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Abstract—In this paper, a robust watermarking algorithm using
balanced multiwavelet transform is proposed. The latter trans-
form achieves simultaneous orthogonality and symmetry without
requiring any input prefiltering. Therefore, considerable reduction
in computational complexity is possible, making this transform a
good candidate for real-time watermarking implementations such
as audio broadcast monitoring and DVD video watermarking.
The embedding scheme is image adaptive using a modified version
of a well-established perceptual model. Therefore, the strength
of the embedded watermark is controlled according to the local
properties of the host image. This has been achieved by the pro-
posed perceptual model, which is only dependent on the image
activity and is not dependent on the multifilter sets used, unlike
those developed for scalar wavelets. This adaptivity is a key factor
for achieving the imperceptibility requirement often encountered
in watermarking applications. In addition, the watermark em-
bedding scheme is based on the principles of spread-spectrum
communications to achieve higher watermark robustness. The
optimal bounds for the embedding capacity are derived using a
statistical model for balanced multiwavelet coefficients of the host
image. The statistical model is based on a generalized Gaussian
distribution. Limits of data hiding capacity clearly show that
balanced multiwavelets provide higher watermarking rates. This
increase could also be exploited as a side channel for embedding
watermark synchronization recovery data. Finally, the analytical
expressions are contrasted with experimental results where the
robustness of the proposed watermarking system is evaluated
against standard watermarking attacks.

Index Terms—Balanced multiwavelets, data hiding, embedding
capacity, game theory, image watermarking, information theory,
scalar wavelets.

I. INTRODUCTION

W
ITH the rapid growth and widespread use of network

distributions of digital media content, there is an ur-

gent need for protecting the copyright of digital content against

piracy and malicious manipulation. Watermarking systems have

been proposed as a possible and efficient answer to these con-

cerns. While most of the available research papers have focused

on developing new paradigms for watermark embedding, the
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watermarking community recently recognized the need to de-

velop a guiding theory to describe the fundamental limits of

available and yet-to-develop watermarking systems. Therefore,

information-theoretic watermarking research began to emerge

[1]–[4]. In particular, a theory has recently been developed to es-

tablish the fundamental limits of the watermarking (data-hiding)

problem. Around the same time, Cox et al. [5] have also rec-

ognized that one may view watermarking as communications

with side information known at the encoder. This is reminiscent

of the communications problem with a fixed noisy channel and

side information at the encoder [6]. Interestingly enough, Chen

and Wornell [7] were the first to establish the analogy between

watermarking and communications with side information prob-

lems. They proposed an embedding strategy where the design of

the watermarking codes takes into the consideration the avail-

ability of the side information at the encoder side. Their scheme,

quantization index modulation (QIM), may be viewed as a spe-

cific Costa scheme [8].

The goal of this paper is twofold: 1) to develop a novel

image-adaptive watermarking scheme using balanced mul-

tiwavelets and 2) to derive the watermarking (data-hiding)

capacity of the proposed scheme using various statistical

models for the host image. The watermark embedding is gov-

erned by an efficient, yet simple, perceptual model based on a

subband decomposition that has been specifically adopted to

the balanced multiwavelet transform used in this paper. The

proposed watermarking system is described in Section II where

the motivations behind the use of balanced multiwavelets and

subband just-noticeable difference (JND) profile are outlined.

Section III describes the basic mathematical model for the

image watermarking problem. Relevant models for attack chan-

nels are reviewed therein. Then, we will derive the data-hiding

capacity of the proposed scheme for the considered channel

models. The performance of the watermarking system is eval-

uated in Section IV, where its robustness against benchmark

attacks is assessed. Finally, the conclusion is presented in

Section V.

II. PROPOSED WATERMARKING SYSTEM

As mentioned in the previous section, watermarking can

be looked at as a problem of communications through a

noisy channel.1 As a means to combatting this noise or inter-

ference, spread-spectrum techniques are employed to allow

1According to [7], watermarking systems can be divided into two broad
classes: 1) host-interference nonrejecting schemes and 2) host-interference
rejecting schemes. In the former, the host signal is considered as a source of
interference at the decoder unlike in the latter class.
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Fig. 1. Proposed public spread-spectrum watermarking system.

reliable communication in such noisy environments. In this

case, the watermark data is coded with a pseudorandom code

sequence to spread the power spectrum of the information

data; thus, increasing its robustness against noise. In the pro-

posed watermarking system, we will use the direct sequence

spread-spectrum approach. First, we give an outline of the

public watermarking model and assumptions. Then, we will

describe the watermark embedding algorithm. To allow an

adaptive embedding, the proposed watermarking system ana-

lyzes the host image activity using a perceptual model based

on a well-established subband paradigm [9]. However, because

the perceptual model was initially developed to derive the

JND profile for a subband image coder, we will outline the

necessary modifications to integrate this model with balanced

multiwavelets. Watermark detection stage is then outlined.

A. Watermarking System Model

A generic model of the proposed watermarking system is

shown in Fig. 1. The information data is an -bit binary se-

quence which modulates some pseudorandom sequences. The

process of watermark encoding is independent of the host image

. However, it is worth noting that weighting the water-

mark with a visual mask derived from the host image does not

violate this independence. The watermark is modulated by the

information data and is simply added to the host image. The

latter, in this case, is viewed as additive noise with respect to the

watermark. The watermarked image will be transmitted

through a possibly noisy channel, having a model of its own, and

the received corrupted image will be processed by the

watermark detector/decoder stage. Prior to watermark embed-

ding, the host image is projected in a transform domain using the

balanced multiwavelet transform [10]. The merits of this trans-

form will be reviewed later in this paper. The effects incurred to

the watermarked channel by the transmission channel and most

of the possible intentional and accidental attacks can be mod-

eled using emerging attack models [2], [4]. Elegant informa-

tion-theoretic insights can be gained using these attack models

where even the more challenging class of geometric attacks can

be taken into consideration.2

2In fact, Moulin and Mihçak [2] model geometric attacks as a global warping
operation that takes a specific form.

B. Watermark Embedding Algorithm

The main steps performed in the proposed watermarking

system are summarized below.

1) A binary pseudorandom image consisting of is gen-

erated using the private embedding key .

2) Compute the forward-balanced multiwavelet (BMW)

transform of the host signal ( in our case) to get

the subband coefficients .

3) Estimate the perceptual weights using the modified

JND profile of Chou’s model for each transform subband

independently.

4) Modulate the pseudorandom sequence by the watermark

information data to get the spread-spectrum modulated

watermark sequence .

5) Scale the modulated watermark signal with the perceptual

weights estimated in Step 3.

6) Perform watermark embedding using the following addi-

tive-multiplicative rule: .

7) Finally, the watermarked image is obtained by

performing the inverse BMW transform of the water-

marked coefficients .

Following the notation used for the derivation of data-hiding

capacity in Section III, the watermark embedding rule is restated

as follows3:

(1)

where

the host transform coefficient selected from a set to hide

the watermark bit ; each watermark bit

is embedded in a set containing host transform

coefficients; ;

watermarked transform coefficient;

JND profile weight calculated based on the perceptual

model described in Section II-B-2); represents the

variable and changes across subbands and decomposi-

tion levels as shown in Section II-B-2);

pseudorandom coefficient used to modulate the water-

mark bit .

3This formulation encompasses the inclusion of error-coding through simple
repetition-coding, block coding, or convolutional coding.
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It is worth mentioning that the novelty of the proposed wa-

termarking system lies in 1) the use of balanced multiwavelet

transform, 2) the image-adaptive watermark embedding using

a new perceptual model derived from a conventional subband

JND profile, and 3) the improved data-hiding capacity due to

the inherent structure of the transform subbands. Because the

balanced multiwavelet transform is a relatively new multireso-

lution analysis (MRA) tool, we devote to it an independent sub-

section to highlight its mathematical details and merits.

1) Multiwavelets and Balanced Multiwavelets: Orthogo-

nality is a desirable property for software/hardware implemen-

tation, while symmetry provides comfort to image perception

[11]. In the context of image coding applications, the following

three properties are important: 1) orthogonality to ensure the

decorrelation of subband coefficients, 2) symmetry (i.e., linear

phase) to process finite length signals without redundancy

and artifacts, and 3) finite-length filters for computational

efficiency. However, most real scalar wavelet transforms fail to

possess these properties simultaneously. To circumvent these

limitations, multiwavelets have been proposed where orthog-

onality and symmetry are allowed to co-exist by relaxing the

time-invariance constraint [10].

a) Multiwavelets: Multiwavelets may be considered as

generalization of scalar wavelets. However, some important

differences exist between these two types of multiresolution

transforms. In particular, whereas scalar wavelets have a

single scaling and wavelet function , multiwavelets

may have two or more scaling and wavelet functions. In

general, scaling functions can be written using the vector

notation , where is

called the multiscaling function. In the same way, we can

define the multiwavelet function using wavelet functions as

. The scalar case is represented

by . Most of developed multiwavelet transforms use two

scaling and wavelet functions, while can take, theoretically,

any value. Similar to scalar wavelets, for , the multiscaling

function satisfies the following two-scale equation:

(2)

(3)

However, it should be noted that and are 2 2

matrix filters defined as

(4)

(5)

where and are the scaling and wavelet filter

sequences such that and for

.

The matrix elements in the filters, given by (4) and (5), pro-

vide more degrees of freedom than a traditional scalar wavelet.

Due to these extra degrees of freedom, multiwavelets can si-

multaneously achieve orthogonality, symmetry, and high order

Fig. 2. Multiwavelet filter bank using one iteration.

Fig. 3. Multiwavelet subbands using single-level decomposition.

of approximation. However, the multichannel nature of multi-

wavelets yields a subband structure that is different from that

using scalar wavelets [12].

Fig. 2 clearly shows that multiwavelets are defined for one-di-

mensional (1-D) and two-dimensional (2-D) vector-valued sig-

nals. Using multiwavelets, the resulting approximation subband

has a structure similar to that shown in Fig. 3.

The structure of the approximation subband does not obey the

structure on which most successful embedded coders, such as

set partitioning in hierarchical trees (SPIHT) algorithm, are de-

signed. Like image coders, watermarking systems have to deal

with the major hurdle of handling the approximation sub-blocks

differently. In Fig. 3, these sub-blocks are denoted by

, and , respectively. Usually only the sub-

block represents an approximation of the original image

[12]. The differing spectral characteristics of these sub-blocks

constitute a major problem for systems based on multiwavelets.

Fig. 4 shows these sub-blocks and their spectral contents for

Lena image.

To obtain a structure similar to that of the approximation sub-

band in scalar wavelets, the multiwavelet coefficients in the ap-

proximation sub-blocks are combined using the shuffling tech-

nique proposed by Martin and Bell [12]. However, for unbal-

anced multiwavelets, this combination does not yield a correct

approximation of the input image as shown in Fig. 5.

b) Balanced Multiwavelets: Lebrun and Vetterli [10] in-

dicate that the balancing order of the multiwavelet is indicative

of its energy compaction efficiency. However, a high balancing

order alone does not ensure good image compression perfor-

mance. For a scalar wavelet, the number of vanishing moments



1522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 4, APRIL 2006

Fig. 4. Multiwavelet approximation subband of Lena image (left). Spectral
densities of subband blocks L L ; L L ; L L and L L (right).

Fig. 5. (a) Four sub-blocks of multiwavelet approximation subband of Lena
image. (b) Shuffling effect on approximation subband.

of its wavelet function determines its van-

ishing order. For a scalar wavelet with vanishing order , the

high-pass branch cancels a monomial of order less than and

the low-pass branch preserves it. For a multiwavelet transform,

we have a similar notion of approximation order; a multiwavelet

is said to have an approximation order of if the vanishing mo-

ments of its wavelets, for and

. An approximation order of implies that

the high-pass branch cancels monomials of order less than .

However, in general, for multiwavelets, the preservation prop-

erty does not automatically follow from the vanishing moments

property. If the multifilter bank preserves the monomials at the

low-pass branch output, the multiwavelet is said to be balanced

[10]. The balancing order is if the low-pass and high-pass

branches in the filter bank preserve and cancel, respectively, all

monomials of order less than . Multiwavelets that do

not satisfy the preservation/cancellation property are said to be

unbalanced. For unbalanced multiwavelets, the input needs suit-

able prefiltering to compensate for the absence of the preserva-

tion/cancellation property, balancing obviates the need for input

prefiltering; thus, they are computationally more efficient than

the unbalanced multiwavelets. In [10], the multiwavelet filter

bank, shown in Fig. 6, is viewed as a time-varying filter bank.

To keep the transform nonexpansive, a polyphase vectoriza-

tion is performed on the input image [10]. Therefore, the matrix

filter bank, given by (4) and (5), is transformed into a simple

time-varying multichannel filter bank as shown in Fig. 7. The

Fig. 6. Perfect reconstruction multiwavelet filter bank.

Fig. 7. Time-varying multiwavelet filter bank.

time-varying filter bank, shown in Fig. 7, is described by (6)

and (7).

(6)

(7)

where and are the transforms of the two low-pass

branch filters and . Similarly, and are the

transforms of the two high-pass branch filters and . In

the time-varying filter bank implementation, the coefficients of

the two low-pass (high-pass) filters are simply interleaved at

the output (see Fig. 7). Therefore, a separable 2-D transform

can now be defined in the usual way as the tensor product of

two 1-D transforms [10]. However, in the 2-D transform case,

16 subbands are obtained instead of the usual 4 subbands with

scalar wavelet transforms. For instance, for a single-level bal-

anced multiwavelet, the four sub-blocks of the approximation

subband can be combined using the shuffling method described

previously. Unlike the unbalanced case (see Fig. 5), the resulting

approximation subband is a “real ” low-pass representation of

the image. Fig. 8 shows the four sub-blocks of the low-pass sub-

band of the balanced multiwavelet transform of Lena image.

Unlike unbalanced multiwavelets, these sub-blocks have sim-

ilar spectral characteristics as shown on the left side of Fig. 8.

Furthermore, shuffling of these four sub-blocks yields a “real”

low-pass subband, as illustrated in Fig. 9 for the case of Lena

image.

2) Perceptual Model for Balanced Multiwavelet Trans-

forms: We will give a brief overview of Chou’s model and

show its relevance to the balanced multiwavelet transforms4

4One of the major merits of this model is its independence of the wavelet ker-
nels unlike the model proposed in [13]. Therefore, the proposed watermarking
system will be valid for any kind of transform kernels.
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Fig. 8. Balanced multiwavelet approximation subband of Lena image (left). Spectral densities of subband blocks L L ; L L ; L L , and L L (right).

through the use of subbands’ modeling. Chou and Li [9] pro-

pose a JND or minimally noticeable distortion (MND) profile

to quantify the “perceptual redundancy.” The JND profile pro-

vides a visibility threshold of distortion for each image being

analyzed. The latter indicates the level below which distortions

due to watermark embedding are rendered imperceptible. The

JND profile incorporates two major factors, known to be influ-

ential in the human visual perception; namely the “background

luminance” and “texture masking effect.” The purpose of the

JND profile is to guide the watermark embedding in the BMW

domain. Therefore, this profile must be decomposed into com-

ponent JND/MND profiles of different frequency/orientation

subbands. With the decomposed profile, watermark data will

be adaptively embedded into subband coefficients according to

their “perceptual significance.”

a) Perceptual redundancies: The imperfections and the

inconsistency in sensitivity inherent to the human visual system

(HVS) allow for “perceptual redundancies.” Psychovision

studies [14] indicate that the visibility threshold of a particular

stimulus depends on many factors. There are primarily two

major factors that affect the error visibility threshold of each

pixel.5

• Luminance contrast: Human visual perception is sensi-

tive to luminance contrast rather than absolute luminance

value. As indicated by Weber’s law, if the luminance of

a test stimulus is just noticeable from the surrounding lu-

minance, then the ratio of just noticeable luminance dif-

ference to stimulus difference, known as Weber fraction,

is constant.

• Spatial masking: The second factor reflects the fact that

the reduction in the visibility of the stimuli is caused

5Only achromatic images in the spatial domain are considered. Hence, the
JND/MND profile must be decomposed to fit a subband decomposition struc-
ture.

by the increase in the spatial nonuniformity of the back-

ground luminance. This fact is known as spatial masking.

Chou’s perceptual model estimates, from pixels in the spatial

domain, the JND value associated with each pixel in the image.

Strictly speaking, the visibility threshold of JND is a very com-

plex process and depends of the aforementioned factors. How-

ever, in [9], the interrelevance of the two factors is simplified and

the JND value is defined as the dominant effect of the two fac-

tors. The perceptual model for estimating the “full-band JND”

profile is described by the following expressions [9]:

JND

(8)

(9)

for

for

(10)

(11)

(12)

where and are the average background

luminance and the maximum weighted average luminance

differences around the pixel at , respectively. The spatial

masking effect is taken into account by the function ,

the linear behavior of which is obtained from psychovisual

tests [9]. The visibility threshold due to background luminance

is given by the function in which the relationship

between noise sensitivity and the background luminance is
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Fig. 9. (a) Four sub-blocks of balanced multiwavelet approximation subband
of Lena image. (b) Shuffling effect on approximation subband.

verified by a subjective test [9]. The parameters and

are background-dependent functions derived through

psychovisual experiments. and denote, respectively, the

visibility threshold when the background grey level is 0, and the

slope of the linear function relating the background luminance

to visibility threshold at higher background luminance (level

higher than 127). Parameter affects the average amplitude of

visibility threshold due to spatial masking effect. During the

conducted experiments in [9], , and are found to be 17,

, and , respectively.

b) Deriving MND profile: To accommodate different em-

bedding strengths, the MND profile of different distortion levels

are required. In this case, the MND profile is obtained by simply

multiplying every element of the JND profile, defined in (8), by

Fig. 10. Subband decomposition structure.

a constant scale factor as a distortion index. Thus, the MND

profile with a distortion index can be expressed as [9]

MND JND (13)

where the value of ranges from 1.0 to 4.0. The across

the pixel at is determined by calculating the weight av-

erage of luminance changes around the pixel in four directions.

Four operators for , are employed to

perform the calculations, where the weighting coefficient de-

creases as the distance away from the central pixel increases.

The weight operators are given by [9]

(14)

Using the weights defined in (14), the maximum weighted

average of luminance differences is given by the fol-

lowing expression:

(15)

where

(16)
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Fig. 11. JND profile structure for BMW subbands using five decomposition levels.

where denotes the pixel at position . The average

background luminance, , is calculated by a weighted op-

erator .

(17)

where the weight factor is given by

(18)

c) Decomposition of the JND/MND Profile: Since

Chou’s perceptual model is not aimed at watermark embed-

ding, the JND/MND profile must be modified to accommodate

the decomposition structure obtained using balanced multi-

wavelet transforms. For an image, the JND/MND

profile, as originally proposed by [9], has the linear subband

structure shown in Fig. 10.

As suggested by the HVS models and human perception sen-

sitivity, the high frequency subbands have higher weights. How-

ever, the linear decomposition structure, shown in Fig. 10, does

not lend itself to such a property. Therefore, we need to find a

suitable decomposition according to the frequency content of

the BMW subbands. Such a solution is presented in Fig. 11.

Using the BMW decomposition and the modified JND profile,

Figs. 12 and 13 show the resulting JND/MND profiles of Lena

and Barbara images, respectively. These figures clearly show the

ability of the proposed JND/MND profile to adaptively adjust it-

self to the image activity. Therefore, edges and salient features

are efficiently discriminated as highlighted. This property is a

key factor to satisfy the imperceptibility requirement often en-

countered in watermarking applications [15].

Finally, the JND/MND profile should be decomposed to fit

the subband structure shown in Fig. 11. The subband profile is

given by

JND JND

for and

(19)

where JND denotes the magnitude of the JND at posi-

tion of the th subband (see Fig. 11). The factor , rep-

resenting the th subband weight, is defined by the following

expression:

for (20)

where denotes the average sensitivity of the HVS to spatial

frequencies in the th subband. The average sensitivity is

given by [9]

for (21)

where

and denotes the response curve of the modulation

transfer function (MTF) for . Chou and
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Fig. 12. Lena image (left) and its resulting JND/MND profile (right).

Fig. 13. Barbara image (left) and its resulting JND/MND profile (right).

Li [9] propose the following generalized formula for fitting the

response curve of the MTF:

(22)

where

for (23)

is the spatial frequency in cycles per degree (cpd) and is a

shaping parameter for the MTF curve [9]. It should be noted

that the JND profiles shown in Figs. 12 and 13 are derived for

the MTF curve modeled by

, and , respectively.

The distortion index is fixed to 3.0. The BMW JND profile

subbands, given by (19), are inverse-transformed to obtain the

spatial JND profiles shown in Figs. 12 and 13.

C. Watermark Decoding

The problem of watermark decoding is reminiscent of the

classical problem of detecting a known signal in background

noise. Maximum-likelihood (ML) detection is used to extract

each embedded bit from the watermarked signal coefficients. In

this paper, we model the subband coefficients of the host signal

using a statistical model proposed in [16] where the assumed

model is a generalized-Gaussian distribution (GGD). However,

the watermark detector operates in a blind fashion where the

original host is not available. Therefore, the watermarked

subband coefficients, themselves, are used for estimating the

model parameters under the assumption that the distortion

due to watermark embedding is relatively small (see assump-

tions about distortion in Section III). The BMW subband

coefficients are modeled according to a GGD model where

, where and depend on and

the standard deviation of the subband coefficients. The

parameters and are defined as follows:

(24)

and

(25)
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At the decoder stage, we have the following hypothesis test:

hypothesis a bit 0 is embedded

hypothesis a bit 1 is embedded

The corresponding maximum log-likelihood decision rule de-

cides for the bit to be a 1 if

(26)

Estimation of and parameters is carried out indepen-

dently for each embedded watermark . It should

be noted that each watermark bit is embedded into different

host coefficients. Therefore, the decoder complexity depends

mainly on the number of watermark bits being embedded. The

parameters and can be estimated using the pair .

It should be noted that the ML rule, given by (26), does not

require the knowledge of the parameter . Furthermore, for a

robust estimation of the parameters , the number of the

subband coefficients should not be less than 256 as indicated in

[17]. In the proposed system, the detection is based on a corre-

lation detector. Using the embedding formula given by (1), the

corresponding correlation detector has the following form:

if

if
(27)

where is the scalar product operator.

III. INFORMATION-THEORETIC DATA-HIDING ANALYSIS

To derive the fundamental limits of watermarking and data

hiding systems, we will follow the framework used in [1]–[4]

where no a priori assumptions are made about the embedding

and decoding functions. The recent theory developed in [2] and

[4] establishes the fundamental limits of the watermarking (and

data hiding) problem. A communication-like representation of

the watermarking problem is shown in Fig. 1.

A. Communications Model for Watermarking

In Moulin–Mihçak’s framework [2], [4], the watermarking

system embeds or hides a watermark payload message in

a length-N host data sequence . Side-in-

formation , such as cryptographic key

or host signal-dependant data, may be used by the water-

mark embedding stage. The watermarked data is denoted

by . Watermark

attackers, modeled by attack channels, intend to remove or at

least make useless the embedded message . The sequence

represents the attacked watermarked

sequence. To derive the data-hiding capacity, we assume that

the host images can be “correctly” modeled as sequences of

independent and identically distributed (i.i.d.) -dimensional

Gaussian random vectors , where is a

correlation matrix. In this paper, the squared Euclidean dis-

tance, , for is used as the main

distortion metric. Data-hiding capacity estimates for the scalar

case, where and ), are presented in [2].

While detailed results specific to the vector case may be found

in [4], a summary of these results is outlined in [2]. In this

paper, we are mainly interested in the parallel representation

of the outlined problem. Thus, the host data is represented

by means of parallel Gaussian channels. In the latter case,

the channel inputs are independent sources .

Each channel is modeled as a sequence of i.i.d. Gaussian

random variables . The watermark payload message

is uniformly distributed over the message set and is

independent of the host signal . Because the watermarking

problem can be viewed as a game-theoretic problem between

the data embedder and the attacker who is an intelligent op-

ponent, game-theoretic analysis of the watermarking problem

has been successfully formulated for both the scalar and vector

cases [3], [4]. In this game-theoretic framework [4], maximum

distortion levels are specified for both the watermark embedder

and attacker . The maximum expected-distortion

imposed on the watermark embedder is given by [4]

(28)

Attacks on embedded watermarks, modeled by specific

channel models, are subject to distortion [4]

(29)

Equation (29) represents a constraint on the expected distor-

tion with respect to the host signal that the watermark at-

tacker is willing to introduce [4]. For a specific length- data-

hiding code, the data-hiding capacity is defined as

the supremum of all achievable rates for distortions

[4].6

1) Scalar Gaussian Channels: Under the distortion

constraints (28) and (29), the data-hiding capacity for scalar

Gaussian channels is given by [4]

if

if
(30)

where . In practical watermarking

applications where , we have and

therefore

(31)

Equation (31) clearly indicates that the capacity is independent

of the host signal variance . In addition, it is quite interesting

to note that regardless of the availability of the host signal at the

decoder, the same value of capacity is obtained.

6It should be noted that a rate R is achievable for distortions (D ;D ) if
there exists a sequence of codes, subject to distortion D , with respective rates
R > R, such that the probability of error P tends to zero as N !1 [4].
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Fig. 14. Host signal representation using parallel Gaussian channels.

2) Parallel Gaussian Channels: In this paper, the parallel

Gaussian case is of interest to us. Fig. 14 illustrates the con-

cept of the problem representation using parallel Gaussian chan-

nels. The host signal is decomposed into channels using

the balanced multiwavelet transform. Each host subsignal

consists of samples. According to the model as-

sumptions presented earlier, the subsignals are independent

and are assumed to be Gaussian-distributed such as .

Let and be the distortions introduced in channel by

the watermark embedder and attacker, respectively. Moulin and

Mihçak [4] show that the allocation of powers and

between channels, satisfies the overall distortion

constraints

(32)

(33)

where is the inverse subsampling factor in channel given

by: . It is assumed that . (32) and

(33) are subject to the following constraints:

(34)

(35)

(36)

for . The data-hiding capacity of parallel Gaussian

channels is defined by the maximization–minimization relation,

given by (37), subject to the constraints shown above

[4], as follows:

(37)

Moulin and Mihçak [4] provide a numerical optimization al-

gorithm to compute the capacity in (37).

B. Models of Typical Images

Unlike in the case of unbalanced multiwavelets, the struc-

ture of the subbands emanating from balanced multiwavelet

decomposition have similar structure to that obtained using

scalar wavelet decomposition (refer to Section II-B-1) for

details). This similarity in subband structure motivates us to

investigate the suitability of well-established statistical models

that were initially designed for scalar wavelets. In these models

[18] and [16], subbands’ coefficients are modeled as Gaussian

and generalized-Gaussian processes, respectively, with zero

means and variances that depend on the coefficient location

within each decomposition subband. In [18], it is assumed

that the coefficients’ variances belong to a finite set of values

. Joshi et al. [18] recommend a typical value of

equal to eight times the number of decomposition subbands.

The estimation-quantization (EQ) model, proposed by Lopresto

et al. [16], assumes that the coefficients’ variances are random

and slowly varying such that the decoder can reliably estimate

their values. In this paper, we will use the technique proposed

in [4] to estimate representative values of . The

technique is described below for convenience.

1) Apply balanced multiwavelet transform to a representa-

tive image of a typical class using five decomposition

levels.

2) Estimate the local variance in a 5 5 window centered at

each wavelet coefficient.

3) Quantize the natural logarithm of each of these variance

estimates using a uniform quantizer with levels and

quantizer step size . Then, a watermarking Gaussian

channel consists of all coefficients having the same quan-

tized variance within each subband.

In this paper, we present simulation results and capacity esti-

mates for watermark embedding using 256 channels. Also,

we investigate the case of 64 to provide an equal-foot and

fair comparison with the block-based DCT watermarking par-

adigm.7 Figs. 15 and 16 show the resulting 256 parallel chan-

nels to accommodate watermark embedding in Lena and Ba-

boon images, respectively. Dark regions (approximation and de-

tail subbands at level 5) represent perceptually important image

regions. In these figures, the estimated variances, and therefore

channels, are consistent with the notion, originally formulated

by Cox et al. [19], that “watermarks should be embedded in

perceptually and significant signal components.” On the other

hand, we note that coefficients of the low-pass subband, cor-

rectly classified as high variance channels, are characterized

with higher embedding capacities. Based on this, it is clear that

skipping the most perceptually dominant signal components, as

recommended in [19], results in a drastic decrease in data-hiding

capacity. It should be noted that under mild attacks, some of

the perceptually less important channels (see Figs. 15 and 16)

will move away from their original positions. However, due to

repetition-encoding of the watermark payload, most of the af-

fected channels can be safely recovered. Fig. 17 illustrates the

solution of (37) to derive the capacity per sample in each of

the 256 channels for Lena image assuming an attacker distor-

tion fixed at . The capacity estimates are related

to the embedding channels shown in Fig. 15. For comparison

purposes, capacity estimates yielded by scalar Daubechies-8

(Daub8) wavelet transform [4] are also provided. It is clear that

BMW transform is characterized by higher data-hiding capacity.

The increase in the embedding rate could be efficiently used to

inject synchronization data in the host medium to combat desyn-

chronization attacks.

7In block-based DCT watermarking systems, an 8� 8 block DCT yields 64
parallel channels.
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Fig. 15. EQ-estimated 256 parallel Gaussian channels in Lena image.

Fig. 16. EQ-estimated 256 parallel Gaussian channels in Baboon image.

C. Estimates of Data-Hiding Capacities

In this section, we investigate the data-hiding capacity of typ-

ical natural test images. Analysis results are presented for four

test images, Lena, Barbara, Baboon, and Peppers. The original

test images are shown in Fig. 18.

We perform a simple subjective evaluation to estimate the

value for for the test images such that distortion due to data

embedding is just noticeable. The experiment consists of incre-

mentally adding white noise to a test image until it becomes no-

ticeable. Fig. 19 shows the experimental setup. Similar to [4],
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TABLE I
TOTAL DATA-HIDING CAPACITIES (IN BITS) FOR IMAGES OF SIZE N � N = 512 � 512 USING

ORTHOGONAL DAUBECHIES 8; 9=7 LINEAR-PHASE FILTERS, AND BAT-1 BALANCED MULTIFILTERS

TABLE II
COMPARISON OF TOTAL DATA-HIDING CAPACITIES (IN BITS) USING 64 CHANNELS

8� 8 BLOCK DCT AND BAT-1 BALANCED MULTIFILTERS

Fig. 17. Channels’ contribution to capacity for Lena image (D = 10

and D = 20) using BMW-EQ model (solid line) and Daub8-EQ model
(dashed–dotted line) [4].

the values of are 10 , 20, 25, and 10 for Lena, Barbara, Ba-

boon, and Peppers, respectively.

To derive the fundamental limits of watermarking and data

hiding systems, we will follow the methodology used in [1]–[4]

where no a priori assumptions are made about the embedding

and decoding functions. The watermarking (or data-hiding)

problem, viewed as communications through noisy single

or parallel Gaussian channels, has theoretical limits on the

achievable capacity [2], [4]. Data-hiding capacities (NC) for

the test images are shown in Table I. The displayed values

Fig. 18. Original test images. Upper left: Lena. Upper right: Barbara. Lower
left: Baboon. Lower right: Peppers.

represent the total data-hiding capacities (in bits) for images

of size . In the same table, we indicate

the data-hiding capacities assuming a spike model (NC-Spike)

[20], where the MBW subband coefficients are classified into

two different classes using a coarse quantization with threshold

equal to .
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Fig. 19. Subjective estimation of D levels for the test images.

Fig. 20. Subsampling factors (on a log scale) for the test images using K =

256 (solid line) and K = 64 (dashed line) channels.

It is clear from Table I that the proposed watermarking system

yields higher data-hiding capacity due to the inherent structure

of BMW transforms [21]. The ability to allow more embedding

capacity is mainly due to the energy compaction property of

BMW transforms. In some transforms of this class, the low-pass

filters introduce a 0.5 pixel shift at each decomposition iteration,

due to their structure and the signal extension scheme (sym-

metric border extension). Therefore, high energy coefficients at

Fig. 21. Capacity in bits per pixel versusD =D for BMW-EQ model (solid
line) and block DCT model (dashed–dotted line) for Lena image.

image discontinuities will be less aligned across scales. In this

case, the variance estimates yield watermark channels with in-

creased embedding capacity. The subsampling factors for the

cases of 256 and 64 are given in Fig. 20. In Fig. 20,

each channel, characterized by a specific quantized variance, is

willing to carry a specific number of bits per pixel. It is quite

interesting to note that Baboon and Barbara images offer more

high embedding channels due to their “dominant” textured na-

ture.
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Fig. 22. Additional test images used for performance evaluation.

The range of the log-variances of the subbands’ coefficients

controls the product . The choice of 256 is motivated

by the convergence of the data-hiding capacity to a limiting case

[4] when takes a small value ( for 256).

1) Block DCT Versus BMW EQ Model: Table II gives a com-

parison between the capacity estimates of the proposed water-

marking system and the block DCT model. It is clearly indi-

cated that the latter yields capacity estimates higher than the

former. However, in typical images, the Gaussianity assump-

tion is quite loose, and therefore, these capacity estimates rep-

resent only upper bounds on the actual capacities [4]. Unlike all

the cases shown, the BMW-based model outperforms the block

DCT model for the case of Baboon image. This performance

may be attributed to the ability of BMW transforms to better

model textured images [22].

For a consistent comparison, we conduct an experiment to

evaluate the data-hiding capacity for various levels of attacker

distortion . Fig. 21 shows the capacity estimates for the

BMW-EQ and block DCT models for a range of attacker

distortion for the case of Lena image. Results

shown are in total agreement with those summarized in Table II.

IV. SIMULATION RESULTS

We run experiments to evaluate the performance of the

proposed watermarking system using the test images shown in

Figs. 18 and 22.8

In addition, we provide comparison with another system

based on block DCT model [23], [24]. Furthermore, using

extensive simulation, performance evaluations are carried out

to investigate the effects of the following.

• Detector structure: We present simulation results to show

the improved performance of the proposed watermarking

8To assess the performance variability with respect to content, we use
ten other images obtained from the USC image database, [online] available:
http://sipi.usc.edu/database/

Fig. 23. Logarithmic BERs of repetition-coding using BMW method and
block DCT for various watermark lengths (M = 128, 256, 512, and 1024).

algorithm using a simple correlation detector. For com-

parison purposes, we provide also results obtained using

an existing ML-based detector watermarking algorithm.

• Coding strategy: This comparison includes repetition

coding versus error-correcting codes (ECCs) such as

Bose–Chaudhuri–Hochquenghem (BCH) and Hamming

codes.

• Embedding domain: Comparison of the performance of

the cover media and their respective data-hiding capacity.

Specifically, we investigate the robustness of the cover

media provided by the BMW-EQ (see Section III) and

block DCT models [23], [24]. Furthermore, we present

simulation results for the proposed system robustness

against typical attacks such as additive white Gaussian

noise (AWGN), median filtering, Wiener filtering, and

JPEG compression.

A. Performance of Uncoded Watermarks

First, we present results of the performance of the proposed

system where we assume no attacks against the embedded wa-

termarks. The embedded watermark messages consist of 128,
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Fig. 24. ECC-encoding of the watermark information datam.

256, 512, and 1024 bits, respectively. It should be noted that

code repetition is employed to increase the output signal-to-

noise ratio (SNR) at the decoder stage [23]. Fig. 23 shows the

bit error rate (BER) of the proposed watermarking system using

the EQ-BMW model. It is clear that the proposed system outper-

forms that based on a block DCT model [23].It is worth noting

that while the block DCT model performs watermark decoding

using an ML detector described by a relation similar to (26),

the detector of the proposed system is based on a simple cor-

relation measure [19]. In both cases, the embedding strategy is

concerned with a scalar Gaussian channel i.e., the data-hiding

capacity bound is given by (30). As expected, balanced multi-

wavelets provide a more robust cover medium for watermarking

applications.

B. Performance of Error-Control Coded Watermarks

ECC codes are playing an important role in data-hiding and

watermarking systems [24], [23]. We investigate the perfor-

mance of ECC codes for watermark payload augmentation.

Fig. 24 illustrates the process of ECC-encoding of the infor-

mation data . To enhance the protection of the watermark

message and improve the payload size, we will use ECC

coding. However, due to the small size of the watermarking

codes, we restrict ourselves to Hamming and BCH codes.9

The performance of Hamming and BCH codes has been tested

through extensive simulation using the same set of test images

shown in Fig. 18.

Fig. 25 show results of the performance of the Hamming

code to protect embedded watermarks of lengths 128,

256, 512, and 1024, respectively. Also, we report results for

the ML-based decoder using the block DCT model [23]. As ex-

pected, the proposed scheme is characterized by an improved

decoding performance. Furthermore, the increased performance

is achieved at a computational complexity similar to that of the

system used in [23].

Similar to [23], we study the performance of the BCH (15, 7)

code for correcting errors in the decoded watermark sequences.

Fig. 26 shows the BER at the detector output. For comparison

purposes, we present performance results of the ML-based de-

tector, given in [23], for decoding watermark messages of length

9At small sizes, various ECC codes yield similar performance [24].

Fig. 25. Logarithmic BERs of Hamming (7, 4) code using BMW method and
block DCT for various watermark lengths (M = 128, 256, 512, and 1024).

Fig. 26. Logarithmic BERs of BCH (15, 7) code using BMW method and
block DCT for various watermark lengths (M = 128, 256, 512, and 1024).

256, 512, and 1024, respectively. However, it should be noted

that the decoder, used in [23], is based on a BCH (63, 30) code.

Again, as in the case of Hamming codes, the proposed system

using the EQ-BMW model outperforms its counterpart based on

the block DCT model.

C. Robustness Against Typical Attacks

Finally, we present results for the study of the robustness

of the proposed watermarking system against typical attacks

namely AWGN noise, median filtering, Wiener filtering, and

JPEG compression. In Fig. 27, we show results for the per-

formance of the correlation decoder in the presence of AWGN

noise. We report results for the mean performance using the test

images shown in Figs. 18 and 22. The watermark messages are

of length 128, 256, 512, and 1024, respectively.

The results shown clearly indicate that the proposed system

is able to withstand AWGN attacks. However, we notice a de-

crease in performance for larger watermark messages, say 1024.

This decrease is mainly due to the reduction in the chirp rate

to accommodate the upper bound of the number of embedable

watermark bits [23]. It should be noted that higher values of

yield higher SNR values at the decoder stage.

Using the same watermark lengths, results for the robustness

of the proposed system against median filtering are shown in

Fig. 28. The median filtering is applied locally using a window

of size 3 3, 5 5, and 7 7, respectively.
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Fig. 27. Mean logarithmic BERs of BCH (15, 7) code in the presence
of AWGN noise using watermark lengths of 128, 256, 512, and 1024 bits,
respectively.

Fig. 28. Mean logarithmic BERs of BCH (15, 7) code in the presence of
median filtering using watermark lengths of 128, 256, 512, and 1024 bits,
respectively.

Similar to the case of AWGN noise, the system robustness

against median filtering decreases for larger watermark mes-

sages. Also, for larger window sizes (5 and 7), the system per-

formance decreases and the probability of error gets above

which may considered as an unacceptable performance for spe-

cific watermarking applications.

Fig. 29 illustrates results for the mean performance of the de-

coder in the presence of Wiener filtering.10 Similar to the pre-

vious attacks, the watermark messages are of length 128, 256,

512, and 1024, respectively.

As expected, the Wiener filtering attack is more effective

against watermarking systems. In fact, Wiener filtering may be

considered as optimal for attacking watermark systems.

Finally, we present results for the performance of the pro-

posed watermarking system in the presence of JPEG compres-

sion. For messages of length 128, 256, 512, and 1024, Fig. 30

shows the BERs of the watermark decoder in the presence of

JPEG compression, respectively.

The robustness of the proposed system against JPEG com-

pression is clearly demonstrated in Fig. 30. To illustrate the high

performance of the proposed system, Fig. 31 gives a comparison

between the performance of the proposed system and that of the

scheme used in [23]. For comparison purposes, we report re-

sults for only the case of watermark message lengths of 256 bits.

10For median and Wiener filtering, we have used Matlab built-in functions
wiener2 and medfilt2.

Fig. 29. Mean logarithmic BERs of BCH (15, 7) code in the presence of
Wiener filtering using watermark lengths of 128, 256, 512, and 1024 bits,
respectively.

Fig. 30. Mean logarithmic BERs of BCH (15, 7) code in the presence of
JPEG compression using watermark lengths of 128, 256, 512, and 1024 bits,
respectively.

Fig. 31. Performance comparison between proposed system and the scheme
of [23] for watermark message lengths of 256 bits.

Though DCT-based systems such as that in [23] offer higher

embedding capacities, the proposed system exhibits higher ro-

bustness especially for low values of the JPEG quality factor

. This improved robustness against the compression attack is

mainly due to the incorporation of the perceptual model that was

initially designed for image compression applications [9].

V. CONCLUSION

In this paper, we have presented a novel public image-adap-

tive watermarking system using the emerging BMW transform.

Unlike with image coding applications, it has been demon-

strated that the inherent structure of BMW decomposition
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could be used constructively to achieve higher data-hiding

capacities. Furthermore, we analyzed an existing subband

perceptual image model and derived a convenient structure to

estimate the JND profiles for BMW subbands to perceptually

embed the watermark data into the host image. Unlike most

of the existing perceptual models, the proposed BMW-based

perceptual model is independent of the multifilter set used in

the BMW transform. Also, in the course of our investigation,

it was shown that that the proposed system achieves higher

data-hiding capacities for the case of the parallel Gaussian wa-

termarking channels. The gain in data-hiding capacities could

be effectively used to design side channels to convey watermark

synchronization signals to combat desynchronization attacks.

Comparison with existing models based on scalar wavelets

clearly shows the capacity gains. Finally, the performance

of the novel watermarking system is presented where the

robustness against typical watermark attack channels, such as

AWGN noise, JPEG compression, median and Wiener filtering,

is highlighted. Also, it has been demonstrated that possible

improvement in watermark payload size could be achieved

using error-control coding techniques such as simple repetition

coding, Hamming codes, and BCH codes.
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