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Abstract

Image processing technology is utilized for numerical analysis by the
homogenization method for intermetallic composites. While the asymptotic
homogenization method characterizes thermo-mechanical properties of
composites and localizes the deformation to the microscopic level, the digital
image-based (DIB) modeling method appropriately defines a finite element
(FE) model of a representative volume element (RVE), i.e., a unit cell, through
the use of digitized images. The results in linear and nonlinear analyses reflect
the effects of the geometric configuration of the microstructure.

1. Introduction

The asymptotic homogenization method enables not only the derivation of the
effective properties from the micromechanical characteristics but also the
evaluation of the micromechanical behaviors by localizing the overall structural
response to a local one. These processes are called homogenization and
localization, respectively. The global-local approach was successfully applied
to the engineering problems in both linear elasticity and elastoplasticity with
the help of the Finite Element Method (FEM) (see, e.g., Guedes and Kikuchi[l],
Terada and Kikuchi[2]). However, the complex microstructural morphology
of intermetallic composites tend to be simplified in most of the developments.
Then the specific effects of the heterogeneity cannot be taken into account in
evaluating the microscopic variables such as characteristic deformation of the
composite and microscopic stress obtained in the localization process. It is,
therefore, necessary to construct the an appropriate unit cell model for the
homogenization and the localization analyses. This is achieved though DIB
modeling (see Hollister and Kikuchi[3] or Terada, Miura and Kikuchi[4]).
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In this paper, we shall utilize the DIB geometric modeling technique to
make a FE geometry model of the microstructure and interpret the
micro mechanical response of the intermetallic composites. The results are
strongly influenced by the heterogeneous microstructure. After describing the
analysis tools, examples in both linear thermoelasticity and elastoplasticity
will be presented in order to illustrate the capability of the present method.

2. The Homogenization Method for Linear Thermoelasticity

In this section we shall briefly review the homogenization formulae for linear
thermoelasticity. We recall that the theory concerns statistically homogeneous
or periodic composite media of domain £T and the representative volume
element (RVE) occupying a microscopic region V with characteristic length 8.

Identifying the size of the RVE with £, we introduce two different scales: one
of these is a macroscopic scale denoted by jc, in the domain Of, at which the
heterogeneities are invisible and the other is an microscopic one, denoted by

y=x/£ which enlarges the RVE region by £ such that V=eY. Thus, the superscripts
introduced in variables indicate their orders as well as their dependency on x
and/or .y.

Let the structure be subjected to a surface traction, i , and prescribed

homogeneous displacement boundary conditions on F, and F^, respectively,

with temperature change AT. Then, the displacement, w\ is the solution of the
following variational problem defined in the domain £T:

f

with the constitutive relation

a" = D*(x) : e(ii*) - ATo£(x) = D*(x) : e(ii") - ATpX*) (2)

Here v^ is the virtual displacement, b\x) the body force, D\x) the elasticity

tensor, d(x) the coefficient of thermal expansion (CTE) with (^ = cf : of .
With the help of the method of two-scale asymptotic expansion (see, e.g.,

Sanchez-Palsencia[5]), the theory shows that if the selected RVE is periodic
and infinitesimally small, the actual displacement, w\ tends to the homogenized
one, M°, which is the solution of the following macroscopic equations whose
coefficients have been homogenized.
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Vy (3)
= I Ale (v):D" :a"dx+ \b" .vdx+ It.vdT

Jo ^ Jn Jr,

and that the Y-periodic characteristic deformations y^ and \|f can be obtained

by solving the following microscopic equations, respectively:

J Ey(w) : D : e,(x**My = J D ' e,(w)dy VH>; Y - periodic (4)

J e,.(w) : D : e,(y)dy = J p : e,(w)dy VH>; Y - periodic (5)

Here, the homogenized quantities in eqn.(2) are calculated by averaging over
the unit cell:

, and b» =±bdy (6)

Also, the tensors of localization have been defined as (in component form)

# = #-£>-.«,• (X** 00) (7)

where I™ indicates the forth order identity tensor. Once the macroscopic

displacement if and A T are obtained in the macroscopic region by

(8)

Thus, the effective properties can be derived from the micromechanical
characteristics and the micromechanical behaviors can be obtained by localizing
the overall structural response to the local one. These processes are called the

homogenization and the localization, respectively.

3. Digital Image-Based Geometric Modeling

The microstructure of a composite material usually reveals a more or less
random distribution of inclusions (reinforcement). For example, Figure 1 shows
an intermetallic composite which is composed of a MoSi? -matrix and SiC-

inclusions. In order to accurately evaluate the microscopic stress given in Eqn.
(8), we shall utilize the DIB modeling technique, which was originally developed
by Hollister and Kikuchi [3]) for micromechanical study of bone tissues.
Since the FE model obtained by this method is the direct interpretation of the
scanned image using two dimensional micrographs of the real composite
materials along with image-processing software, the homogenization analyses

                                                             Transactions on Engineering Sciences vol 13, © 1996 WIT Press, www.witpress.com, ISSN 1743-3533 



404 Localized Damage

can reflect the effects of the real geometric configuration.

(a) V=lO%

Figure 2: Unit cell models of
Figure 1: Micrograph of SiC-remforced MoSi% different volume fractions

The whole procedure can be divided into the following major four parts:
1. Capturing and Sampling by taking a picture and storing it in a digital
computer; 2. Selecting and Thresholding which determine the unit cell size, its
FE model size and the microstructural configuration by giving the thresholding
pixel value; 3. Exporting (and Adjusting, if necessary) which provides the
prototype for the FE model; 4. Stacking which uses the exported data to
construct the three-dimensional (3D) structure prior to or during the FEA. In
order to construct 3D FE model in DIB modeling, two dimensional digital
images have to be combined. The fourth process, namely stacking, corresponds
to such a data operation. In 3D FE modeling, each pixel in a 2D image is
recognized as a voxel, which is identified as a finite element in FEA.

This method involves image processing which fully utilizes both newest
hardware and software capability available. For later use, the process of changing
the volume fraction of a constituent is readily done by manipulating the voxel
values of the digitized unit cell model. Combined with the 3D realization of
images, digital image processing provides several FE geometric models of the
composite microstructure, each of which has a different volume fraction of the
inclusion. Figure 2 shows the virtually-represented 3D models with volume
fractions of 10% and 20%, both of which keep the original morphology. More
details of the modeling procedure, the related image processing and some
applications of the homogenization analyses are found in Terada, Miura and
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Kikuchi[4].

4. Numerical Examples

4.1. Application in Thermoelasticity
Using the material constants (SiC: Young's modulus; £y=450 GPa, Poisson's

ratio; v/=0.2, CTE; oy=5.0xl(T*/C and MoSi^: Ê =400 GPa, v,=0.25,

0̂ =8.1 xlO~* /C'), the homogenization and localization are readily carried out
for all the unit cell models. Figure 3 shows the microscopic von-Mises stress

distribution by applying the temperature change at A7=-300C and no global
strain. It should also be noted that the simulation is reliable enough in the
sense that we had a similar geometric configuration, i.e., a similar pattern of
inclusion scattering.

%'/",.

(a) Without matrix phase (a) Whole unit cell

Figure 3: Microscopic von-Mises stress distribution
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After carrying out several homogenization and localization computations
for prepared unit cell models of different inclusion volume fractions, the variation
of thermal stress mismatch can be evaluated as shown in Figure 4. Here, the
mismatch can be an indicator of interfacial damage and is defined as

P = /(j \ _ (â ), where a^ and o^ are the equivalent stresses of the inclusion

and matrix respectively computed from eqn.(8). Once the desired intervals of
the homogenized elasticity constants as well as the homogenized CTE are
decided, the optimal volume fraction can be determined by this figure.

4.2 Effects of Microstructure in the Nonlinear Homogenization Method

The evaluation of microscopic stress is critical in nonlinear problems such as
elastoplasticity. When the nonlinear deformation of the overall structure is
computed by the incremental solution method (see Terada and Kikuchi[2]),
the values of microscopic stress within a certain increment are used as initial
values in the next increment. Therefore, the microstructural geometry must be
modelled correctly so that the microscopic stress and hence the macroscopic
deformation are evaluated accurately. In the present example, the dependence
of the global-local nonlinear mechanical behavior on the RYE geometric
modeling will be examined.

The same intermetallic composite as in Figure 1 is used to obtain the
overall mechanical response to unidirectional tensile force. Elastoplasticity
with large deformation is assumed as the mechanical behavior of matrix phase.
In addition to the same elastic constants as before, the yield stress and hardening
parameter of matrix phase are respectively given as 300 MPa and 0.2. In order
to illustrate the potential of DIB modeling, we shall compare the result with
that of the idealized unit cell model by usual FE meshing presented in Figure
6 (a), while both models reveal isotropy in linear elasticity.
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Figure 5: Unidirectional response of overall structure
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(a) Idealized unit cell FE-model macroscopic strain : 0.068 % 0.075 '
00 Equivalent plastic strain 0.01%

(b)Equivalent plastic strain distribution
Figure 6: Finite element mesh and the onset of plastic yielding

for idealized unit cell model

macroscopic strain :
0.068 % 0.070 % 0.075 % 0.080 %

o.oi
MHBI

equivalent plastic strain

Figure 7: Onset of plastic yielding in the unit cell

The macroscopic stress-strain curves are shown in Figure 5 to illustrate
the influence of the geometry of the unit cell model. It can be seen from the
figure that the idealized model is slightly stiffer than the digitized one in the
linear elastic range. Note that the number of elements for a single fiber in the
idealized model is much larger than that of the digitized model. Therefore,
while a direct comparison is difficult, a qualitative discussion seems possible.
That is, if the digitized model has the same order of FE approximation as that
of the idealized one to represent the heterogeneity, the elasticity response
becomes more compliant. Then the onset of the microscopic plastic yielding
will be delayed and therefore the slope of the strain hardening would be
different. This is also confirmed from the equivalent plastic strain distribution
when the plastic deformation begins (see Figure 6(b) and 7). The plastic
yielding occurs in several local regions and propagates gradually within the
unit cell. Thus, if the resolution of the original image were high, the actual
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stress-strain curve for the digitized unit cell model would probably be quite
different from that of the idealized one.

In summary, the constitutive modeling of the asymptotic homogenization
method cannot provide an accurate evaluation of the nonlinear global-local
deformation of a composite material until the microstructural geometry of
composites is appropriately modeled using DIB modeling.

5. Conclusions

Digital imaging technology was utilized to construct the geometric model of
the microstructure of intermetallic composites. Then the homogenization
analyses were carried out to see the specific effects of the complex geometry.
It was found that the geometry modeling technique developed not only provided
a unit cell model of real microstructure but also enabled us to characterize the
mechanical response within the microstructure. It was also shown that the
analysis results from the nonlinear homogenization method depended on the
geometric configuration of the unit cell. In conclusion, in order to evaluate the
nonlinear mechanical behavior of the intermetallic composite, we have to
construct the geometry model as accurately as possible.
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