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DIGITAL IMAGE RECONSTRUCTION AND RESAMPLING FOR GEOMETRIC MANIPULATION , 
K. W. Simon 

TRW Systems Group, Redondo Beach, Calif. 

I. ABSTRACT 

The problems of digital image registration and 
geometric correction can be subdivided into two parts: 
1) determination of the warping function which will 
transform the geometry of the scene to the desired 
geometric coordinate system; and 2) processing of 
the digital image intensity samples, given the warp­
ing function, to produce image samples on the desired 
coordinate grid. The latter process, called "re_ 
sampling", is a subset of the problems of image re­
construction, i.e., determination of the continuous 
(analog) image from a set of samples of the image, 
and is the subject of this paper. 

This paper defines the process of image re­
sampling in more detail in terms of general imager 
system models, the requirements of digital image 
geometric manipulation and constraints of available 
digital processing systems. The problem is then 

, ated as a constrained linear estimation problem 
with suitable image models and optimization criteria. 
The resulting reconstruction filters are compared 

· to more heuristic approaches, such as nearest neigh­
bor, bilinear interpolation, Lagrange interpolation, 
and cubic convolution (cubic and quartic spline 
interpolators). Finally, the various resamp1ing 

,techniques are compared against theoretical image 
s, synthetically generated imagery, and actual 

ERTS MSS data. Nearest neighbor, bilinear, and La­
grange interpolation resamp1ers are shown to give 
ignificantly poorer reconstruction accuracy than 

TRW Cubic Convolution and the optimal constrained 
,1 inear estimator. 

II. PROBLEM DEFINITION 

For purposes of definition of the resamp1ing 
Or reconstruction process, consider the imaging sys­
tem shown functionally in Figure 1. The scene f(x) 

, is assumed to be a random process of the two-dimen­
sional spatial parameter x, observed through an 
aperture a(x) as an image g(x), which is sampled 
by the sampler s(x). The resulting samples ~ are 
available to the digital processor. In general, the 
imager system contains geometric error sources which 
preclude specification of the ideal sampler phase 

· at the time of imaging. Thus, image samples are not 
available at required locations, e.g., a given map 

· projection grid system or at the same locations 
sampled on an earlier imaging pass. Assuming a 

· function is available which describes the actually­
sampled locations in terms of the desired grid loca­
tions (the distortion, or warp, function), an 
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estimator, or reconstruction filter w(x) Can be de­
rived which will estimate the continuous image 
g(x) prior to the sampler. This continuous image 
estimate can then be effectively evaluated at the 
desired grid locations, hence, the terminology 
"resamp1ing". (Alternatively, the estimator could 
be derived to estimate the original scene f(x) 
prior to the imaging aperture, resulting in "aper­
ture correction,n or Himage restoration,1I as con­
trasted to image reconstruction. Aperture cor­
rection suffers from noise sensitivity and is not 
always appropriate to the processing discussed here.) 

Given an infinite number of sufficiently 
closely-spaced, uncorrupted samples of a band­
limited image, it is well-known that the original 
unsamp1ed (continuous) image can be reconstructed 
without error by using a two-dimensional sinc func­
tion for the interpolation kernel. However, an in­
finite number of contributions to each interpolated 
value requires an infinite amount of time to pro­
cess. In reality, computation time,and storage 
limitations restrict the estimate r(x) to be a 
function of at most N2«oo image samples. In ad­
dition, imagery is seldom perfectly band-limited 
to an extent compatible with realizable sampling 
rates. The specific problem of interest here can 
be stated as follows: "Give2 an image with speci­
fied spectral density and N TOTAL samples of that 
image, perhaps corrupted by measurement noise, find 
t2e ap~ropriate interpolation function which uses 
N (2 N TOTAL) subscene samples to estimate the 
image value at each point in the image with zero 
mean error and minimum error variance,lI 

Heretofore, because of the processing time 
limitations of general purpose digital computers, 
image resamp1ing has generally been accomplished 
by "nearest neighbor"resamp1ing for which N=l 
(each point is a function of only one sample). or 
by bilinear interpolation. Nearest neighbor (so­
called because the intensity of the sample nearest 
the desired location is ascribed to the desired 
location) is extremely fast to compute, but causes 
deletion or replication of image samples and posi­
tion errors of up to + 1/2 pixel (sample spacing), 
significantly degrading change detection performance 
and giving a blocked appearance to images with large 
warp functions. Bilinear interpolation of the four 
samples surrounding the desired location resolves 
difficulties of nearest neighbor ( at increase in 
number of computer operations required), but causes 
noticeable resolution degradation in resamp1ed 



images due to straight-line truncation of intensity 
peaks in the image. 

Hard-wired algorithm approaches to image re­
sampling recently have made feasible interpolators 
with larger N, i.e., 4 or larger. Interpolators 
for N=4 have been studied extensively and results 
are reported here and elsewhere. (Rifman, 1974; 
Rifman, 1975; Taber, 1973; Caron, 1974.) 

III. OPTIMAL LINEAR RECONSTRUCTION ESTIMATOR 

Consider a signal g(x) in one-dimension with 
a specified autocovariance, Cg(x). (Extrapolation 
to two-dimensions is straightforward and avoided 
here for clarity.) The signal mean is assumed un­
known. A number of equally-spaced samples are 
available: 

where the measurements are corrupted by an uncor­
related zer2-mean white noise sequence {v k} with 
variance cry 

* g (xk) = g(xk) + vk 

A linear unbiased estimator of g(x) is desired such 
that ~he estimate error variance, J(x) = E[(g(x) -
g(x» ], is minimized at all x. The form of the 
estimator is 

A constraint is added to the minimization 
problem requiring a constant input to the estimator 
to result in the same constant estimate, i.e., 
9*(xk+1) = g*(xk) all k~ g(x) = g*(xk). This is 
equivalent to requiring that 

where 1 is an N-vector of all ones. Using the error 
variance as a cost functional to which we append the 
constraint with a Lagrange multiplier, 

J(x) = WTRW + R (0) + 0 2 _ 2WTG 
- - g v --

+ 2M (WT1_1) u+u
2 

+ A(WT1+u_1) 
g -- --

With algebraic manipulation: 

J(x) = ~TC~ + Cg(o) + 0v
2 

- 2~Th 

+ A(~Tl-1 + u) + [u+M (WT1_1)]2 
g--

~here R (x)=C (X)+M2 and M is tQe mean of g. Also 
C is th~ auto§ovariaRce of Band R is the autocorrela­
tion of g. But u(x)=WT(x)l+l from the constraint, 
so 
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J = WTCW + C (0) + 0
2 

- 2WTH g v--

+ A(WT11 + u) + (l-M )2U
2 

-- g 

Note that the last additive term in J is the only 
term involving M and is non-negative. Since/M 
is unspecified, 8 must be minimized over all Mg~ 
implying that u=O. In this event, J becomes 

J = WTcw+C (0)+0
2
_ 2WTH+A(wT1-1) 

--g v ----
and the constraint becomes 

~T(x)l = 1 

Minimizing J with respect to ~(x) yields 

- , 1 
~O(x) = C [hex) - 2" A(X) 1] 

Substituting this into the constraint equation 
yields 

2(1TC-'H-1) 
A = -

r-' 1 C 1 

The corresponding value of J is 

o 2 °T 1 
J (x) = Cg(o)+ov -~ (x) hex) -:r A(X) 

or: r-' 2 
2 T -, (1 C H-1) 

= C (o)+Ov -H (x)C- H(x) + - -
g - - T--' 

1 C 1 

° J (x) 

If a suboptimal estimator W'(x), still subject to 
the constraint, were used,-the estimate error 
variance would be 

From earlier, if the mean Mg is known, then 

--I 
~(x) = C hex) 

T--' u(x) = -M (1 C H-1) 
9 - -

JO(x)= C (0)+0
2 
_ HT(x)t'H(X) 

g v - -

and 

However, if M is erroneously estimated as M
g

, 
then g 

- 2 r-' - 2 T--' 2 
J(x) = C (0)+0 -H C H+(M -M ) (1 C H(x)-l) - 9 v--gg--

If the mean were estimated by 
r-' 1 C ~ 

Mg = lTe-'l 



then both the estimators and the error variances for 
the two approaches would coincide. 

In summary, the desired estimator is 

, T 
.9.(x) = !i (x) .9. 

'-1 1 
!i(x) = C Oi(x) - "2 ' (x)lJ 

,(x) 
2(lTe-1!!.(X) - 1) 

o 2 T ",-I 
J (x)= C (0)+0 -H (x)C H{x) g v - -

(lTe -1!!._ 1) 2 

T,-l 
1 C 1 

+ 

, 

estimate 

fi lter 

Lagrange 
multiplier 

error 
variance 

where C is the autocovariance of .9., and H(x) is the 
crossvariance of .9. and g(x). (The problem of aper­
ture corre~tion can be handled similarly by replac-
1ng !!.(x) w1th the crossvariance of the original 
scen7 f(x) and the samples .9..) The problem remain-
1ng 1S the determination of the signal and measure­
ment covariance H(x) and the measurement auto-
covariance e. -

Utilization of theoretical autocovariances or 
those derived from test images with much greater 
resolution than the subject imager and convolved 
with theoretical sensor and electronics apertures 
general~y result in.filters with noticeable image 
resolut1on degradat1on. (For N=4 and the image 
mOd71 of Reference 2 (PoPP, 1972), the optimum 
est1mator 1S very nearly linear interpolation.) 
The cause of this is the relatively low spectral 
power at high frequencies in images relative to low 
spatial frequencies, i.e., high frequencies, are 
s~arse ~n image~ in spite of their importance to 
vlsua~ lnformatl0n content. Consequently, minimum 
rms f11ters for this type of image spectrum sacri­
f,ce accuracy at the high frequencies for slight 
lmprovements at low frequencies. 

. In order to give suitable emphasis to the 
hl~her frequencies in the image, an error criterion 
we1ghted by an appropriate function of image spatial 
freque~cy content.at each point is required. Al­
ternat1vely, the 1mage can be prewhitened for deri­
vation of the filter, thus resulting in a filter 
which emp-asizes all spatial frequencies equally (up 
to the Nyquist rate). In the latter case the fil-
ter is designed for an autocovariance: ' 

2 
Cg(x) = 0g sinc{,ax) 

For N=4, 0 =0, and a=l, the resulting reconstruction 
filter is Mhown in Figure 2A. 

I In practice, the filter is used to estimate 
only points between the central two samples of the N 
samples, with other points being estimated from 
other appropriate sets of N samples. 
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IV. COMPARISON WITH HEURISTIC APPROACHES 

.Several heuristic approaches to image inter­
polat1~n suggest themselves. As an example for 
N=4-po1nt reconstruction filters, the 4-poi~t La­
grange interpolator is well-known (passes a cubic 
p~lynom1a1 through the four points) and is shown in 
F1gure 2B. 

A more popular approach, developed at TRW 
Syst7ms and.ca11ed cubic convolution, utilizes a 4-
seet10n CUb1C spline function as the N=4-point 
interpolator kernel. The spline is chosen to 
satisfy the following boundary conditions: 

w(O) = 
w(!.l ) = 0 
w(x) 0, Ixl ~ 2 
w(x) w(-x) 
w(x)+w(1+x)+w(1-x)+w(2-x) = 1 

thus g~aranteeing exact interpolation of constant 
intens1ty areas. The first derivative of w(x) is 
furt~er.constrained.to be c~ntinuous, guaranteeing 
cont1nu1ty of the f1rst der1vative of the inter­
pola~e~ signal. The resulting interpolator has one 
rem~ln1ng degree of freedom, a. If the parameter 
a 1S chosen for exact constant slope interpolation, 
i.e., -w(1+x)+w(1-x)+2W(1-x) = x then the result­
ing interpolator is as shown in Figure 2C. For 
continuity.of ~econd deriva~ive of w(x) at Ixl = 1, 
the result1ng 1nterpolator 1S as shown in Figure 20. 
For the derivative of w(x) at x=l to be the same as 
that of sincnx, the interpolator is as shown in 
Figure 2E. Alternatively, a quartic spline can be 
defined to satisfy the above boundary conditions 
plus the additional constraint of continuity of 
second derivative of w(x). This interpolation is 
shown in Figure 2F. 

Re§onstruction error for a Gaussian test func­
tion e-x /2 was calculated for each of the above 
filters and several others for several sample 
phasings. Some of these errors are plotted in 
Fi~ure 3 for two sampler phasings. The comparison 
uSlng an error function as test signal gave similar 
results. 

A second comparison was made using ERTS MSS 
data. The data samples were resamp1ed on a grid 
shifted from the input sampled grid by 1/2 pixel 
along-scan using a high-order sinc interpolator 
(N=30, or 900 samples per output point). The same 
was then done for nearest neighbor (N=l), bilinear 
interpolation (N=2), cubic convolution (N=4), and a 
truncated sinc interpolator with N=lO. The re­
sampled images were differenced pixel-by-pixe1 with 
the gOO-point sinc interpolation. Difference images 
and corresponding histograms are shown in Figure 4. 
Note that the 16-point cubic convolution yields 
lower error than the lOa-point truncated sinc inter­
polator. 



A third comparison was made by taking a high 5. 
resolution digital image (3.4m sample spacing) and 
convolving it with an aperture similar to the EOS 
thematic mapper, i.e., a scanning square detector 
shape with an integrate-and-dump sampler. Samples 
were then extracted every 20m along-scan and every 
28m across-scan and used to reconstruct the con-
tinuous image (as convolved with the aperture) us- '6. 
ing several of the above techniques. Difference 
images and error histograms are shown in Figure 5. 
The resolution degradation inherent in 2-point 
interpolators is apparent. Remaining errors in the 
4-point cubic convolution are due primarily to insuf­
ficient sampling rate (aliasing). 

A fourth comparison involved registration of 
two successive scenes of the same area (Baltimore, 
Md.) taken by ERTS MSS using nearest neighbor re­
sampling and cubic convolution. The registered 
images were differenced and the difference images 
are shown in Figure 6. The errors inherent in 
low-order resampling are apparent. 
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FIGURE 6C - DIFFERENCE IMAGE USING TRW CUBIC CONVOLUTION FOR WARPING 
(GRAY· NO ERROR) 
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- -----

FIGURE 6A - ERTS BAlTIfo()R£ (SEPT '72) (512 x 512 PIXELS) 

FIGURE 68 - ERTS BAlTIMORE (OCT '72) REGISTERED TO PREVIOUS SCENE 
(512 x 512 PIXELS) 
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