

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

Manuscript received April 27, 2009, reviewed June 16, 2009

15

DIGITAL IMPLEMENTATION OF THE SIGMOID FUNCTION

FOR FPGA CIRCUITS

Alin TISAN, Stefan ONIGA, Daniel MIC, Attila BUCHMAN

Electronic and Computer Department, North University of Baia Mare, Baia Mare, Romania

Str. Dr. Victor Babeş, nr. 62A, tel. 0362-401265 ext. 234, alin.tisan@ubm.ro

Abstract: In this paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different
approximation of the sigmoid function. Three previously published piecewise linear and one piecewise second-order
approximation are analyzed from point of view of hardware resources utilization, induced errors caused by the
approximation function and bits representation, power consumption and speed processing. The major benefit of the proposed
method resides in the possibility to design neural networks by means of predefined block systems created in System
Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical
circuits.

Key words: Sigmoid approximation, FPGA implementation, System Generator

I. INTRODUCTION

A main component of an artificial neuron’s behaviour and

usually a bottleneck for its speed performance is the

sigmoid activation function block. Hardware

implementation of the considered function (sigmoid

function), as defined in literature, [1, 2], implies important

hardware resources consumption.

1

1

() ()

1
()

1

N

k k

k

N

k k

k

bias w x

output net f bias w x

output net

e =

=

 
 − +
 
 

= +

=

∑
+

∑
 (1)

In order to reduce such consumption is useful to adopt

different approximations (in function of the available

hardware resources) with minimum errors.

The principal classical methods to digitally implement

the activation function are Look-up tables and truncation

of the Taylor series expansion. The second method can

further be divided in: sum-of-steps, piece-wise linear,

combination of the previous, or others.

The best results reported in the literature show errors of

8% to 13.1% for sum-of-steps approximations and ±

2.45% to ± 1.14% [3,4] for piece-wise linear

approximation. Also, there are approximations with lower

errors, but uses floating-point multiplications, which

makes it far too complicated for a practical VLSI

implementation.

The hardware implementations of the sigmoid

approximations are done in System Generator, part of the

Simulink/Matlab environment.

In the following, the hardware resources consumption

and the generated errors for different FPGA

implementation of five approximations proposed in

literature are analyzed.

II. HARDWARE IMPLEMENTATION OF THE

SIGMOID FUNCTION

A. Look-up Tables

The hardware resources of an FPGA circuit utilized for

Look-up Tables implementation are considerable large

only in the case in which the ROM memory is not FPGA

implemented with predefined RAM Block. In table I, are

presented the equivalent gates counted for design.

TABLE I. HARDWARE RESOURCES UTILIZATION OF THE 4VSX35
FPGA CIRCUIT

Device Utilization Summary

Logic Utilization Used Available Utilization

Slices 0 15,360 0 %

LUTs 0 30,720 0 %

BRAMs 1 192 0.52 %

DSPs 0 192 0 %

Total equivalent gate count for

design
196,60 3.5M 3.7 %

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

16

B. A-law approximation

The method is proposed by Myers and Hutchinson in

order to obtain a modified curve with the gradient of each

linear segment expressed as a power of two. In this way

the multipliers are replaced with shifters. The curve is

approximated by seven segments and its breakpoints are

presented in Table II.

TABLE II. BREAKPOINTS OF A-LAW BASED SIGMOID

APPROXIMATION

x -8.0 -4.0 -2.0 -1.0 1.0 2.0 4.0 8.0

y 0.0 0.0625 0.12 0.25 0.75 0.87 0.937 1.0

In order to evidence the errors introduced by the A_law

approximation, in fig. 1 and fig. 2 are shown the sigmoid

function beside hardware implemented A_law function.

The numbers of bits allocated for digital signal processing

in FPGA circuit are: 32 bits with 16 bits binary point,

noted with (32,16), 16 bits with 8 bits binary point, (16,8)

and 8 bits with 4 bits binary point, (8,4).

Figure 1. Comparative representation of the sigmoid

function and alaw approximation

Figure 2. Errors introduced by the A_law

approximation for different bits representation

After analyzing the results presented in fig.2, it can be

conclude that for a (16,8) representation, the maximum

error introduced by A_law approximation is 5.63% and the

mean error is 0.6335%. These errors increase with

decreasing of the bits representation: 11.51 % for (8,4)

representation.

The hardware implementation of the A_law function is

presented in fig.3.

The hardware resources utilized are resumed to 1

MCode block for compare functions, 4 shift registers, 2

multiplexers and 1 sum block. All the used blocks are part

of the System Generator library (Xilinx Blockset).

Figure 3. Hardware architecture of the A_law

approximation

For determination of the total equivalent gates used for

hardware implementation of the A_law function, ISE

(Xilinx Integrated Software Environment) was used. Its

report is presented in table III.

TABLE III. RESOURCES UTILIZATION OF THE 4VSX35 FPGA
CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE A_LAW

APPROXIMATION

Device Utilization Summary

Used
Logic Utilization

(32,16) (16,8) (8,4)
Available

Slices 185 74 23 15,360

LUTs 101 40 16 30,720

BRAMs 0 0 0 192

DSPs 0 0 0 192

Total equivalent gate

count for design
1,653 1,440 204 3.5M

C. Alippi and Storti-Gajani Approximation

The Alippi and Storti-Gajani Approximation lies on the

selecting of a set of breakpoints of the first derivate and

setting the function as sum of power of two’s numbers.

For the reason that the sigmoid function has a symmetry

point at coordinates (0, 0.5) only half pairs of x-y will be

calculated, [3]:

0 0

1
x x

y y
> ≤

= − (2)

Taking in consideration only the negative numbers,

negative x-axis, and defining the integral part of x as

INT(x), the decimal part of x with its own sign, denoted

FRAC(x), is defined as follows:

 () ()FRAC x x INT x= + (3)

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

17

Therefore, the expression of the Alippi function may be

defined as:

 ()

()
()

()
()

1 2 4
1 for 0

2

1 2 4
 for 0

2

INT x

INT x

FRAC x
x

Alippi x
FRAC x

x

 + −
− >


= 

+
≤



 (4)

Hardware implementation of the Alippi function is

made in the System Generator Toolbox, part of

Matlab/Simulink environment. The resources utilized are

resumed at 8 shift registers used for dividing the Frac(x)

signal to 4 and for shifting it with a number of Int(x) bits,

4 multiplexers, 3 subtraction blocks, 2 slice blocks and 1

comparator block. The numerical representation used for

signals processing, i.e. number of bits and binary point are

set in a pop-up parameters window as global variables. For

each blocks in part the binary point is customized function

of the maximum value of the function. In this way it can

be obtained maximum performance at a given number of

bits. The hardware architecture is shown in fig.4. In order

to evidence the errors introduced by the Alippi

approximation, in fig. 5 and fig. 6 are shown the sigmoid

function beside Alippi function hardware implemented.

The numerical representation used for the analysis is 32

bits with 16 bits binary point, (32,16), 16 bits with 8 bits

binary point, (16,8), 8 bits with 4 bits binary point, (8,4)

and 5 bits with 3 bits binary point, (5,3).

Figure 4. Hardware architecture of the Alippi function

approximation

Figure 5. Comparative representation of the sigmoid

function and Alippi approximation

Figure 6. Errors introduced by the Alippi

approximation for different bits representation

Analyzing the results presented in fig.6, can concludes

that a (32,16) or (16,8) representation induces a maximum

of 1.89 %, (8,4) representation produces an error of 2.77 %

and for a (5,3) representation, the maximum error is of

11.83%.

In order to evidence the total equivalent gates used

function of number of bits allocated for hardware

implementation of the Alippi function, an ISE report about

hardware implementation was made, presented in table IV.

D. PLAN Approximation

The PLAN approximation (Piecewise Linear

Approximation of a Nonlinear function) was proposed by

Amin, Curtis and Hayes–Gill [4]. The PLAN

approximation uses digital gates to compounds the

sigmoid function and its equations are presented in table

V. The advantage of this approximation is giving by the

fact that instead of multiplication, shifting operations are

required.

TABLE IV. RESOURCES UTILIZATION OF THE 4VSX35 FPGA
CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE ALLIPI

APPROXIMATION

Device Utilization Summary

Used
Logic Utilization

(32,16) (16,8) (8,4) (5,3)
Available

Slices 127 67 36 15 15,360

LUTs 218 110 56 24 30,720

BRAMs 0 0 0 0 192

DSPs 0 0 0 0 192

Total equivalent gate

count for design
1812 912 456 219 3.5M

TABLE V. PLAN APPROXIMATION EQUATIONS

PLAN(X) Conditions

1 |X| ≥ 5

0,03125 · |X| + 0,84375 2,375 ≤ |X| < 5

0,0125 · |X| + 0,625 1≤ |X| < 2.375

0,25 · |X| + 0,5 0 ≤ |X| < 1

The PLAN approximation and its introduced errors by

representation on different number of bits are shown in

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

18

fig.7 and fig. 8. In order to calculate these errors a

hardware implementation of the PLAN equations was

made by means of System Generator blocks of the

Matlab/Simulink environment, fig.9.

Analyzing the results presented in fig.8, can concludes

that (32,16) representation induces a maximum error of

1.89 % and a mean error of 0.81%, (16,8) representation

has a maximum error of 2.14 % and a mean error of

0.90%, (8,4) representation has a maximum error of 10.75

% and a mean error of 5.06% and (5,3) representation has

a maximum of 24.33 % and a mean error of 15.09%.

Figure 7. Comparative representation of the sigmoid

function and PLAN approximation

Figure 8. Errors introduced by the PLAN

approximation for different bits representation

Figure 9. Hardware architecture of the Alippi function

approximation

In table VI are presented the resources utilized in

function of numerical representation for hardware

implementation of the PLAN approximation.

TABLE VI. RESOURCES UTILIZATION OF THE 4VSX35 FPGA
CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE PLAN

APPROXIMATION

Device Utilization Summary

Used
Logic Utilization

(32,16) (16,8) (8,4) (5,3)
Available

Slices 109 44 24 11 15,360

LUTs 138 67 32 11 30,720

BRAMs 0 0 0 0 192

DSPs 0 0 0 0 192

Total equivalent gates

count for design
1164 561 270 114 3.5M

E. Piecewise second-order approximation

The sigmoid function can also be implemented as a

piecewise second-order approximation. This kind of

approximation implies using of generic square functions

that involve using of the multiplications blocks. In order to

avoid this, Zhang, Vassiliadis and Delgado–Frias have

presented a second-order approximation scheme defined in

the interval (-4, 4) that requires only one multiplier,

(Zhang approximation), [5]. There are reported others

second-order approximation, but the hardware resources

involved for implementation are three times higher, [8].

2

2

2

2

1
1 for - 4 0

2 2

1
1 1 for 4 0

2 2

x
x

y

x
x

  
 − > < 
  

= 
  

− + > ≥  
 

 (5)

Figure 10. Hardware architecture of the Zhang function

approximation

Analyzing the errors introduced by the Zhang

approximation

Figure 11. Comparative representation of the sigmoid

function and Zhang approximation

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

19

The hardware implementation of the Zhang approximation

is shown in fig. 10

Figure 12. Errors introduced by the Zhang

approximation for different bits representation

presented in fig. 11 and 12 it can be saw that the maximum

error induced in function of the used numerical

representation are 16.95% for (5,3), 6% for (8,4), 2.27%

for (16,8) and 2.24% for (32,16), where the first number in

the parenthesis represents the number of bits and the

second is the binary point. The mean of absolute errors is

distributed as follow: 7.21% for (5,3), 2.03% for (8,4),

1.21% for (16,8) and 1.18% for (32,16).

The resources utilized for hardware implementation of

the Zhang function are shown in table VII.

TABLE VII. HARDWARE IMPLEMENTATION OF THE ZHANG

APPROXIMATION

Device Utilization Summary

Used
Logic Utilization

(32,16) (16,8) (8,4) (5,3)
Available

Slices 93 29 18 10 15,360

LUTs 86 46 26 14 30,720

DSPs 1 1 1 1 192

Total equivalent gates

count for design
1,169 513 309 201 3.5M

III CONCLUSIONS

In this paper are investigated different approximations

functions reported in literature, from point of view of

hardware resources utilization and induced errors. The

hardware design is made in System Generator from the

Simulink Matlab environment and the utilized resources

reports are made in ISE environment.

Analyzing the report of the introduced errors vs. utilized

resources, we get the conclusion that the best

approximation method is the PLAN function in the case in

which the number of the artificial neurons hardware

implemented that use sigmoid function as fire function is

larger than the number of the BRAM blocks available in

the FPGA circuit. In the case in which the number of

artificial neurons is lower than the total BRAM blocks

available in the FPGA circuit the best way to approximate

the sigmoid function is Lookup Tables method.

The results of hardware implementations of the

considered approximation functions are shown in table

VIII

TABLE VIII. ERRORS AND RESOURCES UTILIZATION OF THE

4VSX35 FPGA CIRCUIT FOR HARDWARE IMPLEMENTATION OF THE

SIGMOID APPROXIMATION

Approximation

function

Maximum

error (%)

Mean

error (%)

Total equivalent gates

count for design

Lookup Table 0 0 131.072

A-low 5.63 0.63 411

Allipi 1.89 1.11 877

Plan 1.89 0.63 351

Zhang 2.16 1.10 314

All the approximation functions were grouped into a

library in Simulink/System Generator environment and

used as fired function for the neurons of an artificial neural

network hardware implemented.

The neuron was designed to suit the calculus algorithms

of the learning phase, in which the weights are calculated

and stored in the RAMW memory block, and the

propagation phase, in which the fired output is determined.

The blocks that compound the neuron are: a MAC unit,

a multiplexer with two inputs, a memory block and the

firing block.

The architecture of the neuron is presented in figure 13.

Figure 13. Architecture of the neuron

The configuration of the RAM memory used for the

weights storage consists of weights initialization and the

setting of the number of bits used for data processing and

representation. For that, a pop-up parameterization

window is used, figure 14.

Figure 14. Neuron parameterisation window

Volume 50, Number 2, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

20

In order to underline the main characteristics of the

developed firing blocks, such as the hardware resources

utilization, processing frequency and power consumption,

TABLE IX. RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURON WITH DIFFERENT FIRING FUNCTION

Resources distribution
Neuron

lookup_table

Neuron

f_zhang

Neuron

f_alippi

Neuron

f_Alow

Neuron

f_plan

Available

resources

4VSX35

Slices 5 28 59 29 12 15.360

LUTs 0 25 89 31 10 30.720

RAMBs 2 1 1 1 1 192

DSPs 1 2 1 1 1 192

Total equivalent gates count for design 131.120 65.898 66.418 65.911 65.680 3.5 M

Max frequency (MHz) 227.790 255.860 290.613 268.168 234.467 -

Estimated power consumed 609 608 607 607.02 608 -

hardware implementations of neurons with different firing

approximation function were made. The FPGA circuit

used for implementation was 4VSX35.

The reports are presented in table IX.

The maximum frequency supported by the hardware

implementation of the approximations reported in the

literature [3 - 6] shows much smaller performances

comparative with the same approximation but hardware

implemented with the proposed method described in this

paper.

TABLE X. CLOCK RATE OF SIGMOID FUNCTION APPROXIMATIONS

REPORTED IN LITERATURE [7,9]

Approximation
Max frequency

(MHz)

A-law based approximation 36

Alippi and Storti–Gajani Approximation 36

PLAN approximation 39

Zhang approximation 176

The results obtained in this paper are means to be

guidance tool in selecting and using of most appropriate

approximation function of the sigmoid function.

The design of the all firing function considered is made

by the authors in Simulink/System Generator environment

in order to create a library of components used to develop

neurons and neuron networks with different topologies.

Finally, the library of the neuronal components will

represent a useful instrument for an easier designing of a

neural network system.

REFERENCES
[1] Cirstea, M., et all.: Neural and Fuzzy Logic Control of
Drives and Power Systems, Newnes, pp 77-112, 2002.

[2] E. Won, “A hardware implementation of artificial neural
networks using field programmable gate arrays”, Nuclear
Instruments and Methods in Physics Research, 581, pp 816–820,
2007.

[3] Alippi, C., and Storti–Gajani, G.: “Simple approximation of
sigmoidal functions: realistic design of digital neural networks
capable of learning”. Proc. IEEE Int. Symp. on Circuits and
Systems, Singapore, pp. 1505–1508, 1991.

[4] Amin, H., et all: “Piecewise linear approximation applied to
nonlinear function of a neural network”, IEE Proc. Circuits,
Devices Sys., 144, (6), pp. 313–317J, 1997.

[5] Zhang, M., et all.: “Sigmoid generators for neural computing
using piecewise approximations”, IEEE Trans. Comput., 45, (9),
pp. 1045–1049, 1996.

[6] M.T. Tommiska: “Efficient digital implementation of the
sigmoid function for reprogrammable logic”, IEE Proceedings –
Computers and Digital Techniques 150, number 6, pp. 403-411,
2003.

[7] Basterretxea, K., et all.: “Digital design of sigmoid
approximator for artificial neural networks”, Electron. Letters,
38, (1), pp. 35–37, 2002.

[8] N. Nedjah, et all.: “Dynamic MAC-based architecture of
artificial neural networks suitable for hardware implementation
on FPGAs”, Neurocomputing 72(10-12), pp 2171-2179, 2009.

[9] Holt, J.L., and Hwang, J-N.: “Finite precision error analysis
of neural network hardware implementations”, IEEE Trans.
Comput, 42, (3), pp. 281–290, 1993.

