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I. INTRODUCTION

H
Anging in the Saint Bavo Cathedral in Ghent, Belgium,

is The Ghent Altarpiece, also known as The Adoration

of the Mystic Lamb (see Fig. 1). According to an inscription

on the outer frames, it was painted by the brothers Hubert

and Jan Van Eyck for Joos Vijd and his wife Elisabeth Bor-

luut in 1432. It is one of the most admired and influential

paintings in the history of art and has given rise to many

intriguing questions that have been puzzling art historians

to date [11]. Moreover, the material history of the panels

is very complicated. They were hidden, dismantled, moved

away, stolen and recovered during riots, fires and wars. The

recovery of the panels by the American army in the Nazi

hoards deep in the Altaussee salt mines has particularly

marked memories. One panel was stolen in 1934 and never

recovered. Besides varying conservation conditions, the

panels underwent numerous restoration treatments and were

even partially overpainted.

One of the most important unresolved questions related

to this painting goes back to its creation: the division

of hands between the two brothers and their respective

workshops. The meticulous study of the painting tech-

nique, its different layers and materials, as well as the

underdrawings and perhaps even numerous intriguing palm

and finger prints could bring us closer to answering that

question. However, the Ghent Altarpiece hides many other

secrets, like the meaning of inscriptions that are difficult to

decipher, such as the text in the book depicted in the panel

Virgin Annunciate.

A major conservation and restoration campaign carried

out by the Royal Institute for Cultural Heritage (KIK-

IRPA) that is expected to take at least six years started

in October 2012. One of the questions of the treatment,

supported by an international commission of experts, con-

cerns uncovering Van Eyck’s original paint to the extent

which can be safely carried out. Indeed, the paintings

were covered over centuries with disfiguring retouchings,

overpainting and varnishes. Certain decisions regarding

the restorations benefit from multidisciplinary research and

signal processing could help in this regard.

In this paper, we show progress in certain image pro-

cessing techniques that can support the physical restoration

of the painting, its art-historical analysis or both. We

first introduce a multi-modal crack detection algorithm,

which gives a clear improvement over earlier reported crack

detection results on the Ghent Altarpiece. We then show

how a relatively simple analysis of the crack patterns could

indicate possible areas of overpaint, which may be of great

value for the physical restoration campaign, after further

validation. Next, we explore how digital image inpainting

can serve as a simulation for the restoration of losses

(missing areas in one or more layers of the painting, often

caused by abrasion or mechanical fracture and revealed

after the cleaning process). As a separate problem, we

address crack inpainting, by outlining the main challenges

and proposing a solution which improves upon earlier

reported results on this painting [7]. Finally, we explore

how the statistical analysis of the relatively simple and

frequently recurring objects (such as pearls in this mas-

terpiece) may characterize the consistency of the painter’s

style and thereby aid both art-historical interpretation and

physical restoration campaign. We carry out our analysis

on a recently released high-resolution data set and on some

images taken during the current treatment of the altarpiece.

II. DATA SET “CLOSER TO VAN EYCK”

Until 2012, digitized scans of old photographic negatives,

acquired by Alfons Dierick [12] and kept in the archives of

Ghent University, were the only available high resolution

data set of the Ghent Altarpiece. The development pro-

cess of these negatives was mainly undocumented, which

resulted in a data set where the images vary strongly in

quality. Earlier reported results of digital image processing

on the Ghent Altarpiece, such as crack detection, virtual

crack inpainting [7], [24] and pearl analysis [23] were all

based on images from that old data set.

In this paper, we report the results on extremely high

resolution images that are publicly available on the website

Closer to Van Eyck: Rediscovering the Ghent Altarpiece1.

This data set is the result of an interdisciplinary research

project that ran from April 2010 till June 2011, with

the goal to assess the structural condition of the Ghent

Altarpiece and determine whether a full restoration of

Van Eyck’s polyptych was necessary. The surfaces of the

altarpiece were documented with the following imaging

modalities: digital macrophotography (with a pixel size of

1http://closertovaneyck.kikirpa.be/
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Fig. 1: The Ghent Altarpiece, open (left) and closed (right). Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb.

7.2 µm; full panels, 140 extreme close-ups, and some clean-

ing tests), infrared macrophotography (in the same res-

olution), infrared reflectography and X-radiography. New

acquisitions will be added to this data set in the scope of

the current conservation-restoration campaign.

III. IMAGE PROCESSING IN SERVICE OF PAINTING

RESTORATION

We address here two potential applications of image

processing to support restoration of paintings: (i) detecting

possible areas of overpaint based on the analysis of crack

patterns and (ii) virtually inpainting losses.

A. Crack detection in paintings

Being able to accurately detect cracks can be very

relevant to painting conservation since cracking is one of

the most common forms of deterioration. Fluctuations in

humidity, causing the wooden support to shrink or expand,

are the main cause for crack formation. Because the way

in which cracks develop and spread partly depends upon

the choice of materials and methods used by the artist,

assessing cracks is useful for judging authenticity [4].

Cracks can also assist conservators by providing clues to

the causes of degradation of the paint surface. An in-depth

study of the factors contributing to their formation can

support preventive measures [1]. Furthermore, analysis of

crack patterns provides non-invasive means of identifying

the structural components of paintings [4].

Visually, cracks can be categorised into bright cracks on

a dark background or dark cracks on a bright background.

One can further distinguish between different types of

cracks such as ageing cracks, premature cracking (generally

due to drying defects related to the painting materials or

their application) or cracks formed only in the varnish layer

when it becomes brittle through oxidation. The literature

discusses mainly dark cracks; they are typically consid-

ered as having low luminance and being local (grayscale)

intensity minima with elongated structure [14]. Different

crack detection techniques include simple thresholding, line

detectors and various morphological filters (see [1] for an

overview). The method in [7] operates on a single image

modality (visible image) and combines by means of a

voting scheme three crack detection techniques: oriented

elongated filters, a multiscale extension of the morpholog-

ical top-hat transformation and a detection method based

on dictionary learning [13].

B. BCTF method for multimodal data

The newly acquired multimodal data set (see Fig. 2 for

an example) allows for new crack detection techniques

that are able to make use of the information provided

by each modality, yielding thereby a more reliable de-

tection scheme. However, a pixel-perfect registration is

required prior to using all modalities together. The panels

of the Ghent Altarpiece were already roughly registered

for adjacent viewing on the Closer to Van Eyck website

but the spatial alignment of these pre-registered images is

not sufficient in the current context as the images can be

shifted by a few pixels or even exhibit local inconsistencies

due to the different acquisition modalities. The nature of

the different modalities and the stringent requirements for

crack detection make direct registration a challenging task.

However, since the cracks themselves are a more or less

consistent component throughout all modalities we used

them for the registration process. Crude crack maps are first

obtained by filtering the unregistered images with elongated

filters and subsequent thresholding (more details of the
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Fig. 2: Acquisitions of the Ghent Altarpiece: macro photography, infrared macro photography and X-ray radiography.

Source: Closer to Van Eyck1. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb.

exact procedure can be found in [7]). It should be noted

at this point that the presence of false positives is not a

nuisance as long as the locations of most of the cracks in

each modality are identified. The crude crack maps obtained

from the X-radiograph, the visual and infrared images are

mutually registered using the algorithm described in [5] (us-

ing the infrared crack map as the reference). The resulting

transformation is then applied to the original images.

Simply applying the methods described in [7], which

were designed for a single image, requires choosing an ad-

ditional set of parameters per modality, which would be too

cumbersome. Here we adopt a semi-supervised Bayesian

approach that estimates for each pixel a posterior probabil-

ity of belonging to the “crack” category, given a large set of

feature vectors extracted over all modalities. These feature

vectors are obtained by processing each image modality

with a number of different filters, commonly used in image

processing, ranging from morphological filters to multi-

orientation filter banks, as described in [8]. The resulting

feature vectors, hereafter denoted as categorical predictors,

or briefly predictors, are quantized into an experimentally

chosen number of bins. Let X1, ..., Xp denote p predictors

at a given pixel location, and let Y denote a hidden random

variable, taking values y ∈ {0, 1}, where the label “1”

denotes a crack pixel and “0” a non-crack pixel. The

conditional probability P (Y |X1, . . . , Xp) is a d1× . . .×dp
dimensional tensor, with dj the number of quantization bins

of the jth predictor Xj .

Using the Bayesian conditional tensor factorization

(BCTF) of [30], inspired by higher-order singular value

decomposition [10], the conditional probability tensor can

be decomposed as:

P (Y = y|X1 = x1, . . . , Xp = xp)

=

k1∑

j1=1

. . .

kp∑

jp=1

λj1,j2,...,jp(y)

p∏

m=1

π
(m)
jm

(xm),
(1)

with the parameters subject to:

km∑

jm=1

π
(m)
jm

(xm) = 1, (2)

for every combination of (m,xm). The factorization co-

efficients λj1,j2,...,jp(y) can be seen as the latent class

allocation probabilities and π
(m)
jm

(xm) as the response

class probabilities, which control in a probabilistic man-

ner how the levels of each predictor are clustered. The

km ∈ {1, . . . , dm} value impacts the number of parameters

used to characterize the mth predictor. In the special case

where km = 1, (2) yields π
(m)
1 (xm) = 1, which means

that P (y|x1, . . . , xp) will not depend on xm and the mth

predictor can be excluded from the model. If km = 1
for most m’s, the categorical predictor model becomes

sparse. In practice, we do expect that only a few features

have a significant impact on the classification results. More

details on the exact posterior computation can be found

in [30]. The resulting conditional probability tensor can be

used as a lookup table where each entry contains a crack

probability for a specific combination of predictor values.

If this probability exceeds 0.5, we label the pixel as being

part of a crack.

A comparison between the multimodal BCTF method

and the crack detection method introduced earlier in [7] on

the same part of the painting is depicted in Fig. 3. It can

be observed that the older method fails to detect some thin

cracks, while it falsely labels some thin dark brushstrokes

as cracks. It is clear that the multimodal BCTF method

detects more cracks with fewer false positives.

C. Identifying overpaint from crack patterns

Some features of the detected crack patterns may have

potential for guiding the restorers to places of interest such

as retouchings or heavily damaged areas. As an example

we applied the BCTF method, described above, on the

upper left corner of the Joos Vijd panel. Fig. 4 shows

that part of the painting and its corresponding crack map.

A rather simple analysis consists of counting the number

of crack pixels in a sliding window of 100 × 100. In

doing so we obtain a crack density map (see Fig. 4) where

we can identify low crack density zones as well as high

crack density zones. The lowest (and highest) crack density

zones are obtained automatically by hysteresis thresholding

where the first chosen threshold is chosen to be very
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Fig. 3: Crack detection and inpainting. The two images on the left show comparison between BCTF and the method

of [7], where cracks detected by both methods are marked in red and the differences in yellow. The first image: yellow

marks cracks detected only by BCTF. The second image: yelow marks cracks detected only by [7]. The two images on

the right show the original visible data and the result of our patch-based inpainting after BCTF-based crack detection.

Fig. 4: Crack density analysis within upper left corner of

the Joos Vijd panel. Top left: The high-resolution macro

photograph1. Top right: Detected crack map. Bottom left:

Crack density map (blue: low density; red: high density).

Bottom right: Detected zones of lowest crack density.

close to the minimum (respectively maximum) value of

the crack density. Painting conservators confirmed that the

areas of lowest density marked in white in Fig. 4 are old

losses covered with retouching that also overlap on the

surrounding original paint. Other zones of low crack density

however, such as the ones seen in the upper left corner of

the density map, correspond to thinner original paint that

developed a different crack pattern over time. The interpre-

tation of the crack maps, like any other diagnostic tool in

art conservation, needs to be checked by conservators using

other examination techniques and linking the evidence by

their critical and material skills.

D. Virtual inpainting

During the ongoing physical restoration of the Ghent

Altarpiece, deteriorated retouching and overpaint are re-

moved, revealing underlying losses in the original (see

Fig. 5). Digital image inpainting can virtually fill in these

areas and provide a “simulation” for the impact of certain

actions to be taken during the physical restoration process.

A recent overview of inpainting methods is given in [15],

and applications to virtual restoration of paintings in-

clude [21], [22]. Patch-based methods are capable of repli-

cating both structure and texture by filling in the missing

region patch-by-patch. In general, for each patch of the

missing region (target patch), a well matching replacement

patch is found in the available part of the image (source

region) and copied to the corresponding location. Preserv-

ing structures is achieved by defining the filling order [9],

which gives priority to the target patches containing object

boundaries and fewer missing pixels. The so-called global

methods, like [17], [25], allow the choice of multiple

candidate patches (instead of choosing just one best match

in a “greedy” manner) and define inpainting as a global

optimization problem.

Fig. 5 shows a part of the John the Evangelist panel that

has been cleaned in the current restoration campaign of

the Ghent Altarpiece. Removing overpaint revealed many

losses that will be carefully inpainted by the conservators,

using stable and reversible materials, in order to restore

the visual coherence of the original image. In contrast

to losses and abrasions, age cracks are not inpainted in

actual conservation unless they severely interfere with the

painted form. For this reason, the cracks are not inpainted

intentionally in this experiment (unless they are inside a

larger loss and assigned therefore to a missing region). We

provide here a virtual inpainting simulation of some parts

obtained with the patch-based algorithm of [25] (see Fig. 5

and enlarged part in Fig. 6). We have chosen to inpaint

several figurative parts that contain structure and texture.

The results show how challenging this problem is even for

state-of-the-art inpainting methods. None of the methods

tested so far produced a satisfying result that fully (albeit

virtually) restored the painted form. Experienced conser-

vators master a knowledge of the physical characterics of

the paint layers and of the painted forms that call upon



PUBLISHED IN IEEE SIGNAL PROCESSING MAGAZINE, VOL. 32, NO. 4, P. 112-122, JULY 2015. 5

Fig. 5: A part of the cleaned John the Evangelist panel. The marked regions are inpainted on the right. (Image copyright

Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.)

Fig. 6: Results on a small part of the cleaned John the

Evangelist panel. Left to right: original image, overlay

with damaged regions marked in red and the result of the

algorithm from [25]. (Image copyright Ghent, Kathedrale

Kerkfabriek; photo courtesy of KIK-IRPA , Brussels.)

complex visual perception and interpretation skills. Virtual

inpaintings do not provide alternatives to their work on the

original but test the potential of the methods that need to

be further developed.

IV. DOES CRACK FILLING HELP READING THAT BOOK?

While cracks are rarely inpainted in the actual, physical

restoration, virtual crack removal can be of interest in

certain aspects. For example, crack inpainting may improve

the legibility of the text present in parts of the polyptych,

which can be of great importance to art-historical and

iconographical studies. Virtual inpainting of the book in

the Virgin Annunciate panel was reported in [7] on the

scans from the Dierick collection. Here we identify some

limitations of state-of-the-art inpainting techniques for this

type of problem, we introduce an improved method and

report the results on the new high-resolution scans from

the Closer to Van Eyck data set.

A. Challenges in the book of Virgin Annunciate

Since cracks typically appear in images as very thin

and elongated regions, crack inpainting methods are often

based on rather simple, pixel-wise operations, including

median filtering [14], [26], interpolation [2] and controlled

anisotropic diffusion [14]. In cases where high-resolution

scans are available, such that the width of some cracks

spans multiple pixels, patch-based inpainting methods [9],

[17], [24] typically yield better results [7], [27].

The book in the panel Virgin Annunciate (Fig. 2) is a

very challenging case for virtual inpainting because the

width of cracks varies a lot and some cracks are difficult to

distinguish from parts of the letters. Moreover, as the cracks

are typically surrounded by bright clouds of background

matching colour, due to the lifting and abrasion of the

surrounding paint and thereby imposed light reflections,

the immediate areas around the cracks are unreliable as

well. The crack inpainting method from [7] specifically

tailored to this application already did a pretty good job

in improving the legibility of the text and was shown to

outperform some “general purpose” patch-based inpainting

methods like [9], [17]. However, some problems are still

present, e.g., parts of the letters through which wide cracks

are passing are occasionally deleted after virtual inpainting.

To alleviate this problem, a better approach to handling

continuation of image structures is needed. We discuss a

possible solution with encouraging initial results next.

B. Crack inpainting

In cases where painted structures, like the characters in

Fig. 3, are relatively small compared to the crack width, it is

very difficult for the inpainting algorithm to infer the correct

structure locally. Patch-based inpainting methods typically
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Fig. 7: Patch based inpainting and the proposed improvement. Left: A greedy approach chooses one replacement patch

based on the known part of the damaged patch. Middle: A global approach considers multiple candidates and their mutual

agreement. Right: Our approach in addition adapts the candidate selection according to the locally detected structures.

Fig. 8: Parts of the original image (first row), the results of our method (second row) and the method of [7] (third row).

handle structure propagation by defining the right filling

order [9], [15]. Once the filling order is determined, most

of the methods choose plausible candidates for replacement

patches based solely on the agreement with the undam-

aged part of a single target patch (see Fig. 7, left), and

concentrate on defining effective distance metrics between

the known portion of the target and the candidates [20].

Matching only against a small part within the target patch

increases the risk of propagating wrong textures and wrong

colors into the missing region. Global methods, like [17],

[25] allow multiple candidates and optimize their mutual

agreement in the overlap regions (Fig. 7, middle), but even

this cannot ensure agreement with surrounding undamaged

structures: the optimization which takes care that neigh-

bouring replacement patches mutually agree cannot “undo”

the damage done by selecting wrong candidates in the first

place. Ideally, undamaged areas around the target patch

should be taken into account in the candidate selection

as well, ensuring that plausible candidates agree with true

structures (see Fig. 7, right).

Guiding the selection of candidate patches by the agree-

ment with undamaged areas is related to the idea of global

visual coherence introduced in [29] for video completion.

The approach of [29] is very effective for replicating

larger missing areas and textures, but it does not treat

continuation of curvilinear structures. Alternative solutions

that propagate structures along user specified lines [19],

[28] showed excellent results in photo editing, but for our

application the amount of the user intervention required by

such methods would be prohibitive.

The main idea of our approach is to simultaneously

detect directions of local structure propagation and adapt

the candidate selection accordingly. We propose a fully

automatic and low-complexity method for selecting the

candidate replacement patches based on their agreement

with the undamaged part of the target patch and with the

neighbouring undamaged areas, along directions where the

structures are likely to propagate. Let φi denote an image

patch centered at position i, S(φi,φj) a certain measure

of similarity between φi and φj , and denote by Ni,k a

directional neighbourhood of φi along direction k. We

define prior preference Pi,j for selecting a source patch φi
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as a candidate replacement for the damaged target patch φj

as follows:

Pi,j = S(φi,φj) + max
k

∑

l∈Nj,k

S(φi,φl) (3)

The first term measures as usual the similarity with the

known part of the target patch. The novelty is in the second

term, which takes care of the agreement with the wider

context around the target patch. In particular, the more

the candidate patch φi fits with the neighbourhood of

the damaged patch φj in any direction where structures

of interest are likely to propagate, the more preference

it will get in the selection process. Common measures

of patch similarity are defined in terms of the sum of

squared differences (SSD) among the patches D(φi,φj)
= ||φi − φj ||

2, calculated over the known pixels. We used

S(φi,φj) = −D(φi,φj) for the candidate selection in

(3). With this improved candidate selection process in

combination with simple greedy inpainting (selection of

one replacement patch at each position), we already obtain

a clear improvement over the earlier method from [7], as

is visible in Fig. 8 (notice in particular that the effect

of deleting parts of letters is less severe). One can also

select multiple candidates, with several largest values of

Pi,j in (3) and subsequently solve the resulting “puzzle”

using a global optimization method like in [17], [25]. It

would be interesting to explore also alternative solutions,

like the statistics of patch offsets [16] or hierarchical, super-

resolution based inpainting [18].

V. WHAT CAN PEARLS TELL US?

Painted pearls, which are abundant in the Ghent altar-

piece, provide a nice case study for the statistical analy-

sis of the consistency of the painterly execution. Spatial

histograms, or spatiograms [3] were employed in [23] as

digital signatures of painted pearls and showed potential to

distinguish pearls painted by different artists. In particular,

the pearls in the copy of the panel Just Judges, made by

J. Van der Veken between 1939 and 1951 to replace the

panel stolen in 1934, showed clearly different spatiograms

than those from other panels of the altarpiece. Similar

conclusions were drawn when comparing the spatiograms

of the recent reconstructions by other artists. However,

this earlier analysis in [23] was performed on the old

scans of the altarpiece, with varying resolutions, which

may have affected to some extent the numerical findings. It

is important to verify the main conclusions of this earlier

analysis in the light of the new high quality photographic

material. Here we also go a step further, extending the

study to different panels of the altarpiece and making a

hypothesis that the consistency of the painted pearls could

provide an additional support for the division of hands

between the painters or within the workshop, as well as

for detecting possible areas of former restorations and

overpainting campaigns.

Fig. 9: Two pairs of pearls from the Ghent Altarpiece and

their corresponding spatiogram triple-plots (S1, S2, S3).

A. Digital pearl signatures from spatiograms

An image spatiogram [3] is a generalized histogram, with

second-order spatial moments. Suppose an image consists

of N pixels and denote the spatial position of the n-th

pixel n ∈ {1, ..., N} by pn = (xn yn)
T

and its intensity

by In. Let b denote a histogram bin, being a range of

pixel intensities and let 1b(x) denote the indicator function

(returning 1 if x ∈ b and zero otherwise). The spatiogram

triplet for bin b is then computed as follows:

cb = η

N∑

n=1

1b(In)

µb = ηc−1
b

N∑

n=1

pn1b(In) (4)

Σb = ηc−1
b

N∑

n=1

(pn − µb)(pn − µb)
T1b(In)

The normalizing constant η is chosen such that
∑B

b=1 cb =
1. For bins with cb = 0 also the values of µb and Σb are

set to zero (not of interest). To enable comparison between

images of different sizes, we normalize all spatial coordi-

nates to the range [-1,1]. For the purpose of visualization

of the highly dimensional spatiogram data, [23] proposed

spatiogram triple-plots (S1, S2, S3) illustrated in Fig. 9:

S1: connected centers of bins, µb = (x̄b ȳb);
S2: µb–positioned counts of bins (the radii of the circles

are proportional to bin counts);

S3: µb–positioned variances in the x- and y-direction.

Fig. 9 demonstrates that mutually similar pearls produce

similar spatiogram triple-plots.
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Fig. 10: Exploring consistency of the painted pearls in

different panels. a) The selected sets of pearls: A - clothing

decoration of God the Father, B - the hat of Cumaean

Sibyl, C - diadem and brooch of Virgin Annunciate, D1 -

decoration in prophet Zachary and D2, D3 - diadem and

brooch in Archangel Gabriel. b) The corresponding SSim

values. The central marks show the medians, the boxes

indicate 25th and 75th percentiles, the extreme vertical lines

(whiskers) are 1.5 times the interquartile range, and + marks

denote the outliers c) Some cross-set and within-set SSim

histograms.

B. Consistency of the pearls in the altarpiece

Here, we evaluate the consistency of painted pearls in

the Ghent Altarpiece on the Closer to Van Eyck data

set. We measure similarity between two painted pearls

with the spatiogram similarity index SSim [6], where

0 ≤ SSim ≤ 1. In particular, we select twelve sets of

pearls from five different panels, as marked in Fig. 10(a).

The size of each set and the average radius of the pearls

(in pixels) are given in brackets: A1(4, 576), A2(12, 265),

A3(24, 273), A4(12, 144), B1(7, 177), B2(20, 129),

C1(5, 138), C2(6, 111), C3(8, 180), D1(3, 276), D2(6, 224),

and D3(3, 239). We make a comparative analysis of the

similarity of painted pearls within each set (within-set

similarity) and between different sets (cross-set similarity).

Fig. 10(b) shows within-set similarity for the twelve

pearl sets, computed from 64-bin spatiograms. Clearly, the

largest pearls (A1) are the most similar, which agrees with

the findings of [23], but now we can also see that the

consistency within each set depends also on the panel and

the position of the pearls. For example, C2 shows much

higher within-set similarity than D1, even though D1 pearls

are twice as large. This could be attributed to the position

of D1 pearls (very high in the altarpiece, where they are

less well visible to viewers). Similarly, SSim values are less

consistent for B2 than for B1 of the Cumaean Sibyl, in

line with the fact that B2 pearls are smaller, as well as

less densely and less neatly arranged than B1 pearls. Sets

C1-C3 (from the Virgin Annunciate) and D2, D3 (from

the Archangel Gabriel) are on equally important places

in the altarpiece: two outer panels in the middle row of

the closed view, see Fig. 1. Our analysis suggests that C3

pearls are more consistent than C1 and C2, which agrees

with the fact that they are larger, more visible and have

a more central place in the panel. Further on, D2 pearls

are almost twice as large as C1 (which appear in the same

relative position in the other panel) and indeed give more

consistent spatiograms. However, there are some interesting

exceptions that deserve extra attention. D3 pearls seem

less consistent than D2, even though they are larger and

at a more visible place (closer to the viewer). It is still

unclear whether this could be (partly) attributed to less

careful execution, the state of varnish, possible retouching

or overpaint, or simply to having a rather small set (three

pearls).

It is also interesting to assess consistency of the painted

pearls of similar sizes in different panels. Fig. 10(c) shows

cross-set SSim for three different combinations of pearl

sets in comparison to within-set SSim for the same sets.

The SSim histograms show a high similarity between B1

and C3 sets, and much less between B2 and C2. This can

be attributed to the fact that B2 and C2 pearls are relatively

small. Moreover, B2 is a large set of pearls decorating a hat,

and executing them more consistently would not change the

overall visual impression much. Also cross-set similarity

between A3 and D3 is much smaller than the similarity

within A3, which is not surprising since A3 pearls are in the

central panel God the Father in the open view, brimming

with jewels and reflections, while the D3 ones are in the

closed view, figuring different type of lighting, possibly

executed by different hands within the workshop and have

quite likely undergone different conservation treatments in

the past.
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VI. CONCLUSION

Signal processing shows promise in helping in the de-

cision making process that is involved in a painting’s

conservation and restoration. Our initial results show that

analysis of crack patterns could indicate certain areas of

overpaint, even though the processed crack maps still need

to be interpreted by conservators using other examination

techniques. State-of-the-art inpainting techniques still do

not succeed in fully restoring the painted form at a level

that would match the criteria of art conservators, but the

interaction between the two communities provides already

a crucial feedback for improving virtual inpainting tech-

niques in this challenging application. The use of statistical

analysis to assess the consistency of the painting style can

be of interest for art-historical interpretation of the content.

Our analysis of the consistency of the painted pearls in

the Ghent Altarpiece points to some instances (specific

painted objects) that might be of interest to art-historians

and conservators to examine in more detail.
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