$. ,

$$
\begin{aligned}
& a_{n} \sum_{P=\frac{1}{2}}^{\frac{N}{2}-1} \cos \frac{2 \pi}{f_{s}} n \frac{f}{N} p+\frac{1}{2} a_{n} \cos \pi n \\
& =a_{n}\left(\frac{1}{2}+\sum_{m=1}^{N} \cos \frac{\pi n}{N} m-\frac{1}{2}-\sum_{m=1}^{\frac{N-1}{2}} \cos \frac{2 \pi n}{N} m-\frac{1}{2} \cos \pi n\right) \\
& =a_{n}\left(\frac{\sin \left(N+\frac{1}{2}\right) \frac{\pi n}{N}}{2 \sin \frac{\pi n}{2 N}}-\frac{\sin \pi n}{2 \sin \frac{\pi n}{N}}-\frac{1}{2} \cos \pi n\right)
\end{aligned}
$$

$$
=a_{n}\left(\frac{\sin \pi n \cos \frac{\pi n}{2 N}+\cos \pi n \sin \frac{\pi n}{2 N}}{2 \sin \frac{\pi n}{2 N}}-\frac{1}{2} \cos \pi n\right)
$$

$$
=0
$$

Since the cosine function is even, the theorem is proved.

Theorem 2: If $h(t)$ is as in Theorem 1 , using $N+I$ equally spaced points of the interval $\left[-\frac{f_{s}}{2}+\frac{f_{s}}{4 \pi}, \frac{f_{s}}{2}+\frac{f_{s}}{4 N}\right]$ including the end points of the interval, then

Proof: $h\left(t+\frac{f}{4 N}\right)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{2 \pi}{f_{s}} n\left(t+\frac{f}{4 N}\right)+b_{n} \sin \frac{2 \pi}{f_{s}} n\left(t+\frac{f}{4 N}\right)\right]$

$$
\begin{align*}
=\frac{a_{0}}{2}+ & \sum_{n=1}^{\infty}\left[a_{n}\left(\cos \frac{2 \pi}{f_{s}} n t \cos \frac{\pi n}{2 N}-\sin \frac{2 \pi}{f_{s}} n t \sin \frac{\pi n}{2 N}\right)\right. \tag{C.4}\\
& \left.+b_{n}\left(\sin \frac{2 \pi}{f_{s}} n t \cos \frac{\pi n}{2 N}+\cos \frac{2 \pi}{f_{s}} n t \sin \frac{\pi n}{2 N}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& \frac{1}{2} h\left(-\frac{f_{s}}{2}+\frac{f_{s}}{4 N}\right)+\sum_{P=-\frac{N}{2}+1}^{\frac{N}{2}-1} h\left(\frac{f_{s}}{N} P+\frac{f^{s}}{4 N}\right)+\frac{1}{2} h\left(\frac{f_{s}}{2}+\frac{f_{s}}{4 N}\right) \\
& =\left\{\begin{array}{l}
N\left[a_{0}+\sum_{\beta=1}^{\infty}(-1)^{\frac{\beta}{2}} a_{\beta N}+\sum_{\beta=1}^{\infty}(-1)^{\frac{\beta-1}{2}} b_{\beta N}\right],(-I)_{\text {real }} \epsilon_{\text {, }} \text { even, } \\
N\left[a_{0}+\sum_{\beta=1}^{\infty}(-1)^{\frac{\beta}{2}} a_{\beta N}+\sum_{\beta=1}^{\infty}(-1)^{\frac{\beta+1}{2}} b_{\beta N}\right],(-1)^{\epsilon} \epsilon_{\text {real }}, N \text { odd. }
\end{array}\right.
\end{aligned}
$$

When $n=\beta N, \beta=0,1, \cdots, \cdots, N$ even, we obtain

$$
\begin{aligned}
& a_{\beta N} \cos \frac{2 \pi}{f_{s}} \beta N\left(\frac{f^{s}}{S^{\prime}}{ }^{f} \frac{f_{s}}{4 \pi}\right) \\
&=a_{\beta N}\left(\cos 2 \pi \beta P \cos \beta \frac{\pi}{2}-\sin 2 \pi \beta P \sin \beta \frac{\pi}{2}\right) \\
&=\left\{\begin{array}{ll}
0 & , \beta \text { oda } \\
(-1)^{\frac{\beta}{2}} & a_{\beta N}
\end{array}, \beta\right. \text { even }
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{b}_{\beta N} \sin \frac{2 \pi}{f_{S}} \beta\left(\frac{f_{S}}{f_{N}} P \frac{f_{S}}{4 N}\right) \\
&=b_{\beta N}\left(\sin 2 \pi \beta P \cos \beta \frac{\pi}{2}+\sin \beta \frac{\pi}{2} \cos 2 \pi \beta P\right) \\
&= \begin{cases}0 & \beta \text { even } \\
(-1)^{\frac{\beta-1}{2}} & b_{\beta N},\end{cases} \\
& \quad \beta \text { odd } .
\end{aligned}
$$

When $n=\beta N, \beta=0,1, \cdots, \ldots, N$ odd, then $P=m\left(\frac{1}{2}\right), m$ odd, and we obtain
and

$$
b_{\beta N} \sin \frac{2 \pi}{f_{s}} \beta N\left(\frac{f_{s}^{s}}{N} P+\frac{f_{s}}{4 N}\right)= \begin{cases}0 & , \quad \beta \text { even } \\ (-1)^{\frac{\beta+1}{2}} & b_{\beta N}, \beta \text { odd }\end{cases}
$$

Again, to complete the proof there are two cases. These cases are as in Theorem 1. In either case, since $\sin x$ is an odd function, those terms of the last member of (C.4) containing $\sin \frac{2 \pi}{f_{s}} n t$ vanish. Since the other two terms contain oniy one factor which depends on t, namely $\cos \frac{2 \pi}{f} n t$, we show as in Theorem 1 that they vanish when $n \neq \beta N, \beta=0,1$,

Thus, if given a set of data which represents a band-limited function or a function which can be considered as band-limited by assuming all coefficients for $n>N$ to be insignificant, we can determine all coefficients by use of the above two theorems. If

$$
h(t)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{2 \pi}{f_{s}} n t+b_{n} \sin \frac{2 \pi}{f_{s}} n t\right)
$$

we can find a_{o} by using any number of equally spaced points greater than $N+1$. For simplicity, we illustrate with $N+2$ points. Thus,

$$
\frac{1}{2} h\left(-\frac{f_{s}}{2}\right)+\sum_{P=-\frac{N+1}{2}-1}^{2} h\left(\frac{f^{\prime}}{N} P\right)+\frac{1}{2} h\left(\frac{f}{2}\right)=(N+1)\left(a_{0}+\sum_{\beta=1}^{\infty} a_{\beta(N+1)}\right)
$$

Since $a_{n}=0$ for $n>N$, we obtain $(N+1) a_{0}$. To minimize the number of points required one usually uses a number such as $2 N$ rather than $N+2$. The remaining coefficients can be found one by one beginning with $\mathbb{N}+1$ points and dropping one point each time. It is recommended that the a_{i}, $i=0,1, \ldots$. . , N be calculated first and then the $b_{i_{f}} i=1,2,$. . . N.

Due to the assumed periodicity, the shift of $\frac{S}{4 N}$ will not require going outside of $\left[-\frac{\mathrm{f}_{\mathrm{S}}}{2}, \frac{\mathrm{f}^{\prime}}{2}\right]$ for points. We must only be careful as to which points will use $\frac{1}{2}$ as weights.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-Nattonal Aeronautics and Spack Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Defails on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

