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Digital Fingerprinting Codes: Problem Statements,
Constructions, Identification of Traitors

Alexander Barg, Senior Member, IEEE, G. R. Blakley, and Grigory A. Kabatiansky

Abstract—We consider a general fingerprinting problem of
digital data under which coalitions of users can alter or erase
some bits in their copies in order to create an illegal copy. Each
user is assigned a fingerprint which is a word in a fingerprinting
code of size (the total number of users) and length . We
present binary fingerprinting codes secure against size-coali-
tions which enable the distributor (decoder) to recover at least
one of the users from the coalition with probability of error
exp( 
( )) for = exp(
( )). This is an improvement
over the best known schemes that provide the error probability
no better than exp( 
( 1 2)) and for this probability support
at most exp( ( 1 2)) users. The construction complexity
of codes is polynomial in . We also present versions of these
constructions that afford identification algorithms of complexity

( ) = ( ), improving over the best previously
known complexity of 
( ). For the case = 2, we construct
codes of exponential size with even stronger performance, namely,
for which the distributor can either recover both users from the
coalition with probability 1 exp(
( )), or identify one traitor
with probability 1.

Index Terms—Concatenated codes, fingerprinting problem,
identification error, list decoding, polynomial-time decoding,
separating codes.

I. INTRODUCTION

L ET be a finite alphabet of size . Suppose a dealer
distributes copies of a long string over available by

subscription to registered users of the system. Letbe the total
number of registered users. A copy assigned to theth user con-
tains a substring (a fingerprint); fin-
gerprints of different users are different. The goal of inserting
the fingerprint is to personalize the copy given out to the user,
and to rule out redistribution. Clearly, an individual user cannot
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resell his copy of without running the risk of being tracked
down. However, several users may collude in order to produce
an unregistered copy. In doing so, they face the problem of sup-
plying it with a fingerprint, which should, besides being dif-
ferent from each of their fingerprints, prevent from iden-
tifying members of the colluding group. Thus. the distributor

faces the problem of constructing a large set of fingerprints
(a fingerprinting code) that enables him to locate at least one
member of the colluding group. The algorithm of creating reg-
istered fingerprints is parameterized by a secret key. We as-
sume that the algorithm is publicly known; however, the partic-
ular value of is kept secret by the distributor.

A group of registered users that intend
to produce an illegal copy of will be called acoalition. The
goal of the coalition is to create a fingerprint of
the illegal copy so that is unable to identify users from .
Following [5], we assume that the members ofcan only alter
those coordinates of the fingerprint in which at least two of their
fingerprints differ, and refer to this as theMarking Assumption
(for more detailed discussion and motivation see [5]). Thus, it
is knowna priori that for every unless
there is a pair such that . What the
users are allowed to do in the last case is a part of the formal
description of the problem, made more precise in Section II-A.

The distributor faces the task of identifying one or more mem-
bers of the coalition of traitors provided that , where

is a parameter. The fingerprinting problem thus is to design a
set (a -fingerprinting code, or more
precisely, an ensemble of codes) in such a way that no matter
which coalition of at most users collude to produce an un-
registered fingerprint and no matter which algorithm the mem-
bers of use, the distributor is always capable of tracing at
least one of its members. This problem has been studied in dif-
ferent versions [1], [4]–[8], [13], [24], see especially [5] and [7]
for an expanded informal discussion of the problem and litera-
ture overview. As customary in information and coding theory,
we will address the existence question of families of-finger-
printing codes with the number of codewords growing exponen-
tially with the length of the code. In other words, to accommo-
date users, the distributor inserts order fingerprint
digits. The answer depends on the rules that the members of
(parents) are allowed to follow to create(a descendant). As
already remarked, when all the values coincide, then
must be of the same value. If some differ, then the fol-
lowing two basic strategies employed by the users appear in the
literature. Under the narrow-case fingerprinting problem, every
coordinate of can be chosen from the set of entries that its par-
ents have in this coordinate [1], [6]–[8], [13]. Under the general
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or wide-case problem, once there is a choice for, it can be
any letter from the alphabet. As suggested by [5], both cases can
be expanded by allowing the users to make some symbols un-
readable, or erased.

The narrow-case fingerprinting problem was expressly for-
mulated in [13], where it was also proved that for and

, there exist codes providing exact identification of at
least one traitor with exponentially many codewords. For arbi-
trary this was proved in [1].

In the binary case, it turns out that exact identification of even
one traitor is generally impossible. Therefore, we will allow
some error rate, i.e., with low probabilitythe decision taken by
the distributor can be wrong. Best known results in this problem
were accomplished in [5], where the tradeoff between the size
of a fingerprinting code and the probabilitywas considered.
The best decline rate of the probabilityaccomplished in [5]
is , irrespective of the code size (e.g., even for
very small codes, for instance, of constant size). The question of
attaining exponential code size and exponential decline of error
rate with the length of the code, natural from information-the-
oretic point of view, was left open in [5].

Furthermore, the construction of [5] in the part of identifying
a guilty user relies upon complete (maximum-likelihood) de-
coding of a random code. The best known algorithms for this
(NP-hard) problem require complexity of order . In this
paper, we will, relying on coding theory methods, present code
families of size with . Both the
complexity of constructing codes and of their decoding grow as

.
In Section II, we will give a precise statement of the problem

with the aim of placing it in the standard information-theoretic
context. This is worthwhile to do because rigorous statements
of the digital fingerprinting problem do not appear in the liter-
ature, and moreover, because this enables us to establish rela-
tions between different versions of the problem. In formulating
the problem, one faces a number of choices related to the worst
versus average case. While in information theory there is an ac-
cepted standard, in the field of digital fingerprinting the situation
is unsettled. We give a version of the definition geared toward
worst case performance, which is consistent with the code con-
structions known in the literature and suggested in what follows,
and also corresponds well to the nature of cryptographic prob-
lems. We conclude Section II by discussing previous results and
goals of our paper.

One of the new ideas in code construction introduced in this
work is the use of separating codes, which we briefly discuss in
Section III, explaining also the reason for them to enter the fin-
gerprinting problem. Section IV is devoted to constructions of
binary fingerprinting codes. The constructions employ concate-
nation of two codes which proved useful in this problem (see
[5]): a long outer code and a shorter inner code. The code

is error correcting with large minimum distance; the code
has a -separating property (see [14] and the survey [21]) and is
used to separate law-abiding users from those committing fraud.
The distance properties of enable us to amplify this separa-
tion. Section V gives identification algorithms of the distributor
of complexity polynomial in the length of the codes constructed.
This result is possible due to a surprising recent discovery of de-

coding algorithms of algebraic-geometry (“evaluation”) codes
that in polynomial time correct far more errors than half the min-
imum distance of the code [11].

II. STATEMENT OF THEPROBLEM AND PREVIOUSRESULTS

A. Problem Statements

Let us assume some ordering of the users and write them as
. Let be the set of all -ary words of length

. For two words let denote the Ham-
ming distance between them. Any subset is called
a code of length ; if we say that is a code of
size and denote its parameters by . The number

is called therate of . If is a prime
power and is a linear -dimensional subspace of , it is
called a linear code. Here, is the minimum distance
of (sometimes we omit it from the notation). The distance be-
tween a word and a subset is defined as

The distributor assigns to the usera fingerprint
. The set of fingerprints forms a code

. As we show later (Propositions 2.3 and 2.6), in many
important cases using a single code does not enable the dis-
tributor to solve the fingerprinting problem, namely, to locate
a member of the coalition. Therefore, the distributoruses
a family of codes , choosing a particular code
with probability . More specifically, by the code we
mean anorderedset of vectors , so that

. Here ranges over some set of
possible keys. In the constructions that follow, we will assume

that . However, in the general problem statement
of this section can be an arbitrary distribution.

Having observed a fingerprint, the distributor identifies
user as delinquent with some probability that depends both on

and on the specific code (key) used. Hence, the most general
decision rule of can be described by a conditional probability
distribution . The distributions and
and the family of codes are publicly known. The only infor-
mation kept secret by is the specific value of .

Let be a coalition of users that col-
lude to create an unregistered fingerprint. Let

be the fingerprints assigned to the members of
(for brevity we write instead of ). The word is taken
from a subset , called theenvelopeof .

Particular ways to form the envelope are discussed later in
more detail; for the moment, it can be assumed arbitrary. We as-
sume that the members of attempt to confuse the distributor
by choosing a particular value ofwith some conditional prob-
ability , where is the set of their fingerprints. Again,
the distribution describes in the most general way the
strategy that the members ofuse to confuse the distributor.

The distributor’s probability of error in identifying a member
of can be written in two ways
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(total probability of identifying user as guilty for all ),
or

(probability of error for a given code averaged over the choice
of the code).

Let

be the error probability under theoptimal strategy of the
coalition (note that [5, Definition IV.2] implies a weaker attack,
namely, only the uniform distribution on ). Thus, the
maximum probability for to incriminate an user that is not a
member of equals

This quantity still depends on the strategy of ,
the choice of the family of codes , and the probability

to choose a particular code . It is natural to assume
that the distributor performs these choices to minimize the value
of . The resulting probability is a function of the quadruple

and the type of , and equals

(1)

If the number of keys (codes in the family) is unrestricted,
then we can introduce the value

(2)

Note that the total number of codes of sizeis bounded above
by , which is also an upper bound on the numberof keys
in this formula.

The generalfingerprinting problemis to find
and codes and the optimal strategy ofthat achieve this error
rate. With some abuse of language, a family of codes that en-
ables to identify at least one member of as long as
(possibly, with error probability) will be called a -secure code.

Given a -subset we now define the envelope .
If then is called adescendantof and any

is called aparent of . Following [5], position is called
undetectablefor if the values of the words of match in
their th position: .

Denote by the set of positions undetectable for. By
the marking assumption, the coalition cannot change the values
of undetectable positions. If the position is detectable, then there
are several options for the coalition to fill it. We will consider
the narrow-sense and wide-sense envelopes and their expanded
versions.

Thenarrow-senseenvelope is defined as follows:

The fingerprinting problem thus defined was studied in [1], [6],
[7], [13], [24] (in the case of zero-error code constructions for
the narrow case are also called codes with the identifiable parent

property or IPP codes). Thewide-senseenvelope is de-
fined as follows:

for

Both and can be generalized to the expanded case
under which the coalition is allowed to generate unreadable (or
erased) symbol in detectable positions. In particular, the ex-
panded wide-sense envelope is defined as follows (see
[5, Definition II.3]):

for

It is clear that

(3)

and

(4)

Note that these inequalities are also valid for the probabilities
from (2).

B. Properties of Different Versions of the Problem

In this subsection, we establish some relations between fin-
gerprinting problems formulated above. We begin with a result
that shows equivalence of the expanded wide-sense problem

and the wide-sense one ( ).

Proposition 2.1: For any family of codes and
any probability distribution , the error rate of the distributor

optimized over its strategies is
the same for the expanded fingerprinting problem and the wide-
sense one.

Proof: Clearly, the error rate achievable for the nonex-
panded problem does not exceed the error rate for the expanded
case. To show the converse, consider an arbitrary family
of codes for the -case together with some probability
distribution defined on it. Let be the optimal
decision rule for these codes and this . Then, for
the expanded case, define the decision rule as follows:

, where if and
otherwise, and where is a fixed element of the

alphabet. The transformation establishes a mapping
from the set of strategies of the coalition for
the expanded wide-sense envelopeon the set of strategies
for the wide-sense envelope, defined as follows:

Clearly, the error probability of for the expanded case
under the strategy and any given strategy of equals
the error probability of for the nonexpanded case under the
corresponding strategy of. This proves the proposition.

The next corollary follows on replacing an arbitrary code
family and a probability distribution by the optimal ones for the

-case.

Corollary 2.2: .
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Note that for the narrow-sense envelope an analogous claim
does not hold since, on the one hand, for the nonexpanded case
there exist -secure zero-error codes of exponential size (for

), and on the other hand, for the expanded case the size of
any -secure code is at most(Proposition 2.6). The argument
of the proof of Proposition 2.1 fails in this case at the step of
setting up the correspondence . Nevertheless, in the bi-
nary case, the one most often encountered in the literature, the
wide-sense envelope is the same as the narrow-sense one. This
leads to an important conclusion:all the four statements of the
general problem in the binary case coincide.

In the problem of digital fingerprinting, special attention was
devoted to the case of exact recovery . Note that the
zero-error requirement is a very stringent condition. Indeed, if
a single code is used and , then even for

, so zero-error -secure, or -IPP codes of nonzero rate
do not exist. If , it is possible to construct zero-error
-secure codes of exponential size if (see [13] for the case

and [1] for arbitrary ).
However, nontrivial zero-error codes do not exist for the three

other types of envelopes considered. Namely, we will estab-
lish that for the wide-sense envelopeand for the expanded
narrow-sense envelope not only the exact recovery ,
but also relatively small error probabilitycannot be achieved
by a single code.

For a fixed-code family we will write to refer to error
probability of the distributor in identifying a guilty user under
the minimax formulation

We begin with a simple technical remark that for any a wide-
sense -secure code and its subcode

(5)

Since the family consists of a single code, there is no distinction
between a coalition and a subset of codewords, and the proof of
(5) is obvious from the following inequality:

The next proposition builds upon the fact that if the system
is based on a single code, then the members of the coalition
know not only their fingerprints but also the fingerprints of all
the other users.

Proposition 2.3: Let be a wide-sense-secure code of size
. Then

(6)

Proof: We again identify the users and the codewords as-
signed to them. Let be the set of fingerprints
assigned to a coalition . The coalition creates a fingerprint

using the following deterministic strategy. Since the code
is publicly known, chooses an arbitrary subcode of
size formed of its fingerprints and some other codewords

. Let be a given coordinate. If there exist at

least vectors among whose th coordi-
nates are all the same (and equal to some) then the coali-
tion necessarily contains one of these vectors. In this case,

sets . If this condition does not hold, then theth po-
sition is detectable for the coalition and is set to , where

is some fixed element of the alphabet. It is easy to see that
for any , .

Consider any strategy of , i.e., a set of probabilities
. Suppose, without loss of generality, that

Then, the probability of identifying a member of the coalition
is

Hence,

Conclude by (5).

Corollary 2.4: Let . Then

Proof: Let be a family of wide-
sense-secure codes. There is a keysuch that its probability

. Consider the same strategy of the coalition as in
the proof of Proposition 2.3, assuming that . Then

In what follows, we do not consider codes with code-
words, which we call trivial. The proof of Proposition 2.3 also
shows that for any code such that , where

, the error rate . Hence, the error
rate for any nontrivial code . We obtain
the following result.

Corollary 2.5: Let be a wide-sense-secure zero-error
code. Then .

Recall a result in [5] which shows that zero-error recovery is
impossible with a single binary-secure code with .
The above sequence of results develops this by establishing a
limiting tradeoff between the error rate and the size of the family
for any alphabet size ; in particular, for a single code we have
the estimate (6).

The same reasoning can be applied to the expanded narrow-
sense problem.

Proposition 2.6: The results of Proposition 2.3 and Corol-
laries 2.5 and 2.4 are valid if the wide-sense problem is replaced
by the expanded narrow-sense problem.

Proof: Let be a subcode of the code
. Let us modify the strategy of the coalition defined in the

proof of Proposition 2.6, replacing with and leaving the
rest unchanged. Now the argument of that proof can be applied
verbatim to the case considered.
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Thus, we arrive at the following important conclusion. Under
all problem statements except the narrow case, we have

In other words:to achieve exponential decline of the error rate
the number of keys has to grow exponentially with the length
of the fingerprint. Note that this growth order of the number of
keys will be achieved in the constructions of Sections IV and V.

C. Previous Results

We have seen that in the case of binary codes, first considered
in Boneh and Shaw [5], all the versions of the fingerprinting
problem considered above coincide. It is proved in [5] that it
is not possible to solve the fingerprinting problem by using a
fixed assignment of fingerprints to the users and suggested in-
stead to use random choice of a code from a given code family.
This enabled the authors of [5] to construct families of-secure
binary fingerprinting codes. This construction is the
best known in the literature from the point of view of code pa-
rameters.

Theorem 2.7 [5, Theorem V.5]:There exists a family of-se-
cure binary fingerprinting codes with error probability
, where

Solving this for and putting , we obtain
. Thus, in the construction of [5],

cannot decrease faster than and then
. On the other hand, as proved in [5, Theorem VI.1], for

any family of codes

and so it might be possible to construct codes with error prob-
ability falling exponentially with . For this reason, [5] puts
forward the question of tightening the gap between the known
bounds and constructions. The main goal of this paper is to
resolve this question by constructing codes with exponentially
small probability of identification error and the number of words
growing exponentially with , and to show that this performance
is attainable with polynomial complexity of code construction
and decoding.

Another parameter of the problem whose importance has not
been singled out in previous works, but was emphasized in this
section, is the number of keys in the fingerprinting scheme. It is
desirable to have as few keys as possible because the distributor
must store the key bits in order to manage the system. The best
known scheme [5] does not invoke this parameter explicitly, re-
ferring instead to a random code of length and size .
Suppose that , then the total number of keys
is , i.e., , and hence must
store bits of information. In contrast, we will obtain

, which by Proposition 2.6 is the best possible
order of magnitude.

III. SEPARATING CODES

In this section, we establish relationships between separating
property of codes and fingerprinting. A-ary code is called

-separating [14] if for any two disjoint subsets ,
such that there holds

In other words, for any two disjoint subsets with ,
there is a coordinatesuch that

In what follows, we assume that because the case
is trivial.

Separating codes were studied in [14], [18]–[21], [15], and
also under the name of secure frameproof codes in [25] and of
partially identifying codes in [8].

Lemma 3.1:For any single code which is not -sepa-
rating, the identification error probability for the
narrow-sense as well as the wide-sense envelope, expanded or
not.

Proof: If the -separating property does not hold, then
there exist two disjoint subsets such that ,

, and . Let . Suppose
that the strategy of both coalitionsand consists of choosing

as the fingerprint. Then, irrespective of the strategy of, the
error probability of deciding between and , and thus the
worst case error is bounded below by .

It was noted in the literature that separation is necessary (but
not sufficient) for narrow-sense zero-error identification. In the
context of probabilistic fingerprinting this remark is new.

Lemma 3.2:For any single -separating code , the
identification error probability for the
narrow-sense as well as for the wide-sense envelope, expanded
or not.

Proof: Consider any size-coalition and any
strategy of generating the fingerprint. The distributor’s
probability of correctly identifying a member of is at least

by the following strategy: finds any coalition such
that and identifies randomly a user .
Since is -separating, we have ; thus,
with probability .

We are especially interested in the particular case ,
which received extensive coverage in the literature (see the
survey [21]). In this case, the identification error proba-
bility of any single -separating code equals

for narrow- or wide-sense envelope, expanded
or not. In three out of four cases, this is optimal for a single
fingerprinting code.

Lemma 3.3:Let be a -separating code.
Then

Proof: By Propositions 2.3 and 2.6, we have
for or . On the other hand, letbe a fingerprint ob-
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served by the distributor. Consider the set of all pairs such
that . By the -separating property, either all
such pairs have a common element, or there are three pairs that
form a triangle configuration . In
the first case, outputs the common element, and then
. In the last case, the strategy ofis to take a random element

from the triple , and then .

Hereafter, we focus on the binary case. Let

-

be the maximum rate of -separating codes of lengthand
let

(7)

be the maximum achievable rate of -separating codes (as
usual, it is not known if this limit exists; if it does not, then the
bounds below should be formulated under the or
definition, as appropriate). If , we use a short notation

. Existence bounds on -separating codes were studied
in [14], [18]; the best known bound [18] gives for the asymptotic
rate of linear codes the value

On the other hand, it is known that asymptotically
for linear codes [21] and for arbitrary codes
(see [15], [21]). Paper [21] also contains tables of -sepa-
rating codes. For instance, the well-known code
is readily seen to be -separating. Below, we use a
code from [21] at the inner level to construct a-secure finger-
printing code with very low probability of identification error
(see Example after Theorem 4.4).

It is clear that binary linear -separating codes do not
exist for . In the unrestricted case, the existence
of -separating codes is established by a standard proba-
bilistic argument (“random coding with expurgation”); see [20],
[15] for . We have the following.

Proposition 3.4: Let . There exist binary -

separating codes of length and size , where
, i.e.,

Proof: Consider a random binary code and
compute the expectation of the number of pairs of subsets

of the code , , that contradict the
separating property. Whenever then

codes with the separating property exist.
The probability that a given pair and violate the sepa-

rating property is

The expectation of the number of pairs that violate the
separating property is

Take

then

Finally, note that .

Note that [14] gives an asymptotic bound
which is somewhat weaker than this result.

IV. CODE CONSTRUCTIONS

A. The Case of Arbitrary

We will be concerned with binary codes . Recall
again that all the statements of the fingerprinting problem in
this case coincide. To construct a family of fingerprinting codes

we use the idea of concatenation [10]. Recall that a binary
concatenated code of length and size is formed by a
binary inner code and an -ary outer code of length

and size based on a fixed one–to–one mapping of the
-ary alphabet to . For every codeword , the word of

the concatenated code is obtained by replacing coordinates of
with the corresponding codewords of.

Consider as the inner codea binary -separating code
of length and size . We choose a-ary
linear code as an outer code. Since we need to obtain a family
of codes , our construction also involves random bijections

, where is the field of
elements. Restrictions on the parameters of the codesand
will become clear when we analyze the construction.

Consider vector mappings , where
each , is an arbitrary bijection. Let us number
these mappings from to in an arbitrary order and write

to refer to the th mapping. A typical codeword of is
obtained by taking a codeword and
computing the binary -vector

The mapping is chosen by with uniform distribution and
constitutes the secret key. The length of the codeis , the
size . Each user is assigned a fingerprint given by a
code vector in . It will be convenient to identify the users with
the code vectors of the code (note that . The

-separating property of will be essential for the entire
scheme.

Assume that a coalition generates
a fingerprint
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where the subblocks are length- binary vectors. The de-
cision algorithm of the distributor first proceeds with “de-
coding” of every vector with the inner code and then de-
codes the result with the outer code.

Algorithm 1:

1) The first stage is decoding of the code. For a given
take an arbitrary-set of code vectors from

that can generate, i.e., such that .
Define the set , where .
The result of the first-stage decoding is given by the set

2) The distributor identifies a possible member of the
coalition as the user that corresponds to the code vector

such that

where

We note that this algorithm has two nonstandard features. The
first-stage decoding outputs a subset (alist) of the words. This
differs from the standard decoding algorithm of concatenated
codes (which is also [5, Algorithm 2]), where it is assumed that
this output is a single codeword. In the second stage, the algo-
rithm looks for a nearest code vector of to thesubset rather
than to one “received” word.

The reason that this algorithm and its subsequent modifica-
tions will work for the identification problem is that the number
of occasions that coordinates of a code vector fall in the set
is a random variable whose average is greater when the code
vector is a member of the coalitionthan when it is not. Hence,
the probability that the distributor identifies incorrectly a code
vector as a member of the coalition falls exponentially with the
length of the code .

We will use the following standard bounds on large devia-
tions. Let be independent Bernoulli random variable equal to

with probability and with probability . Then the prob-
abilities of the tails can be bounded as

if

if

where
is the information divergence of two binomial distributions.

Theorem 4.1:Let be a -ary linear code
with

and let be a -separating binary code. The family
of concatenated codes with inner code , outer code

, and the set of all bijections , together with the

decision rule defined by Algorithm 1, forms a binary finger-
printing code of length with code vectors (users)
that identifies one traitor with error probability

(8)

where .
Proof: Let be the multiset of theth

coordinates of the vectors in the coalition. We denote the
number of distinct elements in by . Since for the sets
and , their images under the bijection can generate the
same vector and since the inner code is -separating,
we have . This implies that ,
and hence .

On the other hand, for any , the element can be
included in the list for one of the two reasons. The first pos-
sibility is that , and the number of such positions is at
most since any two distinct vectors from coincide
in at most positions. The other option is that the map-
ping of to matches the random bijection . To compute
the probability of the last event, note that, by assumption, we
have , thus, . Since the bijections are
chosen randomly and uniformly, we obtain

(9)

Now let us bound above the probability that for
a particular vector . Let be independent Bernoulli random
variables equal to with probability and with probability

. Then, for

(10)

where in the last step we relied upon the inequality
implied by the condition on in the statement

of the theorem. Now

Let us substitute the bound on the last probability. Taking
the logarithm of the right-hand side and using the definitions

and , we obtain

which is the same as (8).

Remark: The theorem yields nontrivial results, i.e., the ex-
ponential decline of the distributor’s probability of incorrectly
identifying a user as guilty, when the outer codehas large
distance . It is well known [19] (rediscovered in [25]) that con-
catenation of an inner separating code with an error-correcting
outer code with large distance gives a longer sep-
arating code. We would like to stress that the separating property
(renamed in crypto literature as secure frameproof property) is
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not sufficient for identifying members of the coalition. There-
fore, in the last theorem we perform a probabilistic analysis of
the random ensemble of codes which amplifies the separating
property to achieve a desired fingerprinting performance. Note
also that concatenation of a fingerprinting inner code with an
error-correcting code used in [5] does not lead to asymptotically
good fingerprinting codes.

Let us use the general construction of this theorem together
with specific choices of codes to present a few families of easily
constructible -secure fingerprinting codes. These constructions
will enable us to claim overall code rate separated from zero
together with exponentially small probability of identification
error for . We will tacitly assume that for a fixed
choice of the codes and , the family of codes is
obtained by applying random mappings ,

to the coordinates of vectors in . In the fol-
lowing, we focus only on the choice of the codes.

Take to be a long binary -separating code of length
and rate

(see Proposition 3.4) and a extended Reed–Solomon
(RS) code of rate over . Substituting these
parameters into Theorem 4.1 and taking into account that

for fixed and growing, we obtain the following result.

Corollary 4.2: For any fixed and any rate ,
a binary fingerprinting code of lengthwith code vectors
(users) constructed by concatenating the codesand iden-
tifies one traitor with exponentially decreasing error probability

Now let us take to be a fixed binary -separating
code, where is an even power of a prime. This choice is pos-
sible due to Proposition 3.4. Let us take the outer codeto
be a long algebraic-geometry (AG) code from a maximal curve,
whose parameters asymptotically approach the bound

[27].

Corollary 4.3: For any fixed , any that is an
even power of a prime, and any rate , where

is the root of the equation

(11)
a binary fingerprinting code of length and size con-
structed by concatenating a fixed inner code with
the -separating property and AG codes of rate

and growing length , identifies one traitor
with exponentially falling error probability given by (8).

Proof: By Proposition 3.4, for any , there exists a binary
-separating code of length , size

and, thus, of rate . Hence, for a constant and
sufficiently large , it is possible to find a code of sizesuch
that satisfies the conditions of the corollary. Consider a-ary
AG code of length and rate such that for
large , its distance satisfies

By Theorem 4.1, the error probability of identification will
fall exponentially if and

(12)

The inequality

is equivalent to the inequality , where

It is immediate to verify that the condition im-
plies that . Hence, the upper bound (8) holds true if

.
Next, let us show that the segment of values of that sat-

isfy (12) is a proper subset of . This is immediate since
for , is a positive decreasing func-
tion of which reaches zero when , and
the middle part of (12) increases from zero to . Hence,
(11) has a (single) root, , and for all

, inequality (12) holds true. This completes the proof.

Note that the codes of Corollary 4.3 are polynomially con-
structible. Indeed, by a recent result of [22], the construction
complexity of the code for them is , and the
complexity of constructing the code is constant, independent
of .

B. The Case

A usual assumption in digital fingerprinting is that it is not
possible to recover “the entire coalition since some of its mem-
bers might be passive” (see, e.g., [5, p. 1899]). Therefore, the
fingerprinting problem was restricted to finding one guilty user
with high probability. In the case of size-coalitions, it is pos-
sible to construct a family of fingerprinting codesthat have
a stronger property than in the original definition. Namely, the
distributor either recovers one member of the coalition

with probability one (zero-error), orbothmembers with
probability .

To construct a family of fingerprinting codes in
the case of , we use the same general idea of concatena-
tion as for arbitrary , with a somewhat different decision al-
gorithm. The construction involves a binary -separating

linear code [18], a -ary code,
, and random bijections , .
Encoding, or the fingerprinting assignment procedure, is

the same as above. Namely, the fingerprint corresponding to
a vector is obtained by computing

. The length of the code is
and the size is . As before, we identify the users

with the code vectors of the code .
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Assume that a coalition generates a fin-
gerprint , where the subblocks are
length- binary vectors.

Let us first describe inner decoding, which will be dif-
ferent from the general case. Recall that , and so the
narrow-sense envelopeand the wide-sense envelope are
the same. By definition, the subblock is contained in the
envelope , where and .
Consider all possible pairs of code vectors from
the code such that . By the -sepa-
rating property, all these pairs should intersect. Hence, either
there is a vector that is an element of every such pair (a
star configuration), or there are three such pairs that form
a triangle (cf. Lemma 3.3). In the first case, the
decoding result is given by ; note that

. In the second case, the result is given by thelist

and .

Algorithm 2:

1) The columns of the observed fingerprint
are independently decoded with the code. The de-

coding result of the -vector is either a single ele-
ment of or a -subset of . The result of this step is
the set

2) Denote by the subset of coordinates in which
and let ; . If there
is a vector such that the number of agreements

then the distributor identifies as a member of .

3) If the condition of the previous step is not satisfied, the
distributor finds all code vectors such that

for all and identifies and as any two of
them.

This procedure enables to find either both users from
with probability close to , or one user from with proba-
bility .

Theorem 4.4:The family of codes together with
the decision rule given by Algorithm 2 forms a binary finger-
printing code of length with code vectors
(users) that either identifies one traitor with probabilityor both
with probability of error

Proof: Let be a fingerprint gen-
erated by a coalition . Suppose that inner
decoding of results in a set . As we pointed out earlier, for
all we have . Hence, for any
the number of agreements

Therefore, outer decoding in Step 2 of Algorithm 2 can yield
only an element of (or maybe both of them). If outer decoding
gives no output, then because

In this case, , and both for
all .

Now observe that for , its coordinate can
be included in the list either because , and
the number of such positions is at most , or if

, then it can be included in with probability

because the random bijection is not known to the mem-

bers of , except for the (two) values and .
Hence, for all , the probability

for any vector . Therefore, the probability that
at least one vector from the code that is distinct from ,
will satisfy the condition of Step 2 is at most

. This proves the theorem.

Example: Take a -separating binary code [21]
as inner code , an extended RS code over , as
outer code , and all different vector mappings

, where the are bijections.
Then Theorem 4.4 states that the resulting binary fingerprinting
code of length and size either identifies
one traitor with probability or both with probability of error

.
Let us use Theorem 4.4 to construct specific families of codes.

Observe that, denoting , we can rewrite the
bound for as follows:

(13)
where the last step relies on the inequality
valid for all .

In particular, let us take an RS code. We obtain the fol-
lowing.

Corollary 4.5: For any rate ,
there exists a family of fingerprinting codes of length

with code vectors (users) that either identify one
traitor with probability or both with probability of error

, where
and .

Proof: Take a separating linear code. By
Proposition 3.4, for large there exists a code of rate arbitrarily
close to . Take , an extended RS code over

of rate . The estimate of is obtained
from (13) by direct substitution.

Remark: Codes of Corollary 4.5 have a stronger property
than codes of the previous section for the case of , namely,
the error-free recovery of one user from the coalition or of both
users with a small probability of error. This is achieved in ex-
change for a drop of the maximal achievable rate of codes by a
factor of (cf. Corollary 4.5 versus Corollary 4.2).
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Now let us concatenate a -separating binary
code with a family of AG codes from maximal curves
over . We assume that the rate is fixed and let
grow. Then the parameters of approach the bound

. The parameters of the resulting code family
depend on the choice of the code. For instance, we have the
following result.

Corollary 4.6: For any rate there exists a
family of fingerprinting codes of length and rate that either
identify one traitor with probability or both with probability
of error .

Proof: Let be the -separating binary
code of rate [8] and

be an linear code from a family of maximal curves
over . For large we have . Using
this in (13) gives the claimed bound on.

Note that construction complexity of codes given by Corol-
lary 4.6 grows polynomially with the code length.

V. IDENTIFICATION (DECODING) ALGORITHMS

In this section, we address the algorithmic side of the re-
covery problem of the users from the coalition. This question
was essentially sidestepped in the literature. A notable excep-
tion is work on tracing traitors [6], [7] which discusses identi-
fication complexity for the narrow-case fingerprinting problem.
However, these papers, as well as [5], only give algorithms with
complexity linear in the number of users of the system, i.e.,
in our terms, exponential in the length of the fingerprinting code.
Here, we give algorithms of complexity
that ensure exponential decline of the error probability.

Conceptually, we face a problem of decoding of two-level
concatenated codes. In the case of error correction this problem
has a long history in coding theory literature [10], [9]. Decoding
can be accomplished, for instance, by exhaustive search per-
formed for the inner-level code and some algebraic algorithm
for the outer code. Following this pattern, we analyze the de-
coding algorithm formed of the following steps.

Recall the parameters of the inner code and
of the outer code which will be assumed

an AG code. Here, by we mean the designed distance of.
We will confine ourselves to the so-called one-point AG codes.
A one-point code is a geometric Goppa codeconstructed in
a usual way from a (smooth projective absolutely irreducible)
curve over with rational points . Namely,
let be a basis of the Riemann–Roch space of
rational functions on associated with a divisor of the form

. Then the set of vectors ,
in forms a basis of the code . For this reason,

all the codes obtainable in this way are sometimes called
evaluation codes. In particular, if we take to be the projective
line over and , then the space of functions is formed
by all the polynomials of degree at most. The dimension of
this space is , and we obtain an RS code.

Suppose that a coalition generates a fin-
gerprint . The distributor first performs de-
coding of every column with the inner code . The result of

this decoding for theth column is any coalition of sizewhose
envelope contains . Upon inner decoding of all the we ob-
tain a subset

of -words over . The objective of outer decoding is to find
a vector that minimizes the distance from the
code to the “received” subset. A straightforward approach to
this problem requires runs of some conventional decoding
algorithm, which results in exponential running time. Further-
more, until recently all known algebraic algorithms could cor-
rect only about errors (the so-called bounded distance de-
coding). Note that even if the set is of size , it does not help
to use a bounded distance decoding algorithm because we need
to correct, roughly speaking, errors. To
show this, recall that users in the coalition can create any vector

that is contained in their envelope. Consider the following fin-
gerprint vector , where (assuming that
is integer)

Then, , so , and for every vector
we have . Fortunately, the recently found
list decoding procedures of AG codes correct many more errors,
outputting in polynomial time a small (polynomial-sized) list of
code vectors. More precisely, we have Guruswami–Sudan (GS)
decoding [11], [12]. Let be a -ary (one-point) AG code with
parameters . Let be a matrix of
nonnegative integers. There exists an algorithm which finds all
the codewords that satisfy the inequality

(14)

where is the -norm of . The number of
these codewords is bounded by a polynomial function of. The
implementation complexity of the algorithm is also polynomial
in . Implementation details for the RS and one-point AG codes
together with complexity estimates are worked out in [17], [12].

This formulation of the decoding algorithm is motivated by
the soft-decision decoding setting. In that context, the matrix
describes reliabilities of symbols of . For this reason, in the
following we call the value the reliability of the vector .
The original list decoding algorithm of [11] that works with a
particular “received” vector is obtained
by putting (ones for the values that correspond to
the and zeros elsewhere). In this case, by (14), the algorithm
will find a list formed of all the codewords of the
code that satisfy . The size

is again bounded by a polynomial function of.
Note that if our goal is to output one decoding result rather

than a list, we choose a vectorfrom whose reliability
is the maximum of all the code vectors in. In particular, for the
basic version of the algorithm which builds a list of code vectors
in a sphere of radius around a given point

, we can choose a vector whose distance tois the smallest
among all the members of . In other words, this algorithm
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enables one to correct, whenever possible, a number of errors
greater than half the minimum distance of the code.

This observation explains the usefulness of the list decoding
methods in the fingerprinting problem. In the following subsec-
tions, we will show a way to find a member of the coalition as
a most reliable code vector, maintaining the overall polynomial
complexity.

A. Identification in the Case of Arbitrary

Consider the family of binary fingerprinting codesformed
by concatenating a binary -separating code of
rate with outer -ary
AG codes .

Consider the following identification procedure for the ob-
served fingerprint .

Algorithm 1 :

1) For every , find the subset of symbols
of corresponding to an arbitrary-tuple of vectors of
such that is contained in their envelope. To accomplish
this, the distributor performs a lookup of at most -tu-
ples of vectors of . (Same as Step 1 of Algorithm 1.)

2) Form a matrix , setting for
if

if

3) Use the GS algorithm with the code and matrix as
the input to obtain a list of code vectors of
that satisfy (14). If , find a vector from such
that the value . Identify as a member of the
coalition .

Remark: The reliabilities are chosen in a way suitable
for addressing the following decoding problem: given a subset

find a codevector of the code that minimizes the Hamming
distance between and . This generalizes the standard de-
coding problem for which .

Theorem 5.1:Let be a family of binary finger-
printing codes of rate with -separating
inner code of rate and outer -ary code
of rate and relative distance .

For any , there exists a value such that for
any and any , Algorithm 1 used
in conjunction with the codes has complexity and
identifies a member of the coalition with error probability

where , .
Proof: By definition, for every the subset contains at

least one of the coordinates of the vectors of the coalition.
Since for any , the value , we have

and, therefore, there exists a vector such that
. We shall prove that

i) satisfies (14), and
ii) the probability of incorrect identification satisfies the

claim of the theorem.

We begin with part i). By assumption, . On the
other hand, the right-hand side of (14) for our choice of the
matrix equals

Hence, the vector satisfies (14).
For part ii), note that

Therefore, let us estimate the probability that there exists a
vector such that . Denote by the
number of coordinates in which agrees with one of the
vectors in . Assume that these coordinates have numbers

. We have

If is one of the remaining coordinates, then by (9) we
have . Therefore, the probability of
mistakenly identifying a vector is estimated as follows:

where every is a Bernoulli random variable that takes the
value with probability and with probability . The
overall error probability of identification can be bounded as

. This quantity can be estimated as follows:

To complete the proof of the theorem, we have to show that for
our choice of the parameters the exponent

of this bound is a positive number. The exponent has the form

Its derivative can be checked to be negative for all
. Therefore, it suffices to check that for any there

exists a value such that for any
. The quantity

can be made arbitrarily small for large. The term is
zero for and positive otherwise. For any fixedthis
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term is a growing function of . Hence, for any there
exists a value such that for any

This completes the proof.

The value is easy to find numerically. For instance,
, , , etc.

This theorem is valid for any sequence of AG codes (in-
cluding the RS codes). To maximize the achievable rate of the
codes we can choose a sequence of AG codes [27] whose pa-
rameters for large approach the bound

This shows that for a given separating code of length
and size there exist sequences of-secure fingerprinting codes

with rate , where

The error probability of identification for codes falls expo-
nentially in the code length. Hence, taking sufficiently large
we derive the following result.

Corollary 5.2: Let be the maximum achievable rate of
-separating codes. For any rate ,

there exists a sequence of-secure fingerprinting codes of length
and size that allow polynomial-time identification with

error probability falling exponentially with the code length.

B. Identification Algorithm in the Case

The case is of special interest because it is possible to
modify the general decoding algorithm of the last section so that
it lends itself to a more accurate performance analysis.

Consider the family of fingerprinting codes of length
and size formed by concatenating a

binary -separating code ( is even) and a-ary
AG code . By Section IV-B,

after inner decoding the distributor forms a set

where some subsets are singletons (i.e.,-ary letters) and
some -sets of -ary letters. We recall the notation for the
subset of coordinates corresponding to the singletons and

for the subset corresponding to the
triplets; , .

Consider the following decoding procedure of the code
.

Algorithm 2 :

1) Apply the same procedure as in Step 1 of Algorithm 2 to
construct the set .

2) Form the matrix as follows:

where and .

3) Use the GS algorithm with the code and matrix as
the input to obtain a list of code vectors that
satisfy

If , identify an arbitrary vector from as a member
of the coalition.

The difference of this algorithm from the general Algorithm
1 is motivated by the fact that the setfor the case has
a particular structure described above.

Theorem 5.3:Let be a family of binary finger-
printing codes of rate with -separating
inner code of rate and outer -ary code
of length , rate , and relative distance .

For the family of fingerprinting codes, the identification
rule given by Algorithm 2has complexity and identi-
fies a member of the coalition with probability , where

Proof: Let be the vectors of that correspond to the
members of the coalition . At least one of these vectors, say

, satisfies the condition . Therefore,

On the other hand

Hence, by (14), the vectorwill be contained in the list .
Now let be another code vector. The number

of coordinates such that is not more than
. In these coordinates, the value or ac-

cording as or . In the remaining coordinates, which
necessarily fall in the subset, the value with proba-
bility . So denoting by a Bernoulli random variable
that takes the valuewith probability and with prob-
ability , we can write the reliability of the vector

as follows:

The probability of erroneously identifying can be
bounded as follows:
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The size of the code is . There-
fore, we finally obtain for the error probability of identification
the bound

as was to be proved.

Remark: Codes secure against coalitions of size two were
proven in Section IV-B to be able to restore either one user with
probability one or both with an exponentially small error proba-
bility. With a little more work, it is possible to attain this perfor-
mance with polynomial complexity. The details will be omitted.

The remarks made after the proof of Theorem 5.1 are also
valid for the result proved in this section. In particular, let us
combine the -separating binary code
with a sequence of AG codes over the field constructed
from maximal curves. We obtain the following result.

Corollary 5.4: For any rate there exists a se-
quence of -secure fingerprinting codes of lengthand size
that allow polynomial-time identification of one of the members
of the coalition with error probability .

This result follows immediately from Theorem 5.3. In partic-
ular, since , the error probability is at most

It is interesting to compare this result with Corollary 4.6. We
see that the exponent of the error probability in that corollary is
better than here for rates close to zero. On the other hand,
Corollary 5.4 gives a constructive family of codes with rates
much greater than in Corollary 4.5. Moreover, the error prob-
ability of the codes just constructed is uniformly bounded for
all the values of the rate , whereas in Corollary 4.5 the error
exponent depends on and approaches zero when the rate
approaches the maximum admissible value.

VI. CONCLUDING REMARKS: RELATED PROBLEMS

We considered properties and constructions of fingerprinting
codes, mainly for the binary case. Here we wish to discuss two
problems studied in the literature (see [24]) that are related to
our paper, and to state an open problem.

1) Codes with the identifiable parent property (-IPP codes)
and -traceability codes. As remarked in Section II-A, codes for
the narrow-sense fingerprinting problem with zero error are also
called IPP codes. This problem was suggested in [13], where it
was also proved that there exist-ary 2-IPP codes with positive
rate for every . The question of code existence for other
was discussed in [24] and settled in full in [1]: there exist-IPP
codes with rate if and only if .

A -IPP code has the traceability property [6], [7] if for
every fingerprint created by the coalition , the set of its
nearest neighbors in is contained in . It is known [6] that
a -ary code possesses the-traceability property if

. It is clear from the properties of the GS algo-
rithm that evaluation (AG or RS) codes with large distance pos-

sess the traceability property together with a polynomial identi-
fication algorithm. (After this paper was submitted, we became
aware of the paper [23] which works out the details of this idea.)

This application of list decoding is, however, limited as fol-
lows: to construct -ary error-correcting codes of rate bounded
away from zero, we must take (by the Plotkin
bound of coding theory). Hence, if traceability codes or effi-
cient IPP codes are constructed based on error-correction prop-
erties only, then no matter what the identification algorithm is,
nonzero code rate is obtained only if .

On the other hand, the ideas of the present paper, in a sim-
plified form, enable one to construct explicit families of-IPP
codes together with polynomial-time identification procedures
for any (this was suggested as an open problem in
[24]). This result is presented elsewhere [2], [3]. Independently,
similar results were obtained in [26].

2) Capacity of the fingerprinting channel(open problem).
Let us call the rate an achievable rate of the “fingerprinting
channel” if for any given there exists a positive integer

with the property that for every the best attainable
error probability of identification (2) satisfies

As usual, let us call the number

capacity of the digital fingerprinting channel for the envelope
. We have shown that for every given and

presented constructive code sequences with rate bounded away
from zero. The question of finding the capacity of the finger-
printing channel presents an interesting open problem.
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