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Abstract Digital visual media represent nowadays one of the principal means for
communication. Lately, the reliability of digital visual information has been questioned,
due to the ease in counterfeiting both its origin and content. Digital image forensics is a
brand new research field which aims at validating the authenticity of images by recovering
information about their history. Two main problems are addressed: the identification of the
imaging device that captured the image, and the detection of traces of forgeries. Nowadays,
thanks to the promising results attained by early studies and to the always growing number
of applications, digital image forensics represents an appealing investigation domain for
many researchers. This survey is designed for scholars and IT professionals approaching
this field, reviewing existing tools and providing a view on the past, the present and the
future of digital image forensics.

Keywords Digital image forensics . Multimedia security . Image tampering detection . Image
source authentication . Counter-forensics

1 Introduction

Images and videos have become the main information carriers in the digital era. The
expressive potential of visual media and the ease in their acquisition, distribution and
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storage is such that they are more and more exploited to convey information, even sensible.
As a consequence, today images and videos represent a common source of evidence, both
in every-day life controversies and in trials. The simplest video in TV news is commonly
accepted as a certification of the truthfulness of the reported news. In a similar way, video-
surveillance recordings can constitute fundamental probationary material in a court of law.

Together with undoubted benefits, the accessibility of digital visual media brings a major
drawback. Image processing experts can easily access and modify image content, and
therefore its meaning, without leaving visually detectable traces. Moreover, with the spread
of low-cost, user friendly editing tools, the art of tampering and counterfeiting visual
content is no more restricted to experts. As a consequence, the modification of images for
malicious purposes is now more common than ever. Digital Image Forensics is that branch
of multimedia security that, together with Digital Watermarking, aims at contrasting and
exposing malicious image manipulation.

In July 2010 Malaysian politician Jeffrey Wong Su En claimed to have been knighted by
the Queen Elizabeth II, as recognition for his contribution to the international aid
organization Médecins Sans Frontières. A picture of him being awarded by the Queen of
England accompanied his statement, diffused in local media (Fig. 1.a). When questioned
about the award though, the British High Commission in Kuala Lumpur made clear that the
name of Mr. Wong was not included in the official knighthood recipients lists, and that the
picture was inconsistent with the usual protocol adopted for knighthood ceremonies. The
image was finally shown to be a splicing between an original ceremony photo (Fig. 1.b)
and Mr. Wong’s face, built to increase his popularity.

This kind of episodes [28] contributed in making more and more questionable the use of
digital images as evidence (for an updated and detailed archive, cfr. [76]). A confirmation
of their authenticity is needed, before further relying on their content. For this reason, two
questions about the history of the image have to be answered:

a) Was the image captured by the device it is claimed to be acquired with?
b) Is the image still depicting its original content?

The first question is of major interest when the source of the image is the evidence itself,
i.e. when the ownership of the capturing camera is compromising, or when an accusatory
content is such only if it was recorded by a specific device (e.g. video surveillance). The
second question is of more general interest, and can be directly applied to the fake
knighthood picture case. Answering to those questions is relatively easy when the original
image is known. In the case of the fake knighthood, the simple availability of the original

Fig. 1 The doctored image depicting Jeffrey Wong Su En while receiving the award from Queen Elizabeth
II, published in Malaysian dailies, and the original picture of Ross Brawn receiving the Order of the British
Empire from the Queen (b)
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image was sufficient to expose the forgery. In practical cases, though, almost no
information can be assumed to be known a priori about the original image. Investigators
need therefore to authenticate the image history in a blind way.

Digital image forensics (DIF) aims at providing tools to support blind investigation. This
brand new discipline stems from existing multimedia security-related research domains
(e.g. Watermarking and Steganography) and exploits image processing and analysis tools to
recover information about the history of an image. Two principal research paths evolve under
the name of Digital Image Forensics. The first one includes methods that attempt at answering
question a), by performing some kind of ballistic analysis to identify the device that captured the
image, or at least to determine which devices did not capture it. These methods will be collected
in the following under the common name of image source device identification techniques. The
second group of methods aims instead at exposing traces of semantic manipulation (i.e.
forgeries) by studying inconsistencies in natural image statistics. We will refer to these methods
as tampering detection techniques.

Both these fields and the DIF domain in general are attracting a growing interest from
the scientific community. Figure 2 reports the number of papers concerning DIF that have
been published in IEEE conferences and journals over the last 8 years. The first
publications in the topic date back to 2003, although previous work might have been
made public a few years earlier, such as Hani Farid’s investigation on bicoherence features
for tampering detection [27]. In fact, Fig. 2 is not aimed at reporting a precise quantification
of the publications in the field, but rather at highlighting a trend: the intensity of research
activity in the DIF domain started to increase about 5 years ago. Nowadays, the domain is
so mature that researchers are starting to propose techniques to contrast forensics methods,
exploiting their weaknesses to better hide or counterfeit the manipulation. These studies
represent a precious contribution to the development of image forensics, pushing experts to
create more and more robust tools.

Fig. 2 Number of IEEE publications in the field of Image forensics over the last 8 years. Data were retrieved
from the IEEE explore website, http://ieeexplore.ieee.org by submitting the queries “Digital Image
Forensics”, “Source Device Identification” and “Tampering Detection”
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All this considered, Digital Image Forensics represents an appealing topic for many
researchers. In this overview, we aim at providing useful tools to scholars and IT
professionals who, coming from related fields, want to start research in Digital Image
Forensics. We assume to deal with researchers who have some background either in digital
forensics or signal processing. When approaching DIF for the first time, these people might
have in mind questions such as:

– What is digital image forensics and why is it important?
– Which background should I have to start research in this field, and how could I apply

my know-how to it?
– Which is the state-of-the-art of DIF tools?
– How is DIF evolving and which are the future challenges?

In the following we will try to provide enough useful information to answer these
questions. In section 2 we put digital Image Forensics in perspective with other multimedia
security-related disciplines. In section 3 we report on methods dealing with the
authentication of the acquisition device of a particular image. In section 4 we propose an
overview of tampering detection methods. Section 5 presents a view on the evolution of
DIF: counter-forensics techniques, or how to fool existing detection and authentication
methods. Finally, with section 6 we point out achievements and limitations of the current
approaches, and try to outline possible, new research paths in the Digital Image Forensics
domain.

2 The role of digital image forensics in multimedia security

Digital Image Forensics is a quite recent discipline, as pointed out with Fig. 2; nonetheless,
it is tightly connected with a number of different research fields. DIF inherits its goals and
attitude from classical (analog) forensic science and from the more recent field of computer
forensics (for a complete dissertation on similarities and differences between these domains,
see [10]). Forensic disciplines in general aim at exposing evidence of crimes; to do so, they
have to deal with the burglars’ ability in either hiding or possibly counterfeiting their traces.

In digital imaging both the acquisition process and the tampering techniques are likely to
leave subtle traces. The task of forensics experts is to expose these traces by exploiting
existing knowledge on digital imaging mechanisms, being aided by consolidated results in
multimedia security research.

For better grasping the mission of image forensics investigators, it might be useful to
explore the relationships between DIF and other multimedia security-oriented disciplines.
Image processing for forensics shares indeed several technical challenges and similar
techniques with digital watermarking and steganography [50].

Digital watermarking consists in hiding a mark or a message in a picture in order to
protect its copyright. There exists a complex trade-off between three conflicting parameters
(payload, robustness, and invisibility). In short, a good algorithm in digital watermarking
should hide enough bits without modifying significantly the cover and should be able to
recover the message even if the picture underwent some modifications between the signer
and the retriever. As a first approximation, a watermark can be seen as a specific noise.

A particular application for watermarking is image integrity protection [81]. In this case,
a fragile watermark is applied to the cover image so that it gets destroyed at a tampering
attempt. This ensures some control on the image content manipulation. One major difficulty
here is to make the distinction between malicious and naïve modifications (tampering
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versus fair compression for example). Within this context, digital watermarking can be seen
as an active protection, whereas tools in digital image forensics can be seen as passive ones.
However, in many scenarios it is not realistic to envision that images and videos have been
protected by a fragile watermark prior to dissemination. This gives a plus in favor of image
forensic tools for the detection of tampering. Anyway, in both cases, image processing tools
are analyzing high frequencies either to recover the watermark or to detect inconsistencies
in noise and expected patterns, e.g. related to the acquisition process.

Steganography consists in communicating secretly via some media (in particular images
and videos). The choice of the cover is not really important here. Also, one can assume that
the stego-picture will not undergo photometric or geometric attacks among the
transmission. The main point for two persons who communicate some information using
this technology is to be not detected by a third party. To make the message not detectable,
algorithms mix secret information in high frequencies with other existing noises, e.g.
related to sensors.

We can observe that, to some extent, all of these techniques are working in high
frequencies to add, to recover, to detect, or more generally to analyze “noises”, or
characteristic patterns.

However, Digital Image Forensics has a very precise role among multimedia security
disciplines: authenticating images for which no reference is known and no previous
integrity protection has been set. For this reason, they are often referred to as passive (as
opposed to the active protection provided by e.g. the insertion of a fragile watermark), and
blind. This makes DIF techniques the only applicable tools in a large set of practical
situations.

3 Image source device identification

In tracing the history of an image, identifying the device used for its acquisition is of major
interest. In a court of law, the origin of a particular image can represent crucial evidence;
the validity of this evidence might be compromised by the (reasonable) doubt that the
image has not been captured from the device it’s claimed/supposed to be acquired with, as
in the case of video-surveillance material or covert videos.

Helpful clues on the source imaging device might be simply found in the file’s header
(EXIF), or by checking (if present) a watermark consistency [21, 50]. However, since this
information can be easily modified or removed, it cannot always be used for forensics
purposes. As a consequence, blind techniques are preferred for the acquisition device
identification.

Blind image forensics techniques take advantage of the traces left by the different
processing steps in the image acquisition and storage phases. These traces mark the image
with some kind of camera fingerprint, which can be used for authentication. The techniques
presented in the following retrieve information on the source device at two different levels.
As a first attempt, they try to distinguish between different camera models. On a second,
more informative although more challenging level, the goal is to distinguish between single
devices, even different exemplars of the same camera model. To provide the reader with a
better understanding of these techniques, we start with an illustration of the most common
steps in the image acquisition and storage processes, in order to describe the origin of image
artifacts and how to exploit them in image authentication.

In reviewing existing techniques, we would like to warn the reader that no direct
performance comparison is available between different methods. This is mainly due to the
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lack of established benchmarks, and, in particular, of a reference test dataset. Recently, the
Dresden Image Database for Benchmarking Digital Image Forensics [38] has been made
available for forensic investigators, containing over 14,000 images with various content,
captured by 73 different camera models. To the best of the author’s knowledge, no study
besides [38] has been benchmarked on this dataset so far. It is our belief, though, that this
useful tool will be soon exploited by the community to have a clearer view on the state of
the art of acquisition device identification methods.

3.1 Image acquisition and storage

When capturing a digital image, multiple processing steps are performed prior to the
storage. Figure 3 shows the typical image acquisition pipeline [1]. The Light enters the
imaging device through a system of optical lenses, which conveys it towards the imaging
sensor. The imaging sensor is the heart of every digital camera, and it is composed of an
array of photo detectors, each corresponding to a pixel of the final image, which transform
the incoming light intensity into a proportional voltage. Most cameras use CCD (Charged
Coupled Device) sensors, but CMOS (Complementary Metal Oxide Semiconductor)
imagers can also be found. To render color, before reaching the sensor the light is filtered
by the Color Filter Array (CFA), a specific color mosaic that permits to each pixel to gather
only one particular light wavelength (i.e. color). The CFA pattern arrangement depends on
the manufacturer, although Bayer’s filter mosaic is often preferred. As a result, the sensor
output is a mosaic of e.g. red, green and blue pixels arranged on a single layer. To obtain
the canonical 3-channels representation, the signal needs to be interpolated. Demosaicing
algorithms are applied to this purpose; the missing pixel values in each layer are estimated
based on the values of existing neighbors. Before the eventual storage, additional
processing is performed, such as white balance, gamma correction, and image enhance-
ment. Finally, the image is recorded in the memory device. Also in this case the format can
vary, but a common choice is JPEG.

Fig. 3 A schematic view of a standard digital image acquisition pipeline
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The described image acquisition pipeline is common for most of the commercially
available devices; nonetheless, each step is performed according to specific manufacturer
choices, and hence might depend on the camera brand and model. This variation can be
used to determine the type of camera from which a specific image was obtained. Indeed,
each stage in the pipeline can introduce imperfections in the final image or characteristic
traits: lens distortion, chromatic aberration, pixel defects or CCD sensor imperfections,
statistical dependencies related to proprietary CFA interpolation algorithms and other
intrinsic image regularities which leave tell-tale footprints. These artifacts are statistically
stable and can be considered as a signature of the camera type or even of the individual
device. In addition, some techniques focus on statistical regularities in the image such as
color or compression features.

Each of the techniques presented in the following section has been proved to be effective
to some extent in identifying the acquisition device. However, the scope of most of them is
limited to the discrimination between different camera models. Sensor imperfections seem
to be at this stage the only traits able to distinguish between different exemplars of the same
camera model. Therefore, recent studies mostly concentrate on exploiting sensor
imperfection and in extracting pattern noise as a sensor biometric trait. Yet, advances were
made also with the other approaches, especially using demoisaicing regularity [14].

3.2 Forensics methods for image source identification

In the following, image source identification methods will be presented according to the
kind of cues they explore, following their location along the pipeline. Section 3.2.1 will
introduce those methods which use acquisition artifacts, produced by lenses or CFA
interpolation. Section 3.2.2 reports on sensor imperfections; finally, section 3.2.3 describes
methods which analyze properties of the output image generated in the last stages of the
pipeline.

3.2.1 Identification through artifacts produced in the acquisition phase

Due to each lens and image geometries and to the design of the camera, lenses produce
distortions (aberrations) in the captured images. Radial distortion for example deforms the
image so that straight lines in object space appear as curved lines. Choi et al. [20] propose
to analyze this kind of lens aberration as a fingerprint to identify the source camera. The
authors find the distortion parameters of a camera using Devernay’s line extraction method
[24], to then measure the error between the distorted line segment and the corresponding
straight lines. The estimated parameters can be used to train a classifier to distinguish
among images captured by different cameras. The method achieves good discrimination
rates among different models of cameras but no proof of robustness is given for distinct
exemplars of the same model. Additionally, this method will fail to measure radial
distortion in absence of straight lines to be extracted from the picture. On a similar path,
Van and others [90] propose to help the correct identification of the source camera using
lateral chromatic aberration analysis. Chromatic aberration derives from imperfection in the
lens, which provokes a discrepancy in the location in which the sensor receives light of
different wavelengths. This phenomenon is modeled in [47] through three parameters,
regulating the distance from the center of distortion (optical center) and its magnitude. The
model is applied to compute the misalignment between pairs of color channels (i.e., red-green
and blue-green), which is formulated as a registration problem. The model parameters,
estimated by maximizing the mutual information between color channels, eventually feed a

Multimed Tools Appl (2011) 51:133–162 139



Support Vector Machine (SVM), trained to recognize the source camera. Again, this method is
shown to provide accurate identification of different camera models, but not of single devices. It
might be interesting, for future research, to attempt at integrating these methods with features
describing other kinds of lens aberration (e.g. spherical, longitudinal aberration).

Proceeding on the image pipeline, the demoisaicing step provides important information
on the acquisition device, being strictly dependent on the manufacturer (or even on each
camera model). Demosaicing introduces a specific type of correlation between the color
value of one pixel and its neighboring samples in the same color channel. Therefore,
different demosaicing algorithms can be described based on these dependencies, as shown
in [6] by Bayram et al. Their method is inspired by the technique proposed by Farid et al.
intended for image tampering detection [79]. The authors propose to detect traces of CFA
interpolation in color bands by using the expectation/maximization (EM) algorithm. The
analysis outputs a Probability Map which exposes peaks at different frequencies indicating
structural correlation between spatial samples; weighting interpolation coefficients are also
estimated to distinguish between different CFA interpolations. In their experiments, the
authors use 140 smooth pictures from two camera models, obtaining over 95% accuracy in
classification, supported by a SVM. In a later work [7], the same authors improve their
approach by designing new features based on image quality metrics [3] and higher-order
statistics of the image [67]. Good performance is obtained among up to three digital
cameras. In a different approach [62], Long et al. use a quadratic pixel correlation model to
obtain a coefficient matrix for each color channel, whose principal components are
extracted to then feed a neural network. The method is shown to effectively identify four
different camera models, although its performance decreases with the increase of
compression. Celiktutan et al. also propose a CFA interpolation based technique [15]
applied to cell-phone cameras. The authors extract a set of binary similarity measures
between the bit-planes, assuming that the correlation across adjacent bit-planes can be
representative of a specific camera CFA interpolation algorithm. In their experiments, the
authors use these features in conjunction with image quality measures as inputs to a
classifier. 200 images from each of 9 cameras are used in the test. The method performs a
successful classification when discriminating among a small number of cameras, but for a
larger number, the accuracy drops.

3.2.2 Identification through sensor imperfections

Imaging sensors have been shown to introduce various defects and to create noise in the
pixel values [44]. The sensor noise is the result of three main components, i.e. pixel defects,
fixed pattern noise (FPN), and Photo Response Non Uniformity (PRNU).

Pixel defects include point defects, hot point defects, dead pixels, pixel traps, and cluster
defects, which reasonably vary across different sensors, independent on the specific camera
model. Geradts et al. in [37] attempt at reconstructing pixel defects patterns. The authors
propose to determine pixel noise by taking images with black or green background with
12 different cameras and then comparing the defect points which appeared as white.
Their experiments show that each camera has distinct patterns of defect pixels also
across the same model; nonetheless, the impact of defect pixels closely depends on the
content of the image. Furthermore, some camera models do not contain any defectives
pixels or they eliminate it. Therefore, this method is not applicable to every digital
cameras.

FPN and PNRU are the two components of the so-called pattern noise, and depend on
dark currents in the sensor and pixel non-uniformities, respectively. Hence, they are
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independent on the image content but closely related to the physical characteristics of each
single sensor. Lukas and others [65], propose to analyze pattern noise for camera
identification, as it is a unique stochastic characteristic for both CCD and CMOS sensors.
As such, the pattern noise extracted from images taken by the same camera should be more
correlated than those extracted from different cameras. Pattern noise can be estimated by
taking the difference between an image I and its denoised version:

W ¼ I� FðIÞ ð1Þ
Where W is the residual noise and F is a denoising filter. As random components might
appear in the residual noise due to the image content, the reference pattern noise for a
particular camera C is obtained by averaging the noise residual computed for a sufficiently
large number of images m:

WC
ref ¼

1

m

Xm
i¼1

WC
i ð2Þ

To establish whether a given image IN was captured by a digital camera Γ, the correlation
between the pattern noise estimated for the individual image WN and the reference pattern
WΓ

ref is computed, and compared to an empirically determined threshold, following a
procedure largely resembling to that applied for people authentication in biometry. Indeed,
we can easily associate pattern noise to a biometric trait, which can be used to determine
whether the camera that took the picture is the claimed one (client) or another one
(impostor). In this sense, this approach could be defined as “Hardwermetry”. The method
proves to attain high accuracy with low false rejection rates even for cameras of the same
model, as also validated by an independent study [23]. Appreciable results are shown also
in presence of re-sampling and JPEG compression. A possible weakness is that the authors
used the same image set both to calculate the camera reference pattern and then to test the
method. As a result, the effectiveness of this technique has not been proven to be effective
independently on the training set.

In a later study, Chen and others [16, 18] propose to refine the previous method by
estimating PRNU information from pattern noise W. It is observed that pattern noise can be
expressed as the joint contribution of two terms:

W ¼ IK þΞ ð3Þ
Where IK is the PRNU signal and Ξ is a term reflecting the contribution of all the other
sources of noise that can intervene in the acquisition process, e.g. CFA interpolation or
quantization due to compression. Given d images Ik, k=1, ..., d, taken from the same camera
C the reference PNRU factor bKC can be estimated with through Maximum Likelihood

bKC ¼
Pd
k¼1

WkIk

Pd
k¼1

Ikð Þ2
ð4Þ

Where Wk is computed as per Eq. (1). Detection of PRNU for single images is then
formulated as a Neyman-Pearson hypothesis testing problem. In its refined version, this
authentication technique gains both in computational efficiency and in error analysis
accuracy. One of its main limitations, i.e. the lack of robustness to geometric transformations,
is partially addressed in [41].
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Recently, C. Li [59] observed that the extraction of sensor noise from a single image
might produce a pattern contaminated by the fine details and the structure of the depicted
scene, and that this deviation might reduce the probabilities of matching with a reference.
The author proposes to enhance the fingerprint estimation by weighting noise components
in a way inversely proportional to their magnitude, in order to suppress information derived
from non-smooth image parts. As a result, high classification accuracy is obtained also on
small-sized image regions.

3.2.3 Source identification using properties of the imaging device

Exploiting the digital image acquisition process is not the only way to identify the source of
an image: post-processing performed in the storage phase can also produce interesting cues.

Kharrazi et al. [52] propose to use a set of image features to characterize a specific
digital camera, assuming that the image can be affected by color processing and
transformations operated by the camera prior to the storage. The authors study statistical
properties of the image organized into two groups: color-related measurements, such as
average pixel value, RGB pairs correlation, neighbor distribution center of mass, energy
ratio and wavelet domains statistics, and image quality features. Supported by a SVM
classifier, this approach shows an effective result on low compressed images taken by
different camera models. However, this technique can only be applied on images depicting
similar content. In a later work, Tsai et al. [89] use similar image features to construct multi-
class classifiers. They show that independent of the image content, using the same number
of camera and training images as in [52], their classifier can distinguish between source
cameras with good precision.

After the processing phase, many digital camera models encode images in JPEG format
before storing them. The well known JPEG compression standard transforms 8×8 pixels
blocks of the image in the DCT domain. DCT coefficients are quantized by a given amount
q, according to a pre-defined quantization table. Quantized coefficients are then entropy-
coded into a bit-stream, and the information lost in the quantization step cannot be
recovered in the de-compression phase. Based on this lossy compression scheme, the
identification of the quantization table can be a useful hint for source camera identification,
as it usually varies among manufacturers. Farid [29] analyzes the quantization tables for
ballistic fingerprinting. The author proves how this technique can provide useful
information on the source device, by testing it on 204 digital camera models. However, it
is likely that the quantization table alone will not be sufficiently unique to allow the
discrimination between all possible camera models; therefore, the author advises its usage
in conjunction with other forensic tools (e.g., using it to exclude from further analysis
incompatible manufacturers/models).

Image thumbnails were also shown to include some fingerprinting information. A
thumbnail is a reduced version of a full resolution image, often stored together with it to
allow users a quick preview. The process that transforms an image into its thumbnail can
involve a series of filtering operations, contrast adjustment and JPEG compression. Each
operation implementation depends on the imaging device manufacturer as well as on the
device model. E. Kee and H. Farid [51] propose to use the formation and storage
parameters of an embedded image thumbnail for digital source camera identification. The
authors describe a set of techniques to estimate the parameters adopted by the specific
device to perform each of the thumbnail creation steps, namely cropping, pre-filtering,
down-sampling and post-filtering operations, contrast adjustment, and JPEG compression.
These parameters can actually characterize a single device and how they differ e.g. from
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camera models to photo-editors. The authors remark that, to facilitate the application of the
method, a database including the characterizing parameters of a wide range of devices
should be made available.

4 Tampering detection

According to the Oxford dictionary [88], the verb to tamper literally means “to interfere
with something in order to cause damage or make unauthorized alterations”. In the context
of digital imaging, tampering recalls the intentional manipulation of images for malicious
purposes: as images are natural carriers of information, image manipulation is denoted as
tampering when it explicitly aims at modifying the semantic meaning of the visual message.

The story of image forgery dates back to the early twentieth century to support political
propaganda actions [76]. With the increasing use of visual content as a message conveyer,
tampering techniques developed accordingly. Furthermore, with the advent of digital
imaging and photo-editing software, image manipulation became affordable also for non-
darkroom experts, resulting in a general lack of reliability of digital image authenticity, not
only in investigative activities, but, more in general, in the media and information world.

The studies reported in this section respond to the need of the society of being able to
identify tampered images and, more importantly, to detect the forged regions. In this
overview of tampering detection techniques, we first provide a short summary of the most
frequently used manipulation techniques, then, for each of them, we analyze the state of the
art of forgery exposal methods.

4.1 A short summary of the most common tampering techniques

Image semantic content can be altered in two major ways: by removing information or by
adding it. To remove information, usually forgers do not need to access the content of
another image, as shown in Fig. 4, top row. Conversely, one typical way to add extraneous
information to an image is to use material extracted from one or more distinct images. It

Fig. 4 Examples of copy-move attacks for object removal (above) and duplication (below). Images were
taken from [45]
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should be noticed, however, that this operation is not always necessary, as the simple
processing of an image can convey relevant alteration of both semantics and pragmatics of
an image, as in the well-known case of the TIME magazine cover depicting a darkened O.
J. Simpson portrait (Fig. 5). We analyze tampering methods and their malicious intentions
by dividing them in two categories: those which produce the forgery working on a single
image, and those that access the content of more than one image (i.e. composites).

4.1.1 Forgeries involving a single image

Deleting undesired objects from an image is one of the most straightforward methods to
alter its meaning. In such circumstances, forgers need to “fill” the region of the image from
which the object has been removed. A typical solution in this case is to copy a portion of
the same image and replace with it the void left from the deletion (copy-move technique).
Of course, the same approach can be used to replicate objects instead of deleting them, as
shown in the bottom images of Fig. 4. To better hide this operation to the human eye, the
forger can perform geometric transforms on the region to be copied, such as rotation or
scaling. Furthermore, to produce a smooth transition between the (original) surround and
the object to be pasted, matting and blending techniques can be exploited [74, 91].

Object removal can be also achieved by means of in-painting techniques [9]. Inspired by
real techniques for painting restoration, in-painting methods fill the holes left by object
removal by exploiting the information preserved in the regions surrounding the gaps. In
particular, in-painting is based on an iterative process of smooth information propagation
from the image to the region to be filled. The gap is gradually filled from the periphery to
the center, resulting in a perceived continuity in the final image. However, the algorithm
struggles with filling highly textured areas.

Recently, the seam carving method was shown to be a powerful tool for object removal
[82]. Initially proposed for content-aware image resizing [5], the algorithm is based on the
notion of seam. A seam is defined to be a monotonic and connected path of pixels including
one pixel per row (column) and traversing the image from the top to the bottom (left to the
right). Seams are iteratively removed based on a minimum energy criterion; each seam
deletion corresponds to a horizontal (vertical) resizing of one pixel, leading to a final result
perceptually more coherent than what could be obtained by simple re-sampling of the

Fig. 5 The Newsweek and Time covers reporting on the O.J. Simpson case. Time magazine was accused to
have darkened the image with racist purposes
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image. When targeting the algorithm on a specific region or object, the same methodology
becomes a very accurate tool for object removal, which is achieved by iteratively
eliminating all the seams traversing the selected region.

Forgeries can be performed on a single image also without recurring to object removal.
Image semantics can be modified by applying simple image processing techniques, such as
histogram manipulation or contrast enhancement (Fig. 5). Additionally, brightness
adjustment and scaling can be of appropriate application to better mask copy-move
forgeries: more in general, the application of filters or simple geometric transforms can
compromise the forensics analysis, by covering or deleting traces of further tampering, as
shown in [30] for scientific images.

4.1.2 Forgeries using multiple images as source for tampering

The insertion in an image of material originally coming from another source is one of the
most powerful tools to overturn the message contained in visual media. Modern techniques
and editing software allow easy creations of image composites (e.g. through layers
superposition) obtaining results that are hardly detectable by the human eye (see, e.g.
Figs. 1 and 6). Blending and matting techniques are again applicable to mask the
boundaries of the spliced regions and to give the image a more uniform aspect. Also, the
creation of image composites might require geometric transformation. Rotation, scaling and
translation are often needed to make sure that the spliced object respects the original image
perspective and scale. Geometric transforms typically involve re-sampling, which in turn
calls for interpolation (e.g. nearest neighbor, bilinear, bicubic). The re-sampling process
produces artifacts in the image histogram, and hence provides a useful cue for compositing
detection.

It should be also taken into account that inserted material does not necessarily have to
come from natural images. As computer graphics evolves, more and more realistic 3D
objects can be modeled and rendered to be eventually spliced into an image composite.
Furthermore, the extraction of 3D scene structure from images allows manipulating objects
by morphing them: in this case, the splicing involves a remodeled (i.e. artificial) version of
a part of the original image. This technique is applied when the forger aims e.g. to modify a
facial expression as experimented in video rewriting [12].

4.2 Methods for forgery detection

In the remainder of this section we review some of the most effective techniques for
tampering detection. The methods will be presented according to their target: forgeries

Fig. 6 The famous photomontage of John Kerry and Jane Fonda
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produced from a single image (section 4.2.1) and composites (section 4.2.2). Techniques
able to detect both kinds of tampering will eventually presented in subsection 4.2.3.

It should be noticed that also in the case of tampering detection no well-established
benchmark exists. However, researchers from Columbia University made available in 2004
the “Dataset of authentic and spliced image blocks” [71], including 933 authentic and 912
spliced image blocks of size 128×128 pixels extracted from the CalPhotos image set [13].
This dataset represents a valuable support for researchers dealing with image composite
detection. As it will be shown in section 4.2.2, fair comparison of different splicing
detection methods was already possible thanks to this useful tool.

4.2.1 Detecting tampering performed on a single image

One of the most popular methods for modifying image semantics is the copy-move of an image
region, due to its simplicity and effectiveness. When region copy-move is performed without
further retouching, the tampered area still shares most of its intrinsic properties (e.g. pattern
noise or color palette) with the rest of the image. On the other hand, a structural analysis of
image segments might reveal high similarities between distant regions. Based on this idea, a
first attempt in retrieving tampered areas was described in [34]. The authors propose to look for
matches among DCT representations of image segments. To avoid the computational burden
of a brute force comparison, DCT coefficients are lexicographically sorted and adjacent
identical pairs are considered as potentially tampered regions. A refinement of this selection is
based on a spatial criterion. A histogram is built counting the number of matching segments
which are separated by the same distance. The higher the number of pairs located at the same
distance, the higher is the probability that those pairs belong to copy-moved regions.
Eventually, bins of the histogram including a number of segments higher than a predefined
threshold are selected, and the corresponding regions are marked as tampered. This strategy
avoids the selection of isolated segments, and is based on the assumption that likely the copy-
move forgery is performed on relatively extended regions.

On a similar path, Popescu and Farid [78] propose to perform a principal component
analysis (PCA) for the description of image segments (in particular, overlapping square
blocks). PCA-based description is shown to bring higher discriminative power, together with
a reduction of the computational cost achieved through the truncation of less significant
eigenvectors. The resulting complexity of the algorithm is O (Nt N logN), being Nt the
dimensionality of the truncated PCA representation and N the number of image pixels. The
approach is shown to produce a low number of false positives and to be resistant to image
degradation due to noise or lossy JPEG compression. Further research on robust features for
segments matching is reported in [60]. To deal with computational complexity, the use of kd-
trees is proposed in [58] and exploited in [26, 68]. In the latter, Dybala and others try to tackle
the problem of region copy-paste masking through re-touching. As well as in [30], the method
is able to detect traces of the use of Adobe Photoshop healing brush and Poisson cloning.

A main limitation of the previous methods is their low robustness to the likely scaling
and rotation operations that tampered regions might undergo before being pasted. In this
regard, the work of Huang et al. [45] exploits SIFT features to obtain robust tampering
detection even under geometric transforms. In this case, only matching SIFT key-points are
retrieved, by means of the best-bin-first nearest neighbor identification. Hence, it is not
possible to define the exact boundaries of the tampered regions. Dealing with the same
problem, in [8] Bayram and others represent image segments in a Fourier-Mellin Transform
domain, known for its invariance to geometric transformations. Further, the method
interestingly proposes the use of bloom-filters to reduce the computational complexity of
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the segments matching phase. This aspect still has to be refined, as it proved to be less
robust than the lexicographic sorting, since it requires the exact segment matching rather
than just a high similarity among them. The SIFT-based approach was recently further
developed in two independent works [2, 73]. In both studies, not only matching key-points
are detected, but also the geometric transforms parameters (e.g. rotation angle and scaling
factor) are estimated with acceptable accuracy. Method [73] also exploits these parameters
to recover an approximated boundary of the tampered area.

With the introduction of in-painting and content-aware resizing techniques, image forgers
found new efficient tools to perform object removal. To contrast this tendency, Sarkar et al. in
[83] proposed a method for detecting seam insertions and carving in images. The authors
observe that seam carving introduces inconsistencies in the image high frequency DCT
components; such inconsistencies can be modeled with a Markov random process, whose
parameters are exploited to feed an SVM, trained to recognize tampered images. Although
not treating malicious applications of the seam insertion/removal, the paper represents a first
attempt to deal with these new techniques. More recently, the study by Fillion and Sharma
[33] treated the problem by extracting energy-bias-based features and wavelet absolute
moments. The algorithm is able to identify images which have been deliberately resized to
hide information for malicious purposes. Nonetheless, both methods are only able to define
whether an image has been tampered by seam carving or not. To the best of the authors’
knowledge, no method has been proposed so far able to also detect the tampered areas or
explicitly point out object removal. The in-painting attack was analyzed in [93] by Wu et al.;
the authors use zero-connectivity features and fuzzy membership to detect such doctoring.

The detection of image processing based tampering is not always straightforward.
Nonetheless, several methods have been proposed in the literature to identify it. Avcıbaş
and others [4] designed a classifier able to discriminate between different kinds of
manipulation (i.e. rotation, scaling, brightness adjustment and histogram equalization).
Image quality metrics are adopted as discriminative features, as they reflect alterations in
the image through a measure of its quality. Hani Farid in [30] explores tampering of
scientific images, which often is performed by removing salient objects and by replacing
them with a uniform region with the mean intensity of the background. The author proposes
to detect these modifications by considering the image as a graph, where each pixel is a
vertex, and to divide it in intensity segments by performing normalized cuts. Traces of
manipulation such as intensity and texture differences in the background are exposed by
appropriately weighting the edges of the graph prior to the cut.

A more complete treatment of image processing for malicious tampering is discussed in
[85]. The authors observe that most of the image processing operations can be viewed as
pixel mappings which leave statistical traces; as such, every tampered image carries some
kind of “fingerprint” describing the image processing history. Given a mapping (processing
algorithm) m, each pixel w in the tampered image J is related to its corresponding pixel x in
the original image I by the relationship w = m(x). Therefore, the original image histogram
HI and the histogram HJ corresponding to J are related by:

HJðlÞ ¼
X255

t¼0;mðtÞ¼l

HIðtÞ ð5Þ

The authors define the intrinsic fingerprint of the tampering m as fmðlÞ ¼ HJðlÞ � HIðlÞ,
which describes the changes in the image histogram after the application of m. The
fingerprint is modeled processing-dependent and analyzed to discern between tampered and
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genuine images. Contrast enhancement, for example, is observed to produce an increase in
high frequency components of the original histogram. This cue is exploited for tampering
identification, allowing also to extend the approach to the detection of circumstantiate
contrast enhancement, typically applied to mask copy-paste forgeries.

4.2.2 Detecting image composition

Image composites result from the splicing of parts of different images in a single one. The
simple splicing operation itself, even when visually masked with blending or matting
techniques, leaves traces in image statistics. Bicoherence features were proposed by Farid in
[27] to highlight these traces and later successfully applied in [72] for splicing detection.
Bicoherence is a normalized bispectrum, i.e., the third order correlation of three
harmonically related Fourier frequencies of a signal, which appears to capture quite well
the discontinuities introduced in the image after splicing. Methods in [17, 35, 84] propose
alternative techniques based on the Hilbert-Huang transform, on statistics of 2-D phase
congruency and on wavelet sub-bands features together with Markov transition probabil-
ities of difference JPEG 2-D arrays, respectively. The latter, in particular, outperforms the
other techniques when applied on the Columbia Image Splicing Detection Evaluation
Dataset [71].

An interesting research area in image composition exposure involves image appearance
cues. Even if modern editing tools allow covering the traces of splicing in a convincing
way, it is not always possible for the forger to match the lighting conditions of the regions
that make up the composite, as in the well-known case of the Kerry and Fonda
photomontage (Fig. 6). Several studies have been dedicated to forgery detection through
the scene illumination analysis. A first attempt was proposed by M. Johnson and H. Farid in
[46], in which they estimate the incident light direction for different objects in order to
highlight mismatches. Assuming to deal with lambertian surfaces and an infinitely far away
point light source, the authors express the image intensity I for pixel x as:

IðxÞ ¼ RðNðxÞ � LÞ þ A ð6Þ
Where R is the (assumed to be) constant reflectance term, N = (Nx Ny Nz) is the normal to
the illuminated object, L is the 3D incident light direction and A is a constant ambient light
term. By assuming constant reflectance, R can be considered as a scale factor and the
illumination conditions (L and A) can be computed independently from it. Problem (6) can
be solved with standard Least Squares, having defined the quadratic cost function:

EðL;AÞ ¼ M
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A

0
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ð7Þ
As in this formulation the light estimation problem requires the knowledge of the surface
normal in at least four different points, which is rarely given unless the image geometry is
known, the authors propose to perform light direction estimation along occluding contours,
reducing to three the number of unknowns. Occluding contours consist in those points
where an object hides itself from the viewing direction (e.g. the horizon for the earth).
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Along occluding contours the surface normal is perpendicular to the viewing angle, and
hence Nz=0. In such situation, problem (6) can be rewritten as:

IðxÞ ¼ R NxðxÞ Ny ðxÞ
� �

Lx Ly

� �T þ A ð8Þ
Since the surface normal can be computed analytically from the expression of the curve
best approximating the occluding contour, and since the intensity values along the contour
can be extracted through interpolation, the components Lx and Ly can be estimated by using
the least squares solution in (7). The authors also propose a way to regularize the least
squares problem in order to relax the constant reflectance assumption and consider local
instead of infinitely far away light source, more appropriate for e.g. indoor images.

In a later work [48] the same authors present a more complex lighting environment
model, exploiting spherical harmonics for its representation. Assuming that the objects in
the scene are bounded by convex and lambertian surfaces, the light environment is
expressed as a function L(V) on a sphere, being V a unit vector in cartesian coordinates. The
light received by a surface at any point (irradiance E(N)) corresponds to the convolution of
the reflectance function of the surface R(V,N) and the lighting environment function, which
in turn can be expressed in terms of spherical harmonics. Assuming a linear camera
response, image intensity I at point x can be expressed as:

I xð Þ ¼ E N xð Þð Þ ¼
Z
Ω

L Vð ÞR V;Nð ÞdΩ �
X1
n¼0

Xn
m¼�n

brnln;mYn;m Nð Þ with brn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2nþ 1
rn

r

ð9Þ
Where rn is a constant related to the reflectivity, Yn,m is the mth spherical harmonic of order
n. The coefficients ln,m describing the lighting environment can be eventually estimated by
truncating the spherical harmonics expansion to e.g. n=2, and solving a least squares
problem in 9 unknowns. To further simplify the estimation, again the model can be applied
along occluding contours.

Although these approaches provide accurate light direction estimation, the strong
assumptions and the so far unresolved problem of automatic occluding contour extraction
prevent them from being used in other applicative domains, where large amounts of real-
world images are involved.

Johnson and Farid further explored inconsistencies in lighting by detecting composites
of people from specular highlights on the eyes [49]. Zhang and others [94] proposed instead
a detection technique based on the analysis of shadows geometrical and photometrical
properties. Observing that an object illuminated by a point light source and its shadow on a
ground plane are related by a planar homology, the authors propose to verify whether all
objects in a scene respect the homology constraints. To describe the shadow photometric
properties the authors use the histograms of shadow matte values computed along the
shadow boundary points. The technique achieves a remarkable accuracy, nonetheless its
applicability is limited to images respecting the infinitely far away light source assumption
(i.e. either outdoors or artificially rendered), and require manual selection of shadows
boundaries.

Section 3.1 reported in details how different steps in image acquisition can leave on the
image some sort of fingerprint, which is related to the camera model and to the single
camera sensor. These characteristics are permanent: when a splicing of images acquired
with two different cameras is performed, the final composite will likely present inconsistent
patterns. Lukas et al. [64] propose to detect and localize tampering by analyzing the
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inconsistencies in the sensor pattern noise extracted from an image. The noise patterns
computed for various regions of the image are correlated with the corresponding regions in
the camera’s reference pattern. A decision is then made based on the comparison of
correlation results of the region of interest with those of other regions. The authors conclude
that it is possible to obtain reliable forgery detection even after subsequent JPEG
compression.

4.2.3 Tampering detection independent on the type of forgery

Most of the techniques described above take advantage of the knowledge on the kind of
forgery that compromised the image. A more general approach is presented in this section,
which can expose tampering on both single and composite images. The techniques
presented below analyze the effects of operations performed independently on the kind of
tampering, but which likely take place when images are manipulated. As an example,
section 4.2.1 treated malicious image processing, which can be either exploited for explicit
tampering purposes (Fig. 5) or to cover forgery traces [56, 85]. Those techniques are
usually applied on a whole image, which could be, in turn, already a composite: for this
reason, methods targeting image processing detection can be assimilated to those that will
be described in the following.

Three different types of artifacts can be exploited to detect general tampering: traces of
re-sampling, compression artifacts and inconsistencies in acquisition device fingerprints.

As already pointed out in section 4.2.1, to render copy-move forgeries more natural,
often geometric transforms are applied to the copied regions. This is even truer when
splicing is performed, as the geometry of different images can be consistently different.
Geometric transforms often involve a re-sampling process, which in turn produces
correlation among the image pixels. Popescu and Farid [80] use the Expectation/
Maximization algorithm to estimate the probability of each pixel to be correlated with its
neighbors: they show how for re-sampled images, these probabilities are arranged in
periodic patterns. The detection of such patterns is eventually considered as an evidence of
forgery. Detector [80] is further improved by Kirchner in [53] from the computational point
of view. Although its effectiveness is proven on regular images, it is observed in [80] that
the method is weaker when dealing with heavily compressed images, where further
periodicity is caused by quantization effects. In [69], Nataraj et al. propose the addition of
Gaussian noise to JPEG images to suppress JPEG periodic artifacts and enable the detection
process. On a similar path, Kirchner and Gloe [57] analyzed the problem of re-sampling
detection in case of double compression, often occurring in case of image tampering,
showing how actually JPEG blocking artifacts can bring benefit to the eventual tampering
detection. It should be noticed that most of the techniques discussed above are weaker in
dealing with down-sampling than with up-sampling.

Digital images need to be stored in one of the available image formats for further usage.
In real world applications, most of images are saved in JPEG format, being it one of the
most widespread compression techniques. As already pointed out in section 3.2.3, the
quantization table is strongly dependent both on the device from which the compression is
performed and on the quality factor. As a result, it is likely that if an image has been
originated e.g. from two different JPEG images, traces of different compressions could be
exposed. To this purpose Farid et al. [31] showed how to reveal whether different zones of
the image have different “compression histories”. The method is based on the comparison
(i.e. the difference) of differently compressed version of the image to the original (possibly
tampered) one. When the tampered region is present and has a lower quality factor than its
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surrounding, the method allows localizing it by detecting spatial local minima, the JPEG
ghosts, which appear in correspondence of the forgery.

In a more general scenario, forged images likely undergo a double compression, the first
proper of the un-tampered image, and the second applied at the moment in which the result
of the forgery is saved. Although double compression is not to be systematically considered
as a symptom of forgery, it introduces specific artifacts in the DCT coefficient histograms
that represent important cues in tampering detection. Popescu [77] proposed the first
theoretical analysis on the formation of these artifacts, mainly due to the effects of double
quantization. He observed that the quantization of signal s[t] with step a produces a signal
sa[t] = qa(s[t]), with qaðuÞ ¼ u

a

� �
, and that the histogram Ha(v) of sa[t] is related to that of

the original signal H(u) by HaðvÞ ¼
Pa�1

k¼0
Hðavþ kÞ. This indicates that

& every bin in the range [av, av + (a-1)] contributes to the vth bin of Ha(v)
& exactly a bins of the original histogram contribute to each bin v of the quantized signal.

In the case of double quantization, with step b first and step a in a second stage, the
quantized signal can be expressed as:

sab½t� ¼ qabðs½t�Þ; qabðuÞ ¼ u

b

j k b
a

� 	
ð10Þ

The number of bins n(v) of H(u) contributing to the vth bin v of the histogram of the double
quantized signal Hab(v) depends now on v itself. Denoting with umin, umax the smallest and
the largest values of u that map to v, the author finds:

HabðvÞ ¼
Xumax

u¼umin

HðuÞ and nðvÞ ¼ umax � umin þ 1 ð11Þ

umin and umax depend on the quantization factors a and b:

umin ¼ a

b
v

l m
b umax ¼ a

b
ðvþ 1Þ

l m
b� 1 ð12Þ

When a > b, typical empty bins are produced in the histogram (Fig. 7.C). Conversely, if b >
a, characteristic periodic patterns are created (Fig. 7.D). In both cases, recovering such
characteristic patterns is a strong indication of double compression, and of possible
tampering. Chen et al. [19] further improved Popescu’s work, exploiting JPEG 2-D array
features and a Support Vector Machine to increase the discrimination rates. Popescu’s study
is also the basis on which Lin and others [61] design their method for tampering
localization, analyzing to what extent DCT coefficients randomize the double quantization
effect. It is worth to notice that tampering localization represents a major advance in this
research area, since simple detection of double quantization does not necessarily imply
malicious manipulation. Further methods for double compression recognition are proposed
e.g. in [32]. Feng and Doerr extract DCT histogram features to feed both an LDA classifier
and an SVM. The system is shown to outperform the Generalized Benford’s law descriptors
proposed in [36].

From a different perspective, information about an image compression history can be
obtained by estimating its primary quantization matrix, to be matched then with the one
included in the image header. Lukas and Fridrich in [63] propose a technique to estimate
low-frequency coefficients of the primary quantization table. Each image is decompressed
and cropped by a few pixels; then, it is re-compressed with a predefined set of candidate
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matrices. The DCT coefficient histograms of the re-compressed images are compared to that
of the original image; the primary quantization table is selected as the one having minimum
distance from the original DCT coefficient histogram. Following this seminal work, Luo
and others [66] propose another similarity criteria based on the analysis of JPEG rounding
errors. The method is shown to be more accurate than that in [63]. However, in both cases it
is assumed that the primary quantization matrix belongs to a set of known matrices.
Although this is reasonable for most applications, sophisticated forgeries involving non-
standard recompression matrices would fool these techniques. This lack is addressed by
Pevný and Fridrich in [75].

Tampering also produces inconsistencies in regular patterns created in the image during the
acquisition process (see section 3.1). Chromatic aberration inconsistencies are examined in [40,
47]. Farid and Johnson [47] propose a computational technique for automatically estimating
lateral chromatic aberration based on the model described in section 3.2.1, maximizing the
mutual information between color channels, and show its efficacy in detecting digital
tampering. The method works well for un-compressed non-uniform parts of the image, but for
the uniform regions or typical JPEG images, the results are weaker. Alternatively, Popescu and
Farid [79] argue that tampering would likely break the periodicity produced by CFA
interpolation. Based on the expectation/maximization (EM) algorithm, they analyze the CFA
patterns of separate regions of the image, showing the soundness of their method. In [25], Dirk
et al. use two features to analyze traces of CFA. This method is successful for both tampering
detection and discrimination between real and synthetic images, although partially failing for
stronger JPEG compression. On the other hand, the method is able to not only detect but also
to localize the doctored parts of the image with a good precision.
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5 A new phase: counter-forensics

The methods discussed in the previous sections testify the effort and the indubitable high
level of expertise reached by researchers in blind detection of malicious image
manipulations. However, as well as for other security-related disciplines, improvements
in defense and investigation techniques stimulate the burglars in the design of new,
powerful attacks. As a consequence, lately a growing interest has been shown around the
creation of undetectable forgeries and manipulations.

In the field of forensic sciences, countermeasures to the investigation activities are
known under the name of counter-forensics or anti-forensics. Harris [43] defines anti-
forensics techniques as “any attempt to compromise the availability or usefulness of
evidence to the forensic process”. Under this interpretation, the simple wiping-off of
fingerprints from a crime scene can be considered as a counter-forensic act. In a similar
way, multimedia counter-forensics involves all those means that allow covering traces of
image manipulation, or, more precisely, to make manipulation invisible to the existing
detection methods. As pointed out by Böhme and others [10], the public availability of
most of the research in the field gives burglars a valid support to develop attacks targeted
on a specific tool. Since it cannot be excluded that forgers are also expert in digital image
processing, digital image forensics reliability is now becoming questionable.

Although it is common practice of authors to remark the limitations of their methods [61,
78], a new series of studies was recently published pointing out the weaknesses of existing
detectors. As an example, in [92] Wang and others propose a probabilistic analysis of
Generalized Benford’s Law, which was previously proposed for tampering detection in [36]
(cfr. Section 4.2.3). The authors use histogram equalization in the log-domain to restore the
First Significant Digit distribution so that it follows Benford’s law also after manipulation.
It is then shown how the discriminative power of the Benford’s law-based detector
decreases when simple histogram manipulation is performed as a compensation for
tampering. This study represents a first attempt of tamper hiding. More sophisticated
techniques have been published lately, targeted either to specific detectors or more general
detection methods. In a similar way, a few attempts have been made to counterfeit the
image source device fingerprint. It should be noticed that the terms hiding and
counterfeiting reflect Harris’ classification of counter-forensic measures. As image
tampering traces cannot be destroyed or removed, but at most covered, we propose to
classify the techniques described in section 5.1 as evidence hiding techniques.
Section 5.2 reports instead on methods that suppress image fingerprints to replace them
with other, synthesized ones. This again fits with Harris’ definition of counterfeiting
counter-forensics, where evidence is replaced with a misleading one. Finally, section 5.3
reports on the first examples of counter-measures to counter-forensics recently introduced
to the community.

5.1 Tamper hiding

In [54], Kirchner and Bohme introduce a technique to hide traces of region re-sampling.
The study is targeted on Popescu and Farid’s tampering detector (see section 4.2.3, [80]),
which exposes forgeries by detecting the linear dependencies that re-sampling typically
induces among pixels. To break these linear dependencies, post-processing the image with a
median (i.e. non linear) filter is shown to be effective. The authors propose to use it in
conjunction with geometric distortions, to be performed on high frequency components, for
a further decrease of the forensic detectability of re-sampling.
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An interesting point raised by Kirchner and Bohme is that concerning the visual
noticeability of tamper hiding. Both median filtering and geometric attacks can bring about
visual artifacts and compromise the eventual image quality. As a consequence, counter-
forensic techniques should also be evaluated according to their impact on visual quality. To
this purpose, an adaptive method to reduce jittering in the final image is proposed, which
reduces the strength of geometric attacks along edges, obtaining a good trade-off between
low visual and forensic detectability.

In a later study [55], the same authors target the CFA-based tampering detector of
Popescu and Farid [79]. The method aims at restoring, after tampering, those periodic
patterns that detector [79] seeks to establish the genuineness of an image. The authors
formulate this problem as a Least Squares one, assuming bilinear interpolation. CFA
artifacts in the image channel by can be described as being originated through the linear
equation by ¼ Hc, where H is the matrix of interpolation weights and x is the 2D intensity
lattice. In tampered images the typical CFA pattern will deviate from the original one
according to the model y ¼ Hcþ ξ. Hence, to obtain minimal distortion in the CFA
synthesis, the signal x should be chosen so that it minimizes ξk k ¼ y� byk k. The solution
of this standard least squares problem is given by: c ¼ H0Hð Þ�1H0y, and the restored
pattern can be derived by the distorted one as a pre-filtering operation:

by ¼ H H0Hð Þ�1H0y

 �

ð12Þ

The authors provide computationally feasible methods to estimate the needed pre-filtering
coefficients to restore by. The approach is proven to be effective, also in terms of quality
preservation; nonetheless, the authors point out that CFA interpolation is not the last step in
the image acquisition process, and further processing might leave further traces. An
investigator retrieving convincing CFA artifacts in contrast with other tampering traces
might eventually assume it as further proof of manipulation.

Stamm and others in [86] attempt at covering traces of previous compressions by
modifying the distribution of the DCT coefficients before saving the tampering results. After
compression, DCT coefficients are clustered around the integer multiples of the quantization
step, as discussed in section 4.2.3. Masking previous compression does not aim at recovering
the exact original distribution of these coefficient, but rather attempts at restoring a plausible
distribution for an uncompressed image. The authors accomplish this task by perturbing
quantized coefficient with additive white noise. The noise perturbation depends upon the
value of the DCT coefficient and is designed to eventually convey the estimated un-quantized
DCT coefficient distribution. The method is shown to defeat the technique proposed in [70],
which attempts at detecting previous compression in bitmap images, but no validation was
performed in case of double compression, e.g. dealing with methods [36] or [75].

5.2 Image source counterfeiting

The first attempt at fooling source device identification techniques was proposed by Gloe
and others in [39]. The study proposes an attack to the identification method [65], which is
based on the extraction and the analysis of the camera pattern noise (cfr. Section 3.2.2). As
a countermeasure to it, the authors propose to use flat-fielding to estimate both the FPN and
the PRNU for the device of interest. The FPN can be estimated as a dark frame d by
averaging a sufficiently large number of images captured in a dark environment. The PNRU
(K) is estimated from a set of images captured in a homogeneously illuminated
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environment, from which d is subtracted to suppress FPN. Since FPN is additive and
PNRU is multiplicative, pattern noise can be eventually suppressed from image x by:

J ¼ I� d
K

ð13Þ

In a similar way, pattern noise can be estimated from another device in terms of (de, Ke)
and forged into the polished images to counterfeit the camera signature (inverse flat-
fielding): Jcont ¼ J �Ke þ de. Inverse flat-fielding is shown to suppress quite well the
original pattern noise, when experimented on different acquisition device models. On the
other hand, no verification has been made using distinct exemplars of the same camera
model.

A different method for counterfeiting image source fingerprints is proposed in [87], and
is based on the manipulation of JPEG artifacts. The authors present a technique
complimentary to [86] for the suppression of traces of compression and then re-forge the
image by compressing it with a different quantization table, e.g. characteristic of another
device. While method [86] restores a plausible histogram for unquantized images, it does
not eliminate visual compression artifacts, i.e. blockiness. For this reason, technique [87]
cleans blocking artifacts by applying first a median filter and then adding low-power white
noise to the image. It is shown that this operation outperforms existing de-blocking
techniques when coupled to method [86] for compression hiding. “Polished” images are
then recompressed with quantization tables typical of other cameras, and their quantization
matrices estimated through method [70]. Almost no original quantization table is shown to
be recovered. Although this technique seems to be promising, again it was not tested on
more recent methods dealing with double compression, or with the device identification
method proposed by Farid in [52].

5.3 Countering counter-forensics

Even if someone could think that the development of counter-forensics is potentially
dangerous for multimedia security, the examples that we explored in the previous sections
are not meant to defeat existing forensics tools. Rather, researchers attempted to point out
the weaknesses of their counterparts to promote further improvements in the field, and to
encourage the community to keep on developing this discipline, as existing tool cannot be
considered completely safe. This is indeed a common practice in security-related
disciplines, e.g. watermarking or steganography.

The efforts served the purpose: in very recent days, the first examples of counter-
counter-forensics have been proposed to the community, as direct answers to specific
counter-forensics techniques. Kirchner and Fridrich [56] targeted the median filter attack
perpetrated in [54], also arguing that since many detectors rely on the detection of
linearities, the use of median filtering can be a general symptom of tampering. The
authors propose to inspect image by measuring streaking artifacts, typically originated
from the application of median filters. The method is shown to be successful for
uncompressed images, but fails when images are compressed after filtering. Therefore,
the authors propose the use of SPAM features to strengthen the analysis and feed a SVM,
which reliably detects median filtering also at medium compression qualities.

A second study [42] addresses the counterfeiting pattern noise attack [87]. In this case,
plausible scenarios are studied, assuming that for the burglar to synthesize some specific
camera pattern noise, he/she should have access at least to some images that are also
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accessible to the investigator. The authors propose therefore a “triangle test” which takes
advantage of the availability of both the (possibly) counterfeit image and of the knowledge
of the images from which the camera fingerprint might have been forged. Results indicate
that traces of the original pattern noise remain in the forged image, and can still be exposed
given the availability of the mentioned material.

6 Conclusions

The techniques that we reviewed in this survey represent important results for multimedia
security, especially considering that the problems they tackle were previously (almost)
unexplored. A large set of tools is now available to investigate on image sources and to
authenticate acquisition devices. Among them, tools that analyze pattern noise were proven
to be promising for identifying even different exemplars of the same device model. An even
larger number of techniques have been developed to detect image tampering, some of
which are also able to localize the forged areas.

Despite these achievements, major challenges remain still open for Digital Image
Forensics. A first main concern is the robustness of the existing tools. Apart from [84], no
real comparative study exists which evaluates the actual accuracy of DIF methods. This is
mainly due to the lack of established benchmarks and of public testing databases. Few
efforts in this direction [38, 71] have been already done; however, a large dataset
comprehensive of different scenes, illumination and environmental conditions and attacks is
still missing for, e.g., tampering detection. Given the maturity of the domain, it is
reasonable to assume that soon new databases and comparative studies will appear, as well
as public competitions, similar to the BOSS challenge for steganalysis [11]. Such an
evolution is desirable both for improving communication between researchers and for better
establish the actual state-of-the-art in DIF.

Also, the rise of counter-forensics contributes in exposing the limitations of DIF tools.
Hence, confirming or strengthening the robustness of DIF techniques is a present priority
for DIF experts. Furthermore, like every other security-related discipline, image forensics
evolves based on the attacks perpetrated to the existing techniques, as discussed in
section 5. Therefore, the development of counter-forensics is to be encouraged, and can
represents an appealing domain for new researchers.

From another perspective, a future challenge for Digital image Forensics is the extension
to other media, and in particular to video. Videos are even more powerful vectors than
images in communication. Moreover, advances in video surveillance-related technologies
(such as camera networks or covert video recordings) will likely enable a massive usage of
digital video evidence in trials. More and more sophisticated forgery techniques will
threaten the reliability of this material. As a consequence, future efforts in DIF should be
also addressed towards video authentication.

Finally, perhaps the major challenge in the future of image forensics consists in
integrating it with visual perception. This is not only about the joint use of human and
automatic inspection of visual media. On a broader perspective, understanding the
perception of visual semantics might lead to the solution of one of the main limitations
of current DIF techniques: the distinction between malicious tampering and “innocent”
retouching, such as red-eye correction or artistic manipulation. If in the case of the fake
knighthood of Jeffrey Wong Su En (Fig. 1) the malicious purpose was evident, in many
occasions manipulation can be performed to e.g. augment the beauty of an image, as in the
case of models re-touching in advertisement. The same case of the TIME magazine cover

156 Multimed Tools Appl (2011) 51:133–162



(Fig. 5) was claimed to be an erroneous interpretation of an artistic editing. The line
between evil and naïve purposes is often fuzzy. However, some manipulations bring a more
critical impact on the semantic content of the image, and therefore on the viewer.

Most of the existing tools are only able to establish the non-authenticity of the image. No
investigation about the kind of alteration of the message conveyed by the medium is
performed, not to mention the motivation of the tampering. Of course, the human factor can
in many cases provide a correct interpretation of the detected forgery. Nonetheless, a joint
effort of researchers in media semantics, visual perception and media security fields might
produce interesting results, not only from the strict forensic investigation point of view. To
some extent, the work of De Rosa and others [22] can be considered a first step in this
direction. The authors propose a theoretical framework to retrieve (semantic) dependencies
among groups of images. The work is so far limited to detecting whether images have been
generated from others. However, in a long term perspective, image dependencies and the
analysis of the mutation of their semantic content across these dependencies might bring
useful information about e.g. their owner or the role of different websites and the habits of
their visitors. In a similar way, we can envision extensive forensics activity on social
networks or video databases.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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