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Abstract|The error di�usion algorithm for digital halfton-

ing is equivalent in form to a noise-shaping feedback coder,

a class of delta-sigma modulator. The white noise assump-

tion of the quantizer error is known to be false; in fact, the

quantizer error is seen to be highly correlated with the input

image. To account for this correlation, we use a gain model

for the quantizer. This model accurately predicts the edge

sharpening and noise shaping caused by all error di�usion

schemes. It also permits an extension of error di�usion to

oversampled imagery.

I. Introduction

In 1975, Floyd and Steinberg [1] introduced error dif-

fusion for halftoning grey-level images. Since then, re-

searchers have been trying to understand the mechanism

by which it works, in particular, how the error �lter a�ects

the halftoned results. The choice of the �lter coe�cients is

driven by three factors (in order of importance):

� Perceptual quality of the halftoned image

� Ease of computation

� Checkered output at mid-gray

By trial and error, Floyd and Steinberg found a �lter that

achieves good visual quality, has only four dyadic coe�-

cients, and produces a checkered output at mid-gray. (The

checkerboard output at midgray, however, is not a de�ni-

tive indication of the e�cacy of a halftoning algorithm, but

simply a measure that Floyd and Steinberg used.) Larger

�lters [2], [3], input-dependent weights [4], non-standard

scanning schemes [5] and optimal �lter design [6] have been

used to improve performance.

During the 1990s, the connection between error di�u-

sion and delta-sigma modulation has been published. The

equivalent circuit for error di�usion is identical to the noise

shaping feedback coder, a form of delta-sigma modulator

that is commonly used for wordlength reduction, for ex-

ample, in digital audio [7]. Delta-sigma modulation [8],

which predates the Floyd-Steinberg algorithm, has only

become popular in the last decade because of the need to

fabricate high-quality, low-cost data converters using VLSI
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technology. Delta-sigma modulation permits the use of a

low-resolution converter in a high-resolution application by

feeding back the quantization error to linearize the con-

verter and reduce the in-band quantization noise. Indeed,

it is possible to have a one-bit converter inside the feedback

loop; this technology has become widely used in consumer

digital audio products [7].

The similarity between one-bit digital-to-analog conver-

sion and halftoning by error di�usion is evident: both ac-

cept a high-resolution input and produce a single-bit out-

put that, as closely as possible, resembles the input in the

passband. In the audio industry, simulation is used to pre-

dict the performance of delta-sigma modulators [9]. In er-

ror di�usion, however, the much larger data sets make this

infeasible, and therefore a model which accurately predicts

performance is required. In this paper, we show how a

linear gain model for the quantizer is able to predict both

the edge sharpening and the noise shaping of error di�usion

schemes, allowing error �lters to be designed and optimized

automatically.

II. Background

The equivalent circuit of error di�usion is shown in Fig-

ure 1. The image is scanned and the current pixel, here de-

noted x(n), is quantized to one-bit resolution. The quan-

tization error is �ltered by a (possibly two-dimensional)

�lter H(z), and subtracted from the input. Because the

system is causal, the current pixel is not an input to the

�lter. Analysis of the noise-shaping feedback coder pro-

ceeds by assuming that thresholding is a linear operation

which adds white noise to the signal. While this is some-

what di�cult to justify mathematically, it at least makes

the system tractable, and can also lead to useful results.

quantizer

error �lter

H(z)

�

+
x(n) y(n)

x
0(n)

e(n)
�

+

Fig. 1. Noise-shaping feedback coder.
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Referring to Figure 1, in the z-domain, we have

Y (z) = X(z) +N(z) (1�H(z)) (1)

where we see that the signal is passed undelayed to the

output, and the noise is shaped by the factor 1�H(z). For

oversampling systems, H(z) is usually a lowpass function;

thus the noise response is highpass. This action is called

noise shaping|the quantization noise is moved from low

frequencies to higher frequencies, where it can be �ltered

out. For Nyquist-rate systems, in which all the quantiza-

tion noise falls in the signal band, H(z) may be any func-

tion which shapes the noise so that it is perceptually less

objectionable. The total quantization noise power does not

change, but the perceptually-weighted signal-to-noise ratio

improves. In error di�usion, we usually assume that the

number of input and output pixels are equal; that is, the

system operates at the Nyquist rate. Models of the human

visual system [10] indicate that the eye-brain system is low-

pass. Therefore, the function H(z) should be lowpass.

In summary, a digital halftoning scheme must perform

the same task as a one-bit delta-sigma modulator; namely,

reduce the wordlength of a high-resolution input to one

bit while shaping the quantization noise to increase the

perceived signal-to-noise ratio.

III. Modeling the Quantizer

The simple analysis that results in (1), as we have seen,

assumes that the quantization error is white and uncorre-

lated with the input. It has been shown that this is not

generally true for either 1-D [9] or 2-D modulators [11].

Knox demonstrated that the quantization error in the 2-

D case is in fact almost linearly correlated with the input

[11]. This suggests a model for the quantizer comprising a

gain block and a source of additive white noise, as shown in

Figure 2. The idea of modeling a quantizer as a linear gain

block has been used in the 1-D case [12], but has not been

applied to error di�usion before in the open literature.

Referring to Figure 2, we see that the quantizer has been

replaced by the cascade of a gain block of gain K and an

additive, uncorrelated white noise source, q(n). The error

signal becomes

e(n) = (K � 1)x0(n) + q(n) (2)

where x0(n) is the input to the quantizer. The system

with the gain model for the quantizer is still linear, and

+
error �lter

K

H(z)

�

+
x(n) y(n)

q(n)

gain block

x
0(n)

e(n)
�

Fig. 2. Model of noise-shaping feedback coder using gain block.

TABLE I

Computed values for quantizer gain K for various schemes

and images.

Input Image Floyd-Steinberg Jarvis Stucki

lena 2.11 5.21 4.42

boats 2.00 4.88 4.24

barbara 2.03 4.01 3.74

mandrill 2.05 3.69 3.51

Average 2.05 4.45 3.98

we analyze it in the z-domain as before to arrive at

Y (z) =
K

1 + (K � 1)H(z)
| {z }

STF

X(z) +
1�H(z)

1 + (K � 1)H(z)
| {z }

NTF

N(z)

(3)

where STF and NTF are the signal transfer function and

the noise transfer function, respectively. Note that (3) re-

duces to (1) when K = 1, as expected.

For a given error �lter and image, we can measure K,

allowing us to predict the STF and NTF. To measure K,

we halftone an image using a particular scheme and save

the error image e(n). The input image to the quantizer

is given by x0(n) = y(n) � e(n). Since we have x0(n) and

e(n), we can use (2) to compute K. We perform a linear

least-squares �t of x0(n) to e(n). The linear coe�cient is

an estimate of K � 1.

We conducted experiments to measure the value of the

gain K for di�erent error �lters and images. We chose

the original 4-tap error �lter by Floyd and Steinberg, and

the classic 12-tap �lters by Jarvis, Judice and Ninke [2]

(hereafter referred to simply as `Jarvis' for brevity) and

Stucki [3]. These results are shown in Table I. We see

that K is approximately 2 for the Floyd-Steinberg �lter,

approximately 4.5 for the Jarvis �lter, and approximately

4 for the Stucki �lter. The value of K shows some variation

between images. However, it appears from experiments

that the value ofK used to model the system is not critical.

By substituting the measured average value of K into

(3), we can compute the STF. The coe�cients of the er-

ror �lter usually sum to one, that is, H(z) = 1 at DC.

This ensures that the STF is unity at DC, and the NTF is

zero. Because H(z) is a lowpass function and appears in

the denominator of the STF, the STF rises at higher spa-

tial frequencies. Furthermore, the degree of high frequency

boost increases with K. This accounts for the noticeable

sharpening e�ect of all error di�usion schemes. The Floyd-

Steinberg scheme has a maximum gain of around 4 at the

Nyquist frequency, which is quite a mild boost, whereas

the Jarvis scheme boosts the high frequencies by as much

as a factor of 10.

IV. Evaluation of the Gain Model

By setting the values of K and H(z) in the system of

Figure 2, and by setting q(n) = 0, we can incur the edge
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(a) Original image. (b) Halftoned with the Jarvis algorithm.

(c) Processed with the gain model, K = 4:7. (d) Di�erence between (b) and (c).

Fig. 3. Demonstration of the accuracy of the gain model using the boats image.

sharpening e�ect of a particular algorithm, without adding

quantization noise. Figure 3(a) shows the original boats im-

age. (Note: all four images in Figure 3 are of size 256�256

pixels to allow accurate reproduction.) Figure 3(b) shows

the boats image halftoned using the Jarvis algorithm. There

is a noticeable increase in sharpness. Figure 3(c) shows the

image processed using the gain model, with K = 4:45 (the

average value from Table I). The edge sharpening seen in

this image is very similar to that of Figure 3(b), especially

around the masts of the boats and at the boundary of the

whole image, where ringing is evident. We further show

the accuracy of the gain model by computing the di�er-

ence between Figure 3(b) and Figure 3(c). We add a DC

o�set to make the image strictly positive. The result is

shown in Figure 3(d). It is clear that the bulk of the resid-

ual is quantization noise, indicating that the gain model

has accurately modeled the edge sharpening of error dif-

fusion. Further experiments show that the residual image

does not change appreciably for values of K within �1 of

the measured value. Thus the averages shown in Table I

can be used for most images without large error.

Our experiments show that, regardless of the measured

value of K, the noise transfer function always behaves as if

K = 1. That is, modeling the quantizer as a device which

adds uncorrelated white noise predicts the noise shaping

e�ect of error di�usion extremely well. We should probably

not be surprised that the model has di�erent values of K

for signal and noise, since the generation of noise in the
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Fig. 4. Predicted and measured noise transfer functions for the Floyd-Steinberg algorithm.

quantizer is a separate process from the ampli�cation of the

signal. The need to deal with signal and noise separately

has been noticed before [12].

For the Floyd-Steinberg scheme, the noise transfer func-

tion is given by

H(z1; z2) =
1

16

�
z�11 z�12 + 5z�12 + 3z1z

�1
2 + 7z�11

�
(4)

where z1 and z2 refer to horizontal and vertical frequency,

respectively. This NTF is shown in Figure 4(a). Figure

4(b) shows the actual NTF, measured by averaging quan-

tization noise spectra over many images. The close agree-

ment between theory and experiment also holds for other

error �lters. The Floyd-Steinberg NTF exhibits several de-

sirable properties, such as a zero at DC, smoothly increas-

ing noise power with frequency, and a bias towards the

diagonal direction, where the human visual system is less

sensitive [10].

V. Summary and Future Work

The gain model for the quantizer predicts the edge sharp-

ening seen in all error di�usion schemes. Although the

value of the gain K varies somewhat with the input im-

age, an average value can be used with little error. How-

ever, it is still necessary to measure K empirically using

test images. We note that the larger error �lters tend to

have larger values of K; we hope to discover the connec-

tion between the �lter coe�cients and the value of K so

that K may be predicted from the error �lter alone. This

will permit automatic error �lter generation, since both the

degree of image sharpening (which can be computed from

H(z) and K) and the noise transfer function (which can be

computed from H(z) alone) will be known. In conjunction

with a model of the human visual system, such as that due

to Mannos and Sakrison [13], error �lters can be designed

to optimize both the degree of sharpening and the noise

transfer function simultaneously.

We plan to design error �lters for oversampling halfton-

ing algorithms using the model. The common practice of

interpolating the original grayscale image and then halfton-

ing it with a conventional technique is wasteful of computa-

tion time and produces sub-optimal results. The blurring

e�ect of the interpolation �lter can be counteracted by the

sharpening e�ect of error di�usion; if the two �lters are de-

signed concurrently, higher quality images will be obtained

at lower computational cost. An obvious application is

printing, in which typically there are more pixels in the

printed image than in the original.
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