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ABSTRACTt 

This report is concerned with the digital estimation of the frequency 

response of a two-dimensional linear system through which images have 

been passed and blurred. Almost no a priori Knowledge concerning the 

system is required, and onlj one blurred image is necessary for a 

successful estimation. For those blurs that have phase reversals, 

such as motion blurs and out-of-focus blurs, a simple method of 

calculating     the    correct    phase    has    been    developed. A    nonlinear 

homomorphic restoration system is developed and demonstrated on 

various     types    of    blurred    images. An    image    may    be    restored     by 

filtering »ither the intensity version or the density version of the 

image. The latter not only insures a positive result but also permits 

simultaneous deblurring and contrast enhancement. The restoration 

procedure  consumes only a modest amount  of  computation  time. 

t    This     report    reproduces    a      dissertation      of       the same       title 
submitted         to         the        Department         of         Electrical Engineering, 
University         of        Utah.         in        partial         fulfillment of            the 
requirements   for  the degree of Doctor of Philosonhy. 
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1.1  Introduction 

CHAPTER 1 

Problem Description 

Tuo-dlmenaional imagery, be it digital, electronic, or 

photographic, hae found use in many areas of modern endeavor. For 

example, many scientific space vehicles and other high-altitude craft 

rely heavily on tuo-dimensional data as a means of obtaining 

Information. Objects of study may range from Nix Olympica on Mars to 

marijuana fields in Neu Mexico to sections of a submarine hull in a 

Moscou steel yard. Aerial photography may also be used for geographic 

purposes, mensuration, conservation studies, and weather prediction. 

More doun-to-aarth uses of tuo-dimensional data include conventional 

medical X-rays (radiographs), angiograms, stress photography, and 

flash radiography, to name but a feu. There are also many signals 

that are not pictorial in nature but are nevertheless two-dimensional, 

such as those obtained from many types of radar and sonar as uell ao 

some  forms of geophysical esismic soundings. 

All of the above signals, though perhaps not explicitly digital 

in nature, can be represented as such in a digital computer. This 

permits one to apply a variety of digital techniques to the data to 

achieve   any   of   a   wide  range  of   goals  such  as   image  enhancement,   data 

_ •aarf ,__ _ 
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compression, scan« analysis, or restoration.  It le the lat c of these 

operations which Is explored In this thesis. 

The problem associated with restoration Is the following: the 

data we have been given has bean blurred in some way; further, the 

exact tgpa or extent of blur Is not known, but must be determined from 

the blurred Image Itself. The goal Is to remove this blurring 

degradation from the image. 

1.2 Mathematical Model 

It will be assumed that the cause of the blurring can be modeled 

as a linear system. The image may be considered a function of 

intensity va tha spatial dimensions x and y, as shown in Diagram 1. 

"^  bCx.y), 

n(x,y) 

Diagram 1 

a(x,y) le the impulse response, or point-spread function, of the 

system, and la assumed to be unknown. All noise, n(x,y), is modeled 

as additive, although this may not always reflect reality (film-grain 

nolaa balng a prime example). A discussion of the characteristics of 

the nolae will be presented In Chapter 4. 

MBMBMHa^MB **m*m*,i 



/mmmmmm ■ '■■ "i m*~ 

Th« relation between the input and output is that of convolution, 

namelgt 

b(x,g) - J/i(x-><o.U-Uo)a<Xo.üo)clXodyo + n(x,y)t     (1.1) 

Or 

b(x.g) - iU.y) ® a(«.y) ♦ n(x.y) (1.2) 

a(x,y) la coimnonly referred to aa the kernel. In this particular 

problem, we are given b(x,y) and must astimate i(x,g) having very 

little knowledge of the blurring eyetem, a(x,y), or the noise, n(x,y). 

It has been establisned that the Fourier integral transform maps 

convolution into multiplication (and addition into addition), hence: 

r(b(x,g)) - r«Hx,gH • ria(x,g)l + r»n(x,y))     (1.3) 

where 

G(u,v) - f>g(x,y)l - ng<x,y)exp[-j(ux,vy)]dxdy (1.4) 

The Fourier traneform domain is commonly referred tfl as the frequency 

domain. In view of thie, the author finds it much simpler and 

mnemonically more pleasing to use f instead of u,v. Equation 1.3 can 

then be written asi 

B(f) - Itfl • A(f) + N(f) (1.5) 

If the noise were negligible, and A(f) were known, this could be 

written as 

t For  a discussion of  the  discrete  representation  of these 
relationahipa,  as  well  as  the  continuous forms shown here, 
the reider is referred to  references  tl)  and   (21. Unless 
wacifiad otherwiee, limits of integration are from -- to +«. 

  «MMBMMMa __— j^—lM^ 
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1(f) - B(f)/A(f) 11.61 

Houevar,  It  is well known  that we are not  so  fortunate uhen 

considering actual problems. 

If Iflity) «nd nCx.g) are viewed as random processes, then a final 

ralationehip can be written tnat will prove most helpful, namely the 

relationship between the power spectra of the input and output of the 

blurring sgstemi 

p.miAmi' + pM(f) - p.m 11.71 

where Pt(f) is the power spsctrun of the signal b(x,y), etc. 

In choosing this blurring model, the case of the spatially 

varying blur has been precluded. The blurs considered here must be 

ieoplanatic - for example, each portion of the image must be equally 

out-of-focut. There are three major blurs that can be modeled by such 

a sgstem, and these are outlined below. 

1.3 Camera fiction Blur 

Subjecting a point of light to camera motion produces a streak in 

the resulting picture. Plotting intensity as a function of x and y 

gives this streak the appearance of a rectangular wall. The frequency 

response, A(f), is the Fourier transform of this rectangle and has the 

form of ainCxJ/x in the direction of the blur, and is constant in the 

direct ion perpendicular to the blur.   The magnitude of A(')  (or 

■--  —„. m 
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modulation transfer function) is shown in Figure l.i on a db scale. 

Aiternata lobes are negative, and hence have a phase ot n radians 

arsociated with them. So not only are the higher frequencies of a 

motion-blurred image attenuated, but some experience a sign change 

also. 

1.4 Out-of-Focus Blur 

The point-spread function of an out-of-focus Isns system can be 

approximated by a cylinder; that is, each point of lignt in the image 

is spread out evenly over a circular area. This is illustrated in 

Diagram 2. 

a 
/i 

\J 
Diagram 2 

Although the true point-sprsad function is actually related to the 

Fourier transform of the apsrture of ths lens system[31, the 

cylindrical approximation is a good one and is also mathematically 

tractable. The frequency response of ths system is of the form 

Jllr)/r, whore J^r) is a Bessel function of the first kind, order 

one, as shoun in Figure 1.1. An image passed through this system will 

not only have its higher frequencies suppressed, but, due to the 

negative lobes of A(f), some frsquencies will undergo a phase shift of 

■M   ■■ ■ _ 
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(a) (b) 

«IN « ?0<8 e 

(C) 

Figure 1.1 

The modulation transfer functions (on a .'b scale) of 

(a) horizontal motion blur 
(b) out-of-focus blur 
(c) atmospheric turbulence blur 
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idii llto pointtd out  in the case of motion biur). 

1.5    Turbulence Biur 

A thiM tgpe of biur that can be modeied by a iinear system is 

that resuiting from atmospheric turbuience. To expiain the modei of 

the point-spread fjnction iet us consider a real-uorid situation in 

which a star is being vieued from a terrestrial observation point. 

Were the etar being vieued through an optically uniform medium, it 

uouid appear to ohina with constant intensity. Hcviever, since the 

atmoaphare is not tharmallg uniform, its index of refraction varies as 

■ function of time and position» hence the rays of light from a 

celestial     object     are    refracted    varying    amounts. The    resulting 

twinkling  is  well known. 

A point of light coming through the atmosphere assumes a gaussian 

dietribution of the form expl-krM when averaged over time 117]. This 

expliine why terrestrial photographs of stars seldom depict sharp 

images, but instead indistinct fuzzy blobs. The frequency response is 

also gaueeian (aee Appendix D) so the blurred image suffers no phase 

•hifta but limply an attenuation of higher frequencies, as shown in 

Figure 1.1. 

MMMMMaau.. 



__-^  - - ■ -—»7- 

1.8 Probltim Involved in Restoration 

Th« immediate probism in r»«toration is the identifi-ation of 

A(f), tha fraquancg response of the blurring system. But even after 

Am has been identified, other problems remain. It uae noted 

previouelg that if the Fourier transform of the blurred image, B(f). 

and the transform of the sgstem response, A(f), uere identified, it 

might be poeeible to find the original image bg a simpie division, 

i.e. 

Blf) - 1(f)  A(f) (1>8) 

Iffl - B(f)/A(f) (1 g) 

It ie commonlg understood that this is not usuaiiy possibie, or at 

leaet not optimal, for a variety of reasons. One is that for some 

valuee of f. A(f) mag be zero, which happens to occur in the case of 

motion blur and out-of-focus blur. Another difficulty results from 

the addition of random noise to the burred image, which precludes 3 

perfect restoration. One of the effects of the filters used to 

restore a blurred image is to boost high frequency power in the image; 

any noise residing in those frequencies will also be amplified, and 

mag eaeily dominate the restoration. Ths consequnncea of ignoring 

thie ill-conditioned nature of the restoration system will be 

illuetrated in Chapter 3. 

Tha above discussion assumes that an explicit Knowledge of A(f) 

(or a(K,g)) is available, float researchers assume that this knowledge 

■ ■ _«M 
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than the ruia. This disssrtation lit restricted to those blura for 

which atx.g) ia unknown. This portim of the debiurring problem has 

two partei one is the estimation of the blur magnitude, and the second 

that of determining the associated phase. The problem of phase 

estimation has remained extraordinarily difficult [5], even though much 

of the groundwork has been laid for det-rmining the magnitude of a 

linear blur [4]. A solution to the phase problem (for the types of 

blurs discussed above)   is prssented in  the next chapter. 

There remain two final problems in digital image restoration. 

Tha firat is that the procsss is just that - digital. It has bten 

explained that tha blurring process is one of convolutionj the 

debiurring process is also, but a problem arises from the fact that 

the debiurring kernel, which is in some way related to the 

convolutional inverse of a(x,y), may have infinite extent. This is no 

obstacle to a mathematician but does pose serious problems to the 

finite capacity of a digital computer. The methods of terminating 

gracefully an infinite computation will be discussed later. 

Tha final problem in image restoration is easily ovjr'-lnoked. The 

original image (which is a representation of the light inteneity of a 

acana, blurred or otherwise), is everywhere positive. There is no 

assurance, however, that it will remain so after passage through a 

linear   debiurring   system.     Negative  values  of   intensity   in  a  reetored 

■ ii*«» 
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Image have, of couree, no phgsicai meaning. Thie problem has been the 

focal point of much research in recent gears, an excellent survey of 

which has been prepared bg AndrewsCZO]. Host of the present methods, 

however, require an excessive amount of computation time. fhe present 

author's method for overcoming the problem will be presented in 

Chapter 3. 

        —       ■     -■■-■ 
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CHAPTER 2 

Restoration By Pouer Speccrum Equalization 

2.1     A Nonlinear Homomorphic Restoration System 

Chapter 1 introduced the mathematical model of the blurring 

syster, describing it as a linear system with additive noise. The 

blurred output, b(x.y). of this system uali oe restored by passing it 

through the nonlinear ayitein ihoun in Diagram 3. 

restoration —' 

criterion J 

E 

b(x.Y) h (x .y) 
r(x,y) 

c 
m 

Diagram 3 

E is ai estimator which has as inputs the blurred image itself 

and • restoration criterion. From these two inputs a restoration 

kernel is generated uhich, uhen convolved uith the blurred image, 

produces a restored image satisfying the given criterion. The 

reetoration kernel, h(x,y), is re-estimated for each neu input to the 

system. C is simply a tuo-dimensional convolver, uhich convolves this 

kernel uith the blurred image. 

 ■ 
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Th« reetoration tyttam is terirad homomorphic because it has the 

ability to map several different blurred versions of an image back 

into that same image. This ability is a benefit of the nonlinear 

nature of the restoration system. The task of the estimator is 

therefore especially difficult, as it must determine the nature of the 

blurring system from in individual blurred image submitted for 

restoration. 

2.2 The Restoration Criterion of Power Spectrum Equalization 

Many constraints may be placed on h(x,y) to produce a restored 

image, rU.y). One restoration criterion might consist of 

constraining MK.V") such that the expected mean squared difference 

between the restored image, rU.y), and the original, undegraded 

image, Ux.y), would be minimized. This is 3 reasonable criterion and 

is discussed fully in Chapter 3. A mathematically simpler approach 

can be established from the discussion in Chapter 1 concerning power 

spectra.  Let Mx.y) be constrained such that 

p^numi' - p,(f) - p.m (z.n 

This relationship states that h(x,y) will be constrained so that 

the power spectrum of the restored image will be equal to the power 

spectrum of the original image. This is a reasonable thing to demand. 

It means that the distribution of power according to frequency in the 

restored image will be set to what it originally wa« before the 
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blurring occurred. This approach is an adaptation of the nonlinear 

homomorphic filtering developed by Stockhain[Gl. [18]. 1191 and later 

expanded bg Colet41 to two dimensions. Their method utilizes the 

average log spectrum, which is somewhat different than the power 

spectrum. (See Appendix A, which compares the two.) Solving equation 

2.1 for HlfH yislde« 

wmi - [P.m/p.mi^ (2•2, 

Or,using  the fact  that 

P.m - ^miAmi1 ♦ P.m (1-7) 

we can write 

iH(f)i - iP.m/ep.miAmi' ♦ pjf))]"1 ^-^ 

To obtain P.Cf), the ergodic hypothesis is invoked to permit the 

estimation of the power spectrum from a scene that is considered to be 

a membsr of the statistical ensemble to which i(x,y) belongs (Appendix 

A). The Justification for this is illustrated in Figure 2.2, which 

shows the similarity of the power spectra of the images of Figure 2.1. 

It it interesting to note that for those frequencies in which the 

noiee power is small relative to signal power the following holds: 

IH(f)l « l/|A(f)l (2.4) 

The homomorphic filter attempts to correct for the effects of the 

magnitude of A(f), and does so with no knowledge of the phase of the 

blurring   system.      Therefore,   H(f)   must   be   further  constrained   to   take 
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Four statistically similar digital images, 
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Figure 2.2 

The power spectra of the images of Figure 2.1 
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into account the phase of the blur. In gonerai, the determination of 

the phase of a blur is a difficuit problem. One might ask i' an 

averaging scheme similar to that used to obtain the power spectrum of 

an image (see Appendix A) could be used to obtain the phase 

information needed bg H(f), perhaps through a relationship similar to 

that of aquation 2.2. Unfortunately, thie must be ansue~ed in the 

negative. Th«» reader is refered to uork by Cole (4] and HcGiamery [5] , 

who have ef-.own that the phase does not converge to a statistically 

meaningful quantity. The author therefore proposes a different scheme 

based on the nature of the power spectra of both ciear and blurred 

images. Figure 2.3 shows the power spectra of two clear images and 

also the spectra of the same tuo images photographed out-of-focus. 

The effect of blurring is strikingly obvious, as one can see the 

imprint of lACf)1 on P,(f). In Figure 2.3d the effect of adding the 

power in the noise, PN(f), is also apparsnt, for the signal power 

drops well below the noise power at higher frequencies. 

2.3 Phase Estirjtion by the Zero Crossing Technique 

One characteristic common to both these power spectra and almost 

all othere ie that signal power is very high relative to noise in the 

lower frequences. On the basis of this fact and equation 2.4 it can 

be concluded that IH(f)l will approximately equal l/|A(f)| at these 

frequencies. Figure 2.4 shows this to be true. P^f) was estimated 

'-*oin the image of Figure 2.2a. 

-- Ml ^— ^J ^ ^ _.^- 
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Figure  2.3 

The power spectra of two in-focus images. 
The power spectra of the same two images 
photographed out-of-focus. 
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Figure  2.4 

The power spectra of Figures 2.3c and 2.3d 
minus a prototype power spectrum. 
Enlarged cross sections of the above spectra 
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The fact that l/IA(f)| It visible in the low-frequency regions of 

IH(f)| is the key to the determination of the phase of the blur. An 

algorithm can be devieed that ssarches for the first zero crossing of 

IA(f)l, and from that! generates the appropriate phase of 0 or n, 

depending on whether a certain lobe of A(f) is positive or negative. 

The task of determining the phase of a motion blur is similar to 

that of an out-of-focus blur except that the problem does not enjoy 

the circular symmetry of the out-of-focus blur. The basic notion is 

the eame though, namely the searching of the low frequencies for zero 

crossings. The algorithm must know a priori, however, which of the 

three blurs described in Chapter 1 is present. 

The present discussion on determination of phase may seem 

sketchy, which it is. The method described h:is some deficiencies, 

namely the inability to determine the direction of blur (in the case 

of motion blur) or the type of blur, i.e. out-of-focus, motion, or 

turbulence. A more sophisticated and powerful tool for phase 

estimation was therefore developed. 

t Appendix C gives sufficisnt information on the spacing of 
the zero crossings and their relation to the point-spread 
function to implement the algorithm. 

■ - -   
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2.4 Phase Estimation bg Cepstrai Techniques 

Although the concept of the cepstrum in one dimension has been 

understood for quite some timet7], it uas onig verg recentig that the 

properties of the two-dimensional cspstrum usre investigated (Rom[81). 

The cepstrum of an image, Kx.g), uhich has Fourier tra.->8for-m 1(f), is 

defined as folloust 

C(q) - T'loglKf)!) (2.5) 

uhara q (quefrancg) has the dimension of tuo-dimensional distance. 

The properties of the two-dimensional cepstrum are similar to 

those of the one-dimensional cepstrum insofar as convolution is mapped 

into addition. This is demonstrabls in our present problem, namelg 

that of an image, i(x,g), being convolutionallg blurred bg a(x,g). 

Ignoring the effects of noise, the derivation is: 

blx.g) - Kx.y) 9 a(x,g) (2.6) 

B(f) - Hfl ■ A(f) (2.7) 

loglB(f)l - loglimi ♦ loglA(f)| (2.8) 

r(loglB(f)ll - flloglimil + r'ioglA(f)n (2.9) 

(Vq) - C|(q) + CA(q) (2.10) 

One might well ask if CA(q), the cepstrum of the blur, is 

identifiable in 0,(0), the cepstrum of the blurred image. Rom answers 

this in the affirmative, pointing out that spikes which are 

characteristic of CA(q) are apparent in Ci(q>.   The origin of the 

MIMMMM !»-.■« ____ 
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spike« is explained by the following. Supposti a(x,y) is a rectangle 

of length a corresponding to a motion blur. A(f) is then 

ein(itof)/(itaf), which has zero crossings at intervals of 1/a. The 

logarithm of the magnitude of A(f) will have pe~iodic spikes of height 

-• at these intervals of 1/a. The result of transforming this 

quantity will be a large negative spike a distance a from the origin 

in the cepstral domain. The location of the spike in the cepstrum 

indicates the direction of the motion blur as well as its length. The 

cepstrum of an out-of-focue blur is similar but circularly symmetric. 

owing to the circular symmetry of J^H/r. 

The presence of these spikss enables one to differentiate between 

out-of-focus and motion blur. Ths cspstrum of a turbulence blur lacks 

thsss charactsristic spikss, which l* an identifying feature in and of 

itself. The cepstrum not only identifies the type of blur but also 

reveals its extent. This infciration uniquely defines a(x,y), the 

point-spread function of the blurring system.. From a(x,y) both the 

magnitude and phase components of the blur can be generated. 

As equations 2.7 through 2.10 Indicate, computing the cepstrum of 

even a small image is a time consuming operation. In view of the fact 

that our interest in the cepstrum arises only from the need to 

identify the blur and its phass, ths author proposes the following 

shortcut. Equation 1.7, uhich dsscribes the power spectrum of a 

blurred image, can be written as follows without *he noise term: 

- 
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Pt(f) - P.CfJIACf)!1 (2.11) 

It is usual to take the logarithm of P((r) in order to display it on a 

db seals. Ths Fourisr transform of ths logarithm of the pouer 

spectrum is termed ths power cspstrum of ths image: 

logP.m - logP.m •«- 21oglA(r)| 2.12 

raogP,(f)l - fllogP.mi + 2CA(q) 2.13 

As indicatsd eg squation 2.13, ths power cepstrum of a blurred image 

is the sum of tha pousr cspstrum of ths clsar imags and the cepstrum 

of th« blurring eyatem. It is this iattsr quantity which contains 

spikes charactsristic of ths nature of the blur. 

Figure 2.5 pressnts the pousr spsctrum and pouer cepstrum of an 

out-of-focus imags. Ths pousr cepstrum has been clipped at zero and 

inverted to discloss the characteristic spikes of CA(q). The ring of 

spikes is clearly visible, especially in the overhead view. Figure 

2.6 shows ths pousr spsctra and pousr cepatra of motion-blurred and 

turbulence-blurred images. The characteristic tuin peaks of motion 

blur are easily recognizsd in ths former, uhile no particular 

landmarks stand out in ths iattsr. 

This cepstral msthod of blur dstsrmination is independent of the 

restoration msthod, and can be applied to any convolutional blur uh'.<;e 

cepstrum is identifiable in spite of the presence of noise. The 

author's blur idsntification algorithm is described in Appendix C. 

MM —  
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Combining now th« phase of the blurt with the magnitude of the 

reetoratlon filter of equation 2.3, ue are in a poeition to attempt 

reatoratlon. 

2.5 Examples of Restoration by Power Spectrum Equalization 

Figure 2.7 depicts the digital version of four blurred 

photographs. Figure 2.7a is a photograph of an eight story office 

building taken out-of-focue. Figure 2./b (a photograph of a sign on a 

construction site) is also out-of-focus. Figure 2.7c is a 

motion-blurred photograph of the same sign. Figure 2.7d is a 

photograph of a sign blurred bg atmospheric turbulence. This 

photograph was taken on a hot summer day through a telescopett from a 

dietance of two miles, thus rssulting in an atmospheric turbulence 

blur. 

Figure 2.8 shows the power spectrum of 'Hese four images, and 

Figure 2.9 the inverted and clipped power cepstra, under which the 

findinge of the blur Identification algorithm are listed. Figure 2.10 

depicts |H(f)| for each image, and Figure 2.11 the associated phase. 

Figure 2.12 ehowt the restoration kernels and finally, in Figure 2.13, 

the restorations of the four images are presented. 

t In this particular case, it does  not  matter  whether  the 
phase or minus the phase is used, as one is equivalent to the 
othar, 

ft Field Model Questar, 2 second exposure on PAN-X. 

-_. 
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Th« restoration of Flgurt 2.7a roveola the true relative width of 

the horizontal and vertical columns of the office buildiny and 

discloees some previouslg indiscernable window panes. The small text 

on the Hilton signs is now dscipherable. The echoos appearing in the 

Hilton restorations (and to a lesser degree in the others), are caused 

bg the fact that the restoration kernels were windowed. The reason 

for windowing, as well as its effects, are discussed more fully in 

Chapter 5. The restoration of the sign in Figure 2.13d is intereeting 

not because the blur was phassless. but because noise dominates the 

reatoration. The eourca of the noi« can be readily explained if one 

examines the power spectrum of the blurred scene (Figure 2.8d) and the 

criterion for restoration. One will note from the power spectrum that 

noise dominates all higher frequencies. The criterion for restoration 

la that these noise-dominated frequencies will be amplifi d until 

there is as much power there as before blurring. In this case this 

power     spectrum    equalization    criterion    is    too    aggressive. This 

ill-conditioned situation could be avoided by re-sampling the data at 

a Nyquiet rate which excludes these higher frequencies. An alternate 

eolution ia  to change  the method of restoration. 

One of the features of the restoration system of Diagram 3 is 

that the restoration criterion can be changed. Chapter 3 presents 

several such criteria, including the criterion of least mean square 

error. It    is    well    known    that    this    criterion,     which    is    not    as 
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aggressiv«  as   the pouer spectrum equalization criterion,   handles  noise 

coneiatentig  well. 

■- MMBMaMMMIM 



■ ■•■-■-■ .i    II mmmmmmmmmmmmmmmmimmmmminmfmmmmm 

3£ 

SALTLAK 

v H1LT0 
' E tmOH MSIRVAT 
.11 ACCOMOOATIONi 
•^NE  512-3232 

(a) (b) 

Ut *■«■ 

r 

f l 
m 

(c) (d) 

Figure 2.7 

Four blurrod digital irr.ages, 
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Figure 2.8 

The power spectra of the images of Figure 2.7 
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Out-of-focus blur 
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Turbulence blur 

Figure 2.9 

The power cepstra of the images of Figure 2,7.  The 
findings of the blur-identification algorithm are 
lifted under each cepstrum. 
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Figure  2.10 

The magnitude of the restoration systems for 
the images of Figure 2.7 
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Figure 2.11 

The phase of the restoration systems for 
the images of Figure 2.7. 
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Figure 2.12 

The restoration kernels for the 
images of Figure 2.7. 
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Figure   2.13 

The restorations of the inagefl of Figure 2.7. 
Th«- restoration criterion was power spectrum 
equa l i /.at Lou . 
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CHAPTER 3 

JS 

Other Restoration Criteria 

3.1 Minimization of Mean Square Error 

A common criterion for restoration is that of minimizing the 

expected value of the square of the difference betuieen the original 

image and the restored image. This concept ie outlined in Diagram 4, 

where • la the quantity to be minimized. 

Kx.y) * e 

Diagram 4 

The criterion of minimum mean square error constrains H  to be: 

H(f) - p.mA'm/ip.miAmi' + pN(f)i 13,11 

The derivation of H(f) is given in Appendix D. The above restoration 

criterion and resulting restoration system strongly resemble certain 

aspects of Uiener filtering. The above system is fundamentally 

different, however, in that A(f) is not Knoun a priori, but must be 

determined by tho estimator, E, from each blurred input.  The filter 
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can be computed bg aquaring the power spectrum equalization filter of 

equation 2.3 and multiplging by A*(f). The differences between the 

two filters, especiallg in terms of "aggresiveness", are elaborated 

upon bg Cole. 

In the case of motion blur and out-of-focus blur, A*(f) is 

readilg determined from the blurred image itself via the power 

cepetrum. It was pointed out in section 2.4 that the spikes in the 

power cepetrum uniquely determine the nature and extent of the blur. 

From this Knowledge one can compute |A(f)| and AMf), as well as the 

phase of A(f). However, such information is not available in the case 

of turbulence blur. Tne necessary information can be obtained, 

though, from the power spectrum equalization filter of equation 2.3. 

It has already been pointed out that this filter approximates the 

inveree filter for those frequencies in which the noise power is 

small. For blurring resulting from turbulence, the filter assumes the 

form -k«1 on a db scale, which is sufficient information from which to 

model A*(f) by curve fitting nsar the origin. 

Figure 3.1 illustrates restorations of the blurred images shown 

in Figure 2.7 by the least mean square error criterion. The method of 

identifying khe blur and computing the phase is the same as that 

discussed in section 2.4. The most significant change to Lie noted is 

in the restoration of the turbulence-blurred image in which the noise 

has been contained much more effectively.  This example illustrates 

MB •_ 
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Figure  3.1 

Restorationa of the imaRes in Figure 2.7 using the 
criterion of minimum mean square error. 



mmm^m*^ »'•'••■ m*mm*im*lmm^m~*i*****'**'mm!m*m mmmi^w* 

31 

M »41189 HI» J 

(a) (b) 

MAI 
I 14 6I?SI 

MAI 14 stsss«. 
119 1S9P4 

"^ 

(C) (d) 

Figure 3.2 

The magnitude of the rentoration systems for the images 
of Figure 3.1,  The magnitude of the turbulence system was 
not allowed to attenuate higher frequencies to the theo- 
retical limit (-2000 db) as this would exceed the 36 bit 
capacity of the computer. 
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the fact that the minimum mean square error filter is much less 

aggressive in the presence of noise than is the pouer spectrum 

equalization filter. Houever. this lack of aggresiveness is very 

evident in the poorer quality -"„toration of the fine text in the 

Hilton signs. 

3.2 Phase-Onlg and flagnitude-Onlg Filters 

Hang inquiries have been made of the author concerning the 

effects of removing onlg the phase dsgradation or magnitude 

degradation in a blurred image. Cuch restorations of the 

motion-blurred Hilton sign are presented in Figure 3.3. These 

restorations make evident the necessity of removing Loth the phase and 

magnitude components of the blur. The phasi-only restoration is 

particularly interesting as it illustrates that the phase degradation 

of the blur, though necessarg to remove, is small. 

3.3 Inverse Power Spectrum Filter 

The follouing restoration criterion might be considered to be 

usefuli 

P,(f)|H(f)|' - P,(f) . i 
(3.2) 

Or« 

IH(f)l - (l/P.lfnw (3#3) 

This criterion has produced fairly good resulto when used to remove 

■ - ..   
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Figure  3.3 

(a) A phase-only restoration of the motion-blurred Hilton sign 
(b) A magnitude-only restoration of the same sign.  Under each 

Image Is shown the resulting restoration kernel. 

IHM 



—"- II I imiwfmmmmmmi^^m^^mmam^m^ ■p■^•"l^^^, 

41 

narrou-band additiv, pollutants or reverberations from audio 

8ional8[12]. The criterion is inadequate, however, when applied to 

tie present deblurring problem. This inadequacy results from the fact 

that the high frequency noise floor in the pouer spectrum of a blurred 

imaga U about 60 dbt balow the power of the lower frequencies. 

Inverting this •pactrum and taking the square root results in boosting 

those noise-dominated frequencies by 30 db. which allows the noise to 

dominate the restoration. The power spectrum equalization filter 

boosts thsse frequencies by 5 db or less, and the minimum mean square 

error filter actually attenuates them. 

3.4  Inverse and Hand-Tailored Inverse Filters 

In light of the above discussion, the consequences of restoration 

by the pure inverse filter are readily predicted. Using the 

information contained in the power cepstrum of a blurred image, it is 

not difficult to determine the exact nature of the linear system that 

produced the blur and then to create its convolutional inverse. 

Restoring the office building with such a system results in the image 

shown in Figure 3.4a. This result supports the statement accompanying 

equation 1.9. Not only does the denominator of the inverse filter 

equal zero for certain frequencies, but this filter also boosts the 

power of frequencies that were dominated by noise after the blurring 

t 'ihese numbers are empirical. 
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Figure  3.4 

(a) The office building restored with a pure inverse filter. 
(b) A restoration of the same image using a hand-tailored 

inverse filter. 
The magnitude of the restoration systems are shown under 
each image. 
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occurred. Ths restoration of the blurred test pattern in Figure 3.5 

illuatrate. that the latter of these tuo effects is bu far ^he nore 

serious degradation. 

The restoration of 3.5d is the same as that of 3.5c with the 

exception that noise was added to the density version of the image 

before d.biurring. One might correctlg assume that containing the 

noise and restoring the image are tuo conflicting objectives. A 

common practice. however. is to suppress the gain in these 

noise-dominated frequencies, and then to clip tne filter to eliminate 

zeroes in the inverse. The results of restoration with thxs 

htnd-taiiored inverse filter are shown in Figure 3.4b. This approach 

permits the design of a filter that will bring ou specific 

information which might bs overlooked by a more mathematically I rmai 

and rigorous filter. 

These restorations demonstrate the fact that a knowledge of 

a(x,y) does not insure a meaningful restoration. Because of the 

ill-conditioned nature of the problem, great care must be exercized in 

the design of a successful restoration system. 

3.5 Deneity Restoration 

One of the notable flaws of the hand-tailored inverse restoration 

of Figure 3.4b. and of others previously presented in this work, is 

  __—_-_—_« 
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Figure  3.5 

(d) 

(a) A  f:()mput(>r-gonorat cd   test   pattern. 
(b) An  out-of-focus   version   of   thr  same   pattern 
(c) A  pure   inverse   restoration. 

(d) A pure Inverse restoration of a noisy 
version of the blurred pattern. 
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the presence of pure black areas in the restored image. These result 

from negative numbers in the processed image and are hence called 

"euperblackB". Superblacks not only lack physical meaning, but are 

aesthetically unpleasant. Although the input to the restoration 

system ia positive, there is no assurance of a positive output. In 

fact, uork ty LuknszClS] and Boas and Kac[14] shous that the 

convolutional system that uill guarantee a positive output (given a 

positive input) Is opposite in nature to that of the restoration 

system which is needed for deblurring. 

As a means of assuring a positive restoration, the author 

proposes restoring tne density version of the image, as opposed to 

restoring the intensity version. Density! refers to the density of 

silver in the developed photographic image, and is proportional to the 

logarithm of the scene intensity uhich exposed the film. The last 

step in a density restoration is exponentiation, uhich insures the 

positiveness of the restoration. Two methods for accomplishing such a 

density restoration are now presented. 

t For a complete discussion of the photographic density 
version of a scene, see "Fundamentals of Photography", by 
C. B. Neblette, Chapters 5 and 6. 

■_ - ■■      m -m^^äm 
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3.5.1 Equalization of Density Power Spectra 

Let UB aeflume that the doneity version of the image was blurred, 

not the inteneity version. The power spectrum equalization 

restoration criterion of equation 2.1 is then applied, where Pl(f) and 

P,(f) are both estimated from densities. The results of performing 

such a restoration are shown in Figure 3.6. The phase information, 

however, must still be obtained as per Chapter 2, i.e., from intensity 

information. 

3.5.2 Processing of Densities by the Intensity Restoration System 

The restoration system, H(f), is generated from intensities 

according to the criterion of power spectrum equalization. Then, in 

lieu of restoring the intensity version of the blurred image, the 

density version is restored. In so doing, the logarithm is considered 

to oe a linear scaling operation. Before deblurring, the image is 

scaled by 1/c (by taking the log), and after deblurring it is 

multiplied by c (by exponentiation). This procedure is most 

successful on scenes of low dynamic range. In this case the 

approximation is very good, i.e., 

log(x-t-S) « c(x+S) (3.4) 

where S is small. 

MBMM ■ 
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Figure  3.6 

The blurred images of Figur(> 2.7 restored hy th«- 
power spectrum equalization criterion applied to 
the density version of the images. 
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Figure  3.7 

The blurred Images of Figure 2.7 restored by 
passing the density version of th«- Laages Through 
thf intensity restoration filters ol Chapter 2. 
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The results of this restoration procedure are shown in Figure 

3.7. This procedure is basically different from the previous density 

restoration method, but in most cases the results are quite similar. 

The method is advantageous in that the power spectrum of the blurred 

image is also used for blur identification (i.e. to compute the power 

cepstrum) as weil as for restoration. 

In the case of a high dynamic range scene, the aerumption that 

taking the logarithm can be visusd as a linear scaling operation may 

prove to he unsatisfactory. This is demonstrater in the restoration 

of the image shown in Figure 3.8a. The bright borders and dark echoes 

of the density restoration (Figurs 3.8c) are artifacts of the 

nonlinearity of the logarithm. But even though such flaws are not 

evident in the intensity restoration, it is questionable if one 

restoration ie actually superior to the other. The cause of the 

teardrop-like distortions in these restorations will bt> Discussed in 

section 4.3. 

3.5.3 Homomorphic Image Enhancment 

The processing of the dsnsity version of an image not only 

insures a positive result but also allows for simultaneous image 

contrast enhancement as described by StockhamQSl. An intensity scene 

ie composed of two components, the scene illumination and the object 

reflectivity, '.''nch are multiplied to yield the observed intensity. 

I^M-M^fl 
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(a) 

(b) (c) 

Figure 3.8 

(a) A hiKh-rontrast blurrec image. 
(b) Intensity restoration by power 

spectrum equalization. 
(c) Density restoration using the 

intensity restoration system. 
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Taking the logarithm of this scene transforms the multiplicative 

relationship into an additive one.  as shown below: 

i(x.y)   ■ illumination ■ reflectance (3.5) 

Log(i(x,y))   - Log(illumination)  -t- Log (reflectance) (3.G) 

If the tuo quantities on the right of equation 3.6 occupy 

different frequency bands (and they do, roughly), linear filtering can 

be performed to enhance the term corresponding to the ooject 

reflectivity. The     result     of     performing     such     a     simul .aneous 

deblurrlng/enhancement restoration of the office building ie shoun in 

Figure 3.9. The process produces a higher contrast image uhich is 

aesthetically more pleasing. 

*mmm m-* ^-1^-—* 
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CHAPTER 4 

Effects of Noise 

4.1 Sourcai of Noli« 

It uai pointed out In section 1.2 that ths blurred image itself 

le not available but rather a blurred image that has been contaminated 

by noise. Sources of noise may include sensor noise, transmission 

noise, scanner noise, and quantization noise. Noise may also be 

Introduced by the storage medium, such as photographic film. 

Photographic film-grain noise Is the greatest source of noise in the 

Images considered in this thesis. Impulse noise is also of concern In 

thle work. Impulse noiee is caused by dust particles on the film or 

print used to store the image before digitization. The nature of 

these two eources of noise, namely film-grain noise and impulse noise. 

Is discussed belou. 

4.2 Film-Grain Noise 

Film-grain noise le caused by the tendency of the silver (halide) 

crystals In the phctographic emulsion to clump together during 

development. The mean diameter of the crystals is on the ord» r of 1 

micron, and that of the clumps about 5 microns. This granular nature 

of    the   photographic   repreeentatlon   of   the   scene   le   as    though    the 

mm, _- -^  -■      -• 
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scene, as recorded on film, had been corrupted with random additive 

noiee. But since this has been added to the logarithm of the scene 

(see footnote, section 3.5) the noise is really multiplicative, which 

Figure 4.1 illustrates quite graphically. The notion of preprocessing 

the logarithm of the data to reduc» the effects of multiplicative 

noise has been explored by Cole(4}. 

The effects of film-grain noise are two-fold. As can be seen by 

examining the power spectrum of almost any blurred image, much of the 

higher frequency information contained in the image is dominated by 

the energy in the noise. Any attempt to retrieve this information by 

replacing the energy that blurring removed could result in the noise 

gaining so much energy that it would completely dominate the 

restoration. Such a case is shown in the inverse filter restorations 

of Figc-es 3.4a and 3.5d. Consequently, because of noise problems, 

the rrstoration system must be less aggresivc, thus resulting in an 

imperfectly deblurred image. Much of the motivation behind the 

minimum square error filter and the power spectrum equalization 

filtere is a desire to Keep noise under control during restoration. 

In moderately noisy images both types of filters appear to perform 

equally well in containing the noise; the major difference between 

them being the amount of deblurring each accomplishes. 

A second effect of noise is an advantageous one. In the 

denominator of many of the restoration filters described herein there 

- - 
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Figure  4.1 

Of the density version of a (blurred) image 
of the same image. 

s*n't ion 
section of the intensity version 
section of the office building image. 

Tho same section after Tuckey filtering 
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occur, th. fr« Wmm + pf(f,. ,n the ca9e of motion ^ ^ 

out-of-focus blur. A(f) equais zero for certain valuee of f. The 

zeroes are particularly troublesome in that they occur at the same 

frequencies as the zeroes of the blurring sygtem. These frequencios 

have been contaminated by noise, and division by A(f) „ould result in 

infinite amplification of these noise-dominated frequencies. Houever. 

the addition of the pouer in the noise to the denominator of the 

restoration filter moderate, this intrinsically ill-conditioned 

situation. 

It   1.   difficult   to  constrain  a   filter   to handle   film  noise   in   a 

mathematically   precise   manner.       The   minimum   square   error   criterion 

comes   cloee   to   doing   so   in   the  present   deblurring   problem,   but   only 

after   tuo  assumptions are made.     The  first  is  that   the noise  is  added 

to and uncorr.lated with  the .ign.l,   the  second is  that   the statistics 

of   the   signal   are  stationary   (see Appendix D).     Figure 4.1b   shous   the 

first    assumption    to    be    incorrect,     and    a    glance    at     any    common 

photograph   places   the   second   assumption   in   question.       Houever.     the 

daficianci.e   of   these   tuo   assumptions   may   be   self-canceling   in   that 

the   noise   varies   with   the   signal.      The   ratio   of   the   tuo.    uhich   ie 

found    in   many   restoration    filters,    remains   approximately   constant, 

thus   allowing   the   filtsr   to  perform   as   though   these   assumptions   were 

indeed valid. 

___ 
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4.3 Impulse Noise 

A second type of noise, which is quite different from film-grain 

noise, is impulse noise. Impulse noise is caused by small specks 

dust cr, the film during exposure (resulting in an unexposed spot on 

the film) or on the film during scan-in (resulting in a pure white 

spot in the image). The effects of this noise are most visible in the 

restored images of Figure 3.8. Small specks of dust, which are barely 

discernabld in the original image, have assumed Gargantuan prooortions 

in the restoration. This is the result of the restoration kernel 

being convolved with a large impulse, the result of which is the 

kernel itself. 

Most of the images in this thesis were either edited "by hand" to 

remove these spikes or were subjected to a more sophisticated scheme 

such as the resistive filter proposed by TukeyQG]. The Tukey scheme 

is nonlinear and consists simply of setting the value of each point 

equal to the median value of its neighbors. The process obeys 

scalability but not superposition over addition. That is, a constant 

times the input yields the same constant times the original output, 

but input one plus input two does not equal output one plus output 

two. Applying the Tukey filter to any monotonic function ox the data 

results in an output operated on by that same function. It therefore 

makes no difference whether the density version or intensity version 

of the image is filtered.  The result of naving "Tukty-filtered" a 

«__,_-_,_ k — „_-_-— -iMI r.ii   i — 
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section of the office building is shown in Figure 4.Id. 

The Tukey filtering procedure is well suited to the removal of 

noise spikes from blurred data. The filter tends to remove abruptly 

changing features of the image while leaving gently varying data 

relatively untouched - blurred data is gently varying, the noise 

spikes are not. The procedure is also pleasing from an energy point 

of view. Uere the image low-pass filtered to remove the noise spikes, 

much of the energy associated with these spikes would remain in the 

image. The Tukey scheme, on the othe- hand, remove«^ the spikes and 

the energy associated with them almost entirely. 

4.4 Noise and the Reflection Scanner 

Most of tne images in this thesis were not digitized directly 

from the film itself, but instead from a print of the film scanned on 

a reflection scanner. One might suppose that this would compound tne 

film-grain noise in tha . the graininess of the print would be included 

in the scanned-in image. To investigate the effect of this additional 

grain noise, several images were digitized directly on a seaming 

microdensitometert. The power spectra of these images were compared 

with ihe spectra of the same images that had been scanned on a 

t Drs. B. R. Hunt   and   D. H. Janney   o*   ♦•-    Los Alamos 
Scientific  Laboratory  offered their time and  acilities to do 
the actual scanning of  the  images.   The  out-of-focus Hilton 

sign ie one such image. 

-- — - ■ ■ 
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reflection scanner.  Such a comparison is shown in Figure 4.2. 

Cioee inspection of the two power spectra reveals that the noise 

floor has not been altered at all. In fact, any variations between 

the two can probably be ascribed to differences in the shape of the 

scanning aperture of the two input devices. The Utah aperture is 

gaussian in shape, the other is rectangular, and both were set to 

measure approximately a 100 micron spot. The reason for the 

film-grain noise not being increased by the reflection scanner process 

ie that the printing paper is much slower than ordinary film, and 

hen.e much less grainy. Therefore, the graininess seen by a 

reflection scanner is that of the film, not the priru. 

If prints are made avoiding the toe and shoulder regions of tne 0 

log E curve of the paper (and are compensated for this after 

scanning), results can be obtainsd that are nomiraiiy equal in quality 

to that of a scanning microdensitometer. This applieq, of course, to 

the present application only - there are many instances in which 

extremely wide dynamic range and the need to investigate actual 

film-grain structure (as well an ease of operation) necessitate the 

use of such an instrument. 

mmammmmi 
■  
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MIN   = S3   774216 

(c) (d) 

Figure 4.2 

The Hilton sign scanned on (a) a reflection scanner 
and (b) a scanning microdensitometer.  Below each is 
the respective power spectrum. 
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CHAPTER 5 

Conclusion 

5.1     Revieu  of  Restoration Flethod 

Th« goal of this research is to restore a blurred image using a 

minimum of knowledge about the particular mage or blur involved. The 

nonlinear homomorphic restoration system of Chapter 2 (Diagram 3) uias 

praeented as a solution to this problem for the case in which the blur 

(1) can be modeled as a linear system and (2) has a uniquely 

identifiable     cepstrum. The    success    of     this    solution     has     been 

demonstrated  using  three distinct   types  of   such blurs. 

Several restoration criteria have been presented including power 

spectrum equalization, minimum mean square error, as well =18 the 

hand-tailored     inverse     restoration. Results     indicate      that      the 

preferred restoration procedure, in terms of aggresiveness vs noise 

handling capabilities, is ths n.-ocessing of densities with an 

intensity restoration system that was estimated in accordance with the 

power spectrum equalization criterion. This procedure is not only 

sufficiently aggresive, but also insures a positive result and allows 

for simultaneous contrast enhancement. Although this procedure may 

fail in the case of a severe blur in which noise dominates most higher 

frequencies,   such casss are readily handled by  the minimum mean  square 
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5.2    Remaining Problems 

Th« homomorphic rtstoration method presented in Chapter 2 ie only 

successful on a limited set of blurs, and is by no means a solution to 

the general deblurring problem. Some remaining problems, and a feu 

suggested  solutions,   are presented belou. 

5.2.1    Ringing 

One of the obvious flaus in the restorations presented in this 

theeie ie the presence of ghost-like echoes, or ringing, in the 

deblurred image. This phenomenon results from the fact that Mx.g), 

the restoration kernel, is not alloued to extend to infinity, as it 

theoretically ehould. If the convolution is to take place in a 

reaaonable amount of time, the kernel must be truncated to be, say, G4 

prints wide by G4 points long. It is then uiindoucd with a Manning 

uindou. The restoration kernel performs the deblurring (roughly 

speaking) by adding and subtracting shifted copies of the blurred 

image. Tampering with this kernel hinders it in doing a perfect job, 

and results in remnants of these shifted copies remaining in the 

restored image. Figure 5.1 illustrates this effect on a test pattern. 

The restoration shoun in Figure 5.1a uas performed with a 128x128 

reetoration kernel and the restoration in 5.1b with a B4xG4 kernel. 

•an «MMMB -  - 
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(a) 
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(b) 

Figure 5.1 

Two restorations of the blurred test pattern 
of Figure 3.5b using (a) a 128x128 kernel and 
(b) a 64x64 kernel. 
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FiRuro  5.2 

(a) A  rumputcr-genoratt'd   test   pattern. 
(b) A  blurrt^d   version  of   the   pattern. 
(c) A restoration usinn an unwindowed kernel 

Notf» that the octagon and the line were 
successfully deblurred. 
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Although th« ringing in the formtr restoration covers a larger area, 

it is much less pronounced. It uould indeed prove advantageous from a 

computational point of view to achieve the results of the larger 

kernel using only a modified version of the smaller kernel. The 

strategy for making such a modification is yet to be devised. 

The ringing not only surrounds each object but is superimposed 

upon the objects themselves. Thus, the more variety present in an 

image, the more severe are the effects of ringing. Conversely, the 

late variety, the less lavara are these effects? an important class of 

images is included in this latter case. Consider an object 

photographed against a dark background, such as a satellite against 

the background of space. A restoration with an unuindowed kernel 

might prove optimal. Such a kernel would restore perfectly in the 

area of the object, and very poorly elsewhere. This case ie 

illustrated in the restoration of t'.e slightly modified test pattern 

shown in Figure 5.2. 

5.2.2 The Space-Variant Blur 

It has been assumed in this thesis that the blur is constant over 

the entire image. The problem becomes very difficult[10] if the blur 

changes in severity in different regions of the scene. The present 

method may show promise, however, if the blur changes gradually over 

the image.  In this case, the image could be divided into sections; 

•^ 
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th« average amount of blur could then be estimated in each section. 

For example, if a motion blur progressed in severity from left to 

right, one night divide the picture into halves and treat the problem 

in two parts. 

If the image had to be divided into mang sections, the method of 

phase estimation by the cepstral technique would begin to fail, as an 

average over at least 20 picture subsections is required. In this 

case, the zero crossing technique would prove valuable, as it produces 

reliable results after avsraging over as few as two (possibly 

overlapping) subsections. 

5.2.3 A Mixture of Blurs 

Thus far we have assumed that a particular image had been blurred 

by only one type of blur, i.e., motion blur, out-of-focus blur, or 

turbulence blur. The system for restoring such images is completely 

automatic; the same system can also be applied to a combination of 

blurs, but then automation becomes difficult. Figure 5.3a illustrates 

such a case. The lens was not only defocused when the scene was 

photographed, but the camera was also in motion. 

Figure 5.3d shows the inverted and clipped power cepstrum of the 

scene. Characteristic spikes of both motion blur and out-of-focus 

blur are plainly visible, which is to be expected from a theoretical 
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Figure  5.3 

(a) An image that was blurred by a moving 
out-of-focus camera. 

(b) The restoration of thit image. 
(c) The power spectrum of the blurred scene. 
(d) The power cepstrum of the blurred scene. 
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point of view. The blurred image consists of the original scene 

intensities that have been passed through tuo linear systems, i.e., 

b(x.y) ■ i(x,y) 9 a(x,y) ® d(x,y) (5.1) 

Computing the cepstrum in a manner analogous to that of section 

2.4 yieide: 

(Vq) - 0,(0) + CA(q) + CD(q) (5.2) 

where CA(q) and CB(q) are the cepstra of the two blurs, and are simply 

added together in the cepstrum of the blurred image. It is not 

difficult to distinguish visibly between these two cepstra and to 

generate the phase associated with each. This procedure has been 

followed to produce the restoration shown in Figure 5.3b. The data in 

the power cepstrum was examined to locate the position of the luin 

peaks of motion blur and to determine the radius of the ring of spikes 

resulting from out-of-focus blur. However, an automatic algorithm for 

handling a mixture of blun has not yet been devised. 

5.2.4 Automatic Prototype Selection 

It was explained in section 2.2 that the power spectrum of the 

clear impige, P,(f), was estimated from a scene considered to be 

statistically sim'lar to the blurred image under consideration. The 

selection of the similar scene is a manual one, and is the only 

portion of the restoration process (of a single blur) which is not 

automated.  Although many methods might be proposed to determine the 

_ — 
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statistical nature of a scene from a blurred version of it, uork by 

Rom[8] shous spacial promiss. Rom has shoun that the cepstrum of an 

image contains an abundance of information concerning the statistical 

nature of the image itself. Adapting these results to an approach 

using the pousr cepstrum mag prove tc be sue Bssfui. 

5.3 Summarg 

The homomorphic restoration system resented in this thesie is 

not successful in restoring all classes of blurred images. The blurs 

that can be successfullg treated, however, include a large subset of 

those encountsrsd in modern imaging systems. The nonlinear 

restoration system is not only versatils and flexible, but also enjoys 

the solid foundation of standard linear oystem theory. Ine method of 

reetoring these blurs is particularly advantageous in that it lends 

itself readily to automation. In addition, the process consumes only 

a modest amount of computation time, insures a positive definite 

result, and allous for simultansous contrast enhancement. 

■ — 
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APPENDIX A 

Powtr Spsctrum Estimation 

The method used in this work for the estimation of the power 

spectrum of an image is that set forth by Uelch [9]. Uhen applied in 

two dimensions, the method consists of subdi/iding the image into K 

equal and possibly overlapping square sections cf width L. The 

sections are then windowed (by a Manning or Parzen window) and Fourier 

transformed. The power spectrum is then estimated by computing the 

average of the square of the magnitude of these transforms. The 

method assumes that the ensemble of images under consideration is 

ergodic. 

There are several variations possible, depending on the type of 

information needed from the power spectrum. Increasing the size of L 

result« in increased resolution in the power spectrum, as more points 

are thon used co cover the same band of frequencies. Increasing the 

eize ef K increases the degree of convergence of the spectrum. If a 

finer frequency grid is desired without loss of convergence, one 

augments each LxL section with zeroes after windowing. 

It has been found that an average over 50 64*64 sections contains 

eufficient  information  for  a  successful  resto. ation.    If  more 

_* ■■■■■■■■■■■ —-^ ^ 
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resolution is required, say for the zero crossing technique of phase 

estimation, a 128x128 estimation is adequate. Figure A-l shows, 

however, that averaging only two sections results in an acceptable 

restorationi this saves considerable computation time, as pointed out 

in Appendix B. Figure A-2 shows the result of doubling the resolution 

of the power spectrum of a motion-blurred image, thus revealing 

clearly the lobes of the 8in(x)/x component. 

The astute reader will no doubt have noticsd that the author has 

made use of the power spectrum to describe and determine the nature of 

the blurring system, whereas other3[4.Bl have computed a quantity 

called the average log spectrum. This is computed in the same manner 

as the power spectrum except that the average is over the logarithm of 

the magnitude squared of the transform of the picture subsections. 

Taking the logarithm is theoretically pleasing in that each subsection 

represents a mapping from convolution in*o addition. In pröctice, 

however, the approach has some drawbacks. Figure A-3 compares the 

result of computing the average log spectrum vs taking the log of the 

power spectrum. It it easily seen that the power spectrum contains 

mo-e information pertaining to the slanted roof of the portico than 

the average log spectrum. Therefore, ':he use of power spectra allows 

the relationship of Eq. 2.1 to convey more information than if the 

average log spectrum were used. The theoretical issues involved here 

have been recently explored and set forth by Ingebretsen [G] . 

■ 
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Figure A-3 

(a) An original scene. 
(b) The estimated power spectrum 
(c) The average log spectrum. 
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APPENDIX B 

Computation Times 
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One of the advantages of the restoration methods set forth in 

thie theeie is the modest amount of computation needed to realize a 

successful restoration. The work presented in this dissertation was 

done on the University of Utah PDP-10 TENEX time sharing system and 

PDP-10 10/40 "single user" computer. These machines have fetch, 

floating multiply, and floating add times of approximately 2.5, 5, and 

11 microseconds respectively. 

The times aeeociated with the three basic iteps in the 

restoration process are tabulated below. The times given are for a 

512x512 image, a B4xB4 power spectrum, and a 64xB4 restoration kernel. 

The time given for power spectrum estimation is for the averaging of 

50 sections. 

Power Spectrum Estimation (50 sections) .... 3 min 

Blur Identification and Kernel Generation ... 1 min 

Two-Oimensional Convolution   15 min 

Total  ....  19 min 

MMtlMMa -■-■■--■ 
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Appendix C 

Notes on Blur Detection and Phase Generation Algorithms 

Section 2.3 presented the notion of determining the blur by means 

of the transform of the log power spectrum, which was termed the power 

cepetrum. Only 20 sections need be averaged in order to estimate a 

power spectrum, which, when transformed to the cepetrum, contains 

eufficient information to detect the blur. 

The power spectrum is, of course, windowed before it is Fourier 

transformed to the cepstral domain.  A Parzen window was found to be 

very favorable as far as shaping the cepstral spikes for accurate 

identification by algorithm. 

The blur identification algorithm is straightforward and 

heuristic. The algorithm attempts to identify motion blur by checking 

to see if the 10 most negative points all lie within a circle of 

radius 2.5. If it does not find this, it then looks for focus blur by 

checking to see if the most negative point and any one of the 20 other 

most negative points lie the same distance from the origin. If this 

ie also not the case, the algorithm defaults to turbulence blur. The 

rationale behind the decision rules can easily he seen by examining 

the cepstra in Figures 2.5 and 2.9.  The algorithm has been tested 

._ .. . ..  ■ i i J^^^M 
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without failure on the power cepetra of over 20 blurred images. The 

teat coneieted of comparing the results of the power cepstrum 

technique with those of the zero crossing method. 

To generate the appropriate phase from the point spread function 

of the blur, a knowledge of the spacing of its zeroes in the frequency 

domain is needed. The case of motion blur is quite straightforward. 

A PSF of length a results in zero crossings 1/a apart, the first one 

being at f-l/a. Using a discrete Fourier transform of length N, the 

poeition of the first zero is then K/N-l/a, or K-N/a. 

The case of out-of-focus blur is only slightly more difficult. 

As is shown in Appendix 0, the Fourier transform of a cylinder of 

radius R is J^rRl/lrR). It is knowntll] that the first zero occurs 

at rR ■ 3.83, hence, 

2itfR - 2n(K/N)R - 3.83 (C-l) 

K - 3.83 N/(2nR) (C-2) 

After R is found from the power cepstrum, K can be calculated from 

equation C-2. K can also be found directly via the zero crossing 

technique of section 2.2. The next five zero crossings occur at 7.01, 

10.2, 13.3, 1G.5, and 19.6. 

  -  ■■   
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Appendix D 

Derivations 

D-l    Minimum Mean Square Error Filter 

In lieu of the volumes of material that have been uritten on Uiener 

filtering, the following tuo-page derivation is presented. 

Representing Diagram 3 mathematically,  i-ie have: 

B  -   J J IQU.y)   ® a(x,y)   ♦ n(x,y)]   ® h(x,y)   -  i(x,y)}2d*dy 

Parsevals's Theorm allows us I- write this in the frequency domain: 

e - H (tl(f) • A(f) + N(f)]H(f) - I(f)l?df 

Instead Tf minimizing e itself, we choose to minimize E lei, which can 

be accomplidn.jd by minimizing the expected value of the above 

integrand. Assuming the noise to be uncorrelated to the signal, ue 

can  write: 

EII,(f)[Aif)H(f)-l]' i-   tN(f)H{f)]') 

Or 

p.miAmHm-ii7 + pM(f)iH(f)i? 

Setting  the derivative of   this   (with respect   to  the real  and  imaginary 

parts of H(f))   equal  to zero,   we have: 

  ------ -■  
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2PI(f)tA(f)H(f)-l]AMf)  + 2PM(f)H(f)   -0 

Or,   finally: 

H(f) - p.mA'm/iP.mAmAMf) + pN(f)] 

H(f) - p.mA'm/HMfHAmi' + p^f)] 

Ue   have   used   tuo   important   relationships.      The   first   beir.n   that 

if   a(t)   is  the input   to  the system hit),   with b(t)   the output,   then 

ElbMtn   - EI[a(t)®h(t)]M   - E «AMf)+IMf )1   - PA(f)|H(f)|? 

The  second relationship is the following:   given three complex 

vectors, P, Q, R, where 

P - IQRI' 

then  the partial of P with respect  to R is 

2QRQ* - 2IQPR 

This  is easily shown by  treating P as a sum,  namely 

P - RelP)   + jlmlPI 

MM MMaMMHMHriMMM mm 
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D-2    Th« Fouritr Transform of a Cuiindar 

The  two-dimeneional Fourier  traneform of a function f(x,y)   ie 

F(u,v)   -   J /f(x,y)exp[-j(ux+vy)]dxdy 

Let«     f(x,y)   - a  for x'+y» s R»,  Q eiaewhere 

Let«     x - 5009(9) 

y ■ jeinO) 

Andi     u ■ rco8(<t>) 

v » rein(4>) 

Them    F(u,v)   -   naexpt-Jr?(coe(e)co8«t»  + 9in(e)9in((D))] ^dOd? 

where the iimits of integration are 0 to R and 0 to 2it. 

Thie reduce9  to: 

F(r,(D)   - a/j/expC-jrjcosCd-^Jde 

F(r)  - 2a;?nl0(-jr9)d9 - 2an/J0(r?)5d? 

Substituting x  for r?t 

- 2na/r,JxJ0(x)dx 

whare  the iimit9 of  integration are 0  to Rr. 

Finally»     F(r)   - 2na/rJl(Rr) 

If ue let  the cylinder have unity volume,   i.e.   itR'a - 1,   then 

F(r)   - 2J1(Rr)/:Rr) 

- ■TiB^^r  
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D-3     The Fourier Transform of EXP(-x2) 

G(f)   -   J"exp(-x2)exp(-jx2nf)dx 

G(f)   -  ;exp[-(x?+jx2nf)]dx 

80 

Completing the square,   ue have: 

G(f)  -  Jexpt-(x+j2nf/2)2-(?T f/2)»]dx 

G(f)  - expt-(2nf/2)?] Jexpt-(x+j2nf/2)J]dx 

A   moment's   contemplation   uiil   convince   the   reader   that    the   value   of 

the above  integral is independent of  f,  nence 

G(f)  - kexp[-(nf/2)2] 

ittu ■ -- 
    •   • - •■ ■  
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D-4    The Fourier Transform of a Rectangle 

Lett     gin)   - b for -a S x S a,  0 elsewhere. 

G(f)   -   JbexpC-jZnftldt 

whore  the  limitr» of  integration are  from -a  to a. 

G(f)  - -jbjsin(2nft)dt + b J cos(2nf t)dt 

The  first  integral is equal  to zero;   the value of  the second  is 

G(f)  -  (b/2nf) tsin(2naf)-sin(-2naf)] 

G(f)  -  (b/nf)sin(2naf) 

G(f)   - 2ab3in(2naf)/(2naf) 

For a rectangle of unit area, i.e., b-l/2a, ue have simply 

G(f) - 8in(i:aaf)/(2naf) 

■ - - - - • — - ■ - -^——>—^^— 
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