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Abstract: In this paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different 
approximation of the sigmoid function. Three previously published piecewise linear and one piecewise second-order 
approximation are analyzed from point of view of hardware resources utilization, induced errors caused by the 
approximation function and bits representation, power consumption and speed processing. The major benefit of the proposed 
method resides in the possibility to design neural networks by means of predefined block systems created in System 
Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical 
circuits. 

 
Key words:  Sigmoid approximation, FPGA implementation, System Generator  
 
 
 
 

 

I. INTRODUCTION 

A main component of an artificial neuron’s behaviour and 

usually a bottleneck for its speed performance is the 

sigmoid activation function block. Hardware 

implementation of the considered function (sigmoid 

function), as defined in literature, [1, 2], implies important 

hardware resources consumption. 
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In order to reduce such consumption is useful to adopt 

different approximations (in function of the available 

hardware resources) with minimum errors. 

The principal classical methods to digitally implement 

the activation function are Look-up tables and truncation 

of the Taylor series expansion. The second method can 

further be divided in: sum-of-steps, piece-wise linear, 

combination of the previous, or others. 

The best results reported in the literature show errors of 

8% to 13.1% for sum-of-steps approximations and ± 

2.45% to ± 1.14% [3,4] for piece-wise linear 

approximation. Also, there are approximations with lower 

errors, but uses floating-point multiplications, which 

makes it far too complicated for a practical VLSI 

implementation.  

The hardware implementations of the sigmoid 

approximations are done in System Generator, part of the 

Simulink/Matlab environment. 

In the following, the hardware resources consumption 

and the generated errors for different FPGA 

implementation of five approximations proposed in 

literature are analyzed. 

 

II. HARDWARE IMPLEMENTATION OF THE 

SIGMOID FUNCTION 

A.  Look-up Tables 

The hardware resources of an FPGA circuit utilized for 

Look-up Tables implementation are considerable large 

only in the case in which the ROM memory is not FPGA 

implemented with predefined RAM Block. In table I, are 

presented the equivalent gates counted for design. 

TABLE I.  HARDWARE RESOURCES UTILIZATION OF THE 4VSX35 
FPGA CIRCUIT 

Device Utilization Summary 

Logic Utilization Used Available Utilization 

Slices  0 15,360 0 % 

LUTs 0 30,720 0 % 

BRAMs 1 192 0.52 % 

DSPs 0 192 0 % 

Total equivalent gate count for 

design 
196,60 3.5M 3.7 % 
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B. A-law approximation 

The method is proposed by Myers and Hutchinson in 

order to obtain a modified curve with the gradient of each 

linear segment expressed as a power of two. In this way 

the multipliers are replaced with shifters. The curve is 

approximated by seven segments and its breakpoints are 

presented in Table II. 

TABLE II.  BREAKPOINTS OF A-LAW BASED SIGMOID 

APPROXIMATION 

x -8.0 -4.0 -2.0 -1.0 1.0 2.0 4.0 8.0 

y 0.0 0.0625 0.12 0.25 0.75 0.87 0.937 1.0 

 

In order to evidence the errors introduced by the A_law 

approximation, in fig. 1 and fig. 2 are shown the sigmoid 

function beside hardware implemented A_law function. 

The numbers of bits allocated for digital signal processing 

in FPGA circuit are: 32 bits with 16 bits binary point, 

noted with (32,16), 16 bits with 8 bits binary point, (16,8) 

and 8 bits with 4 bits binary point, (8,4). 

 

 

Figure 1.  Comparative representation of the sigmoid 

function and alaw approximation 

 

Figure 2.  Errors introduced by the A_law 

approximation for different bits representation 

After analyzing the results presented in fig.2, it can be 

conclude that for a (16,8) representation, the maximum 

error introduced by A_law approximation is 5.63% and the 

mean error is 0.6335%. These errors increase with 

decreasing of the bits representation: 11.51 % for (8,4) 

representation. 

The hardware implementation of the A_law function is 

presented in fig.3.  

The hardware resources utilized are resumed to 1 

MCode block for compare functions, 4 shift registers, 2 

multiplexers and 1 sum block. All the used blocks are part 

of the System Generator library (Xilinx Blockset). 

 

Figure 3.  Hardware architecture of the A_law 

approximation 

For determination of the total equivalent gates used for 

hardware implementation of the A_law function, ISE 

(Xilinx Integrated Software Environment) was used. Its 

report is presented in table III. 

TABLE III.  RESOURCES UTILIZATION OF THE 4VSX35 FPGA 
CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE A_LAW 

APPROXIMATION 

Device Utilization Summary 

Used 
Logic Utilization 

(32,16) (16,8) (8,4) 
Available 

Slices  185 74 23 15,360 

LUTs 101 40 16 30,720 

BRAMs 0 0 0 192 

DSPs 0 0 0 192 

Total equivalent gate 

count for design 
1,653 1,440 204 3.5M 

 

C. Alippi and Storti-Gajani Approximation 

The Alippi and Storti-Gajani Approximation lies on the 

selecting of a set of breakpoints of the first derivate and 

setting the function as sum of power of two’s numbers. 

For the reason that the sigmoid function has a symmetry 

point at coordinates (0, 0.5) only half pairs of x-y will be 

calculated, [3]: 
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y y
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= −  (2) 

 

Taking in consideration only the negative numbers, 

negative x-axis, and defining the integral part of x as 

INT(x), the decimal part of x with its own sign, denoted 

FRAC(x), is defined as follows: 

 

 ( ) ( )FRAC x x INT x= +  (3) 
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Therefore, the expression of the Alippi function may be 

defined as: 
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Hardware implementation of the Alippi function is 

made in the System Generator Toolbox, part of 

Matlab/Simulink environment. The resources utilized are 

resumed at 8 shift registers used for dividing the Frac(x) 

signal to 4 and for shifting it with a number of Int(x) bits, 

4 multiplexers, 3 subtraction blocks, 2 slice blocks and 1 

comparator block. The numerical representation used for 

signals processing, i.e. number of bits and binary point are 

set in a pop-up parameters window as global variables. For 

each blocks in part the binary point is customized function 

of the maximum value of the function. In this way it can 

be obtained maximum performance at a given number of 

bits. The hardware architecture is shown in fig.4. In order 

to evidence the errors introduced by the Alippi 

approximation, in fig. 5 and fig. 6 are shown the sigmoid 

function beside Alippi function hardware implemented.  

The numerical representation used for the analysis is 32 

bits with 16 bits binary point, (32,16), 16 bits with 8 bits 

binary point, (16,8), 8 bits with 4 bits binary point, (8,4) 

and 5 bits with 3 bits binary point, (5,3). 

 

 

Figure 4.  Hardware architecture of the Alippi function 

approximation 

 

Figure 5.  Comparative representation of the sigmoid 

function and Alippi approximation 

 

Figure 6.  Errors introduced by the Alippi 

approximation for different bits representation 

Analyzing the results presented in fig.6, can concludes 

that a (32,16) or (16,8) representation induces a maximum 

of 1.89 %, (8,4) representation produces an error of 2.77 % 

and for a (5,3) representation, the maximum error is of 

11.83%. 

In order to evidence the total equivalent gates used 

function of number of bits allocated for hardware 

implementation of the Alippi function, an ISE report about 

hardware implementation was made, presented in table IV. 

D. PLAN Approximation 

The PLAN approximation (Piecewise Linear 

Approximation of a Nonlinear function) was proposed by 

Amin, Curtis and Hayes–Gill [4]. The PLAN 

approximation uses digital gates to compounds the 

sigmoid function and its equations are presented in table 

V. The advantage of this approximation is giving by the 

fact that instead of multiplication, shifting operations are 

required. 

TABLE IV.  RESOURCES UTILIZATION OF THE 4VSX35 FPGA 
CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE ALLIPI 

APPROXIMATION 

Device Utilization Summary 

Used 
Logic Utilization 

(32,16) (16,8) (8,4) (5,3) 
Available 

Slices  127 67 36 15 15,360 

LUTs 218 110 56 24 30,720 

BRAMs 0 0 0 0 192 

DSPs 0 0 0 0 192 

Total equivalent gate 

count for design 
1812 912 456 219 3.5M 

TABLE V.  PLAN APPROXIMATION EQUATIONS 

PLAN(X) Conditions 

1 |X| ≥ 5 

0,03125 · |X| + 0,84375 2,375 ≤ |X| < 5 

0,0125 · |X| + 0,625 1≤ |X| < 2.375 

0,25 · |X| + 0,5 0 ≤ |X| < 1 

 

The PLAN approximation and its introduced errors by 

representation on different number of bits are shown in 
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fig.7 and fig. 8. In order to calculate these errors a 

hardware implementation of the PLAN equations was 

made by means of System Generator blocks of the 

Matlab/Simulink environment, fig.9. 

Analyzing the results presented in fig.8, can concludes 

that (32,16) representation induces a maximum error of 

1.89 % and a mean error of 0.81%, (16,8) representation 

has a maximum error of 2.14 % and a mean error of 

0.90%, (8,4) representation has a maximum error of 10.75 

% and a mean error of 5.06% and (5,3) representation has 

a maximum of 24.33 % and a mean error of 15.09%. 

 

 

Figure 7.  Comparative representation of the sigmoid 

function and PLAN approximation 

 

Figure 8.  Errors introduced by the PLAN 

approximation for different bits representation 

 

 

Figure 9.  Hardware architecture of the Alippi function 

approximation 

In table VI are presented the resources utilized in 

function of numerical representation for hardware 

implementation of the PLAN approximation. 

 

 

 

TABLE VI.  RESOURCES UTILIZATION OF THE 4VSX35 FPGA 
CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE PLAN 

APPROXIMATION 

Device Utilization Summary 

Used 
Logic Utilization 

(32,16) (16,8) (8,4) (5,3) 
Available 

Slices  109 44 24 11 15,360 

LUTs 138 67 32 11 30,720 

BRAMs 0 0 0 0 192 

DSPs 0 0 0 0 192 

Total equivalent gates 

count for design 
1164 561 270 114 3.5M 

 

E. Piecewise second-order approximation  

The sigmoid function can also be implemented as a 

piecewise second-order approximation. This kind of 

approximation implies using of generic square functions 

that involve using of the multiplications blocks. In order to 

avoid this, Zhang, Vassiliadis and Delgado–Frias have 

presented a second-order approximation scheme defined in 

the interval (-4, 4) that requires only one multiplier, 

(Zhang approximation), [5]. There are reported others 

second-order approximation, but the hardware resources 

involved for implementation are three times higher, [8]. 
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Figure 10.  Hardware architecture of the Zhang function 

approximation 

Analyzing the errors introduced by the Zhang 

approximation  

 

 

Figure 11.  Comparative representation of the sigmoid 

function and Zhang approximation 
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The hardware implementation of the Zhang approximation 

is shown in fig. 10 

 

 

Figure 12.  Errors introduced by the Zhang 

approximation for different bits representation 

presented in fig. 11 and 12 it can be saw that the maximum 

error induced in function of the used numerical 

representation are 16.95% for (5,3), 6% for (8,4), 2.27% 

for (16,8) and 2.24% for (32,16), where the first number in 

the parenthesis represents the number of bits and the 

second is the binary point. The mean of absolute errors is 

distributed as follow: 7.21% for (5,3), 2.03% for (8,4), 

1.21% for (16,8) and 1.18% for (32,16).  

The resources utilized for hardware implementation of 

the Zhang function are shown in table VII. 

TABLE VII.  HARDWARE IMPLEMENTATION OF THE ZHANG 

APPROXIMATION 

Device Utilization Summary 

Used 
Logic Utilization 

(32,16) (16,8) (8,4) (5,3) 
Available 

Slices  93 29 18 10 15,360 

LUTs 86 46 26 14 30,720 

DSPs 1 1 1 1 192 

Total equivalent gates 

count for design 
1,169 513 309 201 3.5M 

 

III CONCLUSIONS 

In this paper are investigated different approximations 

functions reported in literature, from point of view of 

hardware resources utilization and induced errors. The 

hardware design is made in System Generator from the 

Simulink Matlab environment and the utilized resources 

reports are made in ISE environment. 

Analyzing the report of the introduced errors vs. utilized 

resources, we get the conclusion that the best 

approximation method is the PLAN function in the case in 

which the number of the artificial neurons hardware 

implemented that use sigmoid function as fire function is 

larger than the number of the BRAM blocks available in 

the FPGA circuit. In the case in which the number of 

artificial neurons is lower than the total BRAM blocks 

available in the FPGA circuit the best way to approximate 

the sigmoid function is Lookup Tables method. 

The results of hardware implementations of the 

considered approximation functions are shown in table 

VIII 

TABLE VIII.  ERRORS AND RESOURCES UTILIZATION OF THE 

4VSX35 FPGA CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE 

SIGMOID APPROXIMATION 

Approximation 

function 

Maximum 

error (%) 

Mean 

error (%) 

Total equivalent gates  

count for design 

Lookup Table   0 0 131.072 

A-low  5.63 0.63 411 

Allipi  1.89 1.11 877 

Plan  1.89 0.63 351 

Zhang  2.16 1.10 314 

 

All the approximation functions were grouped into a 

library in Simulink/System Generator environment and 

used as fired function for the neurons of an artificial neural 

network hardware implemented. 

The neuron was designed to suit the calculus algorithms 

of the learning phase, in which the weights are calculated 

and stored in the RAMW memory block, and the 

propagation phase, in which the fired output is determined. 

The blocks that compound the neuron are: a MAC unit, 

a multiplexer with two inputs, a memory block and the 

firing block. 

The architecture of the neuron is presented in figure 13. 

 

 

Figure 13.  Architecture of the neuron 

The configuration of the RAM memory used for the 

weights storage consists of weights initialization and the 

setting of the number of bits used for data processing and 

representation. For that, a pop-up parameterization 

window is used, figure 14. 

 

 

Figure 14.  Neuron parameterisation window 
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In order to underline the main characteristics of the 

developed firing blocks, such as the hardware resources 

utilization, processing frequency and power consumption, 

TABLE IX.  RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF ARTIFICIAL  NEURON WITH  DIFFERENT FIRING FUNCTION 

Resources distribution 
Neuron 

lookup_table 

Neuron 

f_zhang 

Neuron 

f_alippi 

Neuron 

f_Alow 

Neuron 

f_plan 

Available 

resources 

4VSX35 

Slices  5 28 59 29 12 15.360  

LUTs 0 25 89 31 10 30.720  

RAMBs 2 1 1 1 1 192  

DSPs 1 2 1 1 1 192  

Total equivalent gates count for design 131.120 65.898  66.418 65.911 65.680 3.5 M  

Max frequency (MHz) 227.790 255.860 290.613 268.168 234.467 -  

Estimated power consumed 609  608  607  607.02 608 - 

 

hardware implementations of neurons with different firing 

approximation function were made. The FPGA circuit 

used for implementation was 4VSX35. 

The reports are presented in table IX. 

The maximum frequency supported by the hardware 

implementation of the approximations reported in the 

literature [3 - 6] shows much smaller performances 

comparative with the same approximation but hardware 

implemented with the proposed method described in this 

paper. 

TABLE X.  CLOCK RATE OF SIGMOID FUNCTION APPROXIMATIONS 

REPORTED IN LITERATURE [7,9] 

Approximation 
Max frequency 

(MHz) 

A-law based approximation 36 

Alippi and Storti–Gajani Approximation 36 

PLAN approximation  39 

Zhang approximation 176 

 

The results obtained in this paper are means to be 

guidance tool in selecting and using of most appropriate 

approximation function of the sigmoid function.  

The design of the all firing function considered is made 

by the authors in Simulink/System Generator environment 

in order to create a library of components used to develop 

neurons and neuron networks with different topologies. 

Finally, the library of the neuronal components will 

represent a useful instrument for an easier designing of a 

neural network system.  
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