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Abstract—Digital imaging has experienced tremendous growth
in recent decades, and digital camera images have been used in a
growing number of applications. With such increasing popularity
and the availability of low-cost image editing software, the integrity
of digital image content can no longer be taken for granted. This
paper introduces a new methodology for the forensic analysis of
digital camera images. The proposed method is based on the ob-
servation that many processing operations, both inside and outside
acquisition devices, leave distinct intrinsic traces on digital images,
and these intrinsic fingerprints can be identified and employed to
verify the integrity of digital data. The intrinsic fingerprints of the
various in-camera processing operations can be estimated through
a detailed imaging model and its component analysis. Further pro-
cessing applied to the camera captured image is modelled as a ma-
nipulation filter, for which a blind deconvolution technique is ap-
plied to obtain a linear time-invariant approximation and to esti-
mate the intrinsic fingerprints associated with these postcamera
operations. The absence of camera-imposed fingerprints from a
test image indicates that the test image is not a camera output and
is possibly generated by other image production processes. Any
change or inconsistencies among the estimated camera-imposed
fingerprints, or the presence of new types of fingerprints suggest
that the image has undergone some kind of processing after the
initial capture, such as tampering or steganographic embedding.
Through analysis and extensive experimental studies, this paper
demonstrates the effectiveness of the proposed framework for non-
intrusive digital image forensics.

Index Terms—Component forensics, image-acquisition foren-
sics, intrinsic fingerprints, nonintrusive image forensics, steganal-
ysis, tampering detection.

I. INTRODUCTION

R
ECENT decades have witnessed rapid advancements in

digital photography. Digital images have been used in a

wide variety of applications, from military and reconnaissance

to medical diagnosis and consumer photography. With such

high popularity and the advent of low-cost and sophisticated

image editing software, the integrity of image content can no

longer be taken for granted and a number of forensic-related

questions arise amidst such extensive use. For example, one

can readily as indirectly or directly question ask how an image

was acquired? Was it captured using a digital camera, an

image scanner, or was it created artificially using image editing

software? Has the image undergone any manipulation after

capture? Is it authentic or has it been tampered in any way?

Manuscript received May 31, 2007; revised September 11, 2007. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Prof. Hany Farid.

The authors are with the Department of Electrical and Computer Engineering
and the Institute of Advanced Computing Studies, University of Maryland, Col-
lege Park, MD 20742 USA (e-mail: ashwins@eng.umd.edu; minwu@eng.umd.
edu; kjrliu@eng.umd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2007.916010

Does it contain any hidden information or steganographic data?

Many of these forensic questions are related to tracing the

origin of the digital image to its creation process. Evidence

obtained from such forensic analysis would provide useful

forensic information to law enforcement, security, and intel-

ligence agencies. Knowledge of image-acquisition techniques

can also help answer further forensic questions regarding the

nature of additional processing the image has undergone after

capture.

In this work, we develop a novel methodology for digital

image forensics of color images. We present techniques to iden-

tify the inherent traces that are left behind in a digital image

when it goes though various processing blocks in the informa-

tion processing chain. We refer to these traces as the intrinsic

fingerprints, and use them to identify the source and establish

the authenticity of the digital image. We classify intrinsic fin-

gerprints into two categories, namely in-camera and postcamera

fingerprints. Using a detailed imaging model and its component

analysis, we estimate the intrinsic fingerprints of the various

in-camera processing operations. Further processing applied to

camera outputs, if any, are modeled as a filtering operation, and

its coefficients are estimated to obtain the postcamera finger-

prints. While the absence of in-camera fingerprints suggests that

the test image is not a camera output and is possibly generated

by other image production processes, any change or inconsis-

tencies among the estimated in-camera fingerprints, or the pres-

ence of new postcamera fingerprints indicates that the image has

undergone some kind of postcamera processing.

Postcamera processing operations include such manipula-

tions as tampering and steganographic embedding. Recently,

there have been an increasing number of software tools for

manipulating multimedia data. While these programs enable

quality enhancement, they also facilitate easy editing and tam-

pering of data. Therefore, establishing the integrity of digital

content has become particularly important when images are

used as critical evidence in journalism and surveillance appli-

cations. Data authentication techniques, such as semifragile

watermarking [1], [2] and robust hashing [3], require the water-

mark/signature or more generally extrinsic fingerprints, to be

inserted at the time of creation of multimedia data. The presence

or absence of the watermark in interpolated images captured

by the camera can be employed to establish the authenticity of

digital color images [4]. However, such techniques impose sev-

eral restrictions on its applicability as many digital cameras and

video recorders in the market still do not have the capabilities to

add a watermark or a hash at the time of image creation. Hence,

there is a strong motivation as a part of the emerging field of

image forensics to devise nonintrusive methods to distinguish

authentic images from manipulated ones. As we shall show

later in this paper, the proposed techniques facilitate tampering

forensics by determining whether there has been any additional

1556-6013/$25.00 © 2008 IEEE
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editing and processing applied to an image after it leaves the

camera.

Watermarking and steganographic embedding may also be

modeled as postprocessing operations applied to camera out-

puts, and the estimated postcamera fingerprints can be utilized

to identify them. Steganography is the art of secret communi-

cation where the hidden information is transmitted by embed-

ding it on to the host multimedia. Over the past few years, there

have been a number of steganographic embedding algorithms

using digital images as hosts for covert communication [5], [6],

[7]–[9]. In the same period, several steganalysis methods have

been proposed to identify the presence of hidden data in multi-

media. While embedding specific steganalysis [10] target-spe-

cific embedding algorithms, universal steganalysis [11], [12] is

designed to identify more than one type of steganography. With

an increasing number of steganographic embedding algorithms,

there is a strong need for robust universal methods for blind

steganalysis. As can been seen from our results, the proposed

intrinsic fingerprinting techniques facilitate blind steganalysis

by distinguishing authentic camera outputs from images with

hidden content.

The paper is organized as follows. After reviewing the related

works in Section II, we discuss the image-acquisition model

and present techniques to estimate the in-camera fingerprints

in Section III. In Section IV, we introduce the problem formu-

lation and propose a new forensic framework to estimate the

postcamera fingerprints. We show that the proposed method is

universal and can distinguish between genuine photographs and

its manipulated versions. Detailed simulation results and elab-

orate case studies are presented in Sections V and VI, and the

final conclusions are drawn in Section VII.

II. RELATED PRIOR WORK

Recently, there has been growing research on nonintrusive

forensics devoted to the security and protection of multimedia

information. Each technique targets addressing different aspects

related to verifying the authenticity of digital data. Related prior

work falls into three main categories. In the first category, there

have been works on source authentication. Higher order sta-

tistical models using wavelet transform coefficients [13] and

physics-motivated features based on geometry and cartoon fea-

tures [14] have been proposed for classifying photographs and

photorealistic computer graphics.

In the second group, there have been works in the tampering

detection literature trying to define the properties of a manipu-

lated image in terms of the distortions it goes through, and using

such analysis to present methods for detecting manipulated im-

ages. In doing so, some works assume that creating a tampered

image involves a series of processing operations, which might

include resampling [15]; JPEG compression [16], [17]; Gamma

correction [18]; and chromatic aberration [19]. Based on this

observation, they propose identifying such manipulations by ex-

tracting certain salient features that would help distinguish such

tampering from authentic data. For instance, when the image is

upsampled, some of the pixel values are directly obtained from

the smaller version of the image, and the remaining pixels are in-

terpolated and, thus, highly correlated with its neighbors. Thus,

postprocessing operations, such as resampling, can be identi-

fied by studying the induced correlations [15]. JPEG compres-

sion has been considered as quantization in the discrete cosine

transform (DCT) domain and statistical analysis based on bin-

ning techniques has been used to estimate the quantization ma-

trices [16], [20]. Image manipulations, such as contrast changes,

Gamma correction, and other image nonlinearities have been

modelled and higher order statistics, such as the bispectrum,

have been used to identify them [21], [22]. Inconsistencies in

noise patterns [21], JPEG compression [23], or lighting [24],

and alternations in correlations induced by color interpolation

[25] caused while creating a tampered picture have been used

to identify inauthentic images.

Although these methods can be employed to identify the type

and the parameters of the postprocessing operation, it would

require an exhaustive search over all kinds of postprocessing

operations to detect tampering. The presence of pattern noise

in camera-captured images and its absence in tampered im-

ages have been used to detect forgeries [26]. Classifier-based

approaches to detect image tampering were proposed in [27]

and [28], where features based on the analysis of variance

approaches [27] and higher order wavelet statistics [28] have

been used to detect image manipulations. However, these

methods require samples of tampered images for classification

to distinguish manipulated images from genuine ones. Further,

these methods may not be able to efficiently identify other kinds

of manipulations that are not modelled or considered directly.

By defining the properties of an authentic image via intrinsic

fingerprints, our proposed methods provide better scalability

and can help identify previously unseen distortions.

In the third group of prior art, there have been works on

steganalysis to identify the presence of hidden information in

multimedia data. These works can be broadly classified into two

classes, namely: 1) embedding specific and 2) universal. In the

class of embedding-specific steganalysis, there have been algo-

rithms to identify different types of least-significant bit (LSB)

embedding [10], [29], [30]. Statistics-based approaches for uni-

versal blind staganalysis have been introduced in [11] and [12],

where features from wavelet statistics [11] or image-quality

measures [12] are used to build a classifier to distinguish ste-

godata from cover data. As shall be seen from our results later

in this paper, our proposed forensic methodology provides a

combined framework for authenticating digital camera outputs

and distinguishing them from scanned, computer-generated,

tampered, and stegodata.

III. ESTIMATING INTRINSIC FINGERPRINTS

OF IN-CAMERA PROCESSING

When a real-world scene is captured using a digital camera,

the information about the scene passes through the various

camera components before the final digital image is produced.

Each component in the information processing chain modi-

fies the input via a particular algorithm using a specific set

of parameters, and leaves some intrinsic fingerprint traces

on the output. In this section, we begin reviewing imaging

models of digital cameras to examine various components in

its information processing chain. We then discuss techniques

to nonintrusively estimate the component parameters to obtain
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Fig. 1. System model.

the intrinsic fingerprints of the in-camera processing. Later in

Section IV, we use these intrinsic in-camera fingerprints to look

for any new fingerprints left behind on the final digital image

through additional postcamera processing operations.

A. Image-Acquisition Model

Fig. 1 shows the image-acquisition model in digital cameras.

The light from the scene passes through the lens and the optical

filters and is finally recorded by the color sensors. Most digital

cameras use a color filter array (CFA) to sample the real-world

scene. The CFA consists of an array of color sensors, each of

which captures the corresponding color of the real-world scene

at an appropriate pixel location. To facilitate discussions, let

be the real-world scene to be captured by the camera and let be

the CFA matrix. is a 3-D array of pixel values of size

, where and denote the height and the width of the image,

and is the number of color components (red, green, and

blue). The CFA sampling converts the real-world scene into

satisfying

if

otherwise.
(1)

After the data obtained from the CFA are recorded, the in-

termediate pixel values [corresponding to the points where

in (1)] are interpolated using the neighboring

pixel values to obtain . After interpolation, the three im-

ages corresponding to the red, green, and blue components go

though a postprocessing stage. In this stage, depending on the

camera make and model, the images may undergo different

processing operations [31], [32], which might include white

balancing, color correction, gamma correction, lens vignetting

correction, lens distortion removal, denoising, etc. Finally, the

image may be JPEG compressed to reduce storage space to

produce the output image . For our work, we model all such

postinterpolation processing as a combined postprocessing

block as shown in Fig. 1.

B. Estimating Camera Component Parameters

As can be seen from Fig. 1, the data about the real-world

scene pass through the various components of the information

processing chain before the final digital image is created in point

A. Each camera component, such as a CFA and color interpola-

tion, employs a particular set of algorithms with an appropriate

set of parameters to modify the input scene. In these processing

stages, each camera uses a different algorithm (that may be pro-

prietary to the camera manufacturer, brand, or model) and leaves

intrinsic fingerprint traces on the output data. In our recent work

[33], we presented methods to estimate these in-camera finger-

prints from outputs corresponding to point A in the information

processing chain shown in Fig. 1. We provide a brief overview of

these techniques below, and later in Section IV, we build upon

these methods and introduce a novel approach to estimate the

postcamera fingerprints of manipulated camera outputs corre-

sponding to point B in the processing chain.

The CFA pattern and the color interpolation coefficients can

be jointly estimated from the output image [33]. A search space

for the CFA patterns is first established based on common

practice in digital camera design. For every CFA pattern in

the search space , the interpolation coefficients are computed

separately in different types of texture regions by fitting linear

models. Specifically, the image is divided into three types of

regions based on the gradient features in a local neighborhood.

Denoting , the horizontal and vertical

gradients at the location are found by using

(2)

(3)

The image pixel at location is classified into one

of the three categories: Region contains those parts of

the image with a significant horizontal gradient for which

, where is a suitably chosen threshold;

region contains those parts of the image with a significant

vertical gradient ; and region includes

the remaining parts of the image which primarily contains the

smooth regions. Using the final camera output , a set of

linear equations for all the pixels in each region

is obtained and solved to obtain the interpolation coefficients

. Once these coefficients are estimated, they are used to

reinterpolate the image and find the interpolation error. The

CFA pattern that gives the lowest error gives the estimate of

the CFA pattern. Further, the estimates are shown to be robust

to moderate levels of postprocessing operations, such as JPEG

compression, and white balancing done inside the cameras [33].

IV. ESTIMATING INTRINSIC FINGERPRINTS

OF POSTCAMERA MANIPULATIONS

In this section, we build upon component forensic analysis

presented in the previous section, and propose techniques to es-

timate the intrinsic fingerprints of postcamera manipulations.

Given a test image , we introduce a nonintrusive forensic

methodology to identify if it has undergone any further pro-

cessing after it has been captured using a digital camera. In this

work, we mainly focus on digital color images that constitute a

bulk of camera-captured images. We first assume that is a ma-

nipulated camera output corresponding to the point B in Fig. 1,

and is obtained by processing the actual camera output (point

A in Fig. 1) using the manipulation block. We then represent the
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postcamera processing applied on as a combination of linear

and nonlinear operations, and approximate them with a linear

shift-invariant filter. The coefficients of this manipulation filter,

estimated using blind deconvolution, serve as our postcamera

fingerprints to answer a number of forensic questions related to

the origin and the authenticity of digital images. In the following

subsections, we describe the estimation algorithm in detail.

A. Computing Inverse Manipulation Filter Coefficients by

Constrained Optimization

Let denote the test image, and let represent the estimate

of the camera output obtained by passing the given test image

through the inverse manipulation filter , i.e.,

for (4)

Here, we assume that is of dimension

, and operates independently on each color component. The

coefficients of the inverse manipulation filter are estimated

by solving an optimization problem that minimizes the camera

model fitting error given by

(5)

where denotes the image formed from by imposing the

constraints that pixels from a camera output image should sat-

isfy due to CFA-based color interpolation

otherwise

(6)

In these camera constraints, denotes the estimates of

the color interpolation coefficients and are derived from

the image using the component forensics techniques

presented in Section III-B. In our work, we assume that

for to ensure that the original

image and its manipulated version have similar brightness

levels. Incorporating this gain constraint into the minimization

problem, we solve for by minimizing a modified cost function

, given by

(7)

Fig. 2. Recursive algorithm to estimate the coefficients of the manipulation
filter.

where the value of is chosen to adjust the weights of the rel-

ative individual costs.

The filter coefficients can be directly estimated in the pixel

domain through a recursive procedure illustrated in Fig. 2. We

start the iteration by setting to be a delta function; this cor-

responds to direct camera outputs. In the th iteration, we obtain

an estimate of the camera output by passing the test image

through the estimate of the inverse blurring filter .

We then impose camera constraints given by (6) to obtain

and find the camera model fitting error. The inverse filter coef-

ficients are then updated [34] by

(8)

where

(9)

(10)

and the step sizes are chosen as the one that minimizes

for all . The recursive

procedure is repeated for a finite number of iterations or until

convergence. In the Appendix, we show that the optimization

problem is convex and converges to a unique solution for all

images whose interpolation parameters can be estimated

accurately.

We test the blind deconvolution method for a sample direct

camera output along with its filtered versions. Fig. 3(a) and (b)

shows the variation of the modified cost function given by (7)

as a function of the number of iterations for a sample unmanip-

ulated image and an image filtered with a 5 5 averaging filter,

respectively. We observe that the cost function converges in ten

iterations in both cases. The final estimated inverse filter coeffi-

cients for the green color channel for the two cases are

shown in Fig. 4(a) and (b), respectively. While the estimated co-

efficients from the unmanipulated camera output in Fig. 4(a) are

very close to an identity transform (corresponding to no post-

camera manipulations), the corresponding manipulation coeffi-

cients derived from the average filtered image, as presented in

Fig. 4(b), are similar to the 5 5 kernel approximation of the

inverse of the 5 5 averaging filter.

The performance of the blind deconvolution algorithm for

tampering detection is, to a great extent, tied with the choice of

the kernel size. In an ideal scenario, a finite-size averaging filter
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Fig. 3. Convergence of the cost function for an (a) unmanipulated image and (b) a manipulated image filtered with a 5� 5 averaging filter.

Fig. 4. Estimated inverse manipulation filter coefficients for an (a) unmanipulated image and (b) a manipulated image filtered with a 5� 5 averaging filter. The
inverse filter kernel size is set to 5� 5.

in the pixel domain would require an infinite length kernel for its

inverse. Although a larger kernel gives enhanced performance

improvements, it requires more iterations for convergence. In

the next subsection, we present a solution to directly estimate

the filter coefficients in the frequency domain.

B. Estimating Manipulation Filter Coefficients by Iterative

Constraint Enforcement

The recursive algorithm described in Fig. 2 can be solved

in the frequency domain to directly obtain the manipulation

filter coefficients by iteratively applying known constraints to

the input image [36]. A schematic diagram of the iterative con-

straint enforcement algorithm is shown in Fig. 5. The test image

is used to initialize the iterative process. In each iteration, the

estimated camera output and the estimated filter coefficients

are updated by repeatedly applying known constraints on the

image and the filter in the pixel domain and the Fourier domain.

In the th iteration, the pixel domain constraints on the image

consist of

1) Real-valued constraints that enforce the image pixel values

to be real.

2) Boundedness constraints restricting the image pixel values

to the range .

3) Camera constraints of the CFA-based color interpolation

given by

otherwise

(11)

where denotes the estimates of the color interpolation coef-

ficients derived from the image using the component foren-

sics techniques presented in Section III-B. After the image

is obtained, it is transformed by the discrete Fourier transform

(DFT) to give . The frequency response of the estimated

manipulation filter in the th iteration is obtained by using the

technique described in [35] with

(12)

where is an appropriately chosen constant, denotes

the Fourier transform of the test image , and represents the

complex conjugate of . The value of for the first iteration

is initialized as . The estimated filter response

is then inverse Fourier transformed to give . We further

impose filter constraints on and obtain to be the real part

of . The value of for the iteration is obtained as

a function of its two available estimates: 1) previous value

and 2) the estimate obtained by enforcing the Fourier domain

constraint , where and .

Both of these estimates have unique properties: has a non-

negative inverse transform that satisfies the image domain con-

straints, and satisfies the Fourier domain constraints.

In our work, we average these two estimates separately in every

iteration for each spatial frequency value and color to obtain the

new estimate for as described in (13), shown at the bottom

of the next page, where and are appropriately chosen con-

stants [36]. The value of represents the noise resilience of the

system, and is chosen to lie in the range to indicate the
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Fig. 5. Schematic diagram of the iterative constraint enforcement algorithm.

Fig. 6. Frequency response of the manipulation filter for (a) a simulated unmanipulated camera output and (b) an image lowpass filtered with a 5� 5 averaging
filter. (c) Actual manipulation filter coefficients of the 5� 5 averaging filter shown alongside for comparison. The magnitude of the frequency response is shown
in the log scale.

relative significance of the two terms in update equation [36]. In

our experiments, we set and . Finally,

is inverse Fourier transform to give , the pixel domain

estimate of the camera output image, and the system proceeds

to the next iteration. This process is repeated for a finite number

of iterations and the frequency response of the estimated ma-

nipulation filter parameters is found to obtain the intrinsic

fingerprints of postcamera manipulations. The deviation of the

estimated manipulation filter parameters from an identity trans-

form indicates that the test image has been manipulated after

capture by the camera.

C. Performance Studies on Detecting Manipulations With

Synthetic Data

We use synthetic data constructed from 100 representative

images to study the performance of the blind deconvolution

techniques for tampering detection [37]. These 100 images are

first downscaled by a factor of 2 2 to remove the effects of pre-

viously applied filtering and interpolation operations, sampled

on the Bayer filter [31], [32] array and then interpolated using

six different interpolation algorithms to reproduce the scene

capture process in cameras. For our simulations, we consider six

different color interpolation methods: 1) bilinear, 2) bicubic, 3)

smooth hue, 4) median filter, 5) gradient based, and 6) adaptive

color plane. Details about these interpolation algorithms can be

found in [31]. These 600 images that satisfy the camera model

form our unmanipulated set. Processed versions are then ob-

tained by applying average filtering to these 600 images with

different filter orders from 3 to 11.

We run the proposed blind deconvolution methods on all of

the images and compute the coefficients of the manipulation

filter in each case using the iterative constraint enforcement al-

gorithm. In Fig. 6(a), we show the estimated Fourier transform

for a simulated unmanipulated camera output. We notice that

it is almost a constant flat spectrum, representing an identity

transform. The corresponding estimated frequency response for

a 5 5 average filtered image is shown in Fig. 6(b), and the

actual coefficients are shown in Fig. 6(c) for comparison. The

similarity among the estimated and the actual coefficients justi-

fies the performance of the blind deconvolution algorithms.

A closer look at the frequency response of the manip-

ulation filter for an unmanipulated camera output, shown in

Fig. 6(a), suggests minor deviations from an ideal flat spectrum.

These deviations are attributed to the various postinterpolation

processing that takes place inside the cameras, such as compres-

sion, denoising, and white balancing. To compensate for these

minor deviations, we use the spectral response , obtained

using the blind deconvolution algorithm, from an authentic

camera output as reference. Given the test input , we find

the frequency-domain coefficients of the manipulation filter

and compare it with to measure the similarity among the

coefficients. More specifically, we first find

if

if and

if and

(13)
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Fig. 7. Receiver operating characteristics for distinguishing between simulated
camera outputs and their filtered versions.

to obtain the logarithm of the magnitude of the frequency

response, and compute the similarity between the coefficients

of the test input and the reference image using the similarity

score defined as

(14)

where denotes the mean of the , and represents the

mean of the . The test input is then classified as unmanip-

ulated if the similarity to the reference pattern is greater than a

suitably chosen threshold. On the other hand, if the input image

has undergone tampering or steganographic embedding oper-

ations, the estimated manipulation filter coefficients would in-

clude the effects of both the postcamera manipulation operations

along with postinterpolation processing inside the camera. In

this case, the manipulation filter coefficients would be less sim-

ilar to the reference pattern, and the similarity score would be

lower than the chosen threshold.

We examine the performance of the threshold based classifier

in terms of the receiver operating characteristics (ROC) [37].

For each original image, we compute the frequency response of

the equivalent manipulation filter and measure its similarity with

the reference filter pattern. The fraction of original images with

a similarity score lower than a threshold is found to give the

false alarm probability . Similarly, we record the fraction of

manipulated images (filtered in this case) with a similarity score

that is less than to give the probability of correct decision .

We repeat this process for different decision thresholds , and

arrive at the ROC as shown in Fig. 7. We observe from the figure

that the proposed scheme attains a for . This

suggests that the proposed scheme can effectively distinguish

between direct camera outputs and its filtered versions.

TABLE I
CAMERA MODELS USED IN EXPERIMENTS

V. DETECTING TAMPERING ON CAMERA-CAPTURED IMAGES

Forensic evidence obtained by analyzing the coefficients of

the manipulation filter provides clues about possible image tam-

pering. Most often, creating a realistic tampered image involves

a series of postcamera processing operations, such as filtering,

compression, resampling, contrast change, and others, that may

be applied globally to the entire image or locally to different

regions of the image. These processing operations leave dis-

tinct traces in the final picture and can be detected using the

threshold-based classifier by comparing the estimated manipu-

lation filter coefficients with the reference pattern. In this sec-

tion, we study the performance of the proposed techniques for

detecting different types of global image manipulations with

real camera data. The forensic methodologies discussed in this

section can be extended to detect local tampering by applying

the techniques on a block-by-block basis.

A. Simulation Setup

A total of nine camera models as shown in Table I is used in

our experiments. For each of the nine camera models, we have

collected about 100 images. The images from different camera

models are captured under uncontrolled conditions—different

sceneries, different lighting situations, and compressed under

different JPEG quality factors as specified by the default values

in each camera. The default camera settings (including image

size, color correction, auto white balancing, and JPEG compres-

sion) are used in image acquisition. From each image, we ran-

domly crop a 512 512 portion and use it for subsequent anal-

ysis. Thus, our camera image database consists of a total of 900

different 512 512 pictures. These images were then processed

to generate 21 tampered versions per image to obtain 18 900 ma-

nipulated images, and the 21 manipulation settings are listed in

Table II.

B. Classification Methodology and Simulation Results

We study the discriminative capabilities of our proposed

schemes in terms of the ROC of the hypothesis testing problem

with the following two hypotheses:

1) : image is a direct camera output;

2) : image is not a direct camera output and is possibly

manipulated in some way.

For each image, we compute the frequency-domain coefficients

of the estimated manipulation filter and determine its similarity

with the chosen reference pattern. Images with a similarity score

that are greater than a threshold are classified as authentic.

To choose the reference pattern, we randomly select a set of

training images along with its manipulated versions in the

training stage. Using each image, we compute the inclass and

outclass similarity scores. More specifically, given the th image

, we calculate the inclass similarity scores by com-
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TABLE II
TAMPERING OPERATIONS INCLUDED IN THE EXPERIMENTS

paring the manipulation filter estimated from the th image and

the estimates obtained from the remaining images using

(14). The outclass scores are then found by quantifying the sim-

ilarity among the manipulation filter of the th image and the

filter coefficients derived from the remaining tampered images.

Using a threshold , the fraction of direct camera outputs with a

similarity score lower than is computed to give the false alarm

probability , and the fraction of manipulated

images with a similarity score of less than is found to give

the probability of correct decision . We re-

peat this process for different decision thresholds to arrive at

the ROC, and compute the area under the curve. These steps

are performed separately with each image in the training

stage, and the manipulation filter coefficients that give the max-

imum area under the ROC curve are chosen as the reference pat-

tern. After choosing the reference pattern in the training stage,

we compute the inclass and outclass similarity scores by com-

paring the chosen reference pattern with the filter coefficients

obtained from the remaining camera outputs and their corre-

sponding tampered versions, respectively, in our database in

the testing stage. The corresponding ROC curves are obtained

through this process.

1) Testing With Images From Canon Powershot A75: We test

the performance of the proposed techniques using the 100 im-

ages from Canon Powershot A75. We choose this camera for

two reasons: 1) based on our experimental studies, we observe

that linear shift-invariant model for the color interpolation coef-

ficients fits well with the cameras’ interpolation in each type of

region and gives a very low fitting error and 2) we observe that

this Canon camera uses the same JPEG quantization table for all

images that it captures, invariant of the input scene. Therefore,

all images from the camera undergo the same kind of postpro-

cessing operations after color interpolation (refer to Fig. 1).

For our analysis with images from Canon Powershot A75,

we use a randomly chosen set of 50 images for training, and

test on the remaining 50 images along with the corresponding

50 21 tampered images. Fig. 8 shows the performance of the

threshold-based detector averaged over 100 iterations. At a rel-

atively low around 10%, the probability of correct detec-

tion is about 80%–95% for most types of manipulations tested.

Here, the results are based on a two-class classification problem,

wherein the first class includes the direct camera outputs and the

second class consists of camera outputs that have undergone a

specific type of manipulation.

2) Testing With Diverse Inputs From Multiple Cameras: We

now examine the performance of the proposed techniques under

diverse input conditions. More specifically, we use all 900 direct

camera output images for the untampered dataset. These images

were captured under the default camera settings and may have

Fig. 8. Receiver operating characteristics for tampering detection for images
from Canon Powershot A75 when 50 images are used in training and the re-
maining 50 images are used in testing.

Fig. 9. Receiver operating characteristics for tampering detection when tested
with all images in the database with 200 images being used in training.

undergone different kinds of in-camera postprocessing opera-

tions, such as JPEG compression after color interpolation.

Fig. 9 shows the ROC curve for detecting each manipulation.

Here, we use a randomly chosen set of 200 images to train the

classifier and test with the remaining 700 images; the experi-

ments are repeated more than 100 times to obtain an average

ROC curve. In this case, we observe that for close to 10%,
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Fig. 10. Receiver operating characteristics for tampering detection when im-
ages from the Canon Powershot A75 are used in training and images from Sony
Cybershot DSC P72 are used in testing.

the probability of correct detection is close to 100% for such ma-

nipulations as spatial averaging and additive noise, and around

70%–80% for median filtering, histogram equalization, and ro-

tation. These results are better than other works in the literature

that are applicable to blind tampering detection [25], [28].

Comparing the results in Fig. 9 with the results of the Canon

Powershot A75 in Fig. 8, we notice around a 5%–10% perfor-

mance drop in detection accuracy for the same false positive

rate. This reduction in performance can be attributed to the dif-

ferent types of postprocessing operations performed after color

interpolation in various camera brands and models. In our future

work, we plan to estimate the parameters of such postinterpola-

tion operations as JPEG compression [16] and white balancing,

and include them in the system model to bridge the performance

gap.

3) Training and Testing Using Inputs From Different Cam-

eras: The proposed techniques are nonintrusive and do not re-

quire that the actual camera make/model be used in the training

set. To demonstrate this aspect, we test the performance of the

proposed techniques using 100 images from Canon Powershot

A75 and 100 images from Sony Cybershot DSC P72. We ran-

domly choose 50 out of 100 Canon Powershot A75 images and

use them for training to identify the reference pattern; the 100

images from Sony Cybershot DSC P72 are used in testing. The

performance results, averaged over 100 iterations, are shown in

Fig. 10. The figure shows that the performance is good for most

manipulations and for around 10%, the probability of cor-

rect detection is close to 80%–90%. This result is comparable

to the plots in Figs. 8 and 9. The drop in performance for some

manipulations, such as resampling, can be attributed to the ab-

sence of the original camera make/model in training.

C. Tampering Forensics Using the Estimated Manipulation

Filter Coefficients

The estimated filter coefficients can also be employed to

quantify the likelihood and degree of tampering, and to identify

the type and parameters of the tampering operation. In this

subsection, we show that the similarity score can be used to

define a camera-model fitting score to evaluate the amount of

tampering that the test image has undergone. For our exper-

iments, we first choose six good reference patterns that give

the highest area under the ROC curve. The camera-model

fitting score for the test image is then defined as the median

of the similarity scores obtained by comparing the estimated

coefficients of the test image with the ones obtained from each

of the six reference patterns. The higher the fitting score is, the

greater the likelihood that the test image is for a direct camera

output without further processing.

We examine the variation of the camera-model fitting score as

a function of the degree of tampering for all the manipulations

listed in Table II. Fig. 11(a) and (b) shows the camera-model fit-

ting score as a function of the filter order for spatial averaging

and median filtering, respectively. In both cases, we observe that

the fitting score reduces as the filter order increases and as the

degree of tampering increases. Further, the score is less than

for all average filtered images. This low value is because

of the distinct nulls in the frequency spectrum of the manipu-

lated filter, estimated from filtered images, making it very dif-

ferent from the flat reference pattern.

Fig. 12(a) and (b) shows the camera-model fitting score as

a function of the angle of rotation and the resampling rate, re-

spectively. For manipulations, such as rotations, the average fit-

ting scores for manipulated images are less than zero as can be

seen in Fig. 12(a) and, therefore, the detection algorithm can

efficiently identify rotations by setting an appropriate threshold

close to zero. For image resampling, the results from 12(b) indi-

cate that the average camera-model fitting score reduces as the

resampling rate deviates from 100% and, therefore, these ma-

nipulations can be detected with the threshold-based classifier.

A similar trend is also observed for additive noise and the fitting

score reduces as the strength of additive noise increases.

The estimated manipulation filter coefficients can also be em-

ployed to identify the type and parameters of postcamera pro-

cessing operations. In Fig. 13, we show the frequency response

of the estimated manipulation filter coefficients for the different

types of manipulations listed in Table II. A closer look at the

manipulation filter coefficients in the frequency domain sug-

gests noticeable differences for the different kinds of tampering

operations. For such manipulations as average filtering, we ob-

serve distinct nulls in the frequency spectrum and the gap be-

tween the nulls can be employed to estimate the order of the

averaging filter and its parameters. Image manipulations, such

as additive noise, result in a white noisy spectrum as shown in

Fig. 13(g), and the strength of the noise can be computed from

the manipulation filter coefficients. Rotation and downsampling

can be identified from the smaller values in the low–high and the

high–low bands of the frequency spectrum of the manipulation

filter. In our future work, we plan to further investigate on em-

ploying the estimated intrinsic fingerprints of postcamera pro-

cessing operations to provide forensic evidence about the nature

and parameters of the tampering that the image has undergone.

Such analysis may help recreate the original image from its cor-

responding tampered versions.
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Fig. 11. Variation of the camera-model fitting score as a function of the filter order for (a) average filtering and (b) median filtering.

Fig. 12. Variation of the camera-model fitting score as a function of the degree of tampering for (a) image rotations and (b) resampling.

D. Attacking the Proposed Tampering Detection Algorithm

So far in this paper, we have considered direct camera out-

puts as authentic images and presented methods to distinguish

them from other images that have undergone postcamera ma-

nipulations. In this subsection, we examine the other side of the

problem from the attackers’ viewpoint. Given the knowledge of

the proposed tampering detection algorithm, the attacker could

potentially come up with better tampering operations to foil the

detector. We illustrate it with a particular attack as follows.

In Step 1 of the tampering process, the attackers estimate

the color interpolation coefficients using component forensics

methodologies described in Section III-B. After estimating the

color interpolation coefficients, the attacker proceeds to Step 2

to tamper the image by applying such postcamera operations,

such as filtering and resampling; then in Step 3, the attacker

reenforces the camera constraints with (6) using the estimated

camera component parameters obtained earlier in Step 1.

Fig. 14(a) shows the inclass and the outclass similarity scores

obtained by comparing the reference patterns with the direct

camera outputs and the tampered versions by the aforemen-

tioned three-step process, respectively, for the scenario when the

camera input is tampered by downsampling to half of its orig-

inal size in Step 2, before enforcing the camera constraints in

Step 3. We notice from the figure that the inclass and the out-

class distances are well separated, and an appropriate threshold

value can be used to distinguish the two classes.

The ROC curve computed using the threshold-based classifier

is shown alongside in Fig. 14(b). The figure suggests that the

classifier still performs well and gives a close to 100% even

for low values of close to 1%. The reason behind the supe-

rior performance is due to the tampered images that have under-
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Fig. 13. Frequency response of the manipulation filter for camera outputs that are manipulated by (a) 7� 7 averaging filter, (b) 11� 11 averaging filter, (c) 7� 7
median filter, (d) 20 rotation, (e) 70% resampling, (f) 130% resampling, (g) noise addition with PSNR 20 dB, and (h) histogram equalization. The frequency
response is shown in the log scale and shifted so that the dc components are in the center.

Fig. 14. Performance results for attack I: downsampling by 50% followed by camera-constraint reenforcement. (a) Inclass and outclass similarity scores. (b)
Receiver operating characteristics for the tampering detection problem.

gone several manipulations, each of which introduces some in-

herent traces in the final output image, and the Step 3 restoration

process is not able to completely disguise the attacks from the

iterative forensic analysis algorithm. Thus, the proposed tech-

niques can efficiently resist such attacks.

VI. FURTHER DISCUSSIONS AND APPLICATIONS

The results in the previous section demonstrate that the in-

trinsic fingerprint traces left behind in the final digital image

by the postcamera processing operations can provide a tell-tale

mark to robustly detect global manipulations. In this section, we

show that the estimated filter coefficients can also be employed

to detect other kinds of postcamera processing operations, such

as steganographic embedding and watermarking. Further, any

change or inconsistencies in the estimated in-camera finger-

prints, or the presence of new postcamera fingerprints provides

clues to detect cut–paste tampering and to determine whether

the given image was produced using a camera, a scanner, or

computer graphics software.

A. Applications to Universal Steganalysis

A common challenge of steganalysis is how to model the

ground truth original nonstego image data. In our work, we

consider direct camera outputs as nonstego data and apply the

camera model to characterize its properties; image manipula-

tions, such as watermarking and steganography, are then mod-

elled as postprocessing operations applied to camera outputs. In

this subsection, we show that these embedding algorithms leave

behind statistical traces on the digital image that can be detected

by analyzing the coefficients of the manipulation filter, and ex-

amine the performance of our proposed techniques for identi-

fying the presence of hidden messages in multimedia data.

We test the performance of the threshold-based detector in

distinguishing authentic camera outputs from stegodata. In

our experiments, we use the same camera data set with 100
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Fig. 15. Performance results at different embedding rates for the (a) F5 algorithm and (b) Steghide.

images of size 512 512 from Canon Powershot A75 camera

[38]. Stego images are then generated by embedding random

messages of different sizes into the cover images. Generally

speaking, the maximum embedding payload depends on the

nature of the cover image and the data-hiding algorithm. For

our simulations, we first find the average of the maximum

embedding payload across 100 images and then embed mes-

sages at 100%, 75%, and 50% of this value. For our study,

we consider three popular steganographic embedding methods

that employ different approaches to hide information—F5 [6],

steghide [5], and spread-spectrum steganography [7].

LSB embedding methods have been widely used for data

hiding. Many algorithms such as Jsteg, JPEG hide-and-seek

[39], Outguess [40], and F5 [6] embed a secret message into the

LSB of the DCT coefficients of the cover image. For a survey

of LSB methods, see [41] and the references therein. Most LSB

embedding methods, such as JPEG hide-and-seek [39] and

Outguess [40], replace the LSB of the DCT coefficients with

the secret message, and statistical steganalysis using the -test

can be used to detect them [29]. In our work, we focus on the

embedding methods of F5 and steghide.

The F5 technique that has been shown to be resilient to such

statistical attacks based on the -test [6], although it was sub-

sequently broken in [10] by the histogram analysis of DCT coef-

ficients. The F5 embeds data through matrix encoding by decre-

menting the absolute value of the DCT coefficients. In our ex-

periments with F5, we estimate the average maximum payload

across 100 color images to be around 12 kB. The stegoimages

are then generated by embedding secret messages of size 12, 9,

and 6 kB using the software [42], respectively. The detection re-

sults are shown in Fig. 15(a) for different embedding rates. We

notice that the proposed algorithms perform with reasonable ac-

curacy giving an average detection accuracy close to 62% and

50%, respectively, at 100% and 75% average embedding rates

for false alarm probabilities around 1%. These results are com-

parable to the wavelet statistics-based steganalysis technique

[11], which reports average accuracies of 62% and 52% at the

embedding rates of 100% and 78%, respectively.

Steghide preserves the first-order statistics of the image

and can provide high message capacity. Steghide employs a

graph-theoretic approach to embed the secret messages on

multimedia data. The message is hidden by exchanging rather

than overwriting pixels [5]. A graph is first constructed from the

cover data to the secret message. The pixels to be modified are

represented as vertices and are connected to possible partners

by edges. A combinatorial problem is then solved to embed

the secret message by exchanging samples. In our studies with

steghide, we estimate the average maximum payload across

100 color images to be around 32 kB for a 512 512 color

image. The stegoimages are then generated by embedding

secret messages of size 32, 24, and 16 kB using the software

[43], respectively. The detection results are shown in Fig. 15(b)

for different embedding rates. We notice that the proposed

algorithms can efficiently identify steghide at 100% and 75%

embedding rates with the probability of identifying stegodata

close to 100% for a false alarm probability of 1%. However,

the performance reduces significantly when the secret message

length is reduced to 50% capacity at 16 kB. These results are

better than the wavelet statistics-based steganalysis technique

[11], which reports average accuracies of 77% and 60% at

100% and 78% embedding rates, respectively.

Next, we study the performance of spread-spectrum embed-

ding methods. Block-DCT-based spread-spectrum embedding

has been widely used in literature for data hiding, watermarking,

and steganography [1] for a wide variety of applications. De-

tecting spread-spectrum steganography has been a challenging

problem over the last decade, and statistics-based schemes typ-

ically do not perform well in distinguishing original cover data

and stegopictures. To our best knowledge, the only work that ad-

dresses spread-spectrum steganalysis is by Avcibas et al. [12],
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Fig. 16. Performance results for spread-spectrum embedding at different
PSNRs.

where it was shown that image-quality metrics may be used as

features to identify such embedding. In their work, the authors

show that they can attain an average probability of correct deci-

sion of 80% with 40% false alarm probability when tested with

ten images. We test the performance of the proposed intrinsic

fingerprint system for spread-spectrum embedding. In our ex-

periments, we use the same camera data set with 100 Canon

Powershot A75 images of size 512 512 as our authentic set.

Stegoimages are then generated by adding pseudorandom wa-

termarks at different peak signal-to-noise ratios (PSNRs) of 38,

40, and 42 dB. The manipulation filter coefficients are esti-

mated for the cover and the stegodata, and classified with the

threshold-based classifier. Fig. 16 shows the performance re-

sults for different PSNRs. We note that the average identifica-

tion accuracy is close to 100% for PSNRs of 38 and 40 dB, and

reduces to 91% for 42-dB PSNR. These results demonstrate the

superior performance of the proposed techniques.

In addition to the three steganographic schemes mentioned

before, we also test the performance of our algorithms for such

embedding techniques as stochastic modulation [8] and per-

turbed-quantization (PQ) steganography [9], [44]. In stochastic

modulation steganography [8], a weak noise signal with a noise

distribution chosen to mimic the noise produced by the image-

acquisition device is added to the cover image to embed the mes-

sage bits. In the case of digital cameras, it has been shown that

the sensor and hardware noise are best modelled to be Gaussian

distributed [8], [45] and, therefore, detecting stochastic modu-

lation steganography can be considered equivalent to detecting

the presence of additive Gaussian noise in an image captured by

a digital camera. Our results suggest that such embedding can be

detected with very high accuracy with a that is close to 100%

for low values of about 1% using the proposed forensic anal-

ysis techniques. Perturbed quantization steganography embeds

information in the DCT coefficients by quantizing the values

either up or down depending upon the message to embed. The

set of changeable coefficients is first found by identifying those

coefficients whose fractional part (i.e., the difference between

the actual value and the quantized value) is lower than a pre-

chosen threshold [9]. For our experiment with PQ steganog-

raphy, we use the 100 Canon Powershot A75 images of size

512 512, JPEG compressed in the camera with the default

quality factor close to 97%, as our authentic set. Stegoimages

are created by randomly embedding messages into these images

and quantizing them to a quality factor of 70%. Steganalysis for

this scheme is more challenging and the proposed techniques are

able to identify such manipulations with close to 70–80%

under a %.

B. Distinguishing Camera Capture From Other

Image-Acquisition Processes

The proposed forensics methodology can be used to authen-

ticate the source of the digital color image. Evidence obtained

from such forensic analysis would provide useful forensic infor-

mation to law enforcement and intelligence agencies as to when

a given image was actually captured with a camera or scanner,

or generated using computer graphics software. We demonstrate

this application with two case studies.

1) Photographs versus Scanned Images: Digital cameras and

image scanners are two main categories of image-acquisition

devices. While a large amount of natural scene pictures are taken

with digital cameras, scanners have been increasingly used for

digitizing documents. Rapid technology development and the

availability of high-quality scanners has, in part, led to more

sophisticated digital forgeries. In this case study, we are inter-

ested in determining whether a digital image is produced by a

camera or a scanner. The motivation behind employing the pro-

posed techniques for device identification is based on the obser-

vation that the manipulation filter coefficients for an authentic

camera output would be close to a delta function, and the corre-

sponding coefficients for a scanned image would represent the

scan process.

For our study, we choose 25 different images from four

camera models to give a total of 100 images for the camera

image data set. We then collect another set of 25 different

photographic images from several cameras with diverse image

content. These photographs are printed and then scanned back

using four different scanner models: 1) Canon CanoScan

D1250U2F, 2) Epson Perfection 2450 photo, 3) Microtek

ScanMaker 3600, and 4) Visioneer OneTouch 5800USB.

These images form our scanned image data

set. We test our proposed methods for these 200 images. The

frequency response of the manipulation filter is estimated

and compared with a reference pattern. The ROC obtained

using the threshold-based classifier is shown in Fig. 17. Here,

denotes the fraction of scanned images that are correctly

classified as scanned, and represents the fraction of camera

outputs misclassified as scanned. We observe from the figure

that the probability of correct decision is around 92% for

a 1% false probability rate. These results indicate that our

proposed methods can effectively distinguish between the

camera-captured and scanned images.

2) Photographs versus Photo Realistic Computer Graphics:

With an increasing number of sophisticated processing tools,
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Fig. 17. Receiver operating characteristics for classifying authentic camera
outputs from scanned images.

Fig. 18. ROCs for classifying authentic camera outputs from photorealistic
computer graphics.

creating realistic imagery has become easier. Modern graphic

synthesis and image rendering tools can be used to reproduce

photographs to a very high degree of precision and accuracy

and, therefore, the problem of distinguishing camera outputs

from photorealistic computer graphics has become important.

In this case study, we employ our proposed framework to dis-

tinguish digital photographic images and photorealistic graphics

images. For our study, we use a set of 100 images from four

camera models to create the camera image dataset. A randomly

chosen set of 100 photorealistic computer graphics images, ob-

tained from the Columbia dataset [46] constitute our photoreal-

istic computer graphics data set. We use a cropped subimage of

size 512 512 to estimate the coefficients of the manipulation

filter. The estimated frequency response is then compared with

the reference pattern and a threshold-based classifier is used to

distinguish authentic camera outputs from graphics images. The

results of our analysis, in terms of the ROC, are shown in Fig. 18.

Here, denotes the fraction of graphics images that are cor-

rectly classified as photorealistic, and represents the fraction

of photographs classified as computer generated. A large area

under the ROC curve suggests that our proposed method can dis-

tinguish between the two classes. These results are comparable

to the geometry-based features proposed in [14], and are better

than the wavelet features [28] and the cartoon features-based

classifiers tested in [14]. Different from the geometry-based fea-

tures in [14] that are motivated by the modelling, the computer

graphics creation tools, and the artifacts produced therein, our

method focuses on finding the algorithms and parameters of the

imaging process in digital cameras to distinguish digital photo-

graphic images from photorealistic computer graphics.

C. Detecting Cut-and-Paste Forgeries Based on

Inconsistencies in Component Parameters

Creating a tampered image by cut-and-paste forgery often in-

volves obtaining different parts of the image from pictures cap-

tured using different cameras that may employ a different set of

algorithms/parameters for its internal components. Inconsisten-

cies in the estimated intrinsic fingerprint traces left behind by

camera components can be used to identify such digital forg-

eries as cut-and-paste operations. Here, we illustrate this with a

case study. We create a tampered picture of size 2048 2036 by

combining parts of two images taken using two different cam-

eras. In Fig. 19(a) and (b), we show the tampered picture and its

individual parts marked with different colors. The regions dis-

played in white in Fig. 19(b) are obtained from an image taken

with the Canon Powershot S410 digital camera, and the black

parts are cropped and pasted from a picture shot using the Sony

Cybershot DSC P72 model.

To identify the intrinsic camera fingerprints in different parts

of the picture, we examine the image using a sliding window of

256 256 with step size 64 64, and estimate the color inter-

polation coefficients in each 256 256 block [49]. The -means

clustering algorithm [47] is then employed to cluster these fea-

tures into two classes. With a step size of 64, each individual

64 64 subblock would be analyzed 16 times to provide 16 dif-

ferent clustering results; the clustering results are represented as

binary values (0 or 1) as labels for the two classes. Fig. 19(c)

shows the average of the clustering labels from these 16 sub-

blocks. As shown in Fig. 19(c), our results indicate that the fea-

tures are clustered distinctly in two separate classes with the

gray area in between representing the transition from one class

to the other. In this particular case, we notice that the manipu-

lated picture has tell-tale traces from two different cameras and

has therefore been tampered with.

VII. CONCLUSION

In this paper, we propose a set of forensic signal processing tech-

niques to verify whether a given digital image is a direct camera

output. We introduce a new formulation to study the problem of

image authenticity. The proposed formulation is based on the

observation that each in-camera and postcamera processing op-

eration leaves some distinct intrinsic fingerprint traces on the

final image. We characterize the properties of a direct camera

output using a camera model, and estimate its component pa-

rameters and the intrinsic fingerprints. We consider any further
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Fig. 19. Applications to source authentication showing a (a) sample-tampered image, (b) regions obtained from the two cameras, and (c) results from clustering
the color interpolation coefficients (black: Sony Cybershot DSC P72; white: Canon Powershot S410; shades of gray: likelihood that the region is from Canon
Powershot S410 with a value close to white denoting a higher likelihood).

postcamera processing as a manipulation filter, and find the co-

efficients of its linear shift-invariant approximation using blind

deconvolution. A high similarity of the estimated coefficients

and the reference pattern that corresponds to no manipulations

certifies the integrity of the given image. We show through de-

tailed simulation results that the proposed techniques can be

used to identify different types of postcamera processing, such

as filtering, resampling, rotation, etc. Evidence obtained from

such forensic analysis is used to build a universal steganalyzer

to determine the presence of hidden messages in multimedia

data. Our results suggest that we can efficiently detect different

types of embedding methods, such as least-significant bit (LSB)

and spread-spectrum techniques with high accuracy. The esti-

mated postcamera fingerprints are also employed for image-ac-

quisition forensics to establish whether a given digital image is

from a digital camera, a scanner, or computer graphics software.

Overall, our proposed techniques provide a common framework

for a broad range of forensic analyses on digital images.

APPENDIX

CONVEXITY OF THE OPTIMIZATION PROBLEM

AND UNIQUENESS OF SOLUTION

In this Appendix, we show that the optimization formulation

in (7) is convex if the camera’s color interpolation coefficients

are known. A function is said to be convex if for any

and , we have

Since in (7) is a sum of two quadratic functions, it is

sufficient to show that these two functions are convex. Let

where

and

Here, denotes the estimate of the test image obtained by

imposing the camera constraints as shown in (15), at the bottom

of the page, where denotes the color interpolation coeffi-

cients employed in the camera to render the test image . In

the absence of additional information, the values of can be

nonintrusively estimated from the test image as long as is

a direct camera output or an image that has undergone minor

levels of postinterpolation processing. Now, defining

and

otherwise
(15)
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we get

where the last inequality follows from . This shows

that is convex. Similarly, we can show that the quadratic

function is also convex and, therefore, establishes the con-

vexity of .

To show that the solution of the optimization problem is

unique, we make use of a theorem in optimization theory

that states that the solution of a convex optimization problem

with a cost function is unique if the cost function is uni-

modal [34], [48] (i.e., for all ). Defining

we can show that

where represents a vector of length

consisting of all the elements of

for all and along with the element . Ar-

ranging the vectors column-wise, we construct

the matrix of dimension

for . We can then show

that . Thus, the cost function is

unimodal and, therefore, its solution is unique.
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