

Digital Hardware Aspects of

Multiantenna Algorithms

Fredrik Edman

Lund 2006

Department of Electroscience

Lund University

P.O. Box 118

SE-221 00 Lund

Sweden

Series of licentiate and doctoral theses

ISSN 1402-8662 No. 61

 iii

Abstract

The field of wireless communication is growing rapidly, with new requirements for the
next generation of mobile and wireless communications technology. In order to achieve
the capacities needed for future wireless systems, the design and implementation of
advanced communications techniques such as multiantenna systems is required. These
systems are realized by computationally complex algorithms, requiring new digital
hardware architectures to be developed. The development of efficient and scalable
hardware building blocks for realization of multiantenna algorithms is the focus of this
thesis.

The first part of the thesis deals with the implementation of complex valued division.
Two architectures implementing a numerically robust algorithm for computing
complex valued division with standard arithmetic units are presented. The first
architecture is based on a parallel computation scheme offering high throughput rate
and low latency, while the second architecture is based on a resource conservative
time-multiplexed computation scheme offering good throughput rate. The two
implementations are compared to an implementation of a CORDIC based complex
valued division.

The second part of the thesis discusses implementation aspects of fundamental matrix
operations found in many multiantenna algorithms. Four matrix operations were
implemented; triangular matrix inversion, QR-decomposition, matrix inversion, and
singular value decomposition. Matrix operations are usually implemented using large
arrays of processors, which are difficult to scale and consume a lot of resources. In this
thesis a method based on the data flow was applied to map the algorithms to scalable
linear arrays. An even more resource conservative design based on a single processing
element was also derived. All the architectures are capable of handling complex valued
data necessary for the implementation of communication algorithms.

In the third part of the thesis, developed building blocks are used to implement the
Capon beamformer algorithm. Two architectures are presented; the first architecture is
based on a linear data flow, while the second architecture utilizes the single processing
element architecture. The Capon beamformer implementation is going to be used in a
channel sounder to determine the direction-of-arrival of impinging signals. Therefore it
was important to derive and implement flexible and scalable architectures to be able to
adapt to different measuring scenarios. The linear flow architecture was implemented
and tested with measured data from the channel sounder. By analyzing each block in
the design, a minimum wordlength design could be derived.

The fourth part of the thesis presents a design methodology for hardware
implementation on FPGA.

 v

Contents

Abstract .. iii

Contents... v

Preface .. ix

Acknowledgements .. xi

Introduction

1 Background .. 3

1.1 The future of wireless communication ... 3

2 Multiantenna systems.. 6

2.1 Smart antenna systems ... 6
2.2 MIMO systems... 10
2.3 Multiantenna algorithms... 13
2.4 Building blocks for multiantenna algorithms ... 15

3 Implementation platform.. 17

3.1 Choosing platform.. 17
3.2 Flexible platform .. 19
3.3 Summary .. 20

Part I

1 Introduction ... 23

2 Complex valued division ... 25

2.1 Definition of complex numbers.. 25
2.2 Division by fraction.. 27
2.3 Division by transformation... 27

3 Complex valued division by fraction.. 28

3.1 Algorithms for division by fractions .. 28
3.2 Architectures for complex valued division... 34

vi Contents

3.3 FPGA implementation.. 39

4 Complex valued division by transformation ... 46

4.1 The CORDIC algorithms.. 47
4.2 Complex division by CORDIC .. 52
4.3 Architecture for a CORDIC based complex valued division.......................... 53
4.4 FPGA implementation of a CORDIC based complex valued division........... 59

5 Comparison of complex valued division implementations 61

5.1 Throughput ... 61
5.2 Resources ... 62
5.3 Summary .. 63

Part II

1 Introduction ... 67

2 Inversion of a triangular matrix... 68

2.1 Matrix definitions ... 68
2.2 Triangular matrix inversion algorithm ... 69
2.3 Architectures for triangular matrix inversion ... 70
2.4 Scheduling of the architectures .. 78
2.5 FPGA implementation of architectures for triangular matrix inversion 85
2.6 Summary and comparison .. 93

3 QR-decomposition ... 95

3.1 Introduction .. 95
3.2 QR-decomposition algorithms.. 95
3.3 Architectures for QR-decomposition.. 99
3.4 Scheduling of the QR-decomposition architectures 102
3.5 FPGA implementation of complex valued QR-decomposition 104

4 Matrix inversion .. 111

4.1 Introduction .. 111
4.2 Definition of matrix inversion .. 111
4.3 Inversion algorithms... 111
4.4 Matrix inversion architectures.. 112
4.5 FPGA implementations of matrix inversion... 116

Contents vii

5 Singular value decomposition ... 120

5.1 Introduction .. 120
5.2 Definition of SVD .. 120
5.3 SVD algorithm ... 121
5.4 SVD architecture .. 123
5.5 FPGA implementation.. 125

Part III

1 Introduction ... 131

1.1 Capon’s beamformer method ... 131
1.2 Signal model... 132
1.3 Capon’s approach ... 133

2 Capon architectures... 134

2.1 Algorithm decomposition... 134
2.2 Architectures .. 135

3 FPGA implementation... 139

3.1 Capon building blocks.. 139
3.2 FPGA implementation of the LDF architecture ... 143
3.3 Scalability of the designs.. 144

4 Capon implementation aspects ... 146

4.1 Covariance matrix .. 147
4.2 Matrix inversion ... 149
4.3 Steering vector.. 150
4.4 Inversion... 151
4.5 Conclusion.. 151
4.6 Minimum wordlength design ... 152

5 Application: Channel sounding .. 154

5.1 Channel sounding ... 154
5.2 Channel sounder system... 155
5.3 Measurement .. 156
5.4 Summary .. 157

viii Contents

Part IV

1 Introduction ... 161

1.1 Why do you need a design methodology?.. 161

2 DMPD ... 163

2.1 High level design.. 163
2.2 Low level design .. 166
2.3 System integration and test... 170

3 Tools used in the research... 171

3.1 System modelling tools .. 171
3.2 FPGA and hardware design tools ... 172

Appendix A: Real divider .. 177

Introduction .. 177
Algorithm ... 177
Hardware implementation .. 178

References.. 181

 ix

Preface

This thesis summarizes the results of my academic work in the Digital ASIC group at
the department of Electroscience, Lund University, for the Ph.D. degree in circuit
design. The main contributions of this thesis are derived from the following
publications;

Fredrik Edman and Viktor Öwall, “Implementation of a Scalable Matrix Inversion Architecture
for Triangular Matrices,” Proceedings of PIMRC’03, Beijing, China, September 2003.

Fredrik Edman and Viktor Öwall, “Implementation of a Highly Scalable Architecture for Fast
Inversion of Triangular Matrices,” Proceedings of ICECS’03, Sharjah, United Arab Emirates,
December 2003.

Fredrik Edman and Viktor Öwall, “Implementation of a Full Matrix Inversion Architecture for
Adaptive Antenna Algorithms,” Proceedings of WPMC’04, Abano Terme, Italy, September 2004.

Zhan Guo, Fredrik Edman, Peter Nilsson, and Viktor Öwall, "On VLSI Implementations of
MIMO Detectors for Future Wireless Communications," Proceedings of IST-MAGNET

Workshop, Shanghai, November 2004.

Fredrik Edman and Viktor Öwall, “A Scalable Pipelined Complex Valued Matrix Inversion
Architecture," Proceedings of ISCAS’05, Kobe, Japan, May 2005.

Fredrik Edman and Viktor Öwall, “Hardware Implementation of two Complex Divider
Architectures," Proceedings of RVK’05, Linköping, Sweden, June 2005.

Fredrik Edman and Viktor Öwall, “Fixed-point Implementation of a Robust Complex Valued
Divider Architecture,”Proceedings of ECCTD’05, Cork, Ireland, August 2005.

Fredrik Edman and Viktor Öwall, “A Computational Platform for Real-time Channel
Measurements using the Capon Beamforming Algorithm,” Proceedings of WPMC’05, Aalborg,
Denmark, September 2005.

Fredrik Edman and Viktor Öwall, “Compact Matrix Inversion Architecture Using a Single
Processing Element,” Proceedings of ICECS’05, Gammarth, Tunisia, December 2005.

Fredrik Edman and Viktor Öwall, ”A Compact Real-time Channel Measurement Architecture
Based on the Capon Beamforming Algorithm,” Proceedings of DSPCS'05 and WITSP'05, Nosa
Heads, Australia, December 2005.

Fredrik Edman, Fredrik Tufvesson and Viktor Öwall, ”Computational and Hardware Aspects of
the Capon Beamformer Algorithm,” To be submitted to IEEE Trans. on Consumer Electronics.

The first part of the thesis deals with complex valued division. The main contribution
in this part is the derivation and implementation of two architectures based on a
numerically stable algorithm, which reduces the number of overflows and underflows
during computation. One of the architectures offers high-throughput rate producing one
complex valued division per clock cycle in continuous run, while the second
architecture offers lower resource consumption with good throughput rate. The two

implementations are compared to a CORDIC based complex valued divider
implementation.

The second part of the thesis covers the architectural development of four fundamental
matrix operations; triangular matrix inversion, QR-decomposition, matrix inversion,
and singular value decomposition. A novel method, mapping the algorithms to scalable
linear array architectures more suitable for hardware implementation, was used. Single
processing element architectures for the algorithms are also proposed. All architectures
were implemented using standard arithmetic units with good throughput rate, and are
capable of handling both real and complex valued matrices.

In the third part of the thesis, the building blocks from part I and part II are combined
to implement the Capon beamformer algorithm. The main contribution of this part is
the derivation of a scalable architecture suitable for using in a constantly changing
channel sounder. A wordlength analysis was done to determine the minimum
wordlength architecture for the Capon beamformer implementation.

In the last part of this thesis presents a design methodology for FPGA implementations,
derived and used by the author, is presented.

In total 16 FPGA implementations are presented in this thesis.

 xi

Acknowledgements

I would like to start by thanking my supervisor, Dr. Viktor Öwall, for all the help
throughout the years studying for my Ph.D. and for guiding and supporting me in my
research work.

A special thanks to Dr. Mats Torkelsson for all the discussions over the years
concerning everything from research to “crazy” ideas. I am also grateful to Dr. Peter
Nilsson and Dr. Fredrik Tufvesson for helpful technical discussions.

I would like to thank the technical and administrative staff at the department. Erik and
Leif for maintaining the computer network and the many hours of stimulating talks
about computers and software, Stefan for his help with the CAD tools, Lars for helping
with the day-to-day work, and not least Pia, Elsbieta, Stina, and Birgitta for all their
administrative assistance.

I would also like to extend my gratitude to all colleagues and friends at the Department
of Electroscience. Thanks for all the lively and highly stimulating discussions during
lunch and coffee breaks.

Thanks to the Personal Computing and Communication (PCC) national research
program financed by the Foundation for Strategic Research (SSF), Vinnova
Competence Center for Circuit Design (CCCD), and EU’s 6th framework IST-
MAGNET program for supporting this project.

Finally, I would like thank Anna for all the help with the thesis, and more importantly
for being such a wonderful, supportive, and loving person.

Lund, January 2006

Fredrik Edman

“Logic is a systematic method of coming to the wrong conclusion with confidence.”

Rathenn, B5

 3

Chapter 1

1Background

This part of the thesis gives a brief introduction to the area of wireless communication,
and more precisely, the area of multiantenna systems and algorithms. The first chapter
begins with the author’s view of the future of wireless communication and which
engineering challenges it will bring.

In chapter two, a brief introduction to the fundamentals of multiantenna systems,
including smart antennas and MIMO systems, is given. The chapter continues with a
discussion about smart antenna and MIMO algorithms. It is shown that the algorithms
can be decomposed into a few fundamental matrix operations, referred to as building
blocks. These building blocks needs to be optimized for high throughput rate and be
scalable to meat the demands of future mobile communication algorithms.

Chapter three deals with the choice of implementation platform when implementing
high performance matrix operations for multiantenna systems. Different platforms such
as general purpose processors, digital signal processors, FPGA, and ASIC are reviewed.

1.1 The future of wireless communication
In modern usage, wireless communication refers to a method that uses radio waves to
transmit data between devices without cables or cords. Historically, the transmitted
data has been voice originating from people talking in phones with each other. Today
more and more electronic handset devices are communicating with each other via radio
waves thereby getting rid of cables.

Wireless communication is growing rapidly and we are still only at the beginning of
the mobile revolution. Already the requirements for the next generation of mobile and
wireless communications technology are emerging. Future mobile and wireless
networks will be characterized by open, global, and ubiquitous communications,
making people free from spatial and temporal constraints. Different communication
technologies including global and short range wireless systems as well as wired
systems will be combined in a common platform to complement each other in the
optimal way for different service requirements and radio environments (figure 1.1).

4 1 Background

Figure 1.1 Interaction between different types of communications systems creating a true
global communication system.

In the next generation of mobile communication, often referred to as 4G, different areas
such as information technology, multimedia and mobile communications will be
combined and integrated together. Right now, the majority of traffic is changing from
speech-oriented communications to data based communications. In the near future, it is
expected that the number of portable devices such as voice enabled PDAs, laptops and
general hand held devices will exceed the number of PCs connected to the Internet.
These portable devices or mobile terminals will use global mobile access to share and
access multimedia services for voice, data, messages, video, Internet, GPS, radio, TV,
software, etc. There are many fields that could greatly benefit from 4G, but the most
rapidly growing is the field of entertainment, including music, written material,
gambling, video, and games, which enables interaction in real-time with other users,
locally or globally (figure 1.2).

Figure 1.2 Real-time interactions and sharing of data between people, both locally and
globally, over wireless links.

1 Background 5

All these applications will be heavily bandwidth consuming, resulting in high data rate
requirements for future systems. To be able to meet the demand of higher data rates,
new high-speed communications systems must be developed.

 6

Chapter 2

2Multiantenna systems

The wireless spectrum is limited and during the last decade it has become a precious
resource. Achieving the capacities needed for future wireless systems without
increasing the required spectrum will only be accomplished by the design and
implementation of advanced communications techniques such as multiantenna systems.
These systems are realized by time-consuming and computationally complex
algorithms, requiring new digital hardware architectures to be developed. The
development of efficient hardware architectures for multiantenna algorithms is the
focus of this thesis.

Multiantenna systems consist of two or more antenna elements either at the transmitter,
the receiver, or both. Here the two different groups of multiantenna systems, smart
antenna systems and multiple input - multiple output systems (MIMO), will be
discussed.

2.1 Smart antenna systems
A smart antenna is a digital wireless communications antenna system with multiple
antenna elements at the source (transmitter), the destination (receiver), or both, where
signals from the different antenna elements are combined or created in an intelligent
way by an algorithm. The smart antenna system can be utilized in a number of ways. It
can be used to increase the capacity and the coverage (beamforming) in a mobile
communication system. It can also be used for improving the link quality, user position
estimation, and to decrease the delay dispersion [1].

In conventional wireless communications, a single antenna is used at the source, and
another single antenna is used at the destination as shown in figure 2.1. This
communication system is referred to as a single input - single output (SISO) system.

Assume that a transmitter with a single antenna element transmits omni directional,
meaning that the signal or wavefront is transmitted in all directions, and that the
receiver antenna listens for signals coming from all directions. Sending signals by
transmitting energy in all directions is not energy efficient.

2 Multiantenna systems 7

Figure 2.1 A conventional SISO communications system.

A better way is to only transmit in the direction of the receiver. In the same manner it is
more efficient to only listen in the direction of the transmitter and not in all directions
at the same time. This will increase energy efficiency and will also lead to a reduction
in interference between different transmitters and thereby increase the efficiency in an
interference limited system.

Another drawback with SISO systems is that they are vulnerable to multipath effects.
When the electromagnetic wavefront travels towards the receiver, its propagation path
can be obstructed by objects. In an outdoor environment this can for instance be caused
by objects such as hills, buildings, trees, cars, etc., while in an indoor scenario the
signal can be obstructed by doors, walls, people, furniture, etc. The wavefronts will
then be reflected and scattered by these objects, thus creating multiple paths to the
receiver (figure 2.2).

Figure 2.2 Scattered and reflected signals due to obstructions, causing multipath effects.

The wavefront, arriving in scattered portions at different time instances, can cause
problems resulting in intermittent reception [2],[6]. In digital communications this can
cause an increase in the number of errors resulting in a reduction in data rate. The use
of smart antennas can reduce the deterioration of the transmitted wavefront caused by
multipath wave propagation by automatically changing the directionality of its
radiation patterns in response to its signal environment.

8 2 Multiantenna systems

There are mainly two different categories of smart antenna systems [6]:

• Single input - multiple output system (SIMO). In a SIMO system, one antenna
is used at the transmitter, and two or more antennas are used at the receiver as
shown in figure 2.3.

Figure 2.3 A single input - multiple output system.

• Multiple input - single output (MISO). In a MISO system, two or more
antennas are used at the transmitter, and one antenna is used at the receiver as
shown in figure 2.4.

Figure 2.4 A multiple input - single output system.

By applying the techniques shown in figures 2.3-2.4 we can transmit in a specific
direction or listen in a specific direction. Figure 2.5 shows the same scenario as in
figure 2.2 but with a smart antenna as a receiver. The smart antenna system detects the
three multipaths and creates “listening” beams for those directions. Subsequently, all
other signals are suppressed [5]-[7].

In this way the signals coming from the directions of the listening beams can be
combined at the receiver, thus increasing the signal-to-noise ratio and lowering the bit
error rate.

The concept of using smart antennas to transmit and receive data more intelligently has
existed for many years. Simple smart antenna techniques, like the switched beam
technology, where the antenna systems form multiple fixed beams with heightened
sensitivity in particular directions, have been used in commercial applications for some
time [4]-[6]. These antenna systems detect signal strength, choose from one of several
predetermined, fixed beams, and switch from one beam to another as the mobile device
moves throughout the beampattern.

2 Multiantenna systems 9

Smart antenna technology represents the most advanced approach to date taking
advantage of its ability to effectively locate and track various types of signals to
minimize interference and maximize signal reception [6].

Figure 2.5 A SIMO system where the multiple antennas at the receiver create beams that
listen in the directions of the multipaths.

One sophisticated utilization of smart antenna technology is spatial division multiple
access (SDMA) [1],[6]. In this technique, single mobile terminals are located and
tracked by adaptively steering transmission signals toward users and away from
interferers (figure 2.6). In this way a high level of interference suppression is achieved,
making possible more efficient reuse of the frequency spectrum.

Smart antenna technology can, with some modification, be integrated into all major
access methods such as frequency division multiple access (FDMA), time division
multiple access (TDMA), code division multiple access (CDMA), etc. and has
widespread applications in several different areas such as digital television (DTV),
body area networks (BAN), personal area networks (PAN), wireless local area
networks (WLAN), metropolitan area networks (MAN), and mobile communications
[7],[8]. However, the technique requires sophisticated algorithms and computationally
heavy algorithms to operate in real-time.

10 2 Multiantenna systems

Figure 2.6 Smart antenna techniques can be used in satellite transmission to cover small hot
spots, or in cellular systems to track individual mobiles.

2.2 MIMO systems
MIMO systems are characterized by having multiple antennas at both the transmitter
and the receiver as shown in figure 2.7. The number of antenna elements does not have
to be the same at the transmitter and the receiver.

Figure 2.7 A multiple input - multiple output system.

A MIMO system is mainly used for three different purposes; beamforming, diversity,
and spatial multiplexing. Both beamforming and diversity can be use in the same way
as in the case of the smart antenna system [6]. By applying a MIMO beamforming
system to the scenario in figure 2.2, the signal can be transmitted in one or more
favorable directions. Figure 2.8 shows how the signal is transmitted in two beams from
the transmitter and received via two beams formed by the receiver antenna.

2 Multiantenna systems 11

Figure 2.8 A MIMO system using beamforming to transmit the signal in specific directions
and creating beams to listen for signals coming from those directions.

In this way transmission energy is saved, since less energy is transmitted in other
directions than those of the receiver.

Another way of using a MIMO system that has attracted lots of interest in recent years
is spatial multiplexing [7]-[9]. Spatial multiplexing offers an improvement of the
capacity by simultaneously transmitting multiple datastreams. This is done by
multiplexing a datastream into several parallel datastreams that are sent from separate
antenna elements as shown in figure 2.9 [7].

Figure 2.9 A datastream is multiplexed onto different antenna elements in a MIMO system.

12 2 Multiantenna systems

Data transmitted from the multiple antenna elements will be mixed when traveling
throughout the propagation channel as shown by figure 2.10. Each individual antenna
element in the receiver will detect a combination of the transmitted data.

Figure 2.10 The transmitted datastream is mixed when traveling through the channel.

The received data must then be resolved by signal processing algorithms before it can
be combined into a single datastream again. In this way MIMO can exploit the
phenomena of multipath propagation to increase throughput, or reduce bit error rates,
rather than suffer from it [7].

MIMO will be incorporated into the new IEEE 802.11n standard for local-area wireless
networks, which will improve the coverage and data rate significantly. The IEEE
802.11n standard is still being discussed, but data throughput is estimated to reach a
theoretical 540 Mbit/s. The data rate requirement at the physical layer may be even
higher, prompting for new high-speed hardware solutions. Although a few
manufacturers have released consumer products with so called pre-n hardware,
exploiting rudimentary diversity by using 2 to 4 antenna elements, the widespread
usage of MIMO will not be a reality before the standard is set. MIMO has also been
added to the latest draft version of Mobile WiMAX (IEEE 802.16e).

To be able to fully take advantage of the emerging standards, new high-throughput
hardware architectures must be developed. A first step in the development process is to
analyze the multiantenna algorithms and to identify common algorithmic features.

2 Multiantenna systems 13

2.3 Multiantenna algorithms
It is important to point out that the antennas themselves are not “smart”, it is rather the
underlying antenna systems that have the intelligence in the form of advanced signal
processing algorithms. In order to be able to take full advantage of the multiantenna
techniques, discussed in the previous section, advanced and computationally heavy
communications algorithms must be used. There are myriads of different algorithms,
which are optimized and specialized for different multiantenna systems and for
different user scenarios. A brief discussion on smart antenna and MIMO methods are
given below.

2.3.1 Smart antenna algorithms

Smart antennas, in their simplest form, linearly combines antenna signals into a weight
vector that is used to control the beam pattern. The weights can be determined in a
number of ways using different algorithms. These smart antenna algorithms can
crudely be divided into three classes of algorithms, spatial reference, temporal
reference, and blind algorithms [7]. The common features of the two first algorithm
classes are that they both form beam patterns and they are based on linear weighting
and addition of received signals at the antenna elements. The difference between the
two classes is in how they calculate the antenna weights. The third class of algorithms
uses neither of the features used by spatial and temporal reference algorithms. Instead
they exploit the statistical properties of the transmit signal.

In Spatial reference algorithms (SR) the antenna weights are chosen based on
knowledge of the array structure [6],[7]. These algorithms estimate the direction of
arrival (DOA) of both the desired and interfering signals. The DOAs can be determined
by applying different methods to the sampled data from the antenna array. The simplest
way of extracting the DOAs is to use spatial Fourier transform on the signal vector.
This method is limited by its resolution (size of antenna array) and has therefore
limited usages. In cases where good resolution is necessary, so called high-resolution
methods could be used. High-resolution methods are limited only by the modeling
errors and noise and not by the size of the antenna array [6],[7] . Common high-
resolution algorithms include:

• Minimum Variance Method (a.k.a. Capon’s beamforming algorithm) [6].
Capon’s algorithm is a spectral-based search method. It determines an angular
spectrum for each direction by minimizing the noise and the interference from
other directions. This algorithm has been implemented in this thesis and is
discussed in more detail in part III.

• MUSIC algorithm [6],[7]. This algorithm determines the signal and noise
subspaces and then searches the spectrum to find DOAs.

14 2 Multiantenna systems

• ESPRIT algorithm [6]. This algorithm determines the signal subspace, from
which the DOAs are determined in closed form.

• SAGE algorithm [6],[7]. The SAGE algorithm is based on maximum-
likelihood estimation of the parameters of the impinging waves on the antenna
array.

When the DOAs are determined an appropriate beampattern is created that maximizes
the beam pattern in the direction of the wanted signals and places nulls in the direction
of unwanted interfering signals.

Temporal reference algorithms (TR) are based on prior knowledge of the time structure
of the received signals [6],[7]. Usually a training sequence is used as a temporal
reference. The receiver aims to adjust or choose antenna weights in a way so that the
deviation of the combined signal at the output and in the known training sequence is
minimized. The calculated weights are then used to form a beam pattern.

The third class of algorithms is termed blind algorithms (BA) [6],[7]. These algorithms
are based on prior knowledge of the signal properties of the transmitted signal.
Depending on which statistical properties of the transmitted signal are exploited, we are
able to apply different algorithms to determine the signal matrix from the received
sample data.

2.3.2 MIMO algorithms

Many of the approaches and algorithms used in conjunction with SIMO and MISO
systems can also be used in a MIMO system. Thus, the MIMO system can be used for
diversity and/or beamforming both at the receiver and at the transmitter [6],[7].
However, there are more elaborate schemes available for MIMO systems, such as
layered space-time structures (LST), also known as Bell Labs Layered Space-Time
(BLAST) architectures [10]. The simplest BLAST architecture is the horizontal (also
known as vertical) BLAST architecture, where the datastream is multiplexed into
several parallel streams, which are encoded separately before transmitted. A drawback
with horizontal BLAST (H-BLAST) is that it does not utilize diversity [7],[11],[12].
However, another scheme called diagonal BLAST (D-BLAST) cycles the streams
through the different transmitter antennas in such way that every stream is sent on
every possible antenna element, thus taking advantage of diversity. The transmitted
datastreams can also be encoded using space-time coding (STC) [9],[13]. In space-time
coding redundancy is introduced by encoding the datastream and sending a differently
encoded version of same signal from each antenna element. Space-time codes may be
split into two main types: Space–time trellis codes, which distribute a trellis code over
multiple antennas and multiple time-slots and provide both coding gain and diversity
gain, and space–time block codes, which act on a block of data at once and provide
only diversity gain, but are much less complex in implementation terms than trellis
codes [9],[13].

2 Multiantenna systems 15

The optimal detection strategy for a MIMO receiver is to perform maximum likelihood
estimation (MLE) over all possible transmitted symbol sets [11]-[13]. To date, such an
approach has been considered too complex to implement for high data rate systems.

MIMO algorithms is a hot research topic, and there are many algorithms that combine
the different features discussed above. However, a common feature among the
algorithms is that they operate on matrix data and are very computationally heavy.

2.4 Building blocks for multiantenna algorithms

2.4.1 Common building blocks

The advanced communication algorithms can be described and realized under a
common framework of well known methods. This framework consists for example of
methods such as solving least squares problems, eigenvalue and singular valued
decomposition, factorizations, or using filtering techniques such as Kalman filtering
[6]-[8]. In multiantenna systems the received data is often collected and processed by
these methods in either matrix or vector form. These methods can therefore be
decomposed into fundamental matrix operations such as matrix-matrix multiplication,
matrix-vector multiplication, matrix inversion, QR-decomposition, LU-decomposition,
eigenvalue decomposition (EVD), singular value decomposition (SVD), etc. [14],[15].
For example, in the case of the Capon algorithm a matrix is to be inverted and in the
ESPRIT algorithm a SVD is done. Some of the matrix operations will be discussed in
detail in part II of the thesis which deals with the implementation of matrix operations
such as the QR-decomposition and matrix inversion.

Figure 2.11 shows a hierarchic view of the decomposition of the multiantenna
algorithms into common methods, which are decomposed into basic matrix operations.
The matrix operations presented in figure 2.11 constitute the computational bottle neck
in the hardware implementations of multiantenna algorithms. To be able to develop
efficient multiantenna systems a bottom-up approach must be applied. This means that
by developing optimized building blocks performing basic matrix operations, efficient,
thereby meaning high throughput rate, multi antenna algorithms can be implemented.
The main focus of this thesis is on the development of some of the most commonly
used building blocks.

16 2 Multiantenna systems

Figure 2.11 Multiantenna algorithms can be decomposed into common matrix operations
which constitutes fundamental building blocks.

2.4.2 Scalable building blocks

Besides efficient implementations, scalability of the hardware design is an important
factor. Previous hardware implementations of basic matrix operations have often been
mapped onto large multiprocessor networks, such as array architectures or massive
parallel architectures. Such architectures are seldom easy to tailor for one owns needs
and they tend to grow rapidly with the matrix size, thus consuming large amounts of
hardware resources. Resource conservative and scalable hardware blocks therefore
highly sought for. The scalability of the architectures developed in this research project
has therefore been prioritized.

Basic matrix operations are not only used in the implementation of multiantenna
systems. Matrix operations occur in virtually every branch of engineering [15].
Therefore, it is important to make hardware blocks that can be used in many different
types of applications.

 17

Chapter 3

3Implementation platform

3.1 Choosing platform
There are several different hardware platforms to choose from when implementing high
performance algorithms for multiantenna system. Four categories of platforms can be
identified; general purpose processors, digital signal processors, field programmable
gate arrays (FPGAs), and application specific integrated circuits (ASICs). These four
categories of platforms can be divided into general architectures and specialized
architectures. A general architecture is a platform which is not limited to a specific
application, such as implementation of filters. On the contrary, its purpose is to be able
to adapt to many different areas of applications. General purpose processors and digital
signal processors are two categories of platforms typically belonging to general
architectures.

General purpose processors (a.k.a. micro processors or short μP) are software
programmable circuits found in many types of consumer electronic products. Two
well-known companies making μPs for personal computers are AMD [17] and Intel
[18]. μPs have some drawbacks when it comes to functioning as a platform for
implementing high-performance multiantenna algorithms. One drawback is that the
hardware architecture and the programming instruction set is too general, resulting in a
relatively low performance for signal processing applications. Another drawback is the
huge power consumption required for high performance processors, which in many
cases reaches over 100W.

Digital signal processors are usually based on a multiply-accumulate unit (MAC)
which is a key digital signal processing unit, with the support of specialized hardware
blocks and addressing modes. The specialized hardware blocks acts as accelerators and
can be utilized by high-level software programming of the circuit. Today, many
companies make high-performance digital signal processors targeting specific areas of
applications. One of the leading companies in the market is Texas Instruments. They
have a wide range of processors ranging from high performance to low power, and
include both float- and fixed-point alternatives [19].

18 3 Implementation platform

The advantage of using a general architecture can come at the price of not reaching a
high enough throughput rate. If high-throughput applications, such as digital signal
processing for multiantenna systems, are going to be implemented, the general
architecture platforms do not reach the throughput rate needed. To be able to
implement these high-throughput applications a specialized architecture must be used.
Two such platforms where specialized architectures can be implemented are FPGAs
and ASICs.

An FPGA is a semiconductor device containing programmable logic components and
interconnections. The logic can be programmed to perform the functionality of
different operations ranging from that of basic logic gates (such as AND, OR, XOR,
NOT) to more complex combinatorial functions such as matrix operations. FPGAs
often include optimized components, such as memory and dedicated hardware blocks,
ranging from multipliers to microprocessors. FPGAs come in many different sizes,
ranging from a few thousand to hundreds of thousands of logic cells, and with built-in
dedicated hardware. Evaluation boards with a mounted FPGA and support circuits such
as Ethernet, USB, external memories etc. are also available, which makes them suitable
for experimental implementations.

An ASIC is an integrated circuit (IC) that is customized for a specific use, rather than
intended for general-purpose usage. The desired functionality is designed in hardware
developing tools and sent to manufacturing.

The choice of which type of platform (μPs, digital signal processors, ASIC, or FPGA)
to use in implementation is sometimes hard to make. Ultimately it comes down to
making trade-offs between the pros and cons in relation to the application that will be
implemented, available recourses at the working place, and time/budget constraints. In
our design the μPs and digital signal processors where not considered due to the
drawbacks mentioned above. The choice of platform was between making an ASIC
design or an FPGA design. The main advantages of designing with FPGAs are:

• The time from completing the design in a hardware description language to
obtain a functional unit is limited. The design is programmed into the FPGA
and can be tested immediately. This is especially important when the
development time is limited.

• FPGAs are very good prototyping vehicles. If the application is going to use
an FPGA the step from prototyping to final product is negligible.

• Developing prototypes with FPGAs are cost effective compared to an ASIC.

• There are plenty of implementation and optimization tools to choose from.
The number of companies developing and selling tools for developing and
optimizing FPGA designs has exploded in the last couple of years. Also, the
number companies making optimized IP blocks are rapidly growing.

3 Implementation platform 19

The main disadvantages of designing with FPGAs instead of making an ASIC are:

• Area & Utilization. Limited design area combined with low utilization of the
existing gates in the FPGA.

• Performance. If the logic must run at high clock rates an ASIC design is
preferable.

• Power. FPGAs still consumes significantly more power than a low power
ASIC design.

However, it is no doubt that designing with FPGAs is becoming more and more
popular even for implementing high performance digital communication systems. The
reason for that is the rapid technical development of FPGA circuits in the last year.
This has closed the gap between ASIC and FPGA, reducing the impact of the main
disadvantages of using FPGAs. Today the FPGAs are mainstream devices and many
manufacturers have gone from developing ASICs to using high-end FPGAs in their
products instead. The mobile communication field has also started consider to use
FPGAs for their new high speed communication equipment [20],[21].

The effective programmable area and the achievable clock speed of an FPGA have
grown significantly in recent years. Reducing the power consumption of FPGAs has
until now not been a driving force in the FPGA world since it has been mainly for
prototyping and testing of systems that are not that power sensitive. But times are
changing and power is now a main concern in the FPGA society and much is done to
develop FPGAs with lower power consumption.

3.2 Flexible platform
Another reason for choosing the FPGA as the implementation platform for
multiantenna systems is in this case the target application. The Capon beamforming
algorithm has been implemented in hardware for usage in a channel sounder system.
Both physical parameters, being the transmission and receiver antennas, and software
parameters, such as the multiantenna algorithm, are often changed in the channel
sounder equipment when investigate different scenarios. This means that the
underlying hardware implementation must be easy to adapt to changes. Also, for the
channel sounder system hardware and power constraints are relaxed.

As discussed in 2.4.2, one way of meeting the requirements of a flexible platform is to
use scalable matrix building blocks. In this way a new algorithm could easily be
implemented in hardware in a limited time. To be able to do this, a flexible platform is
needed and therefore, the choice between an ASIC and an FPGA platform was easy. In
this case by using an FPGA platform multiantenna algorithms can easily be
investigated without long waiting times for a chip to come back from manufacturing.

20 3 Implementation platform

3.3 Summary
When implementing algorithms in hardware, it is important to choose the right
platform for one’s needs. As discussed in previous chapters, high performance
algorithms for multiantenna systems requiring high throughput rate was the target for
implementation in this thesis. To be able to meet the performance demands, a
specialized architecture such as an ASIC or an FPGA is needed.

The target application in this thesis was a channel sounder. Since the configuration of
the channel sounder often changes and many different types of algorithms will be
tested, it is important to choose a flexible and platform. From these criteria an FPGA
platform is the best choice.

 23

Chapter 1

1Introduction

Complex numbers are an extension of the ordinary numbers used in everyday
engineering with the unique property of representing and manipulating two variables as
a single quantity. In digital signal processing, complex numbers may shorten
complicated equations and enable computational techniques that are difficult or
impossible with real numbers alone. Unfortunately, complex arithmetic and techniques
are computationally demanding, and require a significantly greater number of
computational steps than the corresponding real operations. It also takes a great deal of
study and practice to use them effectively, or as Steven W. Smith said in his book, The
Scientist and Engineer's Guide to Digital Signal Processing [22],

“Many scientists and engineers regard complex techniques as the dividing line between

DSP as a tool, and DSP as a career.”

Techniques involving complex arithmetic occur frequently in a wide range of
applications, such as audio and video signal processing, digital communications,
weather forecasting, economic forecasting, seismic data processing, analysis and
control of industrial processes, and in mathematical operations and transforms [23].
Many of these applications include computationally heavy algorithms that need to be
performed in real-time with good numerical accuracy [15]. To be able to comply with
such demands, dedicated hardware implementations of these algorithms is a necessity.
Therefore, it is important to derive efficient hardware architectures handling complex
numbers, which can be used in realizations of applications today and in the future.

The building blocks for implementation of multiantenna algorithms implemented in
this thesis consist of matrix operations involving complex valued data. To implement
these matrix operations, arithmetic building blocks such as addition/subtraction,
multiplication, and division are used. To be able to implement efficient and
numerically accurate matrix operations, equally efficient and accurate implementations
of these arithmetic building blocks must be at hand. The most computationally heavy
arithmetic operation is the complex valued division, which is also the most challenging
arithmetic operation to implement with good throughput rate and without too high

24 1 Introduction

resource consumption. In this part of the thesis, three hardware architectures for
complex valued division are suggested.

In chapter 2, complex valued division is discussed, and two ways of dividing complex
numbers with each other, division by fraction and by transformation, are presented.
Chapter 3 investigates two hardware architectures for complex valued division by
fraction based on Smith’s formula, while chapter 4 looks closer at hardware
architecture for complex valued division by transformation based on CORDIC are
investigated. Chapter 5 summarizes the three hardware implementations and compares
them to each other in terms of throughput rate and resource consumption.

 25

Chapter 2

2Complex valued division

Dividing two complex numbers with each other is a computationally demanding
operation. During algorithm development, divisions, and especially complex valued
divisions, are commonly tried to be avoided or replaced by an estimation function.
However, with a growing number of applications requiring high numerical precision, in
many cases such avoidance or replacement will result in a severe degradation of the
numerical accuracy.

In recent years, a great deal of attention has been given to the development and
implementation of efficient division algorithms. However, most of the proposed
implementations have targeted real valued division, and very few have dealt with
complex valued division. Complex valued division using the conventional formula
shown in equation (2.6) is often implemented in software. Software implementations of
complex valued division often result in low calculation speed, making them unsuitable
to use in modern high performance signal processing applications. Therefore, it is
increasingly important to derive hardware architectures fulfilling contradictory
requirements regarding numerical accuracy, calculation speed, latency, and area
consumption.

2.1 Definition of complex numbers
Complex numbers are an extension of the real numbers by the inclusion of the
imaginary unit i, satisfying i2=−1. Every complex number can be written in the form
a+ib, where a and b are real numbers, denoting the real part and the imaginary part of
the complex number, respectively. Pairs of complex numbers can be added, subtracted,
multiplied, and divided in a similar manner to that of real numbers. The set of all
complex numbers is denoted by .

A complex number can be viewed as a point or a position vector in a two-dimensional
Cartesian coordinate system, called the complex plane or Argand diagram. Figure 2.1
shows the complex plane with a real and an imaginary axis and a unity circle. The
Cartesian coordinates of a complex number are denoted by the real part a and the
imaginary part b, while the circular coordinates are denoted by

26 2 Complex valued division

2 2r z a b= = + , (2.1)

called the absolute value or modulus, and

0 if 0
arg() arctan () where

1 if 0

x
z b a n n

x
θ π

>
= = + =

<
⎧
⎨
⎩

, (2.2)

called the complex argument of z. Together with Euler's formula

cos sinie iθ θ θ= + (2.3)

the complex number z can be expressed in exponential form as

(cos sin) iz a ib r i re θθ θ= + = + = (2.4)

where

cos

sin

a r

b r

θ
θ

⎧
⎨
⎩

=
=

 (2.5)

The complex conjugate of the complex number z a ib= + is defined to be - .z a ib=
As shown in figure 2.1, z is the reflection of z in the real axis.

r

z
=

z a ib= +

z a ib= −

Figure 2.1 The definition of complex numbers in the complex plane .

2 Complex valued division 27

There are several ways of dividing a complex number a+ib by another complex number
c+id, whose magnitude is non-zero, but the most commonly used methods are division
by fraction and division by transformation.

2.2 Division by fraction
In division by fraction, the division is expressed as a fraction between two numbers.
Both the numerator and denominator are multiplied by the complex conjugate of the
denominator. This causes the denominator to simplify into a real number as shown in
equation (2.6), in this thesis referred to as the pen-and-paper algorithm.

()()
()()

() ()
2 2

2 2 2 2
 when , 0

c id e if ce df i de cfc id
z a ib

e if e if e if e f

ce df de cf
i e f

e f e f

+ − + + −+
= + = = = =

+ + − +

+ −
= + ≠

+ +
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.6)

2.3 Division by transformation
In division by transformation, both complex numbers are converted using equation (2.1)
and (2.2) into the exponential form described by equation (2.4). A real valued division
can then be performed between the absolute values of the complex numbers, r1 and r2,
and the quotient can easily be derived by subtraction of the two arguments, θ1 and θ2, as
shown in equation (2.7).

1
31 2

2

()1 1
3

22

i

ii

i

r e rc id
z e r e g ih

e if rr e

θ
θθ θ

θ
−+= = = +

+

(2.7)

The result can then, if necessary, be transformed back into a rectangular form using
equation (2.5).

 28

Chapter 3

3Complex valued division by fraction

3.1 Algorithms for division by fractions
A straightforward way to implement a complex valued division is, as discussed in
section 2.2, to use the conventional pen-and-paper algorithm presented in equation
(2.6). As shown in figure 3.1, implementing the pen-and-paper algorithm will require 2
real divisions, 6 multiplications, and 3 additions/subtractions to perform a complex
valued division.

2 2 2 2 2 2 2 2

c e d f d e c f c e d f d e c f
i i

e f e f e f e f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Figure 3.1 The required number of arithmetic operations needed to implement the pen-and-
paper complex valued division algorithm.

The pen-and-paper algorithm is considered to have a high computational complexity
and would consume lots of resources if implemented in hardware. This algorithm also
suffers from the risk of overflow and/or underflow in intermediate computations of the
denominator e2+f2. An overflow/underflow of the denominator could induce a severe
numerical error, that will affect the accuracy of the result, thus rendering the
calculation useless [25],[26].

Taking these drawbacks into account, the algorithm in its current state is not suitable
for hardware implementation.

3.1.1 Reducing hardware complexity

Before implementing arithmetic algorithms in hardware, a careful analysis of the
complexity of the algorithms should be performed. A possible reduction of the

3 Complex valued division by fraction 29

complexity could result in a number of improvements, such as an increase of the
overall computation speed, lower power consumption, a reduction of area, and
simplification of the control circuitry, etc. [23],[27]. Therefore, it is important to do a
careful analysis and try to reduce the arithmetic complexity of an algorithm as much as
possible. One way to reduce the complexity is to use a numerical strength reduction
technique [23],[28]. Basic arithmetic operations can be ranked in terms of required
hardware resources needed for implementation. The ranking of arithmetic operations,
starting with the operation requiring the most resources (the strongest operation), is
division, followed by multiplication, addition/subtraction, and finally bit-shift that
corresponds to multiplications and divisions by powers of two.

When applying the strength reduction technique, a strong operation is traded for one or
more weaker operations. This is done by either rewriting the algorithmic expression or
by transforming a high ranked operation into several low ranked operations. Both
procedures aim to improve the performance in terms of area, speed, and power
consumption. Example 1 shows how strength reduction can be applied to complex
multiplication through rewriting.

Example 1

Equation (3.1) shows how a multiplication of two complex values is usually calculated.
The complex multiplication requires 4 real valued multiplications, and 2
additions/subtractions to be realized in hardware.

() ()() ()x iy z iw xz ixw iyz yw xz yw i xw yz+ ⋅ + = + + − = − + + (3.1)

The expression can be rewritten by adding the expression +xw-xw to the real part of the
computation and +yw-yw to the imaginary part of the expression as shown in equation
(3.2). The term w(x-y) can then be extracted in both the real and the imaginary part.

()
()

() ()

() ()

xz yw xz yw xw xw x z w w x y

xw yz xw yz yw yw y z w w x y

ℜ = − = − + − = − + −

ℑ = + = + + − = + + −
 (3.2)

The term w(x-y) only needs to be computed once, resulting in savings of computational
resources. The complex multiplication implemented as shown in equation (3.2)
requires 3 real valued multiplications and 5 additions/subtractions to realize in
hardware.

 □

By applying a strength reduction technique and rewriting the expression, one
multiplication has been traded for 3 additions, which in some cases may lead to
significant savings of resources.

30 3 Complex valued division by fraction

3.1.2 Reducing complexity of the pen-and-paper algorithm

Strength reduction can be applied to the algorithm in equation (2.6) by adding the term
+fc-fc to the numerator of the real part and the term +fd-fd to the numerator of the
imaginary part. By rewriting the two expressions, as shown in equation (3.3), the term
f(c+d) now occurs in both the real and the imaginary part of the algorithm and will
only be calculated once. In this way, 1 multiplication is traded for 3 additions, which in
most cases is beneficial.

2 2 2 2

2 2 2 2

()
()

()
()

2 2

2 2

ce df ce df + c e f
z

e f e f e + f

de cf de cf + d e f
z

e f e f e + f

+ + − +
ℜ = = =

+ +
+ + + −

ℑ = = =
+ +

fc - fc f(c + d)

fd - fd f(c + d)
 (3.3)

Equation (3.4) shows the strength reduced equation which would require 2 real
divisions, 5 multiplications, and 6 additions/subtractions to implement in hardware.

2 2 2 2

() ()c id c e f f(c+ d) d e f f(c+ d)
z a ib i

e if e f e f

⎛ ⎞ ⎛ ⎞+ − + + −
= + = = +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

(3.4)

By rearranging the computational order of the algorithm, as shown in equation (3.5),
one division can be traded for two multiplications. In this way the division is carried
out only once and is then multiplied with the numerator of the real and imaginary part.
A division 1/y, where y is an arbitrary real number, is usually cheaper to implement in

Caution!

Strength reduction techniques should be used with caution. Not all trades

of strong operations for multiple weaker operations are as beneficial as

they first seem to be. Trading a multiplication for 3 additions may look

beneficial at a first glance. However, depending on how the arithmetic

operations are implemented, 3 additions might actually consume more

area and power than a single multiplier.

Another pitfall of strength reduction is when implementing in an FPGA.

Some FPGAs have built-in dedicated hardware blocks such as optimized

multipliers. If you trade a multiplier in your design, that could have been

mapped onto one of these optimized multipliers, you will consume

unnecessarily large amounts of hardware in the FPGA and get a slower

design. When dealing with FPGA designs, all optimization and reduction

strategies that are applied to your design must be done with respect to

available resources in the FPGA.

3 Complex valued division by fraction 31

hardware than a division by two arbitrary real numbers, x/y. Implementing equation
(3.5) in hardware would require 1 real division, 7 multiplications, and 6
additions/subtractions. In this way we trade one division for one 1/y division and two
multiplications.

() ()2 2 2 2

1 1
() ()c e f f (c+d) i d e f f (c+d)

e f e f

⎛ ⎞ ⎛ ⎞
⋅ ⋅ − + ⋅ + ⋅ ⋅ + − ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

(3.5)

However, all the above equations still suffer from the risk of overflow and underflow in
intermediate computations due to the term e2+f2 in the denominator. A more
numerically stable algorithm is therefore sought for.

3.1.3 Smith’s algorithm

There are two ways of reducing the risk of overflow and underflow in the computation
of the denominator in equation (3.5). One way is to increase the dynamic range by
increasing the wordsize of the computational unit, which could be costly in hardware.
Another way to reduce the risk is to rewrite the algorithm. R.L. Smith [24] showed that
by multiplying the nominator and the denominator with either 1/e or 1/f, a more robust
algorithm can be achieved. If for example 1/e is used, the algorithm in equation (2.6)
can be rewritten as shown in equation (3.6).

2 2 2 2
2 2 2 2

1 1 1 1

() ()

1 1 1 1 () ()

ce df de cf
ce df de cf c d f e d c f ee e e e

i i i
e f f e e f f ee f e f

e f e f
e e e e

+ −
+ − + −

+ = + = +
+ ++ +

+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.6)

Equation (3.6) is numerically stable only when the absolute of operand e is greater than
or equal to the absolute of operand f. By multiplying the nominator and the
denominator with the term 1/f we get a similar equation that is numerically stable for
the reverse condition as shown in [25]. The complete formula is shown in equation
(3.7). Depending on the sizes of the operands e and f, one of the two expressions in (3.7)
should be used. This algorithm is much more numerically robust than the algorithm in
equation (2.6) if computed in the order indicated by the parentheses [25]. Smith’s
algorithm requires 3 divisions, 3 multiplications, 3 additions/subtractions, and a
comparison unit to determine the sizes of the operands e and f.

() ()
 (when)

() ()

() ()
 (when)

() ()

c d f e d c f e
i e f

e f f e e f f ec id
z a ib

e if d c e f c d e f
i e f

f e e f f e e f

⎧⎛ ⎞ ⎛ ⎞+ −
+ ≥⎪⎜ ⎟ ⎜ ⎟+ ++ ⎪⎝ ⎠ ⎝ ⎠= + = = ⎨

+ ⎛ ⎞ ⎛ ⎞+ −⎪ + ≤⎜ ⎟ ⎜ ⎟⎪ + +⎝ ⎠ ⎝ ⎠⎩

 (3.7)

32 3 Complex valued division by fraction

The computational order of the algorithm in equation (3.7) can be rearranged in the
same manner as was done with equation (3.4). The resulting equation is shown in
equation (3.8).

() ()

() ()

1 1
() () ()

() ()

1 1
() () ()

() ()

c d f e i d c f e when e f
e f f e e f f ec id

z a ib
e if

d c e f i c d e f when e f
f e e f f e e f

⋅ + + ⋅ − ≥
+ ++

= + = =
+

⋅ + + ⋅ − ≤
+ +

⎛ ⎞ ⎛ ⎞⎧
⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎪
⎨
⎛ ⎞ ⎛ ⎞⎪
⎜ ⎟ ⎜ ⎟⎪⎩⎝ ⎠ ⎝ ⎠

 (3.8)

In this way, 1 division is traded for 2 multiplications. The algorithm in (3.8) requires 2
divisions, 5 multiplications, 3 additions/subtractions, and a comparison unit to
determine the sizes of the operands e and f.

3.1.4 Resource comparison

Table 3.1 summarizes the hardware resources needed for each complex valued division
algorithm presented in the previous sections.

Table 3.1 Comparison of resources for the complex valued division algorithms.

Algorithm # div. # mult. # add. Other resources

Equation (2.6) 2 6 3 ---

Equation (3.4) 2 5 6 ---

Equation (3.5) 1 7 6 ---

Equation (3.7) 3 3 3 operand comparison*

Equation (3.8) 2 5 3 operand comparison*
* A comparison unit can typically be implemented using a subtractor. The two operands are
subtracted from each other and the sign bit will indicate which operand is the largest one.

As shown in table 3.1, Smith’s algorithm (equation 3.8) is less expensive in terms of
hardware resources (one multiplication) compared to the original pen-and-paper
algorithm (equation 2.6) and to one of the strength reduced versions (equation 3.4).
However, it is not wise to base the decision of which algorithm to use only on the
resource estimation presented in table 3.1. There are several other parameters that must
also be taken into account before making the decision, for example:

1. The individual sizes of the arithmetic units. If a division consumes about two
multiplications worth of resources, equation (3.5) may be more expensive to
implement than equation (3.8). If it consumes about 4 multiplications worth of
resources, equation (3.5) will be less expensive than equation (3.8).

3 Complex valued division by fraction 33

2. Available resources in the FPGA. Limited amounts of embedded multipliers,
adders, MACs, etc. in the FPGA may rule out some of the algorithms for
implementation.

3. Various hardware constraints such as latency, output production rate,
numerical aspects, etc. may play an important role in the choice of algorithm
to implement. For instance, scheduling an algorithm with limited hardware
resources may result in an insufficient output sample rate. However, a more
resource expensive algorithm may reach the targeted output production rate.

3.1.5 Numerical comparison

The numerical properties of the algorithms in equations (2.6), (3.4), (3.5), (3.7), and
(3.8) were compared using a fixed-point MATLAB Simulink simulation. The equations
were implemented, with the computational order indicated by its parentheses, using
identical hardware components and rounding technique. A test vector with all
combinations of operand input values was constructed. During simulations overflows
and underflows were registered and the result was compared. The first column in table
3.2 indicates the total number of overflows and underflows compared to the number of
divisions performed in the test, expressed in percentage.

Table 3.2 Comparison of numerical accuracy between the complex valued division

algorithms.

Algorithm # overflow/underflow Accuracy error

Equation (2.6) 14% ≤ 2 LSB

Equation (3.4) 10% ≤ 2 LSB

Equation (3.5) 9% ≤ 2 LSB

Equation (3.7) 1% < 1 LSB

Equation (3.8) 4% ≤ 1 LSB

The result shows that equation (3.7) has the best numerical accuracy and the least
amount of overflows/underflows compared to the other equations. If the information
from table 3.1 and table 3.2 is combined, equation (3.7) seems to be the best algorithm
to use when computing a complex valued division. One may argue that equation (3.8)
is a better choice since it consumes less hardware resources and only has slightly
poorer numerical accuracy. However, as will be shown in section 3.3, a division is
comparable to two multiplications in terms of hardware resources, which strengthens
the arguments for choosing equation (3.7).

34 3 Complex valued division by fraction

3.2 Architectures for complex valued division

3.2.1 Architectures and schedules for Smith’s algorithm

Smith’s algorithm presented in equation (3.7) can be implemented in several different
ways depending on the available hardware arithmetic units and their individual
constraints such as latency. A scheduling analysis comparing different computational
orders must be done before a hardware implementation can be initiated [29].
Depending on the order in which the arithmetic operations are performed, and their
individual computation times, several hardware architectures are possible. Assuming
that all arithmetic operations require one cycle to produce a result, two fundamental
architectures can be identified [30]:

1. Parallel architecture: The parallel architecture is optimized for low latency and
high throughput rate. This architecture will generate a result already in 4
cycles but it will consume a large amount of hardware resources. An as-soon-
as-possible (ASAP) scheduling of the parallel architecture is shown in figure
3.2.

Figure 3.2 An ASAP scheduling of the parallel architecture.

Caution!

The results in table 3.2 are strongly dependent on how the hardware blocks

are implemented. However, they give an indication of the relative order in

terms of numerical accuracy.

3 Complex valued division by fraction 35

2. Multiplexed design: The suggested multiplexed architecture is based on a
limited amount of hardware resources (one arithmetic unit of each kind) and it
uses feedback loops and time multiplexing strategies to reuse idle arithmetic
blocks units. This approach results in an area conservative architecture but
with a larger start up latency and lower throughput rate than the parallel
architecture. An as-soon-as-possible scheduling of the multiplexed
architecture is shown in figure 3.3.

Figure 3.3 An ASAP scheduling of the multiplexed architecture.

The final scheduling that is going to be used in the FPGA hardware implementation
can only be done after the arithmetic units have been chosen. The implementation of
the arithmetic units will have a huge impact on the total architecture of the complex
valued divider in terms of hardware size, numerical accuracy, and execution speed [27].
The largest and most computationally heavy unit in both architectures is the real
divider. In this thesis, the real divider was implemented using two redundant modified-
Booth multipliers, and a small lookup table (LUT) with normalized and optimized table
entries for high numerical accuracy (appendix A). All other building blocks were
implemented using Xilinx optimized building blocks. The arithmetic building blocks
used in the FPGA design require the following number of cycles to produce an output
value:

• The real divider: 2 cycles.

• The multiplier unit: 1 cycle.

• The adder/subtractor unit: 1 cycle.

36 3 Complex valued division by fraction

3.2.2 Scheduling of the parallel architecture

When the computation times are set the ASAP schedule can be revised. Figure 3.4 (a)
shows the revised ASAP schedule of the parallel design, describing in which cycle
each arithmetic unit is in use, and which arithmetic computation is performed. In cycle
1 and 2 the real division of operand f with operand e is performed. The real division is
pipelined into two steps, thus taking two cycles to produce the result. In cycle 3 and 4
the multiplications and additions of the operands are performed in parallel and in cycle
5 and 6 the real and the imaginary parts are calculated by the two real divisions. The
resulting real and imaginary parts are delivered at the same time at the end of cycle 6.
Figure 3.4 (b) shows the corresponding activity schedule of the parallel architecture
which is used in later scheduling.

(a)

(b)

Figure 3.4 Scheduling of a parallel design of Smith’s algorithm.

In many high performance signal processing systems, multiple divisions are performed
after one another in a sequence. The parallel architecture can be scheduled so that
several overlapping division operations can be performed simultaneously as shown by
figure 3.5. Each set of black or grey squares represents a single division in progress.
When the scheduled design is fully utilized, through software pipelining [23],[29], it
produces one output value every cycle as indicated by the black dots in the output
column of figure 3.5.

3 Complex valued division by fraction 37

1

4

9

8

7

6

5

3

2

Cycle Operations Output

Figure 3.5 Scheduling of four simultaneous divisions in the parallel design of Smith’s
algorithm.

The start-up latency of the parallel design is 6 cycles and a 100% utilization of the
arithmetic units is maintained at all times. The hardware cost to implement the design
is 3 real valued dividers, 3 multipliers, and 3 adders.

3.2.3 Scheduling of the time multiplexed design

Figure 3.6 (a) shows the revised schedule of the multiplexed architecture, describing in
which cycle each arithmetic unit is in use, and which arithmetic computation is
performed.

(a)

(b)

Figure 3.6 Scheduling of a time multiplexed design of Smith’s algorithm.

38 3 Complex valued division by fraction

In cycle 1 the first part of the real divider unit is in use, calculating the term f/e in
equation (3.7). The computation of the term f/e is finished in cycle 2, and in cycle 3
operand d is multiplied with (f/e). In the next cycle, two operations, c+d(f/e) and f(f/e),
are performed simultaneously, occupying the adder and the multiplier unit, and in cycle
5, e+f(f/e) and -c(f/e) are calculated simultaneously. The first part of the real division,
c+d(f/e) with e+f(f/e), is computed in cycle 6. The real part of the complex valued
division is produced at the end of cycle 7, while the imaginary part is produced at the
end of cycle 8. Hence, a complete complex valued division, using only three arithmetic
units, is performed in only 8 cycles. Figure 3.6 (b) shows an activity schedule of the
multiplexed architecture which is used in later scheduling.

As shown in figure 3.6 not all hardware block are utilized in every cycle. This means
that there are hardware resources available that can be used to perform another
complex division at the same time. Figure 3.7 shows two alternatives of how the time-
multiplexed design can be scheduled to perform two simultaneous computations at
once.

(a) (b)

Figure 3.7 Two different ways of scheduling the time multiplexed design of the complex
valued division algorithm.

3 Complex valued division by fraction 39

The black and grey boxes in 3.7 (a) and (b) indicate the two ongoing computations. The
black dots in the column marked output indicates when a complex output value is
produced.

Both schedules have a start-up latency of 8 cycles before the first complex value is
produced. In continuous operation, the schedule in (a) has a varying output production
rate, producing on average an output value every 3.5 cycles (3 – 4 – 3 – 4 – …) while
(b) has a constant production rate (4 – 4 – 4 – 4 – …) of an output value every 4 cycles.

The hardware utilization is not 100% in every cycle for either schedule. Looking at the
schedule in (a), a 100% utilization is for instance reached in cycle 7 and 8 (a full row),
but only a 75% utilization in cycle 9 and 10. On average, the degree of hardware
utilization in schedule (a) is 87.5%. In schedule (b) the hardware utilization degree is
lower than in (a), reaching only 81.25%. The schedule in (a) was chosen for
implementation due to the higher degree of hardware utilization and the marginally
better production rate. If an irregular output production rate results in a more
complicated control and data flow, the schedule in (b) should be chosen instead.

If implemented in an ASIC, the unused hardware blocks could be turned off when not
used to save some power. However, as discussed in the design methodology in part IV
of this thesis, when implementing in FPGA this power saving strategy is not applicable
in the same manner.

3.3 FPGA implementation
Both the parallel and the time-multiplexed [31] architecture have been implemented in
a Xilinx Virtex II XC2V1000 FPGA (speed grade 4) using fixed-point representation.
The wordlength of the input operands was set to 8 bits. To keep rounding errors to a
minimum, convergent rounding was used throughout the designs in this chapter [28].
This bias-free rounding scheme avoids any statistical bias since it will round upward
about 50% of the time and downward about 50% of the time. Saturation arithmetic
ensures that rounded results that overflow (or underflow) the dynamic range will be
clamped to the maximum positive (or negative) value. The maximum accuracy error of
the implementation is below 1 unit in the last position (ulp).

3.3.1 Parallel architecture

Figure 3.8 shows a block diagram of the hardware architecture of the parallel design.
The hardware architecture is directly derived from the schedule of the parallel design in
figure 3.4. The architecture has a linear data flow enabling several computations to be
performed simultaneously as shown in figure 3.5. Pipeline registers are placed between
each arithmetic unit. In an ASIC implementation these pipeline registers must be
implemented, but in an FPGA each logic cell has build-in registers, which can be used
without any cost.

40 3 Complex valued division by fraction

Figure 3.8 Block scheme of the hardware architecture of the parallel design.

Table 3.3 lists the amount of resources occupied by the design in the FPGA, and
indicates the percentage of the total resources of the FPGA that was consumed. In
average the implementation consumes 8% of the total resources in the FPGA. The
implementation can be run at a maximum clock frequency of 147 MHz. New FPGAs
have built-in high performance hardware units, such as dedicated multipliers. It is
recommended that multipliers in a design are mapped onto these dedicated multipliers
if possible, since they offer higher performance than multipliers constructed from slices.
Furthermore, it frees up slices that can be used to implement other functions. A slice in
an FPGA normally consists of two flip-flops, two lookup tables (LUTs) and some
associated multiplexers, carry and control logic. BRAMs are dual-ported block RAMs,
which in this design are acting as a lookup table for the real valued division. Three
BRAMs were used in this design.

3 Complex valued division by fraction 41

Table 3.3 Consumed resources of the parallel architecture implementation.

Eq. (3.7)

Parallel

Number of Slices 436 (8%)

Number of Slice Flip Flops 820 (8%)

Number of 4 input LUTs 799 (7%)

Number of BRAMs 3 (7%)

Maximum frequency (MHz) 147

Figure 3.9 (a) shows the routed floorplan of the FPGA implementation and (b) shows
the placement of the arithmetic building blocks and the lookup tables in the design. The
hardware building blocks have been placed by the place and route tool fairly clustered
in one part of the FPGA. The placement and routing of the design can be modified to
one’s liking by either manually placing individual parts or by defining placement
constraints in the place and route tool. If no placement constrains are defined, and the
design occupies only a few cells, the place and route tool has a tendency to spread out
the design in the FPGA. When the number of free slices decreases or defined timing
constraints must be met, the tool will compact the design. The elongated part in the
upper left corner is the BRAMs and the nine clusters correspond to the nine arithmetic
blocks in the architecture.

(a)

(b)

Figure 3.9 (a) Routed floorplan of the FPGA implementation of the parallel architecture. (b)
Placement of the arithmetic building blocks.

42 3 Complex valued division by fraction

3.3.2 Multiplexed architecture

Figure 3.10 shows a block diagram of the hardware architecture of the multiplexed
design. The hardware architecture is derived from the schedule of the time multiplexed
design in figure 3.6 and the scheduling in 3.7 (b) to allow two simultaneous complex
valued division operations. The multiplexers and the delays regulate the data flow
between the arithmetic units to utilize the hardware. As with the previous design,
registers have been inserted in the block diagram for clarification purposes only. In an
ASIC implementation these pipeline registers must be implemented, but in an FPGA
each logic cell has build-in registers, which can be used without any cost.

Figure 3.10 Block scheme of the hardware architecture of the time multiplexed design.

3 Complex valued division by fraction 43

Table 3.4 lists the amount of resources occupied by the design in the FPGA and
indicates the percentage of the total resources of the FPGA that was consumed. In
average the implementation only consumes 2% of the total resources in the FPGA. The
implementation can be run at a maximum clock frequency of 156 MHz.

Figure 3.11 (a) shows the routed floorplan of the FPGA implementation of the
multiplexed complex valued division architecture, and in (b) the cells occupied by the
design are shown. The elongated part in the lower right of figure 3.11 (b) is the BRAM
and the other three parts in the lower left are the arithmetic building blocks and the
flow control circuitry.

Table 3.4 Consumed resources of the multiplexed architecture in the FPGA.

Eq. (3.7)

Parallel

Number of Slices 146 (2%)

Number of Slice Flip Flops 276 (2%)

Number of 4 input LUTs 270 (2%)

Number of BRAMs 1 (2%)

Maximum frequency (MHz) 156

(a)

(b)

Figure 3.11 (a) Routed floorplan of the FPGA implementation of the multiplexed
architecture. (b) Placement of the arithmetic building blocks.

44 3 Complex valued division by fraction

3.3.3 Comparison of FPGA implementations

Table 3.5 shows a side by side comparison of the hardware implementation and
architectural parameters of the two FPGA implementations. The parallel design has
shorter startup latency and can accommodate 6 simultaneous complex valued divisions
as compared to only 3 simultaneous operations in the multiplexed architecture. In
continuous operation the parallel architecture produces one complex valued output
every cycle compared to one complex value every 4 cycles in the multiplexed
architecture.

The parallel architecture pays for the greater throughput rate and the number of
simultaneous operations by consuming more hardware resources. In average the
parallel architecture consumes about 4 times as many resources as the multiplexed
architecture. The maximum achievable frequency of the two designs is virtually the
same.

Table 3.5 Comparison between the parallel and the multiplexed implementation of a

complex valued divider.

Eq. (3.7)

Parallel

Eq. (3.7)

Multiplexed

Startup Latency (cycles) 6 8

Throughput rate (output/cycle) 1/1 1/4

Max simultaneous operations 6 3

Number of Slices 436 (8%) 146 (2%)

Number of Slice Flip Flops 820 (8%) 276 (2%)

Number of 4 input LUTs 799 (7%) 270 (2%)

Number of BRAMs 3 (7%) 1 (2%)

Maximum frequency (MHz) 147 156

When choosing which of the designs to use in an FPGA implementation, it all comes
down to a trade-off between throughput rate and resource consumption. If resources are
of importance then choose the multiplexed architecture, and if speed is the major
concern then choose the parallel architecture. In an ASIC implementation, power is the
third parameter that has to be taken into account. However, in FPGAs the power
consumption is of less concern, since the FPGA in itself consumes the largest part and
the added power consumption by the design is minimal in many cases.

Another way of implementing a complex valued division, which has grown in
popularity with the introduction of special hardware architectures, is to transform the
complex values to the polar coordinate system and to perform the computation in polar

3 Complex valued division by fraction 45

form instead. By popular belief, it is also considered to be much cheaper in terms of
hardware resources. For comparison reasons, a complex valued division by
transformation architecture was also implemented.

 46

Chapter 4

4Complex valued division by transformation

As discussed in chapter 2, complex valued division implemented with arithmetic
building blocks as shown in chapter 3 is usually tried to be avoided since it consumes
too much resources. Another way of implementing a complex division is by
transformation. As shown in equation (2.7) in section 2.3 the complex valued division
can be simplified if executed in the polar coordinate system instead of in the Cartesian
coordinate system. Transforming the complex numbers from Cartesian coordinates into
polar coordinates is done by using equation (2.1) and (2.2). When the division has been
carried out by using equation (2.7), and the result must be presented in Cartesian
coordinates, a transformation back into Cartesian coordinates is done by using equation
(2.5). Implementing the complex valued division in this way would require in total 1
square root, 4 multiplications, 2 real divisions, 1 subtraction, 1 arctan operation, 1 sine
operation, and 1 cosine operation. Using this strategy to divide two complex numbers
would be very expensive in terms of hardware resources and is therefore not
recommended.

Another way of doing the transformations and the operations in the polar coordinate
system is to use the Coordinate Rotation Digital Computer (CORDIC) method. The
CORDIC method has gained much popularity in the last ten years and has become the
standard way of implementing trigonometric, hyperbolic, logarithmic, and some linear
functions including complex valued division. The CORDIC method was first presented
by Volder in 1956 [32]. The idea is based on rotating the phase of a complex number
by multiplying it by a succession of constant values. By letting all multiplications be of
powers of 2, they can be implemented using just shifts and additions and no actual
multiplier is needed [28].

Compared to other approaches, CORDIC is a clear winner when it is important to save
the number of gates required to implement trigonometric and linear functions (e.g. in
an ASIC) [33]. On the other hand, when hardware multipliers are available (e.g. in an
FPGA or microprocessor), methods such as the one presented in chapter 3 are generally
faster than CORDIC but consume more hardware resources.

4 Complex valued division by transformation 47

4.1 The CORDIC algorithms
If a vector [x, y]T is rotated by an angle θ in a Cartesian coordinate system, it results in
the vector [x’, y’]T as shown by figure 4.1.

Figure 4.1 A rotation of θ degrees in a Cartesian coordinate system.

A general rotation can be expressed by the rotation transformation equations:

' cos sin

' cos sin

x x y

y y x

θ θ
θ θ

= −⎧
⎨ = +⎩

 (4.1)

 By rearranging equation (4.1) we get:

[]
[]

' cos tan

' cos tan

x x y

y y x

θ θ

θ θ

⎧ = ⋅ −⎪
⎨

= ⋅ +⎪⎩
 (4.2)

The rotation by an angle θ is implemented in the CORDIC algorithm as an iterative
process, consisting of several micro-rotations during which the initial vector is rotated
by pre-determined angles αi. Any arbitrary angle θ can be represented by a set of n
partial angles αi. The direction of rotations is specified by the parameter di. An arbitrary
angle θ can then be determined by the sum of all angle steps as follows:

1

0

n

i i
i

dθ α
−

=
= ∑ where { }1,1

i
d ∈ − (4.3)

The process to determine an angle is depicted in figure 4.2.

48 4 Complex valued division by transformation

i idα∑

Figure 4.2 Successive micro-rotations for determination of the angle θ.

If the rotation angles are restricted to

tan 2 where 0,1, , 1i
i nθ −= ± = −… (4.4)

the multiplication of the tangent term is reduced to a shift operation, which is very
beneficial in hardware implementation. A variable zi shown in equation (4.5),
containing the accumulated partial sum of step angles, can be used to determine the
sign of the next micro-rotation. For z0=θ we have

1

1
tan (2)i

i i i
z z d

− −
+ = − ⋅ (4.5)

where

1 if 0

1 if 0

i

i

i

z
d

z

+ ≥
=

− <

⎧
⎨
⎩

 (4.6)

The CORDIC usually operates in one of two different modes, the “rotation” mode
(zn→0) or the “vectoring“ mode (yn→0). In the rotation mode the input vector is rotated
by a specified angle, which is given as an argument. In the vectoring mode the input
vector is rotated towards the x-axis, while storing the angle value required to make the
rotation. The iteration equations of the CORDIC in rotation mode can be described as:

4 Complex valued division by transformation 49

1

1

1

1

2

2

tan (2)

i

i i i i

i

i i i i

i

i i i

x x y d

y y x d

z z d

−

+

−

+

− −

+

= −

= −

= − ⋅

⎧
⎪
⎨
⎪
⎩

where
1 if 0

1 if 0

i

i

i

z
d

z

+ ≥
=

− <

⎧
⎨
⎩

 for 0,1,..., 1i n= − (4.7)

which provides the following output result:

0 0 0 0

0 0 0 0

(cos sin)

(cos sin)

0

n n

n n

n

x K x z y z

y K y z x z

z

= −

= +

=

⎧
⎪
⎨
⎪⎩

 where
1

2

0

1 2
n

i

n

i

K

−
−

=

= +∏ (4.8)

However, a CORDIC rotation is not a pure rotation of the vector but a rotation and an
extension (a.k.a. pseudo-rotation), where the scale factor Kn, given by (4.8), represents
the increase in magnitude of the vector during the rotation process [34]. The resulting
extension of a pseudo-rotation is shown in figure 4.3. When the numbers of rotations
are fixed, the scale factor is a constant and when n→∞ the scale factor approaches the
value 1.647. In most cases this extension by the scale factor Kn must be compensated
for to achieve an accurate result.

P
se

u
d
o
ro

tatio
n

Figure 4.3 A pseudo-rotation in CORDIC.

50 4 Complex valued division by transformation

The CORDIC operations can be performed in three different coordinate systems set by
the coordinate system parameter m. The coordinate systems are the circular (m=1), the
linear (m=0), and the hyperbolic (m=-1), as shown by figure 4.4. Depending on the
coordinate system in which the rotations are done they correspond to different
functions. A rotation in the circular coordinate system (m=1) corresponds to a cosine
and sinus operation, while a similar rotation in the linear coordinate system
corresponds to an addition.

Figure 4.4 Plot of a vector r for different coordinate systems.

The rotation equations in equation (4.8) can be generalized into:

1 ,

1 ,

1 ,

i i m i i i

i i i m i i

i i i m i

x x m y d

y y x d

z z d

δ

δ

α

+

+

+

= −

= −

= −

⎧
⎪
⎨
⎪
⎩

 (4.9)

where the individual parameters are defined as:

{ }
{ }
{ }, ,

,

 coordinate system parameter 1,0,-1

 direction of rotation of the th iteration -1,1

 incremental change of the th iteration 0< 1

 partial angel of the th iteration

 iteration index

i

m i m i

m i

m

d i

i

i

i

δ δ

α

=

=

= ≤

=

= { } 0, 1, , -1n…

The resulting generalized partial scaling factors and partial angles for each rotation are
shown in table 4.1, while table 4.2 summarizes the results after n iterations for the
different modes of operation.

4 Complex valued division by transformation 51

Table 4.1 The partial scaling factor and angle relative to coordinate system (m).

m ,m i
α

1

,m i
K

−

1
1

1,tan iδ−
 2

1,1 iδ+

0 0,iδ 1

-1
1

1,tan iδ−

− 2
1,1 iδ−−

Table 4.2 The CORDIC functions for different operation modes.

Mode m CORDIC function

Rotation

0
n

z →
1

0 0 0 0

0 0 0 0

cos sin

cos sin

n

n

x x z y z

y y z x z

= −

= +

⎧
⎨
⎩

 0
0

0 0 0

n

n

x x

y y z x

=

= +

⎧
⎨
⎩

 -1
0 0 0 0

0 0 0 0

cosh sinh

cosh sinh

n

n

x x z y z

y y z x z

= −

= +

⎧
⎨
⎩

Vectoring

0
n

y →
1

2 2

0 0

1

0 0 0
tan ()

n

n

x x y

z z y x
−

= +

= +

⎧⎪
⎨
⎪⎩

 0
0

0 0 0

n

n

x x

z z y x

=

= +

⎧
⎨
⎩

 -1

2 2

0 0

1

0 0 0
tanh ()

n

n

x x y

z z y x
−

= +

= +

⎧⎪
⎨
⎪⎩

52 4 Complex valued division by transformation

4.2 Complex division by CORDIC
As mentioned in section 4.1, a complex valued division can be computed by
transforming the complex numbers from the rectangular coordinate system into the
polar coordinate system, performing the operations indicated by equation (2.7), and
then retransforming the result back to the rectangular coordinate system. To accomplish
these operations, CORDIC rotators operating in different modes can be used. A
computational scheme of a complex valued division by CORDIC is shown in figure 4.5.

Rectangular to
polar transform

Real valued
division

and
Subtraction of

angles

Polar to rectangular
transformation

Vectoring mode
m=1 and z0=0

Vectoring mode

m=0 and z0=0

Rotation mode
m=1 and y0=0

Operation CORDIC mode

Step 1

Step 3

Step 2

Figure 4.5 Computation scheme of complex valued division by CORDIC.

Step 1: Rectangular to polar transformation

Transforming from Cartesian or rectangular coordinates to polar coordinates with a
CORDIC consists of finding the magnitude, equation (2.1), and the phase angle,
equation (2.2), of a given input vector. As shown by the vectoring mode in table 4.2,
both functions are provided simultaneously when m=1 and z0=0. The magnitude of the

4 Complex valued division by transformation 53

result will be scaled by the CORDIC rotator gain. Unwanted gain can be corrected by
multiplying the resulting magnitude by the reciprocal of the gain constant.

Step 2: Division and subtraction

Using the CORDIC in vectoring mode with m=0 and z0=0, a division between two
input values can be performed. The rotations in the linear coordinate system (m=0)
have a unity gain that eliminates the need for any correction of the scaling constant.

The subtraction between the two angles can be performed by using a separate CORDIC
processor, an available subtractor in the CORDIC or an external subtractor unit.

Step 3: Polar to rectangular transformation

Transformation from polar to rectangular coordinates is done using the equations in
(2.5). The transformation is accomplished by using the CORDIC in the rotation mode,
with the polar magnitude and the polar phase as inputs, and m=1 and y0=0. As in the
case with transforming from rectangular to polar coordinates, the magnitude of the
result will be scaled by the CORDIC rotator gain. Unwanted gain can either be
corrected by multiplying the resulting magnitude by the reciprocal of the gain constant,
or by multiplying the polar magnitude with the reciprocal of the rotator gain before
inputting it into the CORDIC rotator.

4.3 Architecture for a CORDIC based complex valued

division

4.3.1 CORDIC element architectures

A standard single iteration CORDIC stage is shown in figure 4.6. The architecture is a
straightforward derivative of the equations discussed in table 4.2.

The CORDIC element architecture in figure 4.6 perform one iteration per clock cycle
and consists of three b-bit adders/subtractors, two shifters, a ROM for the angle
constants, and control circuitry. In the initial step, operand values are loaded into the
registers. In the next n steps, the values from the registers are passed through the
adders/subtractors and shifters, and the results are fed back to the registers. The shifters
are modified during each iteration to cause the desired shift and the ROM address is
incremented so that the appropriate angle value is fed into the adder/subtractor of z.
The iteration process is controlled by the control circuitry, which takes the signs of the
three input values, mode m, and the iteration level as inputs.

Care must be taken when implementing this architecture in an FPGA. Problems with
the mapping of the architecture due to its bit-parallel design can arise. The bit-parallel
design requires high fan-in bit-parallel variable shifters, which in FPGA (and in ASIC)
implementations could result in several layers of logic being needed. This will result in
a slow and resource consuming design.

54 4 Complex valued division by transformation

Figure 4.6 Hardware Hardware architecture of a standard single iteration CORDIC element.

A more compact architecture is achievable by using bit-serial arithmetic. The bit-serial
CORDIC element architecture shown in figure 4.7 consists of three bit-serial
adder/subtractors, three shift registers, and a serial ROM [33],[34].

Figure 4.7 Hardware architecture of a bit-serial single iteration CORDIC element.

When initialized, the load multiplexers are open for w cycles to fill the registers. Once
loaded, the data is fed through the adder/subtractor and returned to the shift registers,
requiring w cycles to complete the operation. Due to the minimal interconnections and

4 Complex valued division by transformation 55

the simple logic of the bit-serial architecture, it can be run at very high clock rate on the
FPGA. The architecture requires w cycles per iteration, where w is the precision of the
adder/subtractor. This architecture is considerably slower than the iterative architecture,
when operated at the same clock frequency. However, a higher clock rate can often
make up for the large amount of cycles needed to complete each rotation [33],[34]. If
the system in which the bit-serial CORDIC element is going to be used is not bit-serial
in its nature, then conversion logic must be used at the inputs and the outputs.

4.3.2 CORDIC processor architectures

A CORDIC processor (CP) architecture consists of one or more CORDIC elements.
There are mainly three types of architectural approaches [35]:

1. The iterative or sequential approach. This architecture is unfolded in time and
often consists of one CORDIC element connected recursively as shown in
figure 4.8.

Figure 4.8 Iterative CORDIC implementation.

2. The cascaded or parallel approach. This architecture is unfolded in space and
is implemented as a cascade of n CORDIC elements as shown in figure 4.9.

3. A combination of 1 and 2. This architecture is often referred to as the
cascaded fusion approach, and is based on a sequential structure where the
logic for several successive iterations is cascaded and executed within one
clock cycle [33],[34].

56 4 Complex valued division by transformation

Figure 4.9 Cascade CORDIC implementation.

Both the CORDIC element architectures presented in section 4.3.1 can be used in the
three processor architectures above. If the cascade architecture is used, the CORDIC
elements are unrolled so that each of the n elements always performs the same iteration.
This will simplify both architectures considerably and decrease the computation time,
but it will also consume lots of resources in the FPGA. Figure 4.10 shows an example
of a cascaded CORDIC processor with n CORDIC elements.

Each element always performs the same rotation, and so the ROMs can be replaced
with constants and the shifters can be set to shift the same number of steps every time.

The array of interconnected adders/subtractors may need to be pipelined to keep down
the propagation delay through the structure. Choosing which of the CORDIC processor
architectures to use in a given application comes down, as always, to a trade-off
between speed and area.

4 Complex valued division by transformation 57

ADD/SUB ADD/SUB ADD/SUB

Shift >>1Shift >>1

ADD/SUB ADD/SUB ADD/SUB

Shift >>2Shift >>2

ADD/SUB ADD/SUB ADD/SUB

Shift >>n

Constant

Constant

Constant

Shift >>n

Stage 1

Stage 2

Stage n

Pipeline stages

Figure 4.10 A CORDIC processor consisting of n cascaded CORDIC elements.

4.3.3 CORDIC based complex valued division architecture

The computational scheme in figure 4.5 can be directly translated into a CORDIC
based hardware architecture. The resulting CORDIC architecture is shown in figure
4.11 (a). The architecture consists of four CORDIC processors (CP), one subtractor,
and a scale factor compensation unit performing the complex valued division. This
architecture will consume lots of resources, especially if the CORDIC processors are
implemented using a number of cascaded iterative CORDIC elements. To minimize the
resource consumption the three steps of the architecture were mapped onto a single step

58 4 Complex valued division by transformation

x
in

z
in

y
in

x
in

z
in

y
in

x
o
u
t

y
o
u

t

z
o

u
t

(a) (b)

Figure 4.11 (a) Complex valued division using three CORDIC processors in cascade. (b) A
compact iterativede versionof the complex valued division.

consisting of a pair of CORDIC processors. The new and more compact architecture is
shown in figure 4.11 (b) which will discussed in the following section.

The magnitude of the result will during transformation from rectangular to polar
coordinates be scaled by the CORDIC rotator gain, Kn. The same will happen during
the transformation from polar to rectangular coordinates. Linear operations have a
CORDIC rotator gain equal to unity. This means that the scale factor must compensate
for 2Kn gain by multiplying the result with the factor 1/ 2Kn.

4.3.4 Scheduling of the complex valued division architecture

A scheduling diagram of the architecture in 4.11 (b) is shown in figure 4.12. Both
CORDIC processors CP1 and CP2 are realized with eight cascaded iterative CORDIC
elements requiring b=8 cycles to produce a result.

4 Complex valued division by transformation 59

Figure 4.12 Scheduling diagram of the CORDIC based complex valued divider
architecture where n is the number of cascaded elements or iterations needed to

produce a result.

At time instance t and t+b the transformation of the two complex numbers from the
rectangular coordinate system to the polar coordinate system is performed. Both
CORDIC processors are set to operate in vector mode with m=1 and z0=0. The
resulting angles are then subtracted from each other in time instance t+b to t+2b where

CP2 is set in rotation mode with m=0 and x0=1. In the same time instance CP1 performs
the division between the two absolute values. CP1 is operating in vectoring mode with
m=0 and z0=0. The resulting polar number is then transformed by CP1 working in
rotation mode with m=1 and y0=0 in time instance t+2b to t+3b. The whole process is
performed in 3b cycles, which in this case translate into 24 cycles since 8 CORDIC
elements are used in both CPs.

Instead of doing a division and a subtraction in time instance t+b to t+2b, the two CPs
can be set to do a multiplication (CP1 in rotation mode m=0 and z0=1) and an addition
(CP2 in rotation mode m=0 and y0=0). In this way the architecture is also able to do a
complex valued multiplication.

4.4 FPGA implementation of a CORDIC based complex

valued division
The CORDIC based complex valued division architecture has been implemented in a
Xilinx Virtex II XC2V1000 FPGA with a speed grade of 4. Fixed-point representation
was used and the bit length of the input operands was 8 bits. Table 4.3 shows a
summary of the architectural and implementation parameters. The CORDIC design has
a startup latency of 24 cycles and it can accommodate 1 simultaneous complex valued
division. In continuous operation the parallel architecture produces one complex valued
output every 24 cycles. The unrolled architecture consumes 4% of the FPGAs
resources and the maximum clocking frequency is 168 MHz.

60 4 Complex valued division by transformation

Table 4.3 Sumary of the architectural and implementation parameters.

CORDIC

divider

Startup Latency (cycles) 24 (3b٭)

Throughput rate (output/cycle) 1/24 (1/3b٭)

Max simultaneous operations 1

Number of Slices 243 (4%)

Number of Slice Flip Flops -

Number of 4 input LUTs 454 (4%)

Number of BRAMs -

Maximum frequency (MHz) 168

 .Where b is the number of bits in the operand ٭

Figure 4.13 (a) shows the routed floorplan of the FPGA implementation of the complex
valued division CORDIC architecture. In 4.13 (b) the cells occupied by the design are
shown. It is easy to see the chain of cascaded CORDIC elements bending downwards
into the right corner on the floorplan. Unlike the placement and routing of the two other
complex valued division designs in chapter 3, the logic is placed in a chain and not
clustered. This means that the delay time due to long wires is avoided and that a higher
clock rate can be achieved.

(a) (b)

Figure 4.13 (a) Routed floorplan of the FPGA implementation of the CORDIC based
architecture. (b) Placement of the arithmetic building blocks.

 61

Chapter 5

5Comparison of complex valued division

implementations

In previous chapters three different implementations of complex valued division have
been presented. To put the different FPGA designs into perspective, a summary of the
design parameters are presented in table 5.1.

Table 5.1 Comparison of the three complex valued division architectures.

Eq. (14)

Parallel

Eq. (14)

Multiplexed

CORDIC

divider

Startup Latency (cycles) 6 8 24 (3b٭)

Throughput rate (output/cycle) 1/1 1/4 1/24 (1/3b٭)

Max simultaneous operations 6 3 1

Number of Slices 436 (8%) 146 (2%) 243 (4%)

Number of Slice Flip Flops 820 (8%) 276 (2%) -

Number of 4 input LUTs 799 (7%) 270 (2%) 454 (4%)

Number of BRAMs 3 (7%) 1 (2%) -

Maximum frequency (MHz) 147 156 168

 .Where b is the number of bits in the operand ٭

The three designs will be judged from two perspectives: throughput rate and resource
consumption. These two parameters are important in most FPGA hardware
implementations including the ones presented in part II of the thesis.

5.1 Throughput
The parallel architecture is clearly the winner in terms of throughput. In continuous
operation it produces 1 complex valued division every cycle with a start-up latency of 6
cycles. The multiplexed design also has good performance, producing one complex

62 5 Comparison of complex valued division implementations

valued every fourth cycle. The throughput for both the parallel and the multiplexed
design is independent of the wordlength. However, the throughput of the CORDIC
based complex valued division is dependant on the bit-length of the operands. In the
case presented in previous sections the CORDIC based complex valued division
requires 3b cycles to produce a result, where b is the bit-length of the operator. For 8
bit operands (b=8) the CORDIC has six times lower performance than the multiplexed
design and 24 times lower than the parallel design.

5.2 Resources
All three designs where implemented using the same wordlength and types of
arithmetic building blocks and can therefore be compared to each other in terms of
resource consumption in an FPGA. The parallel design clearly consumes the largest
amount of resources of the three designs. It uses nearly three times as many resources
as the multiplexed design and 1.8 times the amount of resources that the CORDIC
based divider uses. In this comparison the multiplexed design consumes the least
amount of resources.

It may be argued that the resource comparison is not fair since only one design each,
with a short wordlength for common practical use, was implemented. For instance
when the wordlength grows, the LUTs in the parallel and multiplexed designs will
grow rapidly compared to the CORDIC based design. To investigate how the resource
consumption changes with the wordlength, several designs where constructed and
compared. The result is shown in figure 5.1.

Figure 5.1 Consumed resources vs. wordlength of the implementations.

5 Comparison of complex valued division implementations 63

The figure clearly shows that the multiplexed design consumes the least amount of
resources up to the breakeven point, marked in the diagram by an ellipse, around a 16
bit wordlength. If the input operands exceed 16 bits each for the real and the imaginary
part, and resources is of great importance, the CORDIC based approached should be
chosen.

5.3 Summary
In this chapter three different implementation of complex valued division have been
presented. The choice of which of the three implementations to use depend on the
requirements of the target application and available hardware resources. If the complex
valued division is going to be used in a system requiring high data rates, the parallel
design based on Smith’s formula scheduled as in figure 3.4 should be used. This
architecture consumes a lot of hardware resources, especially when the wordlength is
long, but produces a complex division every cycle.

If hardware resources are scarce and the operand wordlength exceeds 16 bits, the
CORDIC base complex valued division should be used. However, the architecture
requires many cycles to produce an output value. Many times, the low production rate
can be compensated by a higher clocking rate of the architecture.

If both high throughput rate and resource consumption is of importance, and the
wordlength of the operands is not greater than 16 bits, the multiplexed design should be
chosen for implementation. It has relatively small resource consumption and a good
throughput rate especially compared to the CORDIC architecture.

 67

Chapter 1

1Introduction

Matrix computations are, as discussed in the introduction of this thesis, fundamental
operations used in a wide variety of algorithms in many different fields. This part of the
thesis is devoted to matrix operations which are used in enumerable applications:
inversion of a triangular matrix, QR-decomposition, matrix inversion, and singular
value decomposition (SVD). The matrix inversion is formed by combining the QR-
decomposition together with the triangular matrix inversion. These four matrix
operations can be viewed as basic building blocks in many modern algorithms.

In chapter 2, an investigation of the inversion of real and complex valued triangular
matrices. Three different architectures implementing the inversion are derived handling
both real and complex input matrices. A new mapping method which facilitates the
scheduling of the architectures is presented. The chapter ends with a look at several
different hardware implementations of the architectures that has been derived.

Chapter 3 concerns the QR-decomposition of a matrix. The chapter starts of by
investigating an algorithm that is suitable for hardware implementation. The derived
algorithm is then mapped onto the same architectures derived in chapter 2 for the
inversion of triangular matrices. The scheduling from chapter 2 is also used with a
slight modification. The chapter ends with a look at two complex valued QR-
decomposition architectures implemented in hardware.

In chapter 4 we take a closer look at the real and complex valued matrix inversion. The
matrix inversion is solved by combining the QR-decomposition and the triangular array
architecture architectures. This chapter ends with a look at two implementations
capable of doing complex valued matrix inversion.

In chapter 5 we look at singular value decomposition of complex valued matrices. A
commonly used architecture for implementing singular values decomposition is
scrutinized. A new more area conservative and scalable architecture is proposed. The
chapter ends with a look at an implementation of the singular values decomposition for
complex matrices. Finally a summary is made and conclusions are drawn.

 68

Chapter 2

2Inversion of a triangular matrix

Inversion of triangular matrixes is a key operation in a number of important
decomposition techniques used in numerical and signal processing algorithms
[15],[36],[37].

It is therefore vital to derive efficient hardware architecture for inverting a triangular
matrix. An alternative to conventional mapping strategy is proposed along with three
different architectures offering different benefits as computation speed, low resource
consumption, and ease of scalability. Hardware implementations of the architectures,
for complex and real valued matrices, are derived.

2.1 Matrix definitions
A vector x of dimension n is an array of n scalars of the form

1

2

n

x

x
x

x

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 or
1 2

(, , ,)T

n
x x x x= ,x∈ (2.1)

The scalar xi is called the component of x. The set of n-vectors with real components

are written
n

 and with real or complex components are written
n

. The left vector
in (2.1) is commonly called a column vector (column matrix) and the right vector in
(2.1) is commonly called a row vector (row matrix).

An m×n matrix A is an array of scalars written on the form

()
11 1

1

 ,

n

ij ij

m mn

a a

A a a

a a

= = ∈
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

…
 (2.2)

where the scalar aij is called the entry or element of the matrix A. The set of m×n

matrices with real elements is written m n× and with real or complex elements is

2 Inversion of a triangular matrix 69

written m n× . The indices i and j of the scalar aij are called respectively the row index
and the column index. An n×n matrix is called a square matrix and a m×n matrix is
called a rectangular matrix.

A triangular matrix is a square matrix, n×n, where the entries below or above the main
diagonal are zero. A matrix with real or complex valued entries above and including
the diagonal as shown to the left in equation (2.3) is called an upper triangular matrix
or right triangular matrix. A matrix with entries below the diagonal as shown to the
right in equation (2.3) is called a lower triangular matrix or left triangular matrix. The
letter L is commonly used for a lower triangular matrix, while the letters U or R are
used for an upper triangular matrix.

1,1 1,2 1,

2,2 2,

,

0

0 0

0 0 0

n

n

n n

r r r

r r
R

r

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1,1

2,1 2,2

,1 ,2 ,

0 0 0

0 0

0

n n n n

l

l l
L

l l l

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.3)

There are other types of matrices that also belong to the family of triangular matrices.
A triangular matrix with zeros on the main diagonal is termed a strictly upper or lower
triangular matrix. A matrix which is both upper and lower triangular is diagonal. If the
main diagonal consists of only ones, the matrix is termed unit upper (lower) or normed
upper (lower) triangular matrix. The identity matrix, I, is the only matrix which is both
normed upper and lower triangular. The matrix is shown in equation (2.4).

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

I =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.4)

2.2 Triangular matrix inversion algorithm
The algorithm for inversion of a triangular matrix is derived from the relations shown
in equation (2.5). Let R be a triangular matrix and I be the identity matrix. Then

() () ()1 11
T

T T T T T
R R R R I R W I

− −−= → = → = (2.5)

where W is the inverse of the upper triangular array. The relations in (2.5) can be
translated into a recurrence algorithm that can be used for computing the inverse of an
upper or lower triangular matrix [38]. The pseudo code of the recurrence algorithm is
shown in (2.6).

70 2 Inversion of a triangular matrix

 1

1
1

1

 0

ij

ij jj

j

ij im mj jj
m

i j

W

i j

W r

i j

W w r r

−

−
−

=

>
=

=

=

<

⎛ ⎞= − ∑⎜ ⎟
⎝ ⎠

if

else if

else if

end

(2.6)

The two first conditions in the recurrence algorithm are trivial. All elements under the
diagonal in the inverted matrix will be zero and the new diagonal elements, wjj, are
computed by inverting the diagonal elements, rjj. All other elements are computed
using a back-substitution scheme which is a well known method for solving equation
systems [14]. Fortunately, the recurrence algorithm has a lot of inherent parallelism.
That means that the summation operations in the recurrence algorithm can be
performed in parallel, which speeds up the computation and makes it suitable for
hardware implementation.

Since the inversion of the triangular matrix is solved by back-substitution, it has been
proven to be a numerical stable process with a low relative error even for ill-
conditioned matrixes [14]. However, when implementing in hardware using arithmetic
building blocks with finite precision, it is important to keep track of rounding errors
during intermediate computations. If this is not considered during implementation,
errors can be induced and decreased the precision of the result.

The algorithm for inverting a triangular matrix presented in equation (2.6) is also
applicable to triangular matrices consisting of complex numbers. All real operations in
the recurrence algorithm are then replaced by the operations handling complex
numbers.

2.3 Architectures for triangular matrix inversion
Architectural designs proposed in literature for systems involving triangular matrix
inversion are often based on array structures with parallel communicating processor
elements [16]. These structures are also known as systolic or wave front architectures,
and are characterized by their simplicity, uniformity, and local communication between
processor elements. As discussed in the previous section the inherent parallelism that
exists in matrix operation algorithms makes them easy to map onto such array
architectures. A triangular shaped array architecture is the most used architecture in
literature, but there are also other possible architectures that could be used, including
linear array architecture and single processing element architecture, which will be
discussed in the following sections.

2 Inversion of a triangular matrix 71

2.3.1 Triangular array architecture

Two versions of the triangular array architecture usually appear in literature. The first
one is in this thesis called triangular wave array architecture while the second one is
called triangular pipelined array architecture [23]. Figure 2.1 shows a triangular wave
array architecture with 10 communicating processor elements for inverting a 4-by-4
triangular matrix. There are two types of processing elements, boundary processing
elements and internal processing elements. The functionality of the two types of
processing elements will be discussed later in this chapter.

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

0

0 0

0 0 0

r r r r

r r r
R

r r

r

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1,1 1,2 1,3 1,4

2,2 2,3 2,41

3,3 3,4

4,4

0

0 0

0 0 0

w w w w

w w w
W R

w w

w

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 2.1 Triangular wave array architecture for inverting a 4-by-4 triangular matrix.

The matrix elements, r1,1 to r4,4, of the triangular matrix R, is fed into the top of the
array architecture and propagate through the architecture like a wave. Every clock
cycle, 4 data samples, representing one row of the matrix, are processed through the
architecture, thus producing one output row in the inverted matrix. The computation is
triggered by the arrival of data on the inputs of the processing elements. An inversion
of an n-by-n triangular matrix can thereby be completed in n cycles, and in this
particular case a 4-by-4 triangular matrix is inverted in 4 cycles.

One problem with the wave architecture shown in figure 2.1 is that the wave must
propagate through the whole architecture before the next wave can be initiated. When
large triangular matrices are going to be inverted there will be long delay times
between waves. This will affect the maximum achievable clock speed of the
architecture.

One way to solve this problem in large arrays is to process several waves of data at the
same time through the array architecture as shown in figure 2.2. The first wave, W1,

72 2 Inversion of a triangular matrix

starts to propagate through the architecture at cycle time T1. When the next wave of
data starts to propagate through the architecture at time instance T2 the first wave has
reached halfway through the architecture. In this way idle processing elements are
utilized in a more efficient way, cutting the delay time between waves in half. An
inversion of an n-by-n triangular matrix can in this architecture be completed in n/x
cycles, where x is the number of possible waves processed at the same time in the
architecture. The timing of the waves propagating through the architecture is very
important. If a collision would occur the output values will be unusable. Different
handshaking strategies can be employed to reduce the risk [39].

Figure 2.2 Several computational wave fronts passing through a triangular wave array
architecture at different time instances.

Another way of reducing the delay time is to pipeline the architecture by placing
registers between each processing element as shown in figure 2.3. Pipelining could in
this way be exploited to either increase the clock speed or to reduce the power
consumption at the same speed. The upper limit of the clock speed is now limited only
by the propagation time through an individual processing element instead of through
the whole architecture. Figure 2.3 shows a triangular pipelined array architecture with
10 communicating processor elements, separated by registers, for inverting a 4-by-4
triangular matrix.

In the triangular pipelined array architecture the matrix elements are fed into the top of
the architecture in a skew manner to compensate for the delay caused by the registers.
If this is not compensated for, the matrix elements will be fed into the architecture at
the wrong time instance, thus corrupting the computation. The matrix data will
propagate through the architecture in the direction of the arrows. Suppose that a
processing element can be executed in a single cycle (a unity cycle); an n-by-n
triangular matrix can then be processed in 2(n+1) cycles. An inversion of a 4-by-4
matrix will be completed in 10 cycles.

2 Inversion of a triangular matrix 73

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

0

0 0

0 0 0

r r r r

r r r
R

r r

r

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1,1 1,2 1,3 1,4

2,2 2,3 2,41

3,3 3,4

4,4

0

0 0

0 0 0

w w w w

w w w
W R

w w

w

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 2.3 Triangular pipelined array architecture for inverting a 4-by-4 triangular matrix R.

The two triangular array architectures presented in this section have some drawbacks
that make them unsuitable for hardware implementation. These drawbacks include:

• Long delay time (critical path) through array structure of figure 2.1. The
propagation delay of a wave (or multiple waves) traveling throughout the
architecture grows with the size (number of inputs) of the array. This will
affect the maximum achievable clock frequency. However, as shown in the
pipelined array architecture of figure 2.1, this drawback can easily be solved
by pipelining.

• The number of processing elements will increase rapidly with the number of
inputs. To be able to process n input samples, n(n+1)/2 processing elements
are required. The increasing number of processing elements will result in a
large consumption of hardware resources (chip area in ASIC and slices in
FPGA).

• Lack of easy scalability. In order to add one more input a new design must be
derived.

As discussed in the introduction of the thesis there is a growing need for easily scalable,
high throughput rate, and area conservative architectures in modern system-on-chip
(SoC) design. The two triangular array architectures are far from optimal in this respect.
Therefore, a compact and scalable design with good throughput rate is highly sought
for. Presented here is an alternative architecture, a linear structure with one processing
element for each input.

74 2 Inversion of a triangular matrix

2.3.2 Linear array architecture

Several authors have presented mapping methods of the triangular array architecture in
[23],[40]. In [41] Rader suggested spatial folding, which produces a square array
architecture which according to Rader is more convenient for hardware implementation
[41]. Rader’s mapping applied to the triangular array architecture shown in figure 2.4
(1) to (3). The first folding cut is made in the middle of the array architecture. The
bottom part is folded in such way that it produces two rows of processing elements.
The next folding cut is placed in the middle of the top part produced by the first folding
cut. The resulting architecture is a square architecture with local communication
between processors. However, this mapping method does not reduce the number of
processing elements needed and does not make it easier to scale the architecture.

 (1) (2) (3)

Figure 2.4 Rader's folding of a triangular array architecture onto a square array architecture.

In Walke [40] presented another mapping method where the architecture is folded in
several steps into a linear array architecture. This mapping method is also spatial in its
nature. Unlike in Rader’s method, Walke divides the architecture diagonally instead of
horizontally as shown in figure 2.5 (1) to (4). The lower part is wrapped around and
placed on top of the upper part forming a square. A new folding cut is done down the
middle of the square of processing elements. Three rows of processor elements are
formed and mapped onto a single linear architecture consisting of three processing
elements. This mapping method reduces the number of needed processing elements
significantly but it also comes with a drawback. The scheduling of the linear array
architecture must be performed in the order indicated by the dotted lines in the figure.
This complex scheduling requires a sophisticated control unit, pre-storage of the matrix
and several registers storing intermediate computations. Moreover, the architecture is
not easy to scale without modifying the schedule of the architecture. This will result in
a redesign of the control circuit.

2 Inversion of a triangular matrix 75

Figure 2.5 Walke's mapping of a triangular array architecture onto a linear array
architecture.

The mapping method suggested in this thesis is based on mapping with respect to the
data flow in the architecture. An individual input data will travel through the array
architecture along a certain path interacting with other data along the way. The four
data paths extracted from the triangular array architecture is shown in figure 2.6. The
extracted data paths (1-4) are placed along each other as shown in the middle of figure
2.6. The behavior of the data elements are then mapped onto each other top-down, as
shown by the arrows, resulting in a linear array architecture with one processing
element for each input as shown in the right of figure 2.6. Unlike the processing
elements in Rader and Walke, the one in this architecture are capable of performing
both the function of a round processing element and a square processing element

76 2 Inversion of a triangular matrix

without any extra cost in hardware (section 2.6). The data flow in the linear array
architecture mimics the data flow of the original triangular array architecture but
eliminates complex flow control circuitry and extra registers for storing intermediate
computations.

Figure 2.6 Mapping of a triangular array architecture onto a linear array architecture.

The linear array architecture in figure 2.6 reduces the required number of processing
elements considerably. Instead of n(n+1)/2 processing elements to process n input
samples, only n is needed.

Unlike Rader’s and Walke’s architectures [40], the linear array architecture is very easy
to scale if more inputs are needed to process larger matrices. As shown in figure 2.7,
scaling is done by adding the number of processing elements (one for each new input)
required for a specific application at the end of the linear structure. There is no upper
limit to how many processing elements can be added to the structure. If large matrices
were to be inverted, several chips could be connected together.

Figure 2.7 Scaling of the linear array architecture is easily done by adding a processing
element at either end of the array.

2.3.3 Single element architecture

Although the size of the architecture has been significantly reduced in the linear array
compared to the triangular array architecture, it still consumes lots of hardware when
implementing very large matrix sizes. This can be troublesome in cases where large

2 Inversion of a triangular matrix 77

systems-on-chip are to be constructed. Therefore, smaller architecture can be preferable
in some cases at the expense of reduced throughput.

A natural step in the process of reducing the size of the architecture is to map the linear
array architecture onto one single processing element (SPE) as shown in figure 2.8.

Figure 2.8 Mapping of a linear array architecture onto a single element architecture.

Compared to the triangular and the linear array architectures the single element
architecture only consists of a single processing element, a delay, and a memory
regardless of the number of inputs. The data flow in the single processing element
architecture mimics the data flow of the original triangular array architecture. Since
only one processing element is used no parallel computing is possible. Therefore,
intermediate computations are stored in the memory during computations. The delay
element is used to temporary postpone a value until the next cycle. The scheduling will
be discussed in chapter 3. Scaling of this architecture to handle larger matrix sizes is
done by increasing the memory sizes for storage of intermediate computations and
increasing the computation time.

2.3.4 Architectural comparison

Table 2.1 shows a comparison between the architectures in terms of the number of
processing elements needed to realize the architecture for an n-by-n matrix size, the
level of scalability of the architecture, and the propagation delay through the
architecture in terms of number of processing elements to pass through. From the table
it is clear that the linear array structure has very attractive features for hardware
implementation. It only uses n processing elements and has a propagation delay of only
one processing element. Due to the modulized design of the processing elements in the
linear array architecture it is very easy to scale (high scalability). To scale the SPE
architecture the memory must be expanded and in the triangular array architecture new
architecture and control circuitry must be derived. The pipelined triangular array

78 2 Inversion of a triangular matrix

architecture is not an alternative to the linear array architecture, even if area
consumption is of less important. The single processing element architecture should
only be used when resource consumption is of great concern.

Table 2.1 Comparison between the four different architectures for inverting a

triangular matrix.

Architecture # of PEs Scalability Propagation delay

Triangular (wave) n(n+1)/2 low n PEs

Triangular (pipelined) n(n+1)/2 low 1 PE

Linear n high 1 PE

Single element 1* medium 1 PE
* The number of PEs will not grow with the size of the input matrix but the memory size will.
This must be taken into account when comparing the resource consumption of the different
architectures.

In this section resource consumption and scalability of the different architectures have
been investigated. Another important factor that must be investigated is the throughput
rate of the architectures. A scheduling of the architectures must be done to be able to
compare the architectures in terms of throughput rate.

2.4 Scheduling of the architectures
Scheduling the data flow in an architecture is an important step in hardware
development [42]. In this work the scheduling is done in two steps:

1. In the first step, referred to as a basic scheduling, all processing elements are
assumed to generate an output in one cycle. This is often not the case in reality
but the basic scheduling lets us explore and evaluate different scheduling
schemes.

2. When a processing element has been designed, step two in the scheduling can
be initiated. In this step a more detailed scheduling is done by adjusting the
basic scheduling depending on the amount of cycles needed to produce an
output value. Since all processing elements are constructed in the same
manner it is easy to expand the basic scheduling.

By investigating the data flow of the triangular array architecture, a schedule for the
linear array and single element architecture can easily be derived.

2.4.1 Scheduling of the pipelined triangular array architecture

A basic schedule showing the inversion of a triangular matrix is shown in figure 2.9.
The matrix data enters the architecture in a skewed manner (shown in figure 2.3) and

2 Inversion of a triangular matrix 79

propagates throughout the structure. The black boxes show which processing elements
are active in each cycle. A complete matrix inversion is done in 10 cycles, assuming
that a processing element takes one cycle to process the data. As seen in figure 2.9 not
all processing elements are utilized during the inversion processes. The idle processing
elements could either be turned off when inactive or they could be used to process a
second inversion. The sequential data flow of the architecture simplifies the control
circuitry, which can be implemented with a state machine.

Figure 2.9 Data flow in the pipelined triangular array architecture during inversion of a
triangular matrix.

2.4.2 Scheduling of the linear array architecture

As shown in section 2.3.2 the triangular array architecture can be mapped onto a linear
array architecture. Three basic scheduling schemes of the linear array architecture for
inverting a 4-by-4 triangular matrix are shown in figure 2.10.

80 2 Inversion of a triangular matrix

(a)

b1,1

b1,2

b1,3

b1,4

3

4

1

2

5

6

7

8

9

10

PE1 PE2 PE3 PE4 OutTclk In

a1,1

a1,2

a1,3

a1,4

b2,1

b2,2

b2,3

a2,1

a2,2

a2,3

a2,4

a3,1

a3,2

m=1

(b)

(c)

Figure 2.10 Three different basic schedules of the linear array architecture. Each processing
element is scheduled to produce an output value in one cycle (m=1).

The scheduling in figure 2.10 (a) is a straightforward mapping of the data flow of the
triangular wave architecture in figure 2.1. The boxes in the figure show which
processing element is active in that particular cycle. The boxes form a larger triangular
shaped structure, where different shades indicate the processing of different rows in the
input matrix. The scheduling diagram is an enlarged part of the complete scheduling to

2 Inversion of a triangular matrix 81

the right in figure 2.10 (a). The directions of the arrows show where the results from a
processing element are used in the next cycle. Drawbacks of this schedule are the low
utilization of the processors and the irregular production rate, since the output values
are not produced continuously. Maximum utilization is only 50%, e.g. cycle 3, and in
most cycles the utilization is only 25%, e.g. cycle 5. The degree of utilization will vary
with the matrix size. However it will never be higher than 50% at any given time.

To reduce power consumption the low utilization of the PEs could be utilized by
turning off a particular PE when it is not used. This schedule inverts a triangular matrix
in 2n2-n cycles.

By interleaving processing of rows, the schedule in figure 2.10 (b) takes advantage of
some of the idle processors to process the next row in parallel. The utilization in (b) is
50% or 75% at any given time (compare clock cycle 4 and 5 in figure 2.10 (b)). Also in
this schedule the degree of utilization will vary with the matrix size, however it will
never be lower than 50% at any given time. This schedule inverts a triangular matrix in
n2+n-1 cycles.

There are other possible schedules with a higher utilization degree. The schedule in
figure 2.10 (c) will result in a 100% utilization. In this schedule two rows are processed
simultaneously through the architecture. A drawback of this schedule is that it produces
output samples in an irregular manner, which may not be desirable, and it can only be
used for even matrix sizes (n=2,4,6,…). This schedule inverts a triangular matrix in
(2n-1)+((n/2)-1)(n+1) cycles. There are several other ways of scheduling the linear
array but they are not treated in this thesis.

As discussed before, the scheduling will be affected by the implementation of the
processing elements. The number of cycles needed to execute a processing element will
change the scheduling diagrams shown in 2.10. As an example, let us assume that a
linear array architecture is used with the schedule presented in 2.10 (b) and that a
processing element can produce an output value in a singe cycle (m=1). If the
processing element is pipelined so that it takes 5 cycles to produce an output value
(m=5), the scheduling will change accordingly as shown in figure 2.11(a). The
pipelining of a processing element will not change the fundamental data flow between
the processing elements or the degree of hardware utilization, if the same schedule is
kept. However, the pipelined architecture may give rise to new and more efficient
schedules. The benefit of pipelining a processing element is that the clock frequency
could be increased. Figure 2.11 (b) shows how the basic schedule changes with the
input matrix size n. As shown, the schedule is expanding since the triangular shapes of
processing elements are growing with the matrix size.

82 2 Inversion of a triangular matrix

b1,1

b1,2

b1,3

b1,4

3

4

1

2

5

6

7

8

9

10

PE1 PE2 PE3 PE4 OutTclk In

a1,1

a1,2

a1,3

a1,4

b2,1

b2,2

b2,3

a2,1

a2,2

a2,3

a2,4

a3,1

a3,2

m=5m=1

(a)

(b)

Figure 2.11 The effect on the scheduling when pipelining the processing elements. (b)
shows how the schedule in (a) grows with the matrix size n.

2 Inversion of a triangular matrix 83

The final schedule of the linear array architecture can not be done until the processing
element has been developed. Table 2.2 summarizes the computation times of the three
different schedules for inverting an n-by-n triangular matrix on a linear array
architecture.

Table 2.2 Comparison between the three different schedules in terms of cycle needed to

invert an n-by-n triangular matrix.

Schedule

of cycles

needed for inversion

of an n-by-n matrix

Figure 2.10 (a) 2n2-n

Figure 2.10 (b) n2+n-1

Figure 2.10 (c) (2 1) 1 (1)
2

n
n n− + − +⎛ ⎞

⎜ ⎟
⎝ ⎠

The scheduling in 2.10 (b) was chosen for usage with the linear array architecture for a
number of reasons. It has a fair PE utilization, but foremost it has a regular input/output
production rate. This helps when the architecture is going to be used together with
other components in a larger system, especially if that system exhibits a regular data
flow from the beginning. Thus complex buffering and control circuitry are not required.

2.4.3 Scheduling of the single element architecture

The scheduling of the single processing element architecture (SPE) is based on the
schedule of the linear array architecture shown in figure 2.10 (a). Since only one
processing element is used in the single processing architecture, parallel computations
as in cycle 3, 4, and 5 of figure 2.10 (a) are not possible. The schedule is therefore
mapped onto the single PE by delaying all parallel operations until a later cycle as
shown in figure 2.12.

84 2 Inversion of a triangular matrix

Figure 2.12 Mapping of a schedule for a multiprocessor architecture onto a schedule for a
single processor architecture.

To facilitate the scheduling a memory unit was added [42]. Instead of circulating the
data in delay chains, the delayed data is written to and read from a memory when
needed or delayed one cycle using a delay element. Figure 2.13 shows a schedule for
the SPE including the cycles in which the memory and the delay are active. This
schedule inverts a triangular matrix in n2(n+1)/2 cycles.

Figure 2.13 Scheduling of the single element architecture.

The scaling of the SPE architecture is done by reconfiguring the control circuit
handling the order in which the operations are going to be performed. The memory size
must also be increased, since more delayed data must be stored while waiting for their
turn to be processed. Hence, the scalability is not that good compared to the linear
architecture. However, the SPE architecture can be implemented with a large fixed size
memory so that it can handle a wide range of matrix input sizes.

2 Inversion of a triangular matrix 85

2.5 FPGA implementation of architectures for triangular

matrix inversion
Both the linear array architecture and the single processing element architecture have
been implemented on a Xilinx Virtex II XC2V1000 FPGA with speed grade 4. Each
architecture has been implemented in two versions; one handling real valued matrices
and one handling complex valued matrices. A combined hardware design handling
both complex and real valued matrices is possible but not covered in this thesis. The
only thing that would change compared to the complex valued implementation is the
control circuitry regulating the data flow.

2.5.1 Hardware architecture of the linear array architecture

As explained in the previous sections, the triangular array architecture consists of two
different processing elements, boundary processing elements and internal processing
elements. The boundary processing elements include a subset of the same operations as
the internal processing elements, and the hardware of the two elements can therefore be
combined into a single processing element. A hardware block diagram of the combined
processing element is shown in figure 2.14.

Figure 2.14 Hardware block diagram of a combined processing element.

The processing elements are capable of functioning in two modes with two sub-modes.
Which arithmetic units that are active in the different modes are shown in table 2.3. A
state machine within the control circuitry is keeping track of which modes and sub-
modes to use, and when to use them. Mode 1 with sub-mode 1 is triggered by the

86 2 Inversion of a triangular matrix

arrival of a diagonal matrix element to the processing element, while mode 2 is used
for every other case. The sub-modes are used when the processing element is
performing the functions of the boundary element in the original triangular array
architecture. When mode 1 is triggered the input values are divided by each other and
stored in the register while input value Yin is sent to the next PE. Sub-mode 1 is
triggered when a diagonal element arrives. The diagonal element is inverted and stored.
Mode 2 together with sub-mode 2 forms the sum in equation 2.6. The functionality of
the different modes is summarized in table 2.3.

The data flow control system interconnecting the processing elements is shown in
figure 2.15. The control system consists of data buses, registers, and multiplexers
which are controlled by a state machine within the control circuitry. Since a mapping
strategy based on the data flow in the triangular architecture was used, the flow control
between the processing elements is very simple and regular. The input/output
connections of processing elements on either end of the array are simply connected
together forming a feedback loop as shown by the dashed line in figure 2.15.

Table 2.3 Summary of the different operation modes of the processing element.

Mode Operations

Mode 1 Xin/Yin→Register

Yin → Yout

0→Xout

Sub-mode 1 1/Yin→Register

0→Xout

Mode 2 Xin-Yin·Register→ Xout

Yin → Yout

Sub-mode 2 -Yin·Register→ Xout

The linear array architecture and the processing elements have been implemented in
two versions. The first version is an architecture capable of handling real valued input
matrices, while the second version is capable of handling complex valued input
matrices.

2 Inversion of a triangular matrix 87

Figure 2.15 Data flow control system between two neighboring processing elements in the
linear array architecture.

To keep rounding errors to a minimum, convergent rounding was used throughout the
designs in this chapter. This bias-free rounding scheme avoids any statistical bias since
it will round upward about 50% of the time and downward about 50% of the time.
Saturation arithmetic ensures that rounded results that overflow (or underflow) the
dynamic range will be clamped to the maximum positive (or negative) value. The
maximum accuracy error of the implementation is below 1 unit in the last position (ulp).

2.5.2 Implementation of a real valued linear array architecture

The implementation of the linear triangular array architecture handling real valued
input matrices was implemented in fixed-point with an operand wordlength of 8 bits.
The real valued divider used in the implementation consists of two multipliers and a
lookup table (appendix A). The same divider was used in the implementation of the
complex divider in part I chapter 2 of this thesis. The divider needs two cycles to
produce an output value. The multiplier and the adder/subtractor unit were
implemented using Xilinx optimized building blocks needing 1 cycle each producing
an output value. Since the division takes two cycles to produce an output value and the
longest computation path (marked in figure 2.16) via the subtractor and the multiplier
takes 1+1=2 cycles, there is no need to add additional delays except on the yin to yout

line. The processing element shown in figure 2.16 now have a delay of 2 cycles (m=2).

88 2 Inversion of a triangular matrix

Figure 2.16 Hardware block diagram of the pipelined (m=2) processing element.

Table 2.4 shows the amount of resources occupied in the FPGA by a linear array
architecture and by a single real processing element implementation with four real
valued processing elements, it also indicates the percentage of the total resources of the
FPGA that was consumed.

Table 2.4 Summary of the consumed resources of the real valued PE and the real

valued linear array architecture.

Real valued

PE

Real valued

Array

Number of Slices 162 (3%) 648 (12%)

Number of Slice Flip Flops 292 (2%) 1168(11%)

Number of 4 input LUTs 282 (2%) 1128 (11%)

Number of BRAMs 1 (2%) 4 (10%)

Maximum frequency (MHz) 107 103

Table 2.4 shows that the design scales linearly from a single processing element using
162 slices to four processing element using 648 slices. A slice in an FPGA normally
consists of two flip-flops, two lookup tables (LUTs), and some associated multiplexers,
carry, and control logic. BRAMs is the number of block RAMs utilized in the design.
The block RAMs implements the lookup tables in the design. It may also be note that

2 Inversion of a triangular matrix 89

the maximum clocking frequency does not change significantly between the designs.
The implementation can be run at a maximum clock frequency of 107 MHz.

Figure 2.17 shows the routed floorplan of the single real valued processing element in
(a) and the linear array consisting of four processing elements in (b). The single real
valued processing element is clustered in the lower part of the FPGA while the placing
of the processing elements and the control circuitry for the linear array is scattered all
over the floorplan. It is possible to manually place the design closer together or force
the place and route tool to compact the design avoiding long interconnecting wires.

(a) (b)

Figure 2.17 (a) Routed floorplan of the single real valued processing element. (b) Routed
floorplan of the real valued linear array architecture.

2.5.3 Implementation of a complex valued linear array architecture

The linear array architecture handling complex valued input matrices was implemented
in fixed-point with an operand wordlength of 8 bits for the real and imaginary parts.
The hardware operations of the processing element do not change for a complex valued
design. However, the individual arithmetic building blocks must be able to perform
complex valued operations. The complex valued divider was implemented using the
multiplexed complex valued divider presented in part I, chapter 2 of the thesis while
the complex multiplier was implemented using the strength reduced computation
scheme presented in part I, equation (3.2) and the complex valued adder/subtracter was
implemented with using two real valued adder/subtractor units.

The complex valued divider produce an output value in 8 cycles and the complex
multiplication and the complex subtractor is internally pipelined so that they produce
an output value in 4 cycles. A delay element delaying 8 cycles are inserted on the yin to
yout wire. A final scheduling was implemented with a delay of 8 cycles (m=8) using the
processing element shown in figure 2.18.

90 2 Inversion of a triangular matrix

Table 2.5 shows the amount of resources needed to implement a single complex valued
processing element and the complex valued linear array architecture in an FPGA.

Figure 2.18 Hardware block diagram of the pipelined processing element handling complex
values.

Table 2.5 Summary of the consumed resources of the complex valued PE and the

complex valued linear array architecture.

Complex valued

PE

Complex valued

Array

Number of Slices 320 (6%) 1278 (24%)

Number of Slice Flip Flops 553 (5%) 2212 (21%)

Number of 4 input LUTs 556 (5%) 2224 (21%)

Number of BRAMs 1 (2%) 4 (10%)

Maximum frequency (MHz) 103 101

Table 2.5 shows that the complex valued design also scales linearly in terms of
consumed hardware resources. Both the complex valued processing element and the
complex valued linear array implementations can be executed at a maximum clocking
frequency of around 100 MHz. The implementation of the linear array architecture

2 Inversion of a triangular matrix 91

consumes in total 1278 slices, which translates to roughly 24% of the total resources in
the FPGA, without using any embedded hardware units. This is nearly twice the size of
the real valued implementation. Figure 2.19 shows the routed floorplan of a single
complex valued processing element in (a) and the complex valued linear array
architecture with four processing elements in (b). The floorplan of the complex valued
architecture suffers from the same scattering as the real valued architecture did.

(a) (b)

Figure 2.19 (a) Routed floorplan of the single complex valued processing element. (b)
Routed floorplan of the complex valued linear array architecture.

2.5.4 Hardware architecture of single element architecture

The hardware block diagram of the single processing element architecture is shown in
figure 2.20. The hardware architecture consists of three arithmetic units, a memory, and
control circuitry (not shown in the figure).

The single element architecture has also been implemented in one version handling real
valued input matrixes and one handling complex valued matrixes. The arithmetic units
are implemented in the same way and with the same wordlength of the input operands
as the arithmetic units in the linear array architecture. The multiplier and the
adder/subtractor have been pipelined internally to match the computation time of the
real valued (or complex valued) divider. In the case of the real valued implementation
the divider uses two cycles to produce an output value while the multiplier and the
subtractor produces an output value in one cycle and in the case of the complex valued
implementation the division 8 cycles to produce an output value while the multiplier
and the subtractor uses 4 cycles each to produce an output value. The scheduling
scheme of the SPE has been changed accordingly (m=2 for real valued and m=8 for
complex valued) to match the pipelining of the arithmetic hardware units. Table 2.6
shows the amount of resources occupied in the FPGA by the real and by the complex

92 2 Inversion of a triangular matrix

valued SPE implementation for inverting a 4-by-4 triangular matrix. It also indicates
the percentage of the total resources of the FPGA that was consumed.

Figure 2.20 Hardware block diagram of the single processing element architecture.

Table 2.6 Summary of the consumed resources of the complex valued PE and the

complex valued linear array architecture.

SPE Real

valued design

SPE Complex

valued design

Number of Slices 158 (3%) 283 (5%)

Number of Slice Flip Flops 287 (2%) 524 (5%)

Number of 4 input LUTs 275 (2%) 491 (4%)

Number of BRAMs 2 (5%) 2 (5%)

Maximum frequency (MHz) 127 126

2 Inversion of a triangular matrix 93

Table 2.6 shows that the real valued implementation is nearly 56% smaller than the
complex valued implementation. This is due to an increase in the sizes of the arithmetic
units and the memory in the complex valued implementation. The maximum frequency
of the implementations is the same as in the real valued design. Figure 2.21 shows the
routed floorplan of a real valued single processing element in (a) and the complex
valued single processing element in (b). The floorplan of the real valued SPE is divided
into two clusters. The upper cluster is the arithmetic units and the control circuitry
while the lower cluster is the memory. The floorplan of the complex valued SPE
architecture in figure 2.21 (b) is more compacted together.

(a) (b)

Figure 2.21 (a) Routed floorplan of the single processing element architecture handling real
values. (b) Routed floorplan of the complex valued single processing element architecture.

2.6 Summary and comparison
Table 2.7 shows a comparison of the three architectures from several different aspects.
The table shows that the triangular array architecture consumes the highest amount of
processing elements implementing an n-by-n matrix. The scalability of the
architectures is compared in a relative scale using low, medium, and high as a ranking
system. The linear array is modulized and the control circuitry does not need to be
redesigned if extra modules are added. If a larger matrix is to be processed by the SPE
architecture the memory size must be adjusted. If more inputs are to be added to the
triangular array a new architecture and control circuitry must in most cases be derived.
For the reasons mentioned, the linear architecture is deemed highly scalable while the
SPE have a medium scalability and the triangular array architecture has a low
scalability. All three designs have roughly the same maximum achievable clocking
frequency. If hardware resources are scarce, either the linear or the SPE architecture
should be chosen for implementation. If high throughput is needed, the triangular

94 2 Inversion of a triangular matrix

architecture is the best choice. The perfect compromise is the linear array architecture
that needs only O(n) amount of resources and has a good throughput rate and very good
scalability.

Both linear array implementations scale nearly linear with the number of processing
elements. This makes it easy to predict the number of slices needed for a certain matrix
size. The scale factor between a real valued design and a complex valued design is
slightly below 2.

Table 2.7 Comparison between the three architectures for inversion of a triangular

matrix.

Triangular

array

Linear array Single

element

of PEs n(n+1)/2 n 1

Scalability low high medium

Cycles needed for inversion 2(n+1) n2+n-1 n2(n+1)/2

of slices in PE (real/complex) 162/320* 162/320 158/238

Size of control circuitry small medium large

Maximum frequency (MHz) 99* 101 126
* Estimated values produced by the Xilinx ISE tool.

 95

Chapter 3

3QR-decomposition

3.1 Introduction
A very useful approach to solving matrix problems is to adopt a transformation that
preserves the solution but simplifies the problem. A problem with applications in many
fields is the least squares problem, which essentially states that, given a matrix X and a

vector y, find a vector b that minimizes the expression
2

2
y Xb− [14],[37]. Least squares

is a mathematical optimization technique that attempts to find a "best fit" to a set of
data by attempting to minimize the sum of the squares of the ordinate differences
(called residuals) between the fitted function and the data. This problem can be
effectively solved by using QR-decomposition [14],[36]. QR-decomposition is not only
used in solving the least squares problem, but also used in many other transforms and
methods [14] for a wide variety of applications. It is safe to say that QR-decomposition
(a.k.a. QR-decomposition) is a key technique in matrix computation, and therefore it is
important to derive a useful hardware implementation of the decomposition technique.

3.2 QR-decomposition algorithms
A QR-decomposition of a matrix A is a decomposition of the matrix into

A QR= (3.1)

where the matrix Q is orthogonal (meaning that QT
Q = I) and the matrix R is upper

triangular. QR-decompositions can be computed in several different ways [14],[40], the
most commonly used being:

• Gram-Schmidt decomposition.

• Householder reflections, also known as Householder transformations.

• Givens rotations.

All three methods have their strengths and weaknesses [14]. When it comes to
hardware implementation, all three methods have been considered for implementation

96 3 QR-decomposition

however, in later years the Givens rotations method, or short Givens, has been given
lots of attention from hardware engineers around the world. Givens has proven to be
easy to parallelize, has a good algorithm-to-hardware feasibility, and has good
numerical properties which is important parameters in hardware implementation
[14],[40]. Therefore, the Givens method was chosen for implementation in this thesis.

3.2.1 Standard Givens rotations algorithm

The standard, or generalized, Givens rotations is a well-known technique, which was
first proposed by Givens [43]. A Givens rotation is a matrix on the form

c s
G

s c
=

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 where 2 2 1c s+ = . (3.2)

Each rotation performed by this matrix is orthogonal. There is a unique angle θ such
that c=cos(θ) and s=sin(θ). By rotating a vector (a b)T clockwise through the angle θ,
the expression

c s a ca sb

s c b cb sa

+
=

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.3)

is obtained. In this way the rotations can be used to force a matrix element to be zero
by setting

2 2 2 2
 and when () 0Ta b

c s a b
a b a b

= = ≠
+ +

 (3.4)

If inserted into equation (3.3) we get

2 2

0

c s a a b

s c b

+
=

−

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

. (3.5)

Applied to a larger matrix, a rotation G(p,q,θ) in the (p,q) plane is defined as a matrix
of the form

1 0 0 0

0 0

(, ,)

0 0

0 0 0 1

c s p

G p q

s c q

p q

θ =

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.6)

3 QR-decomposition 97

where c=cos(θ) and s=sin(θ) for an angle θ. The rotation in the (p,q)-plane is clearly an
identity matrix, in which a plane rotation has been embedded in a submatrix
corresponding to the rows p and the columns q in the matrix. If

(, ,)y G p q xθ= (3.7)

then

,

,

, when ,

p q

r p q

r

sx cx r q

y cx sx r p

x r p q

+ =

= − =

≠

⎛
⎜
⎜⎜
⎝

 (3.8)

The rotation combines the rows p and q and leaves the others undisturbed. By choosing
c and s carefully we can introduce a zero anywhere we want in the pth and qth row. In a
similar manner a multiplication with G(p,q,θ)T we can introduce a zero anywhere we
want in the pth and qth column.

Example 3.1: QR-decomposition by Givens rotations

Givens rotations can be used to compute the QR-decomposition of a matrix. Consider a

matrix
4 3.A
×∈ The Wilkinson diagrams show how Givens rotations transform the

matrix into an upper triangular form.

1 2 3

5

4(3, 4) (2, 3) (1, 2)
0

0 0

0
(2, 3)

0

0 0

0
(3,4)

0

0

T T T

T

T
A G G G

G

G

× × × × × × × × ×

× × × × × × × × ×
=

× × × × × × × ×

× × × × × × ×

× × ×

× ×

× ×

×

× × ×⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ × ×⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ × ×
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ × ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

6

0 0
(3, 4)

0 0 0 0

0 0 0 0 0

T

G R

× × × × × ×

× × × ×
=

× ×

×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.9)

If Gi denotes the ith Givens rotation in the reduction of A into R then the orthogonal
matrix Q takes the form of all plane rotations Q=G1·G2 ·…·G6.

 □

The computation of c and s shown in equation (3.5) is not practical in a hardware
implementation. The expressions contain two of the most computationally heavy
operations namely square rot and division. There are several variations of the Givens
rotation algorithm that are more suitable for implementation [40],[45]. In short, the
majority of variations of the Givens rotation algorithms can be grouped into the
following classes:

98 3 QR-decomposition

• The standard or conventional algorithm.

• Normalised algorithms.

• Square root free algorithms.

• Divide and square root free algorithms.

The last two classes of algorithms are the most interesting for hardware implementation,
since one or both of the computationally heavy operations is avoided. The divide and
square root free algorithms come with a price of reduced numerical accuracy, which
must be considered when choosing an algorithm [45]. The divide operation is traded at
the cost of several multiplications, more complex internal cell structure, and more
extensive communication between the cells. For these reasons a divide and square root
free algorithm was not chosen to for hardware implementation in this thesis. The
algorithm used in this thesis was first proposed by Döhler and is a modification of
Hammarlings scaled Givens rotation algorithm [44]. Döhlers approach only requires
about half the number of multiplications needed by the standard Givens to derive R,
and is also square-root-free.

Döhler’s algorithm is called Squared Givens Rotation (SGR) and has good algorithm-
to-hardware feasibility and numerical stability, which makes it suitable for
implementation and was therefore chosen in this thesis.

3.2.2 Squared Givens rotations algorithm

The standard Givens rotation algorithm described in equations (3.2)-(3.8) can easily be
rewritten for complex numbers [14]. The rotation equation can then be expressed as

*

0

i ib b

i ib

r r r rc s

x x xs c

′ ′
=

′−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 (3.10)

where r, x, s, and c are complex values and s* is the complex conjugate of s. The
Givens rotation can be generalized by introducing two scaling terms, d1/2 and δ1/2, using
the following matrix substitution

1 2

1 2

0

0

i ib b

i ib b

r r r rd

x x x xδ
=
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (3.11)

When making the substitution into equation (3.10) we get the generalized rotation
matrix

1 2 1 2 1 2 1 2*

1 2 1 2 1 20

' '

'
i ib b

i ib

d r d r d r d rc s

x x xs c δ δ δ
=

−

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (3.12)

3 QR-decomposition 99

which can be rearranged into

1 2 * 1 2

1 2 1 2

1 2 1 2

1 2 1 2

0

' '' '
'

b i b i

b i i

r r r r

x x x

cd s

d d

sd c

δ

δ
δ δ

=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎝ ⎠

 (3.13)

The update values of the generalized Givens can then be written as

1 2 * 1 2

1 2 1 2

1 2 1 2

1 2 1 2

22
2

'
' '

'

'
'

i i i

i i i

b b

b

cd s
r r x

d d

c sd
x x r

dr x
r

d

δ

δ
δ δ

δ

⎧ ⎛ ⎞ ⎛ ⎞⎪ = +⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪
⎪ ⎛ ⎞ ⎛ ⎞

= −⎨ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪

⎪ ⎛ ⎞+⎪ ⎜ ⎟=⎪ ⎜ ⎟
⎝ ⎠⎩

 (3.14)

The square-root-free Givens rotation algorithm developed by Döhler can be obtained
by making the substitution

21 1
, ' , and '

'b b

d d c
r r

δ δ= = = (3.15)

in equation into the generalized equations. The update values can then be expressed as

*

22

' '

'

' '

i i b i

b

i i i

b

b b b

r r x x

x
x x r

r

r r x

δ

δ

⎧ = +⎪
⎪

= −⎨
⎪
⎪ = +⎩

 (3.16)

The equations are known as the SGR algorithm and are often implemented using a
triangular array architecture where xb is the input to the boundary cell, rb represent the
stored parameter of the boundary cell, and xi and ri are, respectively, the input and
stored parameter of the internal cell.

3.3 Architectures for QR-decomposition
The SGR algorithm can be mapped onto a triangular array architecture in the same
manner as the recurrence algorithm in chapter 2 [46],[48]. Figure 3.1 shows a triangular
array architecture for QR-decomposition of a 4-by-4 matrix.

100 3 QR-decomposition

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a a a a

a a a a
A

a a a a

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

a4,1

0

0

0

a3,2

a3,1

0

0

a2,3

a2,2

a2,1

0

a1,4

a1,3

a1,2

a1,1

0 0 0 q1,4 q1,3 q1,2 q1,1 r1,4 r1,3 r1,2 r1,1

 q4,4 q4,3 q4,2 q4,1 r4,4 r4,3 r4,2 r4,1 0 0 0

 0 q3,4 q3,3 q3,2 q3,1 r3,4 r3,3 r3,2 r3,1 0 0

0 0 q2,4 q2,3 q2,2 q2,1 r2,4 r2,3 r2,2 r2,1 0

1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4 4,1 4,2 4,3 4,4

,

q q q q r r r r

q q q q r r r r
Q R

q q q q r r r r

q q q q r r r r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= Pipeline stage

a4,4

a4,3

a4,2

0

a3,4

a3,3

0

0

a2,4

0

0

0

Figure 3.1 Triangular array architecture for QR-decomposition of a 4-by-4 matrix A.

Since the architectures used in QR-decomposition of a matrix are of the same type as
the architectures presented in chapter 2, only the differences separating the
architectures are going to be explained. For a more detailed description about the
architectures please consult chapter 2.

The processing of data through the architecture differs slightly from the case of the
architectures for triangular matrix inversion. Every cycle, one row of the input matrix
A is fed into the structure in a skewed manner and propagated through the structure.
The factorization of A into the R and Q matrix is done by the SGR algorithm on the fly
with the two operations fully overlapped in time. The Q matrix follows immediately
after the R matrix resulting in the production of two matrixes for each input matrix as
shown in figure 3.1. The R matrix is produced on the fly in the architecture while the Q
matrix is stored in the processing elements. Architectures presented in literature often
input an identity matrix I after the A matrix to purge the matrix of the stored values
making up the matrix Q [38]. However, in this implementation there is no need for the

3 QR-decomposition 101

identity matrix to be used since the purge function has been built-in. This will be
discussed in section 3.6.

The triangular array architecture shown in figure 3.1 suffers from the same problems as
the architecture described in section 2.5, and consequently a more suitable linear
architecture was derived.

The triangular array architecture was mapped onto a linear array architecture shown in
figure 3.2 [46]. The linear array architecture mimics the data flow of the triangular
array architecture.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a a a a

a a a a
A

a a a a

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4 4,1 4,2 4,3 4,4

,

q q q q r r r r

q q q q r r r r
Q R

q q q q r r r r

q q q q r r r r

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Figure 3.2 Linear array architecture for QR-decomposition of a 4-by-4 matrix A.

A SPE architecture for the QR-decomposition was also derived in the same manner as
shown in chapter 2. Figure 3.3 shows the SPE architecture for QR-decomposition of a
4-by-4 matrix A.

102 3 QR-decomposition

4,4

1,4

1,3

1,2

1,1

a

a
A

a

a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

4,4

1,1

4,4

1,1

,

q

q
Q R

r

r

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 3.3 Single element architecture for QR-decomposition of a 4-by-4 matrix A.

3.4 Scheduling of the QR-decomposition architectures
As shown in the previous section the QR-decomposition algorithm can be mapped onto
the same type of architecture as the triangular matrix inversion architecture in chapter 2.
Since the basic data flow in the architecture is exactly the same, the same scheduling
can be used. However, there are one major difference between the architectures in
chapter 2 and the QR-decomposition architecture and that is that two matrices are
produced instead of one. This will not influence the basic data flow. From a data flow
point of view it will be the same as computing two matrix operations after each other.

The main difference between the architectures is what operations that are executed
inside the processing elements.

3.4.1 Scheduling of the linear QR-decomposition array architecture

Assuming that a processing element only takes 1 cycle to produce an output value, a
basic scheduling can be derived for the QR-decomposition. The schedule for QR-
decomposition of a 4-by-4 triangular matrix is shown in figure 3.4.

3 QR-decomposition 103

Figure 3.4 Scheduling of the linear array architecture for QR-decomposition.

The schedule in figure 3.4 is a straightforward mapping of the data flow in the
triangular array architecture. The computation of Q and R is overlapped, and the
schedule on the right in the figure shows how the PEs first process the matrix data and
then work internally as they would if an identity matrix was the input into the system.
The processor utilization is 50% or 75% at any given time in this schedule. The degree
of utilization will vary with the matrix size, but it will never be lower than 50% at any
given time. This schedule performs a QR-decomposition of an n-by-n matrix in 2n2+n-

1 cycles.

3.4.2 Scheduling of the single element QR-decomposition architecture

The scheduling of the single processing element architecture is, as in chapter 2, based
on the schedule of the linear array architecture shown in figure 2.10. Since only one
processing element is used in the single processing architecture, several ongoing
computations as in the linear and the triangular array architecture are not possible. The
schedule is therefore mapped onto the single PE as shown in chapter 2. The only
difference in the scheduling is the purge phase as discussed above. This schedule
performs a QR-decomposition of an n-by-n matrix in n2(n+1) cycles. For a more

104 3 QR-decomposition

detailed description of the scheduling of the SPE array architecture, please refer to
chapter 2.

3.5 FPGA implementation of complex valued QR-

decomposition
Two architectures, the linear array architecture and the single processing element
architecture handling complex valued input matrices, have been implemented in
hardware. Hardware implementations handling real valued matrices can easily be
derived by exchanging the arithmetic building blocks in the processing element.

3.5.1 Hardware architecture of the linear array architecture

As explained in the previously in chapter 2 the triangular array structure consists of two
different kinds of processing elements, boundary cells and internal cells. These two
elements are combined into a single processing element in the linear array architecture
by the mapping procedure from a triangular to a linear array architecture. An internal
view of the combined processing element is shown in figure 3.5.

Figure 3.5 Internal cell view of the linear array architecture.

The processing elements are capable of functioning in two modes, one sub-mode, and a
purge mode. A state machine in the control circuitry is keeping track of when to use the

3 QR-decomposition 105

different modes. Mode 2 with sub-mode 2 is triggered by the arrival of a diagonal
matrix element to the processing element, while mode 1 is used for every other case.
When the R matrix is produced the purge mode is activated. For one cycle the
processing element is set to purge mode. This will mimic loading an identity matrix
into the architecture. The sub-mode is only used when the processing element in the
linear array architecture is acting as a boundary element in the triangular array
architecture. The different modes are shown in table 3.1. In the table δ is the scaling
factor which is implemented as a constant value.

The data flow control system of the QR-decomposition architecture is the same as the
one in chapter 2. It is comprised of data buses, registers, and multiplexers and is
controlled by a state machine. The data flow between two processing elements is
shown in figure 3.6. The dashed lines shows how a processing element located at either
end of the array should be connected. The feed-back loops ensure that the data is
circulated in the right manner.

Table 3.1 Summary of the different operation modes of the QR-decomposition

processing element.

Mode Operations

Mode 1 Xa in ·Yin +δ·Reg→Reg

Yin – Xb in·Reg→ Yout

Xa in , Xb in → Xa out , Xb out

Mode 2 Yin
2

 +δ·Reg→Reg

Yin → Xa out

Yin/Reg→ Xb out

Sub-mode 2 Yin
2

 +δ·Reg→Reg

Yin → Xa out

0→ Xb out

Purge mode δ·Reg→Reg

1 → Xa out

106 3 QR-decomposition

Figure 3.6 Interconnection between two neighboring processing elements in the linear array
architecture.

The complex valued linear array architecture and the complex valued single processing
element architecture have been implemented in a Xilinx Virtex II XC2V1000 FPGA
with speed grade 4. The same rounding scheme and saturation logic that was used in
chapter 2 is used in this implementation.

3.5.2 Implementation of a complex valued linear array architecture for

QR-decomposition

The implementation of the linear array architecture handling complex valued input
matrices was implemented in fixed-point with an operand wordlength of 8 bits for the
real part and 8 bits for the imaginary part. The complex valued divider was
implemented using the multiplexed complex valued divider presented in part I chapter
2 of the thesis. The complex multiplier was implemented using the strength reduced
computation scheme presented in part I, equation (3.2). The complex valued
adder/subtractor was implemented using two real valued adder/subtractor units. The
complex valued divider produce an output value in 8 cycles and the complex
multiplication and the complex subtractor is internally pipelined so that they produce
an output value in 4 cycles. The final scheduling was implemented with a delay of 8
cycles. The block diagram of the pipelined processing element is shown in figure 3.7.

3 QR-decomposition 107

÷

+

1

0

×
×

Reg

δ

×-

Yin

Xa in

Xb in

Yout

Xa out

Xb out

4D

Figure 3.7 Internal cell view of the pipelined linear array architecture.

Table 3.2 shows the amount of resources needed to implement a single complex valued
processing element and the complex valued linear array architecture performing a QR-
decomposition in an FPGA.

Table 3.2 Consumed resources of the complex valued PE and the linear array

architecture.

Complex

valued PE

Complex

valued Array

Number of Slices 379 (7%) 1666 (32%)

Number of Slice Flip Flops 708 (6%) 2916 (28%)

Number of 4 input LUTs 668 (6%) 2912 (28%)

Number of BRAMs 2 (5%) 4 (10%)

Maximum frequency (MHz) 105 101

A complex valued QR-decomposition of a 4-by-4 matrix consumes in total 1666 slices
which translates to roughly 32% of the total resources in the FPGA. The table 3.2
shows that four single elements can not estimate how much a linear array architecture
consisting of four processing element consumes in terms of hardware. The difference

108 3 QR-decomposition

between an estimate and the implemented design is as much as 150 slices. The increase
is mainly due to the flow control circuitry and registers between the processing
elements, and a poor place and routing of the design. The implementation can be run at
a maximum clock frequency of 101 MHz. Figure 3.8 shows the routed floorplan of a
single complex valued processing element in (a) and the four processing element linear
array in (b). The processing elements are well clustered in both designs.

(a) (b)

Figure 3.8 (a) Routed floorplan of a single complex valued processing element. (b) Routed
floorplan of the complex valued linear array architecture.

3.5.3 Implementation of a complex valued QR-decomposition using a

single element architecture

The hardware block diagram of the single processing element architecture is shown in
figure 3.9. The hardware architecture consists of the same hardware building blocks as
the SPE architecture use in chapter 2. The memory bank was moved to the other side in
the figure so that it can be differentiated from the SPE architecture in chapter 2.

3 QR-decomposition 109

Figure 3.9 Hardware block diagram of the single processing element architecture.

The arithmetic units are implemented in the same way and with the same wordlength of
the input operands as the arithmetic units in the linear array architecture. The only
difference is that the multiplier and the adder/subtractor have been pipelined internally
to match the complex valued divider. Since the Q matrix is stored in the processing
elements of the triangular array architecture, the memory unit must also be used for
storing the Q matrix. The memory is therefore expanded to be able to store the
complete 4-by-4 complex valued Q matrix.

Table 3.3 shows the amount of resources the complex valued SPE implementation for
QR-decomposition of a 4-by-4 matrix consumes in the FPGA.

Table 3.3 Consumed resources in the FPGA of the complex valued SPE

implementation performing a QR-decomposition.

SPE complex

valued design

Number of Slices 417 (8%)

Number of Slice Flip Flops 729 (7%)

Number of 4 input LUTs 728 (7%)

Number of BRAMs 3 (7%)

Maximum frequency (MHz) 107

110 3 QR-decomposition

Table 3.3 shows that the design consumes 417 slices and 3 BRAMs. The corresponding
design in chapter 2 consumed only 283 slices and 2 BRAMs. The difference of 134
slices and 1 BRAM is due to the extra memory and control circuitry. The maximum
achievable clock frequency has also dropped from 127 to 107 MHz.

Figure 3.10 shows the routed floorplan of a complex valued single processing element
able to perform a QR-decomposition on a complex valued matrix. The complex valued
SPE implementation is clustered together at one end of the FPGA floorplan.

Figure 3.10 Routed floorplan of a complex valued SPE.

3.5.4 Summary of the hardware implementations

The complex valued linear array architecture was implemented using 1666 slices while
the SPE architecture only needed 417 slices, i.e. 25%. However, the SPE architecture
needs O(n3) cycles to complete a QR-decomposition, while the linear array architecture
needs O(n2) cycles, which makes this a classic trade-off between throughput rate and
resource consumption.

The linear array is modulized to its design and the control circuitry does not need to be
redesigned if extra modules are added. If a larger matrix is to be processed by the SPE
architecture the memory size must be adjusted and the control circuitry must be
modified. Both designs have roughly the same maximum achievable clocking
frequency.

The complex valued SPE implementation consumed 134 slices and 1 BRAM more than
the equivalent real valued design in chapter 2. This is mainly due to the extra memory
and control circuitry needed for the complex case. The maximum achievable clock
frequency dropped from 127 to 107 MHz in the complex valued design compared to
the real valued design.

 111

Chapter 4

4Matrix inversion

4.1 Introduction
Matrix inversion is, together with matrix addition and matrix multiplication, a
fundamental matrix operation. However, due to its computational complexity, matrix
inversion is often tried to be avoided in hardware implementations. If the matrix
inversion can not be avoided it is common to implement the inversion in software
instead of hardware, often resulting in poor performance. A complex valued division is
even more computation complex and often requiring a lot of hardware resources to be
implemented. In this chapter an architecture that is resource conservative, have good
throughput rate, and is scalable, for complex valued division is presented.

In this chapter the triangular matrix inversion architecture in chapter 2 and the QR-
decomposition architecture in chapter 3 are combined to form a complex valued matrix
inversion architecture.

4.2 Definition of matrix inversion
In mathematics and especially linear algebra, an n-by-n (square) matrix A is called
invertible, non-singular, or regular, if there exists another n-by-n matrix B such that

A·B = B·A = I, (4.1)

where I denotes the n-by-n identity matrix and the multiplication used is ordinary
matrix multiplication. If this is the case, then the matrix B is uniquely determined by A
and is called the inverse of A, denoted by A−1. A square matrix that is not invertible is
called singular. However as a rule of thumb, almost all matrices are invertible.

4.3 Inversion algorithms
There are several ways of computing the inverse of a matrix. Gauss-Jordan elimination
is an algorithm that can be used to determine whether a given matrix is invertible and
to find its inverse [14]. An alternative method is LU-decomposition, which generates

112 4 Matrix inversion

an upper and a lower triangular matrix, which are easier to invert [14]. There are also
some analytic solutions that can be used.

Another way to invert a matrix is to use a method based on QR-decomposition. The
first step in this method involves a QR-decomposition performed by the squared
Givens rotations algorithm (SGR) presented in chapter 3. The SGR uses successive
plane rotations to reduce the input matrix A to an upper triangular matrix, R, and a
matrix Q, which is composed of the orthogonalized columns of A. The triangular
matrix R is then inverted using a recurrence algorithm presented in chapter 2. The
inverted triangular matrix R-1 is then multiplied with the matrix Q to form A-1. A block
scheme of the computation steps is shown in figure 4.1.

Figure 4.1 Computation scheme of matrix inversion by QR-decomposition.

4.4 Matrix inversion architectures
Three different architectures of the triangular inversion and the QR-decompositions
have been presented in chapter 2 and 3. These three architectures can be combined
together to form three architectures for matrix inversion [47].

4 Matrix inversion 113

4.4.1 Triangular array architecture

The matrix inversion algorithm can be mapped onto two cascaded triangular array
architectures as shown in figure 4.2.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a a a a

a a a a
A

a a a a

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,41

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

b b b b

b b b b
A B

b b b b

b b b b

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 4.2 Two cascaded triangular array architectures for inversion of a 4-by-4 complex
valued matrix A.

The architecture in figure 4.2 depicts a matrix inversion architecture for inverting a 4-
by-4 complex valued matrix A. Each cycle one row of the input matrix A is feed into
the structure in a slightly skewed manner and propagated through the structure. The
factorization of A into the R and Q matrix is fully overlapped. The matrices continue
without delay into the second triangular architecture which performs and stores the
inversion of the upper triangular matrix R. The stored inverted matrix R is then
immediately multiplied with a row of Q, thus producing one output row in the inverted
matrix A. With this architecture, a complete inversion of a 4-by-4 complex valued
matrix could be performed in 20 cycles under the assumption that a processing element
can be executed during one cycle.

The number of processing elements will grow rapidly with the number of inputs. In
order to invert a n-by-n matrix, n(n+1) processing elements are required. This will
results in a large consumption of gates in an FPGA even for small matrix sizes. Using

114 4 Matrix inversion

this architecture in hardware implementations is not reasonable. A more suitable
architecture is needed.

4.4.2 Linear array architecture

An alternative architecture based on the linear arrays presented in chapter 2 and 3 is
shown in figure 4.3.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a a a a

a a a a
A

a a a a

a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,41

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

b b b b

b b b b
A B

b b b b

b b b b

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 4.3 Two cascaded linear array architectures for inversion of a 4-by-4 complex valued
matrix A.

As discussed before the linear array architecture avoids many of the problems
associated with the triangular array architecture [49]. The two architectures are stacked
on top of each other. The results from the QR-decomposition flow directly into the
triangular matrix inversion architecture. The inverted triangular matrix is stored
internally in the array and multiplied with the Q matrix before producing the inverted
matrix A-1.

In the linear array architecture the inversion of an n-by-n matrix only requires 2n PEs,
compared to n(n+1) PEs in the triangular array architecture, which will result in a huge
savings of hardware even for small matrix sizes.

4.4.3 Single element architecture

A third architecture is the single element architecture [50]. As shown in figure 4.4, the
function of a single pair of processing elements in the linear array structure is mapped
onto two single element architectures. However, as shown in chapter 2 and 3 the SPE
architectures are virtually the same, except for the memory sizes. Therefore, the two
SPE architectures can be combined into one SPE architecture.

4 Matrix inversion 115

The combined SPE architecture begins with performing the QR-decomposition. During
the computation the Q matrix is stored in a separate memory as discussed in chapter 3.
Later in the process, when performing inversion of the triangular matrix R the
computed values of R is directly multiplied with the Q matrix stored in the memory.
This eliminates the process of storing both matrices.

4,4

1,4

1,3

1,2

1,1

a

a
A

a

a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

4,4

1,41

1,3

1,2

1,1

b

b
A B

b

b

b

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 4.4 Mapping of a section of the linear array onto a single processing element with a
memory unit.

4.4.4 Comparison between architectures

In table 4.1 a comparison between the three different architectures are shown. The
different architectures have there own pros and cons. If resource consumption is of
concern the single processing element architecture should be chosen for
implementation. The most versatile architecture is the linear array which combines low
area consumption with high scalability. The triangular array architecture is not
reasonable to use in hardware implementation since it consumes a large amount of
resources if implemented.

116 4 Matrix inversion

Table 4.1 Comparison between the matrix inversion architectures.

Architecture # of PEs # cycles for inversion Scalability

Triangular n(n+1) 5n low

Linear 2n 3n2+n-1 high

Single element 1* 3n2(n+1)/2 medium
* The memory needed to store matrix data grows with the matrix size.

4.5 FPGA implementations of matrix inversion
The complex valued matrix inversion architectures have been implemented in a Xilinx
Virtex II XC2V1000 FPGA with speed grade 4. The same rounding scheme and
saturation logic was used as for the processing elements in chapter 2 and 3. Two
complex valued matrix inversion architectures were implemented. The first
implementation is based on the linear array architecture and the second is based on the
single processing element architecture.

4.5.1 Implementation of linear array architecture

Table 4.2 shows the amount of resources needed to implement matrix inversion based
on the linear array architecture. The table shows that the implementation of the matrix
division architecture for inversion of a 4-by-4 complex valued matrix consumes 2948
slices or 57% of the resources in the FPGA. The maximum clocking frequency is
100MHz.

Table 4.2 Consumed resources of the complex valued matrix inversion architecture

based on the linear array architecture.

Complex matrix inversion

Linear Array

Number of Slices 2948 (57%)

Number of Slice Flip Flops 5128 (50%)

Number of 4 input LUTs 5146 (50%)

Number of BRAMs 8 (20%)

Maximum frequency (MHz) 100

Figure 4.5 show the routed floorplan of the complex valued matrix inversion
implemented using the linear array architecture.

4 Matrix inversion 117

Figure 4.5 Routed floorplan of a complex valued matrix inversion implemented using the
linear array architecture.

4.5.2 Implementation of single processing element architecture

Figure 4.6 shows a block diagram of the combined single element architecture. This
design has two memories banks. One of the memories stores intermediate computations
while the other stores the Q matrix which later in the process is multiplied with R-1.

Figure 4.6 Routed floorplan of a complex valued matrix inversion implemented
using the linear array architecture.

118 4 Matrix inversion

Table 4.3 shows the amount of resources needed to implement matrix inversion
architecture for complex valued matrices using the SPE architecture. The SPE
consumes only 10% of the total amount of resources in the design and the maximum
clocking frequency is 102 MHz.

Table 4.3 Consumed resources of the complex valued matrix inversion.

 SPE Complex valued design

Number of Slices 512 (10%)

Number of Slice Flip Flops 923 (7%)

Number of 4 input LUTs 902 (7%)

Number of BRAMs 4 (10%)

Maximum frequency (MHz) 102

Figure 4.7 shows the routed floorplan of a complex valued single processing element
able to perform a QR-decomposition on a complex valued matrix.

Figure 4.7 Routed floorplan of a complex valued matrix inversion implemented using the
single processing element architecture.

4.5.3 Summary of the hardware implementations

The complex valued linear array architecture was implemented using 2948 slices while
the SPE architecture only needed 512 slices. The difference between the linear array
architecture and the SPE architecture is becoming very large. The SPE architecture
uses only 17% of the slices needed to implement the linear array architecture. However,
the SPE architecture needs O(n3) cycles to complete a QR-decomposition, while the
linear array architecture needs O(n2) cycles. With a linear growth of the size of the

4 Matrix inversion 119

linear array architecture an 8-by-8 complex valued matrix should consume 100% of the
used FPGAs resources. If larger matrices would to be inverted the SPE architecture
should be used or a larger FPGA is needed.

 120

Chapter 5

5Singular value decomposition

5.1 Introduction
Singular value decomposition (SVD) is an important factorization technique of a
rectangular real or complex matrix, with several applications in digital signal
processing, beamforming, adaptive sensor array processing, wireless communications,
computational tomography, image processing, seismology, etc. [8],[36].

The SVD is a computationally demanding operation, which often must be performed in
real-time, with high numerical accuracy. Since matrix sizes and types (real and
complex valued) vary between applications, a flexible and scalable hardware
architecture that can easily be adapted to different scenarios is highly sought for. To be
able to comply with these requirements, special-purpose architectures must be
developed.

5.2 Definition of SVD
Let A be a matrix of size n n× . The singular value decomposition of the matrix

n nA ×∈ is then given by the factorization of the matrix into a product of the three
matrices

HA U V∑= (5.1)

where n nU ×∈ is a matrix with orthonormal columns, n nV ×∈ is an orthogonal

matrix, and n n×∑∈ is a matrix with non-negative diagonal elements,

1 2(, ,...,)ndiag σ σ σ∑ = . The numbers , 1 ,i i nσ = … are the thi singular value of the

matrix and vi, i=1…n, and ui, i=1…n, are the right and left singular vectors
corresponding to iσ [14].

5 Singular value decomposition 121

5.3 SVD algorithm
There are a number of numerically stable algorithms for computing the SVD of a
matrix. The two most commonly used classes of algorithms are QR based or Jacobi
rotations based [14]. The QR based algorithms are mostly used in sequential
implementations since they are generally faster than the Jacobi-based algorithms. The
Jacobi-based algorithms are generally more stable and accurate than the QR-based
algorithms. Recently the Jacobi-based algorithms have attracted lot of attention due to
the fact that they have a greater potential of being massively parallelized [52]. There
are two main types of Jacobi algorithms, single-sided and two-sided. In this paper a
modified version of the standard two-sided Jacobi algorithm is used.

5.3.1 Jacobi algorithm

The Jacobi method exploits the relationship

 H TA U V U AV∑ ∑= ⇔ = (5.2)

to produce the matrices U and V by performing a series of two sided plane rotations
of the input matrix as shown by equation 5.3.

1

Tl r
i i iiA J A J+ = (5.3)

The two matrices l

iJ and r

iJ are referred to as the Jacobi rotation matrices. After each

iteration, the matrix 1iA + gets more diagonal than the previous one iA . After n iterations

the matrix A is transformed into a diagonal matrix nA where

and and .l r
n i iA V J U J= ∑ = =∏ ∏ (5.4)

The rotations are carried out in the p,q plane by rotating θ degrees. The rotation
matrices (, ,)J p q θ take the form

1 0 0 0
()

cos 0 0

 where cos

0 0 sin

sin
0 0 0 1

pp

ij pp

pq

qp

p q

Jc s p

J J

s c q J

J

p q

θ
θ
θ
θ

⎡ ⎤
⎢ ⎥ ⎧
⎢ ⎥ ⎪
⎢ ⎥ ⎪
⎢ ⎥ ⎪

⎨⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥
⎩⎢ ⎥

⎣ ⎦

>
=

= =
− =

= −

 (5.5)

122 5 Singular value decomposition

The Jacobi algorithm divides the n n× symmetric matrix in (5.5) into 2n sub-problems

indexed by (p,q). The basic step is then to find the angles ,θ which solves the

2 2× SVD sub-problem shown in (5.6).

'

'

0 cos sin cos sin

sin cos sin cos0

T

pp pqpp r rl l

r rqp qql lqq

a aa

a aa

θ θ θ θ
θ θ θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

=
− −

 (5.6)

An n=8 matrix can subsequently be divided into the following 2n sets of pairs

(1, 2) (1, 4) (1,6) (1,8) (1,7) (1,5) (1,3)

(3,4) (2,6) (4,8) (6,7) (8,5) (7,3) (5, 2)
(,)

(5,6) (3,8) (2,7) (4,5) (6,3) (8, 2) (7, 4)

(7,8) (5,7) (3,5) (2,3) (4, 2) (6, 4) (8,6)

p q

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.7)

where each row represents a set of isolated sub-problems which can be computed in
parallel [14]. The Jacobi algorithm then performs 2 2× SVD for all possible pairs (p,q),
which is referred to as a sweep. This process is then repeated for as many sweeps as
necessary to form the singular values.

5.3.2 Jacobi for complex matrices

By a series of transforms, the Jacobi algorithm for real matrices can be extended to
complex valued arithmetic [14]. A unitary 2 2× complex matrix may be expressed as

ii

x y x y

i i
x y x y

a ia b ib c e s e
A

c ic d id s e c e

βα

γ δ

θθ
φ φ

θ θ
φ φ

⎡ ⎤+ +⎡ ⎤
= ⎢ ⎥⎢ ⎥+ + −⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.8)

where , , ,α β δ γθ θ θ θ ∈ . An arbitrary complex 2 2× matrix can not be always be

diagonalized in only one transformation. However, two transformations are sufficient
for computing the SVD. By Givens rotations, the first transformation renders the
bottom row of the matrix real and the lower left element zero. The first transformation
can be expressed as

0

a b w x

c d

ii i ii i i i

i ii iii

c e s e c e s eAe Be We Xe

s e c eCe De Zs e c e

βα γ γ

δ δβα

θθ θ θθ θ θ θ
φ φ ψ ψ

θ θθ θθθ
ψ ψφ φ

−
=

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
 (5.9)

where () 2d cα βθ θ θ θ= = − + , () 2d cγ δθ θ θ θ= − = − , 1tan ()C Dψθ
−= , and 0φθ = .

The second transformation converts the main diagonal elements to real values and
converts the upper-right to zero [14]. The second transformation can be expressed as

5 Singular value decomposition 123

0

00

w x
i i i ii i

i ii i

c e s e c e s e PWe Xe

s e c e QZs e c e

ξ η τ τ

ω ωξ η

θ θ θ θθ θ
λ λ ρ ρ

θ θθ θ
ρ ρλ λ

⎡ ⎤ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (5.10)

with () 2x wξθ θ θ= − + , () 2x wηθ θ θ= − , () 2x wτθ θ θ= − , and () 2w xωθ θ θ= − .

After the two transformations the 2 2× matrix is real and can be diagonalized as
discussed in section 3.1 [14].

5.4 SVD architecture

5.4.1 BLV architecture

The most commonly used hardware architecture, for both real and complex valued
matrices, is the Brent-Luk-VanLoan systolic array architecture (BLV) [52],[53]. For a
n n× matrix the BVL architecture employs n/2×n/2 locally connected processing
elements (PEs) arranged in a square configuration. A BLV with a matrix size of n=8 is
shown in figure 5.1. The horizontal arrows indicate the transmission of the left rotation
parameters and the vertical arrows indicates the transmission of the right rotation
parameter. The two-way arrows indicate the direction of inter-processor
communication between neighboring processors. The BLV architecture solves n/2 sub-
problems in parallel and performs a sweep in n-1 steps. It takes O(n×log n) time for the
architecture to complete a SVD of a matrix [52],[53].

Initially each processor in the architecture is loaded with a 2 2× sub-matrix (complex
or real). The execution of the two transforms of the two-sided Jacobi algorithm is
initiated by the diagonal processing elements. In the complex case, each transformation
requires the computation and application of twelve angles. Six of the angles are
propagated along the rows and columns of the processors on the main diagonal. When
the first wave of rotation angles are produced the production of the second is started.
The two transforms are propagated down, one behind the other, on either side of the
diagonal processing elements. Each off-diagonal processing element applies a two-
sided rotation to the local 2 2× sub-matrix using the angles produced by the diagonal
processors in the same row and column with respect to its location in the array. After
the computation the local matrices are exchanged and a new sweep is initiated.

124 5 Singular value decomposition

Figure 5.1 A square BVL architecture (n=8) with locally communicating processing
elements for solving a SVD.

5.4.2 BVL architectural drawbacks

Unfortunately the BVL architecture in figure 5.1 suffers from serious drawbacks. The
number of processing elements will rapidly grow with the number of inputs. In order to
invert an n-by-n matrix, (n/2)2 processing elements are required. This will result in a
large consumption of gates in an FPGA or chip area in an ASIC implementation. A
large number of PEs will also result in a long delay time due to the long propagation
path through the architecture, which could effectively lower the maximum achievable
clock frequency. The architecture also lacks an ease of scalability. For instance, if
fewer or more inputs are needed, a completely new architecture must be derived and
downloaded into the FPGA or a new ASIC must be manufactured. These drawbacks,
combined with the growing need in communications and signal processing applications
for scalability, high throughput, and area conservation designs, make the BVL array
architecture unsuitable for hardware implementation of large matrix sizes. A compact
and scalable array architecture is therefore highly sought for.

5.4.3 Linear BLV architecture

An alternative linear architecture is presented in figure 5.2. For a n×n matrix the linear
architecture employs n/2+((n/2)-1) locally connected processing elements, reducing the
number of PEs dramatically for large matrix sizes. The linear array architecture
consists of two sets of processing elements, diagonal PEs (DPE) and off-diagonal PEs
(PE), arranged in two columns as shown in figure 5.2.

The functionality of the DPEs and PEs is roughly the same as in the BVL architecture
with some added registers and flow control circuitry.

5 Singular value decomposition 125

DPE

PE

PE

DPE

PE

DPE

DPE

Linear array

Figure 5.2 A linear array architecture (n=8) with locally communicating processing elements
for solving a SVD.

The computational procedure is the same as in the BVL case, but instead of
propagating the computed rotation angles, produced in the DPEs, down along the off-
diagonal PEs, the computations are recycled n/2-1 times in the PE column. Thus, one
sweep in the BVL equals 2((n/2)-1) recycles in the linear array. The linear array
architecture can easily be scaled by adding a DPE and a PE for each new column in the
input matrix. The linear array architecture trades computation speed for area and
scalability. The gain is significant for large matrix sizes.

5.5 FPGA implementation
A block diagram of the SVD architecture implemented on a Xilinx FPGA is shown in
figure 5.3. The design consists of a central core with a linear array structure capable of
performing a 6-by-6 complex valued SVD. Data is input and output in a word serial
manner. The memory holds the inputted matrix values and stores intermediate results
during computation. The global control unit controls the data flow between the block
and handles the I/O.

126 5 Singular value decomposition

Figure 5.3 Block diagram of a 6-by-6 SVD implemented on an FPGA.

SVD algorithms are known to have high computational complexity and to require
expensive arithmetic operations, such as division and square root [33]. The CORDIC
building blocks allow such complex operations to be carried out effectively. An
overview of the CORDIC approach can be found in part II of the thesis and also here
[33],[34],[54].

The processing element is constructed of four CORDIC rotators capable of operating
on both complex and real values (figure 5.4). The operation mode is chosen externally
before commencing the computation. A good overview of the functionality of a
complex CORDIC can be found in Hemkumar [55].

Figure 5.4 Block diagram of the processing elements consisting of four real/complex
CORDIC units.

5 Singular value decomposition 127

The four CORDIC rotators perform the necessary rotations on the internally stored
2 2× sub-matrix as described in section 5.3. Intermediate results are stored in the local
memory and are accessible for all four CORDIC units. A local control unit handles the
internal routing of data and communication between the CORDIC units. The local
control unit also handles the I/O and communication with the global control unit. All
hardware building blocks were implemented using a wordlength of 16 bits (8 bits for
the real part and 8 bits for the imaginary part).

Table 5.1 Consumed resources of the complex valued SVD implementation.

 Complex valued SVD

Number of Slices 4045 (79%)

Number of Slice Flip Flops 9213 (70%)

Number of 4 input LUTs 9278 (70%)

Number of BRAMs 34 (85%)

Maximum frequency (MHz) 92

Table 5.1 shows the consumed resources of the design. The design occupied 4045
slices in the FPGA and was run at 92 MHz. The floorplan of the SVD is shown in
figure 5.5.

Figure 5.5 Routed floorplan of the SVD architecture implemented in an FPGA.

 131

Chapter 1

1Introduction

In this part of the thesis, some of the matrix building blocks developed in part II will be
used in an implementation of the Capon beamformer algorithm. In the first chapter, the
Capon beamformer algorithm is defined and discussed. The Capon beamformer
algorithm can be decomposed into four sequential steps, which are the basis for the two
architectures presented in chapter 2. One of the architectures makes use of the complex
valued division presented in part II, while the other one uses the single processing
element block also presented in part II. In chapter 3, the implementation of a
covariance processor is discussed, followed by the presentation of a hardware
implementation of the Capon beamformer algorithm. Chapter 4 analyzes the
implementation in terms of the impact of reduced wordlength in the different building
blocks of the architecture, and a minimum wordlength architecture is derived. In
chapter 5, the implementation is put to the test in a real application of a channel
sounder.

1.1 Capon’s beamformer method
The minimum variance method (MVM), also known as Capon’s beamformer method,
is a well-known spectral-based algorithm for direction of arrival (DOA) estimation
[6],[7]. In the early years of DOA estimation, a general approach based on the Fourier
transform, which later became known as conventional beamforming, was given much
attention. The advantage of this method is that it is very easy to implement, since only
a fast Fourier transform is needed. However, one of the main disadvantages of
conventional beamforming is its inability to resolve two sources that are positioned
close together. This weakness is a consequence of the fact that the resolution of the
conventional beamformer is limited by the size of its antenna array.

This limitation gave rise to a new class of high-resolution methods. In these methods
the resolution is not limited by the size of the antenna array, but they are known to be
sensitive to modeling errors and noise. In particular, they are based on precise
knowledge of the array in terms of its sensor location, sensor gain and phase, mutual
coupling between array elements etc. If applied with incorrect array parameters, these

132 1 Introduction

methods give poor results. Thus, repeated calibration with respect to array parameters
is a prerequisite for these techniques. Another drawback is that the methods are
computationally heavy and therefore expensive in terms of clock cycles and/or
hardware resources.

Well-known high-resolution methods include ESPRIT, MUSIC, SAGE, and Capon [6].
Capon’s beamformer is a spectral-based search method, which determines an angular
spectrum for each so-called look direction by minimizing the power contribution by
noise and the interference from other directions than the look direction.

1.2 Signal model
Before the Capon beamformer method is analyzed, a mathematical model for the array
and incoming signals is needed. Consider a uniformed linear array (ULA) with L
equally spaced antenna elements as shown in figure 1.1.

0

d

...1 L-1 x

1

2

M
Signals

ULA

θ1

θM

Figure 1.1 M signal sources impinging on a uniformed linear array antenna (top view) with
L antenna elements.

If M signals impinge on the L-dimensional ULA at distinct DOAs, θ1,…,θM, the array
output vector can be expressed as

1

() () ()
M

m m

m

t s tθ
=

=∑x a , (1.1)

where sm(t), m=1,…,M denotes the baseband signal waveforms and a(θm) is the steering
vector of a signal at the DOA θm. The steering vector is expressed as

(1)() 1 , = cos
T

j j Le e kdφ φθ φ θ− − −⎡ ⎤
⎣ ⎦=a (1.2)

where d denotes the distance between the elements and k is the wave-vector. A steering
vector characterizes the relative phase response of each antenna array element to an

1 Introduction 133

incident signal with DOA θ. The steering vector is determined by calibration of the
antenna array. Assume that N snapshots of the array output are recorded. The output
vector including additive noise can then be written (in a compact form) as

() () () (), =1, 2, , .t s t t t Nθ= +X A n … (1.3)

1.3 Capon’s approach
The idea of Capon’s beamformer is to localize signal sources by steering the array in
one direction at a time and measuring the output power. The locations with the
maximum power yield the DOA estimates. The array response is steered by forming
linear combinations of the outputs

L

i=1

() () ()H
i iy t x t t= =∑w w x . (1.4)

where w
H is the Hermitian transpose of the weighting vector. Given the samples y(1),

y(2), …,y(N) the output power can be described by

N N
2

m=1 m=1

1 1 ˆ() y(t) () ()
N N

H H HP x t x t= = =∑ ∑w w w w Rw (1.5)

where ˆ H
=R XX is the sample covariance matrix, which replaces the covariance

matrix R, since in practice only the sample estimates are available. The Capon
optimization problem [6] was formulated as

min () subject to () 1.P θ =H

w
w w a (1.6)

The optimal weighting vector, w, can be found using Lagrange multipliers [6]] and
results in

ˆ
.

ˆ
=

-1

Cap H -1

R a(θ)
w

a (θ)R a(θ)
 (1.7)

Inserting the optimal weight wCap into (1.5) gives the Capon power spectral estimator
for a given direction θ

1
() .

ˆCaponP θ =
H -1a (θ)R a(θ)

 (1.8)

If M signals are present in the collected data, then θm, m=1,…,M, scan values are
obtained as the argument of the M largest peaks of PCap(θ). The Capon power
estimation equation will in this thesis be referred to as the Capon algorithm.

 134

Chapter 2

2Capon architectures

In this chapter, two architectures implementing the Capon algorithm are presented. The
chapter starts with an analysis of the Capon algorithm from a hardware computational
perspective. The algorithm is decomposed into four steps that are executed in a
sequence. The decomposition makes it possible to identify which building blocks are
needed to implement each step. Finally, the two architectures implementing the Capon
algorithm are presented.

2.1 Algorithm decomposition
The Capon algorithm presented in equation 1.8 can be decomposed into four steps as
shown in figure 2.1. The steps are executed in sequence, describing the computational
order of the algorithm.

ˆH -1
a (θ)R a(θ)ˆ H

=R XX ˆ -1
R 1

ˆH -1
a (θ)R a(θ)

Figure 2.1 Computational scheme of the Capon beamforming algorithm.

The first step in the estimation of DOAs is the forming of a covariance matrix from the
sampled signal data. The computation of the a sample covariance matrix can be
expressed as

=1

1ˆ
N

H

mN
= = ∑ *

m mx xR XX . (2.1)

2 Capon architectures 135

One covariance matrix is produced from each snapshot of the array output data. High-
resolution algorithms such as the Capon algorithm are very sensitive to ill-conditioned
(near singular) covariance matrices. This can happen in situations when the received
signals, coming from different directions, all originate from the same source. The
covariance data will then be correlated making it impossible to invert in the next
computation step. This problem could for example arise in applications such as channel
sounding.

There are several ways of reducing the sensitivity of the covariance matrix. One way is
to average over several covariance matrices, hoping that subtle changes of the channel
will reduce the sensitivity of the covariance matrix. Another technique is to induce an
“error” by adding (or subtracting) a small value (1 LSB) into the diagonal elements of
the covariance matrix before inversion. This technique can be expressed in matrix
format as

ˆ ˆ
cov avrage= δR R + I (2.2)

where δ is a small real value (error) and I is the identity matrix. The cost of
implementing equation (2.2) in hardware is an adder (subtractor) and will be discussed
in chapter 3. There are also other techniques involving subarray averaging (spatial
smoothing) [58],[59]. However, these techniques will cost more to implement in
hardware than the technique in equation (2.2) and will also decrease the effective size
of the antenna array.

In the second step, the complex valued sample covariance matrix is inverted. The
inversion can be performed in a number of ways, for example by QR-decomposition as
shown in equation (2.3).

ˆ ˆ-1 -1
cov covΔ Δ= → =R Q× R R ×Q R (2.3)

In the third step, the inverted covariance matrix is multiplied with the complex
conjugate of the steering vector, aH(θ), and the steering vector, a(θ). This is done for
every angle θ, going from 0° to 180° degrees in 1° steps. The operation is a vector-
matrix-vector operation, which in practice can be performed as a number of parallel
vector-vector operations.

In the fourth step, the computed scalar values of ˆH -1

a (θ)R a(θ) are inverted. The scalar

value of the Capon power spectral estimation, P(θ), and the corresponding angle θ are
produced.

2.2 Architectures
From the computation scheme described in section 2.1, two architectures were derived.
The first architecture is based on the sequential data flow and consists of four hardware
blocks, one for each step, performing the described computations. In this thesis the

136 2 Capon architectures

architecture is referred to as the linear data flow architecture (LDF) [60]. The second
architecture is based on the single processing element architecture described in part II
chapter 4. In this thesis the single processing element architecture is referred to as the
SPE architecture [61].

2.2.1 Linear data flow architecture

The LDF architecture is derived from the computation scheme in figure 2.1 and is
shown in figure 2.3. The sample data coming from the antenna array is first stored in a
buffer before sent to a covariance processor computing the covariance matrix. The
computation involves a multiplication of an element vector with its complex conjugate
transpose, producing a matrix for each set of data. The values over and under the
diagonal of the covariance matrix are mirror images, and the number of computations
can therefore be reduced, since only the upper or the lower part needs to be computed.

An architecture for implementing the covariance processor is presented in figure 2.2.
The architecture consists of k covariance processing elements (CovPE), one for each
input vector of sample data operating on the sample data vectors stored in the buffer.

Figure 2.2 Covariance architectures with k covariance processors communicating with local
memories.

The stored sample data is read and processed through the CovPEs, producing the
matrix elements in the covariance matrix. When the first snapshot of data has been
processed, the next snapshot is read into the buffer and the computational procedure
starts over. The covariance matrix produced by the new sample data is added to the
previous covariance matrix, forming the averaged covariance matrix. This iterative
procedure is repeated for the number of snapshots set by the user (in the range 1-4096
iterations). When the averaged covariance matrix is produced, a small error is induced
in the diagonal elements by adding one bit to the least significant bit of the diagonal
element. The covariance processor architecture in figure 2.2 is easy to scale by adding
one CovPE for every input vector (antenna element).

2 Capon architectures 137

The resulting covariance matrix is sent one row at the time to the matrix inversion
block. The matrix inversion is done by using the complex valued matrix inversion
architecture presented in part II chapter 4.

The inverted matrix is sent to the steering vector block, where it is stored in a buffer
before being processed in two steps. To process the multiplication of the steering
vectors with the inverted covariance matrix, a similar architecture as the one used in the
covariance processor is adopted. The steering vector process consists of k+1 StPE for
processing of k+1 vectors at a time. The steering vector is either stored in a ROM or
has been read from an external source and stored in a RAM. The vector aH(θ), together
with the columns of the inverted matrix, is fed into the processing elements producing a
vector. The resulting vector is then fed into another processing element together with
a(θ), producing a single value for a given direction θ. In continuous run the two steps
are performed simultaneously producing one output value for every 181 angles. The
resulting values are sent to the inversion block, where the power estimation values are
produced, along with the corresponding angle, using an inverter consisting of two
special Booth multipliers and a lookup table (appendix A).

ˆ H
=R XX

Figure 2.3 Block diagram of the linear data flow architecture of the Capon beamforming
algorithm.

138 2 Capon architectures

The power estimation values for each angle can be plotted on a display showing a
power spectral estimation diagram with peaks indicating the DOAs. If the DOAs in
particular are interesting, a search module must be added to the output to collect the
power estimation values and search for the highest peaks in the data. The search
function was not implemented in this thesis.

2.2.2 Single processing element architecture

The single processing element architecture (SPE) implementing the Capon algorithm is
presented in figure 2.4. In this architecture the sample data coming from the antenna
array is stored in a global memory. The covariance processor computes the covariance
sample matrix as described in section 2.1, with the difference that it is operating and
storing results directly in the global memory. The matrix inversion is performed by the
SPE as described in part II chapter 4. The SPE loads the stored values of the covariance
matrix one by one and performs the necessary operations, and then writes the result
back into the global memory. Since the steering vector processor and the covariance
processor perform the same operations, they are combined into one unit. The combined
unit reads the inverted matrix from the memory and the stored steering vectors and
performs the necessary vector-vector operations. The inversion computation can also
be performed by the SPE architecture. The resulting value from the steering vectors is
read by the SPE from the global memory and inverted, forming the power estimation
values for each angle. The power estimation values along with the corresponding
angles are output from the FPGA.

Figure 2.4 Block diagram of the Capon beamforming algorithm based on the single
processing element architecture.

 139

Chapter 3

3FPGA implementation

In this chapter, an FPGA implementation of the Capon algorithm based on the linear
data flow architecture (LDF) is presented. The chapter starts with a discussion about
the hardware implementation of the covariance processing element used in the LDF
architecture. This is followed by a look at the hardware implementation of the LDF
architecture and the various design parameters. The chapter ends with a discussion
about the scalability of the design.

The prerequisites of the hardware implementation are set by the target application,
which in this case is to operate in a channel sounder testbed. The hardware design was
adapted for a uniformed linear antenna array with four antenna elements. Sampled
input data, consisting of 120 samples in four vectors, is represented in fixed-point with
8 bits for the real part and 8 bits for the imaginary part. The number of snapshots was
set to 120. The hardware implementation of the Capon beamformer will operate in real-
time, computing the DOAs of the impinging signals.

The target FPGA was a Xilinx Virtex II XC2V1000 (speed grade 4) clocked at 100
MHz. With the chosen FPGA the hardware resources are limited to 5120 slices. All
building blocks implementing the Capon algorithm are scalable.

3.1 Capon building blocks
The linear data flow architecture presented in chapter 2 consists of four major building
blocks; covariance processor, complex valued division, steering vector, and inversion.
The complex valued division and the inversion blocks are presented in detail in part II
chapter 4 of this thesis, while the covariance processor and the steering vector block are
presented below.

3.1.1 Covariance processor

The operations required when computing the covariance matrix are basically complex
multiplication and addition/subtraction, as shown in equation (2.1). The covariance
processor consists of four covariance processing elements (CovPE), one for each input
vector, operating in parallel. A block diagram of a covariance processing element is

140 3 FPGA implementation

shown in figure 3.1. Each covariance processor performs a complex valued
multiplication between the complex valued vector element and its complex valued
conjugate. A strength reduction scheme is used, reducing the number of multiplications
needed by trading one multiplication for 3 additions, as shown in equation 3.1.

()
()

() ()

() ()

xz yw xz yw xw xw x z w w x y

xw yz xw yz yw yw y z w w x y

ℜ = − = − + − = − + −

ℑ = + = + + − = + + −
 (3.1)

The result from the complex valued multiplication is collected in an accumulator.
When all the values in the two vectors processed by the CovPE are computed, the
accumulated value is normalized by multiplying it with a preset constant 1/N, where N
is the length of the vector. The normalized result is written back into the memory. If the
computed value is a diagonal value, 1 LSB is added (subtracted) before written back
into the memory (not shown in the figure). The operation will cost either an adder or a
subtractor. Another way of inducing the error in the diagonal elements is to invert the
LSB of the diagonal elements. In this way not all diagonal elements will be affected
equal since in some diagonal elements 1 LSB is added and in some 1 LSB is subtracted.
The effect, if any, is not yet fully determined but initial simulations shows no adverse
effect. This technique is cheaper to implement than an adder (subtractor).

Figure 3.1 Block diagram of a covariance processing element.

3 FPGA implementation 141

All arithmetic blocks used in the CovPE design are Xilinx optimized building blocks.
Table 3.1 shows the amount of consumed resources of a covariance processing element.

Table 3.1 Consumed resources of a covariance processing element.

 CovPE

Number of Slices 168 (3%)

Number of Slice Flip Flops 260 (2%)

Number of 4 input LUTs 298 (2%)

Maximum frequency (MHz) 130

One covariance processing element occupies only 168 slices in the FPGA and it can be
clocked at 130 MHz. Figure 3.2 shows that the design has been placed and routed in a
cluster, which will minimize long interconnections that would slow down the design.

Figure 3.2 Routed floorplan of a covariance processing element.

3.1.2 Steering vector processor

The values in the steering vector are either programmed into a memory on the FPGA or
loaded from an external source and stored in a RAM on the FPGA. The vector-matrix-
vector multiplication can be broken down into four vector-vector multiplications,
followed by a single vector-vector multiplication. The steering vector processor
consists of five steering vector processing elements (StPE) and a memory. Figure 3.3
shows a block diagram of a StPE that performs a vector-vector multiplication and
accumulation.

142 3 FPGA implementation

+

× ××

+

+ ++
C

o
m

p
le

x
 M

u
lt
ip

lic
a

ti
o
n

StPE

Sign bit

x

y

z

w

Vector

Vector a(θ)

To Memory

Accumulator

Complex
value

Figure 3.3 Block diagram of a steering vector processing element.

The steering vector and the vectors in the matrix are processed through the four StPEs,
and the resulting vector is processed through a fifth StPE where it is multiplied with the
conjugate of the steering vector, thus producing an output value. The sign bit inverter is
used to convert the steering vector to its complex conjugate when needed.

All arithmetic blocks used in the StPE design are Xilinx optimized building blocks.
Table 3.2 shows the amount of consumed resources of a StPE. The CovPE occupies 34
slices more than the StPE, since it also includes two multiplications and some control
circuitry.

Table 3.2 Consumed resources of a covariance processing element.

 StPE

Number of Slices 134 (3%)

Number of Slice Flip Flops 175 (2%)

Number of 4 input LUTs 193 (2%)

Maximum frequency (MHz) 132

3 FPGA implementation 143

One covariance processing element occupies only 134 slices in the FPGA and it can be
clocked at 132 MHz. Figure 3.4 shows that the design has been placed and routed in a
cluster, which will minimize long interconnections that would slow down the design.

Figure 3.4 Routed floorplan of a steering vector processing element.

3.2 FPGA implementation of the LDF architecture
The linear data flow architecture performing the Capon algorithm was implemented in
an FPGA [60]. The complex sample values coming from the antenna array are
processed through the covariance processor and stored in a temporary buffer. This is
repeated for as many times (1-4096) as decided by a 12-bit snapshot counter, which is
set by the user. This is done to get an uncorrelated covariance matrix.

The implementation was clocked at 100MHz and consumed 4762 slices, which
accounts for 93% of the FPGA resources. The sample covariance buffer accommodates
120 samples from each of the four antenna elements. Each complex sample, with a
wordlength for the real and imaginary part of 8 bits, results in a temporary buffer of 7.7
kbits. Four guard digits are used to ensure numerical stability of the computation. The
complex valued matrix inversion uses an additional 2 guard bits. The internal memory
used in the computation with the steering vectors accommodates one memory slot for
each θ. In total 181 memory slots with four 2*14 bit complex values (one for each
antenna element) are used, resulting in a total of 20.3 kbits. An additional buffer (0.3
kbits) for storing the inverted matrix and intermediate computations was used. The
computation with the steering vectors results in a real value represented with 14 bits,
which is inverted to form P(θ). The numerical error of the Capon power estimation is in
this case less than 1 ulp.

144 3 FPGA implementation

The floorplan of the Capon beamforming implementation is presented in figure 3.5.
Nearly all resources in the FPGA are used in the implementation.

Table 3.3 Consumed resources of the different blocks in the design.

 Percentage of resource

Covariance processor 24%

Matrix inversion 62%

Steering vector processor 11%

Inversion 3%

Figure 3.5 Routed floorplan of a Capon beamforming implementation.

3.3 Scalability of the designs
The hardware blocks implementing the linear data flow architecture are all modulized
and scalable. This ensures that the design can be scaled if it is going to be used in any
other application, or with another antenna configuration, etc. The design is scaled by
adding the required number of processing elements.

The building blocks are written in a hardware description language in such a way that it
is easy to change the wordlength without redesigning the whole building block. This
adds to the scalability of the design. It is also possible to port the design to an ASIC

3 FPGA implementation 145

without making to many changes. The only thing that needs to be replaced is the
optimized arithmetic building blocks from Xilinx. These building blocks can easily be
exchanged for other standard IP cores from an ASIC vendor.

 146

Chapter 4

4Capon implementation aspects

This chapter investigates the robustness of the FPGA implementation of the Capon
algorithm presented in the previous chapter. To test the implementation, test data based
on measured data with added noise from a ULA with four elements was used. The SNR
was 10 dB and 120 snapshots of four sample data vectors containing 120 samples were
recorded. Figure 4.1 shows a plot of the result with the normalized spectrum on the y-
axis and the DOA in degrees on the x-axis.

0 20 40 60 80 100 120 140 160 180

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
liz

e
d
 S

p
e
c
tr

u
m

DOA
°°°°°°

Reference

14 bits

Figure 4.1 Normalized power spectrum of the Capon beamformer implementation plotted
for different DOAs.

4 Capon implementation aspects 147

The reference curve is produced by MATLAB floating point simulations of the same
data that was processed through the 14 bit FPGA fixed-point implementation.

The plot shows that the dashed line, originating from the FPGA implementation,
follows the reference line and indicates two distinct maxima in the region of 60° and
120°. The deviation from the reference is only 2° for the peak at 60° and 1° for the
peak at 120°. To be able to determine if a hardware design is accurate enough, a
deviation limit of 5° from the reference was set. Since the deviation of the peaks in
figure 4.1 is less than 5°, a 14-bit hardware implementation is sufficiently accurate. The
small difference between the dashed and the solid line is due to the limited dynamic
range of the hardware implementation. An increase of the number of bits used in the
design would probably reduce the difference even more.

The decision of how many guard-bits to use in the design was based on a rough
estimation of the needed precision. To determine the actual needed precision a more
careful analysis of the each step in the computational scheme is needed. For this
purpose, several implementations were constructed where the effects of a reduction of
the dynamic range in individual building blocks were investigated. Each step in the
computational scheme of the Capon algorithm was tested one at a time in order to
determine the impact of the particular step.

4.1 Covariance matrix
In the implementation of the covariance processor presented in chapter 3, four guard
digits were added to safeguard from induced numerical errors due to a limited dynamic
range. In this test, only the wordlength affecting the computation of the covariance
processor was changed, while all other building blocks in the other steps remained
unchanged. The dynamic range was gradually reduced by reducing the number of bits
used during computations. Figure 4.2 shows a plot of how the result varies with a
reduced dynamic range in the building block. With reduced wordlength the peaks shift
to the right, inducing an error in the detection of the angle. As stated in the previous
section, a maximum deviation of 5° from the reference was tolerated and a deviation
over 5° was treated as a failed detection. The shortest wordlength that can be used to
compute the covariance matrix in the test case is 6 bits. The 6 bit wordlength was very
close to the reference in the diagram but due to the resolution of the plots it was not
included here. As seen in figure 4.2, when using a 5 bit wordlength one of the peaks
deviate more than 5° from the reference, which is unacceptable. Using a wordlength of
only 4 bits will result in a deviation of more than 10° of both peaks. When the
wordlength gets even shorter, the detection collapses (not shown in the picture).

148 4 Capon implementation aspects

Figure 4.2 Normalized power spectrum for the covariance matrix block with different
wordlengths.

4 Capon implementation aspects 149

4.2 Matrix inversion
The matrix inversion turned out to be more robust than the covariance processor block.
When the dynamic range gets smaller the peaks start to drift. As shown in figure 4.3, a
wordlength of 5 bits is still inside the allowed boundary of 5° from the reference, but
with a wordlength of only 4 bits the deviation from the reference gets too big. When
the dynamic range gets smaller than 4 bits the detection collapses. The 6-bit
wordlength was very close to the reference in the diagram but due to the resolution of
the plots it was not included here.

Figure 4.3 Normalized power spectrum for the matrix inversion block for different
wordlengths.

150 4 Capon implementation aspects

4.3 Steering vector
The effect of reduced dynamic range in the steering vector block appears quickly. Even
for a small decrease in dynamic range the peaks disappear and get virtually
undetectable. A wordlength of 7 bits produced a power estimation diagram close to the
reference and without the jaggedness, but a wordlength of 6 bits changed the diagram
significantly. As seen in figure 4.4, the diagram became very jagged making it hard for
a search algorithm to determine the number of peaks. Therefore, a 6-bit wordlength is
too short to use in applications. However, the basic shape of the peaks was still visible.
Some kind of smoothening operation can be applied to the diagram in order to restore
the shape. When a wordlength shorter than 6 bits was used, we were unable to
distinguish between the reference and the plotted line.

° °0 20 40 60 80 100 120 140 160 180

0.4

0.5

0.6

0.7

0.8

0.9

1

°°°°°°°

Reference

6 bits

Steering vector

DOA

Figure 4.4 Normalized power spectrum for the steering vector block for different
wordlengths.

4 Capon implementation aspects 151

4.4 Inversion
The effect of reducing the wordlength in the inversion step was not significant, as can
be seen in figure 4.5. When the wordlength decreased, the diagram became more
“digitized” in appearance. This is a result of the difference between neighboring values
disappearing after the inversion due to the reduced dynamic range. It is still possible to
detect the peaks with a wordlength of 5 bits. It is even possible to use 4 bits, but when
the wordlength is reduced to 3 bits, the computation collapses and no peaks are
detectable. In this case a wordlength of 5 bits was viewed as the limit.

Figure 4.5 Normalized power spectrum for the inversion block for different wordlengths.

4.5 Conclusion
The step including multiplication of the steering vectors is the one most sensitive to
reductions in the dynamic range. The group of high-resolution methods that the Capon
algorithm belongs to is known to be sensitive to errors in the steering vectors. The
inaccuracy induced in the computation with the steering vectors is comparable to using
steering vectors from a badly calibrated antenna array.

152 4 Capon implementation aspects

The second most sensitive operation is the first step when creating a covariance matrix.
When the dynamic range in the covariance matrix reduces the variation between the
element values in the matrix, it becomes ill-conditioned and in worst case singular.

The dynamic range of the matrix inversion and the inversion operations does not
significantly affect the overall computation. This indicates that the relation between the
matrix elements is more important than the precision of a single element. The
wordlengths can therefore be reduced significantly in these operations. A design with a
minimum wordlength can be derived based on the information above.

4.6 Minimum wordlength design
From the results above, the wordlength in the steps can be reduced significantly.
However, the accumulated effect must be taken into account when changing the
wordlength of all blocks in the design. Therefore, more bits were needed in some of the
operations than indicated by the diagrams in the previous section. Several FPGA
implementations were analyzed before a minimum wordlength design could be
established. The minimum wordlength design is implemented using the following
wordlengths:

• The covariance processor was implemented using a wordlength of 7 bits.

• The matrix inversion was implemented using a wordlength of 6 bits.

• The steering vector processor was implemented using a wordlength of 7 bits.

• The inverter block was implemented using a wordlength of 6 bits.

Figure 4.6 shows the power spectrum of the derived minimum wordlength design. The
deviation from the reference is less than 3°. The minimum wordlength design occupies
18% less slices than the original implementation of the LDF architecture, which is a
significant reduction in resource consumption. The choice of wordlength of the original
design was based on a perceived need of precision. The precision needed for a specific
application may differ, which it did in this case, from the perceived precision of a
single block.

4 Capon implementation aspects 153

Figure 4.6 Normalized power spectrum of the derived minimum wordlength design.

 154

Chapter 5

5Application: Channel sounding

In this chapter, an application utilizing the Capon beamformer is discussed. Channel
sounding is an important tool in the development of radio channel models, which are
used in research in wireless communication. In the first section of the chapter the
importance of channel sounding is discussed, followed by a brief description of a
channel sounder. Finally, the FPGA implementation of the Capon algorithm is used for
DOA estimation on real measurement data.

5.1 Channel sounding
Studying radio propagation in indoor and outdoor scenarios is an important step in
research and development of wireless communication systems. To gain knowledge of
radio propagation in different environments, a measure system such as a channel
sounder is of key importance. Channel sounding is therefore the first step in
understanding the radio channel with respect to new applications.

A transmitter sends out a signal that excites the radio channel. The output of the
channel is observed by the receiver and stored. From the knowledge of the transmitted
and received signals the time-variant impulse response or other deterministic system
functions are obtained. The impulse response can be seen as one snapshot or sample of
the radio channel. In order to track the channel, these snapshots must be taken
sufficiently often but in a small time frame so that the channel does not change.

Real world measurements help in creating useful radio channel models for the
development of new algorithms in mobile radio communications. To be able to perform
measurements, a MIMO channel sounding system must be used. Real-time
measurements with the channel sounding system require high-speed hardware
implementations of MIMO and beamforming algorithms with good numerical precision.
The hardware architecture must also be flexible and scalable to comply with different
antenna configurations used in a variety of measurement scenarios.

5 Application: Channel sounding 155

5.2 Channel sounder system
The channel sounder system at the Department of Electroscience is a real-time radio
channel impulse response measurement system based on the switched array principle
[5]. Due to the modular construction of the system, it can easily be configured for a
wide range of MIMO measurements using different kinds of antenna configurations.

Figure 5.1 shows a block diagram of the channel sounder system. In the transmitter,
arbitrary signals can be generated by a waveform generator and transmitted via the
configurable antenna array.

Display Xilinx FPGA

Osc.

Rx array Mux

RF down converter

D
ig

ita
l D

e
m

o
d
u

la
to

r

8 bit @
max 640 MHz

A
D

Osc.

Arbitrary waveform

generator

Tx array Mux

Figure 5.1 Block diagram of the transmitter and receiver unit of the channel sounder system.

The received signal, arriving at the receiver antenna array, is down converted, filtered,
and sampled into a digital datastream. The 8-bit A/D-converter has a maximum sample
rate of 640 MHz and the sampled data is collected and temporarily stored on a hard
drive.

The Capon beamformer algorithm is implemented in hardware, as described in
previous chapters, using a Xilinx FPGA. The FPGA has not yet been integrated into the
channel sounder. The computed power spectrum of the received signal is displayed on
an external monitor. The supported radio frequency bands of the system are UMTS at
1.8 to 2.5 GHz and WLAN at 5 to 6 GHz. The maximum bandwidth of the
measurement system is 240 MHz and the maximum Tx power is 10W. Figure 5.2
shows the channel sounder equipment and a flat 32 element and a circular 64 element
patch antennas built by Ericsson microwave.

156 5 Application: Channel sounding

Figure 5.2 Channel sounder system and antennas.

5.3 Measurement
The Capon beamformer implementation was tested together with measured data from
the channel sounder. A uniformed linear array with four antenna elements and a SNR
of 12 dB was used in the measurement. The sampled data coming from the antenna
array consisted of four vectors with 120 samples of complex valued data, of which 120
snapshots were taken.

Figure 5.3 shows a plot of the result with the normalized spectrum on the y-axis and the
DOA in degrees on the x-axis. A sharp peak is found in the direction of the source that
was placed 120° in respect to the ULA. A second source, which in this case is a
reflection on one of the walls, impinges from 87°. The reference plot in MATLAB
(solid line in the diagram) may also show a minor reflection around 150°. However,
this reflection is not detected by the Capon beamformer implementation. This may be
due to too low resolution depending on the minimized wordlength used in the
implementation. An increase in the wordlength would probably reduce the difference
between the reference plot and the measured plot.

The FPGA implementation of the Capon beamformer has not yet been incorporated
into the channel sounder. The goal is to be able to make measurements with the FPGA
incorporated into the channel sounder, delivering the power spectrum diagram in real-
time.

5 Application: Channel sounding 157

Figure 5.3 Measured power spectrum of the Capon beamformer algorithm plotted for
different DOAs.

5.4 Summary
In this part of the thesis we have seen that the building blocks for multiantenna
algorithms can be used in practice. The direction of arrival algorithm Capon’s
beamformer has been implemented, analyzed, and successfully tested with measured
data from a channel sounder.

The analysis showed that the computation of the correlation matrix and the
computation with the steering vectors were the most critical steps in the Capon
algorithm in terms of precision.

The configuration of the channel sounder constantly changes, depending on which
types of measurements to make. The flexibility and the scalability of the matrix
building blocks make them perfect to use in such an application.

High-resolution DOA estimation algorithms are not only applicable in channel
sounders. They are also important in many other types of systems, such as radar, sonar,
mobile communications, and electronic surveillance.

 161

Chapter 1

1Introduction

This part begins with a brief discussion about the importance of using a design
methodology when designing in hardware. In chapter 2, a design methodology
developed specially for designing with FPGAs is presented. The design methodology
has been developed and refined by the author during his research years. In chapter 3,
the system modelling and the hardware tools used in the hardware implementations are
discussed.

1.1 Why do you need a design methodology?
Developing and implementing designs in hardware without a design methodology is
like putting together IKEA furniture without a manual or baking a cake without a
recipe, it is possible but not clever.

In the author’s opinion a good design methodology is an absolute must when
implementing in hardware. Using a design methodology will dramatically increase the
chances of creating an implementation that will function correctly and efficiently.
Following the design methodology will also structure your work and it will be much
easier to optimise and debug your design, resulting in savings in both time and
resources.

A design methodology usually consists of a number of different steps describing the
order in which tasks are to be carried out, e.g. write a specification, simulate, write
code, test the design, and so on. Before starting to use a design methodology one
should customise it to ones own needs and lay down the ground rules of how it is going
to be used. One or more steps may need to be omitted or rearranged to suite your
design project. However, once you have started to work within a design methodology it
is important not to deviate from it, especially if more than one person is involved in the
design process. A deviation could in worst case lead to time consuming debugging or
serious problems in later steps.

A design methodology slightly differs depending on whether the target is an integrated
circuit (ASIC) or a programmable device (FPGA). The target for most of the designs
presented in this thesis is an FPGA. The design methodology described in this chapter

162 1 Introduction

has been derived and refined by the author throughout the work that is the basis of this
thesis. It has been developed especially for programmable devices and it is referred to
as the Design Methodology for Programmable Devices, or short DMPD. The DMPD
can, with some modifications to individual steps, be used in ASIC design.

 163

Chapter 2

2DMPD

The DMPD design flow consists of a number of steps that enables one to reach
designated design goals. The different steps of the DMPD are shown in figure 2.1.
Each individual design has of course its own variation of the DMPD, but essentially the
steps are the same for all FPGA implementations.

The DMPD consists of two major phases and one sub-phase. These phases are the high

level design, the low level design, and the design verification. The different phases are
marked with grey and white boxes including several steps in figure 2.1.

A hardware implementation project is usually prompted by an idea, a request, a
specification, or some other external input. The first phase in a project is the high level
design where a system model of the idea is created, simulated, and verified in a
software environment. The second phase is the low level design where the verified
system model is implemented in hardware. This phase also includes a design
verification sub-phase in which the hardware implementation is verified and integrated
onto the FPGA. The design phase will result in a hardware design implemented on the
FPGA, which will be ready for testing and integration into a larger external system.

A brief description of the individual steps in the various phases is given below.

2.1 High level design
The DMPD is divided into two major blocks, the high-level design and low-level
design. In this thesis, high-level design denotes the algorithm level where the idea or
specification is modelled and simulated using digital signal possessing (DSP)
algorithms.

2.1.1 DSP system specification

Creating a DSP system specification is essential if one is going to be able to make the
right decisions later on in the design process. The specification will also help to fully
understand and to think through the design in detail. This is most important and will

164 2 DMPD

L
o

w
 L

e
v
e

l
D

e
s
ig

n
H

ig
h

 L
e

v
e

l
D

e
s
ig

n

Hardware Specification

Choose Platform and Tools

 Hardware Design

Hardware Simulation

Hardware Design Review

Synthesize

Place and Route

Verification

Final Review

System Integration and Test

Working Design!

D
e

s
ig

n
 v

e
ri

fi
c
a

ti
o

n

DSP System Simulation

DSP System Specification

Choose System Modelling Tools

DSP System Modelling

Idea

External Specification

Request

Figure 2.1 The design flow of the DMPD used in the development of FPGA hardware
implementations.

2 DMPD 165

save you time and help you to avoid obvious mistakes. A DSP system specification
should at least contain the following information:

• A basic block diagram of all the major building blocks in the design
(arithmetic units, memories, data busses, etc.) and how they are connected
together.

• A basic block diagram of how your design fits together with the external
system.

• A description of the I/O system connecting your design to the external
system.

• A description of how the software system model is going to be tested and
which test data is going to be used. If a specific test bench will be
constructed, a basic block diagram of that test bench should also be
included.

It is also a god idea to review the DSP system specification together with people
involved in the same project, or with co-workers, to discover any errors or omissions in
the specification.

2.1.2 Choosing system modelling tools

The following two criteria should be considered when choosing system modelling tools.

1. The tool should be able to model the hardware designs at a fairly low level (bit
or word level) and be able to handle fixed-point and floating-point arithmetic.
This will generate a sufficiently accurate hardware model enabling you to
make valid design decisions [62]. Creating a model that simulates the
hardware in a detailed fashion will also facilitate the process of converting the
model to actual hardware.

2. Choose tools that are commonly used at your workplace, as this will help you
get in house support of the tool. If you are working with other research groups
you should choose a tool, if possible, that both you and the other research
groups are familiar with. This will enable a greater understanding between the
groups in terms of discussing and revising the system model.

However, in some cases the choice of modelling tool is not yours to make. It could be
that you have been given an algorithm to implement, modelled in a specific tool. The
choice is then to either translate the algorithm into a more familiar environment, with
the risk of introducing errors or simplifications, or to learn the new tool. This decision
should always be made together with every one involved in the project.

166 2 DMPD

2.1.3 DSP system modelling

The specification produced in the previous step will act as a blueprint for the modelling
of the system. During modelling it is a good idea to break down the requirements set by
the system specification and build a system model which is modular in its design. By
doing so it will be much easier to find and eliminate bugs and to analyse and optimize
parts of the designs. In many cases, system modelling is not separable from the next
step, which is the simulation of the system model.

2.1.4 DSP system simulation

In most cases, several iterations between the DSP system modelling step and the DSP
system simulation step are needed in order to reach a design that meets the
requirements of the DSP system specification. The simulation will provide valuable
design information, such as required dynamic range, word sizes, memory sizes, bus
sizes, timing constraints, number of I/O pins, and design type (asynchronous or
synchronous). This step concludes the high level design phase.

2.2 Low level design
In low-level design the algorithm modelled and simulated in the high-level design is
translated into a hardware language, describing how it is going to be implemented.

2.2.1 Hardware specification

The hardware specification is written with the support of the results from the high level
simulations. This step is sometimes neglected by hardware designer. However, this step
is very important, since faults and oversights may have serious implications on the
hardware design in a later step. Spending time correcting errors originating from faults
in the hardware specification may be very expensive. The hardware specification
should at least contain the following information:

• A high level block diagram of all the major hardware building blocks.

• A detailed level block diagram containing realisations of blocks.

• The choice of clocking strategies, e.g. synchronous or asynchronous timing,
and clock domain (global or multiple).

• A description of the I/O realisation such as the number of pins needed,
external timing constraints, and data formats.

• Timing estimates of the hardware design, such as clock cycle time,
propagation times, and setup time where applicable.

• Basic area estimation to aid in the choice of FPGA.

• Basic power estimation.

2 DMPD 167

• Which kind of test procedure to use (test bench, self-testing circuitry, or a
verification tool).

This step should also be reviewed with people involved in the same project, or with co-
workers, to eliminate as many mistakes as possible.

2.2.2 Choosing platform and tools

Usually, two different scenarios arise when it is time to choose which FPGA platform
to use.

1. You already have a specific FPGA that you have to work with. The challenge
is then to fit the design into that particular FPGA.

2. You can choose freely which FPGA to use. The hardware design
specification will then be the guide for choosing the right FPGA. The area
and timing estimations, together with the number of I/O pins needed, will
give you the framework needed to be able to choose the right FPGA.

When the FPGA has been chosen it is time to determine which tools to use for the
development of the hardware and the programming of the FPGA. This includes
choosing a HDL as well as tools for doing the synthesis of the design, the place and
route, and the simulation and verification. A good strategy is to use tools that are
supplied by the FPGA vendor, or use tools from a third-party company co-operating
with the vendor and thereby avoiding tools that produce non-compatible formats [62]-
[65].

2.2.3 Hardware design

Before you start to write code in a HDL, some coding and design rules should be set up.
These rules will help you in designing good and reliable code. The following coding
rules were used in the author’s research work:

• Design with the device architecture in mind. In a specific situation one module
of code may result in a design occupying fewer slices in the FPGA than
another module of code [66]. The best way of determining this is by
continuous testing of the code.

• Only synchronous designs. A synchronous design will reduce the probability
of problems such as race conditions, hold time violations, glitches, and delay
dependencies [67].

• Modulise your HDL code. This will help you get a better overview of your
code and it will also be much easier to debug [67].

• Design code modules that are flexible and optimised. The modules should be
easy to expand in terms or wordlength, number of inputs, etc.

168 2 DMPD

• Design for reusability. Parts of the code can often be used in several designs.
If these parts are designed with some kind of generality it will be easy to reuse
in other designs [70].

• Design for testability, especially if the design is going to be large. Testing of
your design could either be carried out by using test vectors or by inserting
test logic into your design. However, the 10/10 rule which says that you
should not spend more than 10% of your time on designing test logic and not
more than 10% of the logic of the FPGA should be used for testability, should
be obeyed [66].

• Keep it simple.

• Always make comments in the code. The code should be like a story book.

The compiled HDL code will produce register transfer level (RTL) code used in later
steps.

2.2.4 Hardware simulation

Simulation and hardware design is an iterative process. It is wise to continuously
simulate small parts of your HDL code separately before hooking them up to larger
parts. It is also much more time-consuming to find errors in large code chunks than in
smaller. By modulizing your code and design it for testability, by for instance using test
logic, it is much easier both to debug it and to optimize it in a later stage. The hardware
simulation is the first step in the design verification phase incorporated into the low
level design phase.

2.2.5 Hardware design review

Once the design and the simulations have been completed, a design review should be
performed to verify and ensure the correctness of the design. In this step it is very
important to be thorough and ensure that the function of the hardware design is in
compliance with the hardware design specifications before implementing it on the
FPGA.

2.2.6 Synthesis

The synthesis involves using tools that translates the design into a gate level design that
can be mapped to the logic blocks on the FPGA. This step may also include choosing
and specifying switches and optimization parameters of the synthesis software that will
affect the end result. It is good to play around a bit with the software since the same
setting in the software will not produce the same result in two different designs.

After a successful synthesis the design must be verified against the RTL code. You can
either re-simulate the design using the gate level output of the synthesis tool or you can

2 DMPD 169

use a verification tool that logically compares the RTL description to the gate level
description.

2.2.7 Place and route

In this step the design is physically mapped (placed) and connected together (routed)
on the FPGA. The place and route tool figures out how to program the FPGA to
physically implement the design. If the placement for some reason fails, the design can
often be tweaked so that it can be placed successfully but sometimes you have to make
radical changes and re-design to be able to place it. This is especially true when the
design is so big that it nearly consumes all the cells in the FPGA.

Once the place and route is successful, a timing analysis must be done to determine
whether the design meets the timing goals. Typically, certain parts needs to be changed
or the timing specifications must be altered in order to get the design to work properly.

2.2.8 Verification

At this stage the design must be checked thoroughly to verify that it behaves in the
same manner as the RTL code. This can be done either by simulation of the lower level
design or by using formal verification (or sometimes both).

The most commonly used method is to re-simulate the final circuit using the test data
that was used to simulate the original circuit. This procedure is called regression testing.

Formal verification is the process of mathematically checking that a design is behaving
correctly. There are two types of formal verification:

1. Equivalency checking is the process of comparing two designs descriptions to
determine if they are equivalent. Equivalency software will check if the RTL
description inserted into the synthesis software is functionally equivalent to
the outputted gate level description [67].

2. Functional verification is the process of proving whether specific conditions
occur in a design. These conditions could be legal conditions, that a certain
signal is generated when an address has valid data or illegal conditions such as
overflow during a computation or a forbidden state in logic. The functional
verification tool checks if all legal and illegal assertions occur in the design
[67].

2.2.9 Final review

At this point the final review should just be a formal matter and a sign-off that the
design has been coded, simulated, synthesized, placed and routed, and verified that it is
now completed and ready to be integrated with the external system. At this stage no
serious problem should arise, but if it does parts of the design may need to be re-
designed or re-synthesised.

170 2 DMPD

2.3 System integration and test
When the design has passed the final review, the FPGA hardware implementation is
ready to be used and integrated into the external system. Hopefully there has been a
constant communication between all parts involved in the design of the system,
avoiding any serious compatibility problems between the system and the FPGA. The
FPGA design will now evolve together with the system.

 171

Chapter 3

3Tools used in the research

3.1 System modelling tools
MATLAB and Simulink [62] were used as the primary system modelling tools for all
the designs in this thesis. The choice of MATLAB as the system modelling tool was
not a difficult one to make. MATLAB is among the leading modelling and
implementation tools for high performance DSP systems and together with the
Simulink environment makes a good platform for model-based design. Simulink
provides an interactive graphical environment and a customizable set of block libraries,
called toolboxes, which makes it easy to create models [62]. Specialised toolboxes, like
the fixed-point toolbox, enable design and simulation of signal processing systems
using fixed-point arithmetic, which is crucial for hardware design. The product
overview in figure 2.2 shows the variety of toolboxes available for the MATLAB and
Simulink environment. The design interface also allows you to create your own
toolboxes. Many hardware vendors also supply their own specialized and optimized
toolboxes for Simulink.

Figure 3.1 MathWorks product overview [62].

172 3 Tools used in the research

One such vendor is Xilinx, who offers a specialized toolbox, Xilinx System Generator
[68], for Simulink that enables development and bit and cycle accurate simulations of
DSP systems for integration into Xilinx FPGAs [65]. Figure 3.2 shows a CORDIC
based divider architecture modelled in Simulink with the Xilinx System Generator
hardware blocks. By double-clicking on the hardware blocks in the design you can
easily change hardware parameters such as word sizes, rounding technique etc., which
makes it quick and easy to simulate different configurations. Specialized blocks, such
as the Resource estimator in the upper right corner, will give you useful information
about the estimated hardware cost when comparing similar implementations.

The System Generator tool also provides the possibility for a high-level abstraction to
be automatically compiled into an FPGA at the push of a button [62],[65]. The tool will
automatically generate synthesizable HDL code mapped to Xilinx pre-optimized
building blocks, which can be synthesized for implementation on Xilinx FPGAs.
System Generator can also provide automatic generation of a HDL test bench, which
enables design verification during implementation. However, the automated compile
feature in Xilinx System Generator was not used in any of the hardware designs in the
thesis, due to limitations in the control of the lower level hardware, such as timing etc.
This feature was only used in construction of test benches.

Figure 3.2 A CORDIC-based divider designed and simulated using MATLAB Simulink and
Xilinx System Generator.

3.2 FPGA and hardware design tools
The choice of FPGA vendor was easy since the department had access to Xilinx
FPGAs. Xilinx is one of the largest and oldest FPGA vendors in the world, which
makes it easy to get support and to find useful information in various hardware
designer forums.

3 Tools used in the research 173

The most widely used HDLs [71] are Verilog HDL [69] and VHDL [70]. Which
language to choose depends on which HDL is used in your design team, on which level
(system, behavioural, etc.) the code will be written, and on your own preferences.
VHDL is a very strong language when it comes to behavioural and system level design
construct. However, Verilog is easier to master than VHDL and is stronger when it
comes to designing on the structural and functional level. Figure 3.3 shows a
comparison between the level of abstraction of VHDL and Verilog HDL. VHDL is also
able to replicate a number of instances of the same design-unit or some sub part of a
design, and connect them appropriately. There is no equivalent to the generate
statement in Verilog. Together with the advantages in the behavioural and the system
level over Verilog, the choice for the research fell on VHDL.

Figure 3.3 A comparison of the level of abstraction between the two HDLs Verilog and
VHDL.

As discussed in the previous chapter it is wise to use the FPGA vendor’s tools or third-
party tools that are compliant with the FPGA. The synthesis tools used in the designs in
this thesis include Xilinx own ISE Foundation [72] and Synplify from Synplicity [64].
Synplify is a high-performance logic synthesis engine that utilizes the proprietary
Behavior Extracting Synthesis Technology (B.E.S.T.) to deliver fast and efficient
FPGA designs. The Synplify tool takes HDL as input and outputs a netlist in Xilinx
FPGA vendor format. In some designs the Synplify tool generated a 16% increase in
efficiency compared to the ISE Foundation tool. The place and route of the design was
performed by the Xilinx ISE Foundation tool [72].

When it comes to verification of the FPGA implementation, Xilinx ChipScope Pro
offers good in-design testing capabilities [73]. Xilinx ChipScope Pro is a real-time
verification tools that provide on-chip debug at or near operating system speed [73].
This tool inserts a logic analyser, bus analyser, and Virtual I/O low-profile software
cores directly into your design. This allows you to view any internal signal or node,
including embedded hard or soft processors. Wanted signals are captured and brought

174 3 Tools used in the research

out through the programming interface and can be analyzed through the ChipScope Pro
Logic Analyzer [73]. The tool is very potent and useful but the down side is that it
consumes resources (area) in your FPGA. If ChipScope Pro is to be used during the
design phase, it should be included in the hardware design specification so that
adequate hardware resources can be allocated. The logic added to your design when
you use ChipScope should be removed when the final design is tested and ready to be
used. In cases where ChipScope Pro can not be used, regression tests must be used to
confirm the FPGA implementation. If you have designed for testability the simulation
process will be much easier.

Another important tool is some kind of version handling system. When writing and
simulating on system level or at the hardware level, there will be many different
versions of the same system or code. A version handling program can prove to be very
helpful tool to keep track of changes of your design. The first version handling
software used in with the design methodology was the Concurrent Versions System
(CVS) tool [74]. The program is an open source initiative and there exists clients for
the most common computer platforms (Windows, Unix, Linux, OS/2, etc.).

Later on CVS was exchanged for another version handling tool called Subversion [75].
This is also an open source program and free to use. The choice of which tool to use is
a matter of taste but Subversion has a better tracking system for different types of files
(.txt, .bin, .doc, …) than CVS and it also keeps track of files that changes name.

If a version handling tool is going to be used one may find it very useful to visit the
Version Control System Comparison webpage [76]. This webpage keep track of and
compare commercial and free version handling tools.

 177

Appendix A: Real divider

Introduction
The real divider used in several designs in this thesis is based on an article [77], which
uses Taylor series expansion to approximate the real division. As shown in figure A.2,
the real divider is constructed of two redundant modified-Booth multipliers [78], and a
small lookup table (LUT) with normalized and optimized table entries for high
numerical accuracy. The total error of the real valued division is below 1 ulp.

Algorithm
Consider the real operation A/B. The 2m bit operand B is split into two operands, BHb
with the m+1 higher order bits, and BLb with the m-1 lower order bits, as shown in
figure A.1.

Hb Lb

A

B B+

Figure A.1 Division of the operand B into higher and lower bits.

The expression in figure A.1 can be Taylor series expanded at BLb/BHb

2

2
1 Lb Lb

Hb Lb Hb Hb Hb

B BA A

B B B B B

⎛ ⎞
= ⋅ − + −⎜ ⎟+ ⎝ ⎠

. (A.1)

Combining the two first terms in the series will result in the approximation shown in
equation (A.2) [77].

2 2 2

() ()
Hb Lb Hb Lb

Hb Lb Hb Lb Hb

A B B A B BA A

B B B B B B

− −
= = ≈

+ −
 (A.2)

The approximation in equation (A.2) can then be used to calculate a real division.

178 Appendix A: Real divider

Hardware implementation
A block diagram of the hardware implementation of equation (A.2) is shown in figure
A.2.

Figure A.2 Hardware schematics of a real valued divider.

The higher order bits of operand B, are used to look up the value of 21 HbB with a 2m+3

bit accuracy. The lookup table consists of 2 (2 1)m m + bits and the table entries are

normalized and optimized to maintain a high numerical accuracy. Operand A is
multiplied with the partial operand Hb LbB B− . The multipliers in the real divider

implementation use a general redundant modified-Booth scheme to be able to perform
the multiplication ()Hb LbA B B− without actually calculating Hb LbB B− . Two guard

digits are used in the first multiplication for error compensation. The first multiplier
produces a 2 3m + bit answer, which is stored in a pipeline register until the next cycle.
The second multiplier then produces the result in the second cycle.

 181

References

[1] Tapan K., Sarkar, Michael C. Wicks, Magdalena Salazar-Palma, and Robert J.
Bonneau, Smart Antennas. Wiley-IEEE Press, 2003.

[2] H.L. Van Trees, Optimum Array Processing. Wiley, New York, 2002.

[3] D.H. Johnson, and D.E. Dudgeon, Array Signal Processing. Prentice Hall, 1993.

[4] R.A. Monzingo, and T.W. Miller, Introduction to Adaptive Arrays. Wiley, New
York, 1980.

[5] J.E. Hudson, Adaptive Array Principles. Peter Peregrinus, London, 1981.

[6] J.C. Liberti, and Jr., T.S. Rappaport, Smart Antennas for Wireless
Communications. Prentice Hall, 1999.

[7] A. F. Molisch. Wireless Communications. John Wiley and Dons Ltd. , 2005.

[8] T.S. Rappaport, Wireless Communications: Principles and Practice. Prentice
Hall, 2002.

[9] A.J. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge University Press, Cambridge, 2003.

[10] “Lucent Technologies, Bell Labs,” http://www.bell-labs.com/project/blast/,
2006-01-01.

[11] D. Tse and P. Viswanath. Fundamentals of Wireless Communication.
Cambridge University Press, Cambridge, 2004.

[12] S.M. Alamouti, “A Simple Transmit Diversity Technique For Wireless
Communications,” IEEE Journal on Selected Areas in Communications, v.16,
N.8, pp. 1451 -1458, Oct. 1998.

[13] D. Gesbert, M. Shafi, D. Shiu, P.J. Smith, and A. Naguib, "From Theory to
Practice: An Overview of Mimo Space-Time Coded Wireless Systems," IEEE J.
Selected Areas Commun., vol. 21, no. 3, 2003.

[14] G.H. Golub and C.F.Van Loan, Matrix Computations. The Johns Hopkins
University Press, Maryland, 1996.

[15] J. G. Proakis and D. G. Manolakis, Digital Signal Processing; Principles,
Algorithms, and Applications. Macmillan Publishing Company, 1992.

[16] K. J. Ray Liu, and Kung Yao, High-Performance VLSI Signal Processing Vol. 1
Algorithms and Architectures. IEEE Press, 1998

[17] “AMD,” http://www.amd.com/, 2006-01-01.

[18] ”Intel,” http://www.intel.com/, 2006-01-01.

[19] “Texas Instruments,” http://www.texas-instruments.com/, 2006-01-01.

[20] ”Lyrtech Signal Processing,” http://www.lyrtech.com/, 2006-01-01.

182 References

[21] “M-Tec Wireless,” http://www.mtecwireless.com/, 2006-01-01.

[22] S.W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing.
California Technical Publishing, 1997.

[23] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. John Wiley and Sons, 1999.

[24] R.L. Smith, “Algorithm 116: Complex division,” Communications of the ACM,
5(8), 1962.

[25] G. W. Stewart, “A Note on Complex Division,” ACM Transactions on
Mathematical Software, 11(3):238-241, 1985.

[26] J. T. Coonen, “Underflow and Denormalized Numbers” IEEE Tran. on
Computers, 13:68-79, 1980.

[27] J. L. Hennessy and D. A. Patterson, Computer Architecture a Quantitative
Approach. Morgan Kaufmann Publ., 1990.

[28] B. Parhami, Computer Arithmetic: Algorithm and Hardware Designs. Oxford
University Press, 2000.

[29] L. Wanhammar, DSP Integrated Circuits. Academic Press, 1999.

[30] F. Edman and V. Öwall, “Hardware Implementation of two Complex Divider
Architectures," Proceedings of RVK’05, Linköping, Sweden, June 2005.

[31] F. Edman and V. Öwall, “Fixed-point Implementation of a Robust Complex
Valued Divider Architecture,” Proceedings of ECCTD’05, Cork, Ireland,
August 2005.

[32] J. Volder, “Binary Computaion Algorithms for Coordinate Rotation and
Function Generation,” Convair Report IAR 148 Aeroelectric Group, June 1956.

[33] J. S. Walter, “A Unified Algorithm for Elementary Functions,” Proceedings of
Spring Joint Computer Conf., 1971.

[34] S. Wang and V. Puri, A Unified View of CORDIC Processor Design.
Application Specific Processors, Kluwer Academic Press, 1996.

[35] P. Pirsch, Architectures for digital signal processing. John Wiley & Son, 1998.

[36] J. G. Proakis and D. G. Manolakis, Digital Signal Processing; Principles,
Algorithms, and Applications 2:ed.. Macmillan Publishing Company, 1992.

[37] N. Kalouptisidis, Signal Processing Systems; Theory and Design. John Wiley
and Sons, Inc., 1997.

[38] A. El-Amawy and K. R. Dharmarajan, "Parallel VLSI algorithm for stabel
inversion of dense matrices," IEEE Proceedings on Computers, vol. 136, 1989.

[39] J. Spars, Principles Asynchronous Circuit Design. Kluwer, 2002.

[40] R. L. Walke. High Sample-Rate Givens Rotations for Recursive Least Squares.
Ph.D. thesis Warwick University, 1997.

References 183

[41] C. M. Rader, "MUSE: A systolic array for adaptive nulling with 64 degrees of
freedom using Givens transformation and wafer scale integrastion," Proc. of the
Inst. Conf. of Application Specific Array Processors, pp. 277-291, 1992.

[42] F. Edman and V. Öwall, “Implementation of a Scalable Matrix Inversion
Architecture for Triangular Matrices,” Proceedings of PIMRC’03, Beijing,
China, September 2003.

[43] W. Givens, “Computation of Plane Unitary Rotations Transforming a General
Matrix to Triangular Form,” J. Soc. Indust. Appl. Math., Vol 6, No. 11958.

[44] R. Döhler, "Squared Givens Rotation," IMA Journal of Numerical Analysis,11,
p.1-5, 1991.

[45] D. Bindel, J. Demmel, W. Kahan, and O. Marques, ”On Computing Givens
Rotations Reliably and Efficiently,”ACM Transactions on Mathematical
Software, 28(2):206–238, 2002.

[46] F. Edman and V. Öwall, “Implementation of a Highly Scalable Architecture for
Fast Inversion of Triangular Matrices,” Proceedings of ICECS’03, Sharjah,
United Arab Emirates, December 2003.

[47] F. Edman and V. Öwall, “Implementation of a Full Matrix Inversion
Architecture for Adaptive Antenna Algorithms,” Proceedings of WPMC’04,
Abano Terme, Italy, September 2004.

[48] Z. Guo, F. Edman, P. Nilsson, and V. Öwall, "On VLSI Implementations of
MIMO Detectors for Future Wireless Communications," Proceedings of IST-
MAGNET Workshop, Shanghai, November 2004.

[49] F. Edman and V. Öwall, “A Scalable Pipelined Complex Valued Matrix
Inversion Architecture," Proceedings of ISCAS’05, Kobe, Japan, May 2005.

[50] F. Edman and V. Öwall, “Compact Matrix Inversion Architecture Using a
Single Processing Element,” Proceedings of ICECS’05, Gammarth, Tunisia,
December 2005.

[51] L. H. Sibul and A. L. Fogelsanger, “Application of Coordinate Rotation
Algorithm to Singular Value Decomposition,” IEEE Int. Symp. Circuit and
Systems, 1984.

[52] R.P. Brent, F.T. Luk and C. VanLoan, ”Computation of singular value
decomposition using mesh-connected processors”. J. VLSI, Comput. Sys. Vol. 1
no 3, 1985.

[53] B. Yang andJ. F. Bohme, “Reducing the computations of the singular value
decomposition array given by Brent and Luk”, SIAM J. Matrix Anal. Appl. Vol
12, Oct., 1991.

[54] J.S. Walther, “A unified Algorithm for elementary functions”. Proc. AFIPS
Spring joint Computer conference, 1971.

[55] N. D. Hemakura, A Systolic VLSI Architecture for Complex SVD. Ph. D thesis,
Rice University, Huston, Texas, 1991.

184 References

[56] J. Capon. “High-Resolution Frequency-Wavenumber Spectrum Analysis,” Proc.
IEEE, 57(8):2408-1418, Aug. 1996.

[57] H. Krim and M. Viberg. “Two Decades of Array Signal Processing Research,”
IEEE Signal Processing Magazine, July 1996,pp. 67-94.

[58] M. S. Bartelett. “Smoothing Periodigrams from Time Series with Continious
Spectra,” Nature, 161:686-687, 1948.

[59] T. Shan, M. Wax, T. Kailath, ”On Spatial Smoothing for Direction-of-Arrival
Estimation of Coherent Signals,” IEEE Transactions on Acoustic Speech and
Signal Processing, Vol ASSP-33, No.4, pp 806-811.

[60] F. Edman and V. Öwall, “A Computational Platform for Real-time Channel
Measurements using the Capon Beamforming Algorithm,” Proceedings of
WPMC’05, Aalborg, Denmark, September 2005.

[61] F. Edman and V. Öwall, ”A Compact Real-time Channel Measurement
Architecture Based on the Capon Beamforming Algorithm,” Proceedings of
DSPCS'05 and WITSP'05, Nosa Heads, Australia, December 2005.

[62] “MathWorks”, http://www.mathworks.com, 2006-01-01.

[63] “Mentor Graphics”, http://www.model.com, 2006-01-01.

[64] “Synplicity”, http://www.synplicity.com, 2006-01-01.

[65] “Xilinx”, http://www.xilinx.com, 2006-01-01.

[66] B. Zeidman, Design with FPGAs & CPLDs. CMP Books, USA, 2002.

[67] C. Maxfield, The Design Warrior’s Guide to FPGAs. Elsevier, USA, 2004.

[68] “Xilinx System Generator”, http://www.xilinx.com/ise/optional_prod/system_
generator.htm 2006-01-01.

[69] S. Sutherland, S. Davidmann and P. Flake, SystemVerilog for Design: A Guide
to Using SystemVerilog for Hardware Design and Modeling. Kluwer Academic
Publishers, 2004.

[70] S. Sjöholm and L. Lindh. VHDL för konstruktion. Studentlitteratur, Lund, 2003

[71] “The Electronic Design Automation (EDA) and Electronic Computer-Aided
Design (ECAD) one-stop resource on the WWW”, http://www.eda.org/, 2006-
01-01.

[72] “Xilinx ISE Foundation tool”, http://www.xilinx.com/ise/logic_design_prod/
foundation.htm, 2006-01-01.

[73] “Xilinx Chipscope Pro”, http://www.xilinx.com/ise/optional_prod/cspro.htm,
2006-01-01.

[74] “Concurrent Versions System”, http://www.nongnu.org/, 2006-01-01.

[75] “Subversion”, http://subversion.tigris.org, 2006-01-01.

References 185

[76] “Version Control System Comparison”, http://better-scm.berlios.de/comparison
/comparison.html, 2006-01-01.

[77] P. Hung, H. Fahmy, O. Mencer and M. J. Flynn, “Fast Division with a Small
Lookup Table,” Asilomar Conference on Signals, Systems and Computers, vol.
2, pp. 1465–1468, 1999.

[78] C. N. Lyu and D. Matula, “Redundant Binary Booth Recording,” Proc. of IEEE
Symp. on Computer Arithmetic, 1995.

