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We propose using the circle polynomials to describe a particle’s transmission function in a digital holography setup. This allows both

opaque and phase particles to be determined. By means of this description, we demonstrate that it is possible to estimate the digital

in-line hologram produced by a spherical particle. The experimental intensity distribution due to an opaque micro-inclusion is compared to

the theoretical one obtained by our new model. Moreover, the simulated hologram and reconstructed image of the particle by an optimal

fractional Fourier transformation under the opaque disk, quadratic phase, and quasi-spherical phase approximation are compared with

the results obtained by simulating holograms by the Lorenz–Mie Theory (LMT). The Zernike coefficients corresponding to the considered

particles are evaluated using the double exponential (DE) method which is optimal in various respects.
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1 INTRODUCTION

This work is motivated by the fact that in studies on digital

holography a spherical particle is generally considered as an

opaque disk, not as a spherical object or, even better, as a thin

lens. Under the opaque disk approximation, the refractive in-

dex is not taken into account. Furthermore, a particle can be

purely absorbent, such as metal particles, but it can instead be

transparent, such as glass particles or water droplets. Recently,

some considerations about phase objects have been given as

to whether it is possible to interpret a particle as a phase ob-

ject [1]–[4]. Based on these findings, it is felt that a different

interpretation is required. In the field of particle holography,

it is generally assumed that an in-line hologram is only due

to the edge of the particle, which justifies the opaque disk ap-

proximation. The part of the beam diffracted by the edge of

the particle interferes with the other part of the beam when

creating the hologram. Then, under this approximation, the

refractive index of the particle is not taken into account in

the imaging model. It should also be noted that the digital

reconstruction of the image of the object does not put in ev-

idence the spot of light at the center of the reconstructed im-

age predicted by the Lorenz–Mie theory (LMT). In this paper,

we propose a novel view by incorporating the inside region

of the particle using a thickness function. Hence, we present,

firstly, a general expression for the intensity distribution in the

plane of the CCD sensor. The theoretical background for this

is based on two tools: the ABCD matrix formalism and circle

polynomial decompositions. The fractional Fourier transfor-

mation is used to reconstruct the image of the particle and

the optimal fractional order is deduced from the ABCD ma-

trix formalism. Although this is not contained in the publi-

cation, the major advantage of the circle polynomials to de-

scribe the particle from the reconstruction by means of the

fractional Fourier transformation point of view is that when

the image of the object is reconstructed, the image function is

described again by Zernike polynomials. Note again that this

point is not presented here. In this paper, we focused on the

forward problem even if we show that the fractional Fourier

transformation is used to reconstruct the image of the particle.

In the second and third parts, the theoretical model is com-

pared to two configurations, viz., an experimental one involv-

ing water droplets and a theoretical one involving a numerical

approach based on the rigorous near-field Lorenz–Mie scat-

tering theory. The experimental configuration involves inclu-

sion in a water droplet. The included object here is an opaque

polyethylene microsphere. This experimental context is very

important in many areas. We define an inclusion as one for-

eign body in another. In biology, inclusion corresponds to

an intracellular substance not belonging to the normal con-
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stituents of the cell, like droplets containing bacterial cells or

other entities. This is important in terms of the optical detec-

tion of these foreign bodies, where biological organisms can

survive for prolonged periods when contained within a pro-

tective liquid coating [5]. This situation may be encountered

in the cooling towers of nuclear power plants, for example,

or in any wet environment at high temperatures. Another ex-

ample, water droplets in the atmosphere that contain insolu-

ble inclusions, is of essential interest for climatology [6]. The

knowledge of the removal of submicron aerosol particles from

the dispersion of radionuclides by washout is very important

in the context of public health [7]. In physics, inclusions are

intensively study by the Lorenz–Mie theory to describe the

morphology-dependent resonances (MDRs) [8]. Next, the sec-

ond configuration is a theoretical configuration where a plane

wave illuminates a spherical water droplet. This configuration

permits us to use the Lorenz–Mie theory. In this theory, the

wave must be plane, unlike in the Generalized Lorenz–Mie

Theory (GMTL), where we can have a Gaussian beam. This

part is theoretical rather than experimental because it simpli-

fies the control of the parameters of the optical system. At the

end of the paper, we propose a numerical method to evalu-

ate the Zernike moments by means of the double exponential

formula.

2 GENERAL CONFIGURATION OF THE
OPTICAL SYSTEM IN DIGITAL IN-LINE
HOLOGRAPHY

It should be noted that most optical systems for digital in-line

holography are composed of two parts. Each part is delimited

by the source, the object (in our case the object is a particle)

and the CCD sensor. An illustration is given in Figure 1. The

two parts can be fully described by two 4 × 4 symplectic ma-

trices, denoted Mi for the system between the source (waist

ω0) and the particle, and denoted Mt between the particle and

the CCD sensor. Each symplectic matrix is composed of the

2 × 2 matrices A, B, C and D [10]–[11].

Then Mi and Mt are defined as

Mi :=

(
Ai Bi

Ci Di

)
, Mt :=

(
At Bt

Ct Dt

)
. (1)

Symplecticity of the matrix M is defined in [42], Eq. (5) on

page 919. Here, the matrix Mi takes the following form:

Ai =

(
ai,1 0

0 ai,2

)
, Bi =

(
bi,1 0

0 bi,2

)
,

Ci =

(
ci,1 0

0 ci,2

)
, Di =

(
di,1 0

0 di,2

)
, (2)

where ai,j, bi,j, ci,j and di,j are defined by the optical compo-

nents. The subscript i indicates the incident part and j cor-

responds to the transverse coordinates perpendicular to the

optical axis. The subscripts 1 and 2 indicate the horizontal

axis and the vertical axis, respectively. The value of the diag-

onal elements correspond to the cases where the system is an

anamorphic or a circular optical system. In the same way, Mt

FIG. 1 Digital in-line holography setup: source λ, matrix Mi, illuminated-object, matrix

Mt and CCD sensor

takes the following form:

At =

(
at,1 0

0 at,2

)
, Bt =

(
bt,1 0

0 bt,2

)
,

Ct =

(
ct,1 0

0 ct,2

)
, Dt =

(
dt,1 0

0 dt,2

)
, (3)

where at,j, bt,j, ct,j and dt,j are defined by the optical compo-

nents from the particle plane to the CCD sensor. From Fig-

ure 1, the propagation of the Gaussian beam from the first

waist ω0 to the plane of the CCD sensor can be described by

two linear canonical transformations [13]. Each linear canoni-

cal transformation, denoted C, has the same integral structure

and for the first part, it is given by

C [G0(ρ)] (r) =
exp (ikEi)

iλ
√

det(Bi)

∫

R2
G0(ρ)

· exp
[
i
π

λ

(
ρ

TB−1
i Aiρ − 2ρ

TB−1
i r + rTDiB

−1
i r
)]

dρ. (4)

with λ the wavelength and k = 2π/λ. Now, in the plane of the

first waist (the first waist is referred to as ω0), at the left hand

side of Figure 1, the amplitude of the Gaussian beam, denoted

by G0, is defined as

G0 (ρ) = exp
(
−ρ

TQ−1
0 ρ

)
, (5)

where ρ = (µ ν)T and the real matrix Q−1
0 stands for the

Gaussian beam width ω0 given by

Q0 =

(
ω2

0 0

0 ω2
0

)
. (6)

By means of [14]–[16], the amplitude of the incident Gaussian

beam, denoted by Gi(r), just before reaching the particle, is

given by

Gi(r) =
π

iλ

exp (ikEi)√
det(BiQ

−1
0 − i π

λ Ai)
· exp

[
−π2

λ2
rTQ−1

i r

]
(7)

with

Q−1
i = B−1T

i

(
Q−1

0 − i
π

λ
B−1

i Ai

)−1
B−1

i − i
λ

π
DiB

−1
i , (8)

and the position vector in the transverse plane rT = (ξ ψ).

The L2-norm is used by noting that |r| = r =
√

ξ2 + ψ2. The

distance Ei depends on the optical paths, each weighted by the

index of the medium traversed by the beam along that path.

Now, from the point of view of the definition of a particle,

most of the literature on digital holography assumes that the
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particle is a pure amplitude object and in the definition of the

particle function, denoted [1− p ], the pupil p is expanded into

a chirped Gaussian series as in [17]–[21]:

p =
N

∑
k=1

Ak exp
(
−rT · RT PkR · r

)
, (9)

where the matrices R and Pk can be found in [18]. This choice

of definition, Eq. (9), is in order to simplify the calculations,

because it involves Gaussian functions and is of interest for

elliptic particles. However, particles are generally described

by a complicated phase function. Therefore, in this paper, we

wish to extend the pupil function into a Zernike series as in

[22], Eq. (6). This choice makes it possible to develop the cases

of an opaque or a phase particle. Consequently, we assume

that we have expanded the generalized complex pupil func-

tion p(s, θ) as

p(s, θ) = [1 − A(s, θ) · exp (iΦ(s, θ))] · Z0
0(s, θ)

=

[
1 − ∑

n,m

γm
n · Zm

n (s, θ)

]
Z0

0(s, θ) (10)

for a phase particle. The summation range for n is from zero

to infinity and the summation over m is performed from −n

to n with n − |m| even. The circle polynomials, denoted here

by Zm
n in Eq. (10), are given for m, n and n − |m| even and

non-negative by

Zm
n (s, θ) = R

|m|
n (s) · eimθ , 0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π, (11)

and the Zernike coefficients γm
n are obtained by using the or-

thogonality of the Zernike circle polynomials Zm
n , so that

γm
n

=
n + 1

π

∫ 1

0

∫ 2π

0
A(s, θ) exp [iΦ(s, θ)] · Zm

n (s, θ) s ds dθ. (12)

A bar over a quantity indicates complex conjugation. In the

case of an opaque particle, the pupil function p corresponds

to the particular case where the amplitude A(s, θ) is equal to

unity and the phase Φ(s, θ) is equal to zero, and then

p(s, θ) = γ0
0 · Z0

0(s, θ), (13)

with γ0
0 = 1. In the plane of the CCD sensor, the field’s am-

plitude, denoted by Gc(r′), is obtained by means of the linear

canonical integral,

Gc(r
′) =

exp (ikEt)

iλ
√

det(Bt)
exp

[
i
π

λ
r′TB−1

t Dtr
′
]

×
∫

R2
Gi(r) · [1 − p(s, θ) ] exp

[
i
π

λ
rTB−1

t Atr
]

× exp

[
−i

2π

λ
rTB−1

t r′
]

dr, (14)

with At, Bt, Ct, Dt as given in Eq. (3). To normalize the inte-

gral in Eq. (14), the dimensionless variables s = 2r/D and

s′ = 2r′/D with D the diameter of the particle can be intro-

duced. Then, Eqs. (7) and (14) can be combined to produce

Ĝc(s
′) =− πD2

4λ2

exp [ik(Ei + Et)]√
det(Bt)det(BiQ

−1
0 − i π

λ Ai)

× exp

[
i
πD2

4λ
s′TDtB

−1
t s′

]
·
∫

R2
[1 − p(s, θ) ]

× exp
[
isTLts

]
exp

[
−i2πsTPts

′
]

ds, (15)

with Ĝc(s′) = Gc((D/2)s′) and

Lt =
πD2

4λ
B−1

t At + i

(
πD

2λ

)2

Qi, Pt =
D2

4λ
· B−1

t . (16)

To simplify the calculations, we introduce σ = Pts
′. With this

change of variables, Eq. (15) takes the form

̂̂Gc(σ) = −πD2

4λ2

· exp [ik(Ei + Et)]√
det(Bt)det(BiQ

−1
0 − i π

λ Ai)
exp

[
i
πD2

4λ
σ

TStσ

]

·
∫

R2
[1 − p(s, θ) ] exp

[
isTLts

]
exp

[
−i2πsT

σ

]
ds, (17)

with ̂̂Gc(σ) = Ĝc(P
−1
t σ) and St = P−1T

t DtB
−1
t P−1

t . Now, the

intensity distribution in the plane of the CCD sensor, denoted

I(σ), depends on the particle. We can write the intensity as

I(σ) =
∣∣∣ ̂̂Gc(σ)

∣∣∣
2

=
πD2

4λ2

∣∣G(σ)− G0
0(σ) + ǫ Gm

n (σ)
∣∣2

∣∣∣∣
√

det(Bt)det(BiQ
−1
0 − i π

λ Ai)

∣∣∣∣
2

, (18)

with the two following functions

G(σ) =
∫

R2
exp

[
isTLts

]
exp

[
−i2πsT

σ

]
ds, (19)

and

Gm
n (σ) = ∑

n,m

γm
n ×

∫

R2
Z0

0(s, θ)Zm
n (s, θ)

× exp
[
isTLts

]
exp

[
−i2πsT

σ

]
ds. (20)

The value of ǫ in Eq. (18) depends on the particle considered.

For ǫ = 0, the particle is an opaque object and for ǫ = 1, it

is a phase object. The Gm
n functions in Eq. (20) are expressed

in terms of the standard Cartesian coordinates σ. It turns out

that this integral simplifies when we change the variables s

and σ to polar coordinates. By noting that σ = σ exp(iϕ) and

s = s exp(iθ), we have

Gm
n (σ, ϕ) = ∑

n,m

γm
n ×

∫ 1

0

∫ 2π

0
Zm

n (s, θ) exp
[
isTLts

]

× exp [−i2πσ · s cos(θ − ϕ)] s ds dθ. (21)

2.1 Theoretical developments of G and Gmn

The theoretical development of the integral G(σ) in Eq. (19) is

straightforward. From [13], Eq. (2.303) on p. 57, it follows that

it is given by

G(σ) =
iπ√

det(Lt)
· exp

[
−iπ2

σ
TL−1

t σ

]
. (22)

To derive a semi-analytic expression for (21), it is neces-

sary to use mathematical results on (i) a special circle poly-

nomial expansion, (ii) the linearization of products of circle

polynomials [23], and (iii) the extended Nijboer–Zernike the-

ory (ENZ) [24]. The details of the computations are given in
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Appendix B. The semi-analytical expression for the integral

Gm
n (σ, ϕ) is then

Gm
n (σ, ϕ) = 2π

+∞

∑
q=−∞

∞

∑
n,m,p

∑
t

γm
n · (−i)m+q · A

m,2q,m+2q

n,|2q|+2p,t

· β
|2q|
|2q|+2p

(δ) · V
m+2q
t (2πσ, χ) · ei(m+2q)ϕ, (23)

The summation range over t is

t = max (|m + 2q|, |m − |2q| − 2p|) (2)(n + |2q|+ 2p) (24)

where a(2)b denotes a, a + 2, . . . , b when b − a is non-negative

and even. The parameter χ in Eq. (23) is the trace of the ma-

trix Lt, so that χ = 1
2 · Tr(Lt). The δ-parameter is linked to the

ellipticity of the system, i.e., the optical components and the

droplet. It is defined by δ = 1
2 (Lt(1,1) − Lt(2,2)) where Lt(i,j)

are the diagonal elements of Lt in Eq. (16). In the particular

case where the optical setup is circular, we have δ = 0 and

β
|2q|
|2q|+2p

(0) = 1 if q = p = 0, and 0 otherwise. The coeffi-

cients β can be expressed explicitly in terms of the hypergeo-

metric functions 2F3 as in [26], Eqs. (A-11)–(A-13). From [25],

Eq. (142), the numbers A in Eq. (23) are related to the Clebsch–

Gordon coefficients:

A
m,2q,m+2q

n,|2q|+2p,t
=

∣∣∣∣C
n
2 ,

|2q|+2p
2 , t

2
m
2 ,

2q
2 ,

m+2q
2

∣∣∣∣
2

, (25)

where the C’s are the Clebsch–Gordon coefficients. The

V functions have the series expression ([26, 24, 27])

Vm
n (r, f )

= εm exp (i f ) ·
∞

∑
l=1

(−2i f )l−1
P

∑
j=0

vl j ·
J|m|+l+2j(r)

l(r)l
, (26)

where n and |m| are integers ≥ 0 with n − |m| even and non-

negative, and

vl j =(−1)P(|m|+ l + 2j)

(|m|+ j + l − 1

l − 1

)

·
(

j + l − 1

l − 1

)(
l − 1

P − j

)
/

(
Q + l + j

l

)
, (27)

for l = 1, 2, ..., j = 0, 1, ..., P, P = n−|m|
2 and Q = n+|m|

2 . In

Eq. (26), we have to choose εm = −1 for odd m < 0 and εm = 1

otherwise. Now, two particular cases can be considered: ǫ = 0

so the particle is an opaque object, and ǫ = 1 so the particle is

a phase object. As we saw earlier, from Eq. (18), the intensity

involves only the two functions Gm
n given in Eq. (20).

2.2 Reconstruction by a fract ional Fourier
transformation

From the digital holography reconstruction point of view,

the fractional Fourier transformation (FRFT) is used to re-

construct the image of an object [29]. The FRFT of orders

(ax, ay) ∈ [0, 1]× [0, 1] of an intensity image I(x, y) is defined

as [30, 31, 32]

Fax ,ay [I(x, y)](xa, ya)

=
∫

R2
Nax (x, xa) Nay (y, ya)I(x, y) dx dy, (28)

where s2
j = Nj · δ2

j , j = x, y and the kernel of the fractional

operator is

Naj
(x, xa)

= C(aj) exp


i π

x2 + x2
a

s2
j tan(

ajπ

2 )


 exp


− i 2πxax

s2
j sin(

ajπ

2 )


 , (29)

and

C(aj) =
exp[−i(π

4 sign(sin
ajπ

2 )− ajπ

4 )]

|s2
j sin

ajπ

2 |1/2
. (30)

FRFT is a mathematical tool which is the best operator to ana-

lyze linear chirps from signal processing point of view. More-

over the linear chirps can be different along two orthogonal

axis. This point is due to the fact that the kernel is separable.

Fresnel’s integral is although a mathematical operator but its

ultima aim is to describe the propagation. Although it could

be used to analyze all types of optical signals (here the holo-

grams), the interpretation and the justification to take a sepa-

rable kernel is difficult because all parameters in the Fresnel’s

integral have a physical senses. With the FRFT we have not

this such problem and specially when we have an astigmatic

beam. Now, the image of the particle can be reconstructed

with the real optimal fractional orders, denoted here by axo

and ayo. To do this, the following conditions must be satisfied:

cot
[ axoπ

2

]
= − s2

x

π
· ℜ{[φ11]} and

cot
[ ayoπ

2

]
= −

s2
y

π
· ℜ{[φ22]}, (31)

where [φkl ] is the 2 × 2-matrix defined by

[φkl ] = −πD2

4λ
· B−1T

t · L−1
t · B−1

t , (32)

with (k, l) ∈ [1, 2]× [1, 2].

3 HOLOGRAMS OF AN OPAQUE PARTICLE
AS AN INCLUSION

In this section, we have chosen to compare the above theo-

retical developments with some experimental results. The ex-

perimental setup of interest is represented in Figure 2. The

incident Gaussian beam propagates across an optical system

to illuminate a water droplet (with refractive index equal to

n = 1.33) of diameter d. Inside the droplet, spherical particles

of diameter D are added to create the inclusion. In the theo-

retical developments, the finite droplet size is not taken into

account. On the other hand, the radii of curvatures are only

CCD

sensor
λ

ζ - axis
ξ

ψ
f1 f2

2ω0

e2 e3 ze1 δ

Mi Mt

μ

ν

n

Elliptical Droplet

FIG. 2 Numerical and experimental optical setup for λ = 642 nm, ω0 = 2.5 µm,

f1 = 50.4 mm, f2 = 5.5 mm, e1 = f1
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FIG. 3 Hologram of an opaque micro-inclusion in a droplet obtained from (a) theoretical development and (b) experimental results
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FIG. 4 Simulated and experimental intensity profiles from the holograms in Figure 3 with D = 23.5 µm, λ = 642 nm, z = 6.1 mm.

involved in the model. Behind the droplet, the CCD sensor

is located at a distance z to record the intensity distribution

of the interference pattern. Note here that the distance Ei in

Eq. (4) is equal to Ei = e1 + e2 + e3 + nδ.

3.1 The case of a circular system

In the case of an opaque particle, i.e., for n = m = 0 and a

circular system, i.e., δ = 0, Gm
n takes the following form:

G0
0(σ, ϕ) = 2π · V0

0 (2πσ, χ), (33)

with A0,0,0
0,0,t = 1 for all t in Eq. (24). This case is only a partic-

ular case of an anamorphic optical system. Due to gravity, the

droplet is not spherical and the diameters along two perpen-

dicular axes are not the same. The following section allows us

to make a better comparison between the theoretical and the

experimental results.

3.2 The case of an anamorphic optical
system

In the case of an anamorphic optical system, i.e., δ 6= 0, Gm
n is

defined by

G0
0(σ, ϕ) =

2π
+∞

∑
q=−∞

∑
p,t

(−i)q · β
|2q|
|2q|+2p

(δ) · V
2q
t (2πσ, χ) · ei2qϕ. (34)

Eq. (34) takes exactly the form of Eq. (6) in [33] for a centered

particle. An illustration of the theoretical development for an

opaque micro-inclusion is given in Figure 3(a).

In Figure 4, the simulated and experimental intensity profiles

along the x-axis and along the y-axis are given. These profiles

are obtained after normalization. As one can see, simulation

and experiment are in very close agreement. That confirms
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FIG. 5 Images reconstructed by the fractional Fourier transformation with axo = 0.766 and ayo = 0.763 (a) simulated diffraction pattern of the inclusion (b) experimental

diffraction pattern of the inclusion.

the previous theoretical developments. We conclude that the

mathematical description of the hologram is valid.

In this simulation, the diameter of the opaque micro-inclusion

is D = 23.5 µm and its position in the droplet is approxi-

mately δ = 0.99 mm. The radii of curvatures of the droplet are

1.7 mm along the x-axis and 2.3 mm along the y-axis and from

the experimental optical setup, the numerical distances are

e2 = 409.56 mm, e3 = 12 mm and z = 6.1 mm. With the aim of

reconstructing the image of the inclusion, the pictures of the

holograms have been cut off at 4.4 µm in 1624 by 1234 pixels

around the center of the diffraction pattern. The reconstructed

inclusion images by means of the FRFT from the simulated

diffraction pattern in Figure 3(a) and from the experimental

diffraction pattern in Figure 3(b) are shown in Figures 5(a) and

5(b). The optimal fractional orders obtained from Eqs. (32) are

axo = 0.766 and ayo = 0.763. The shape of the reconstructed

images (i.e., the opaque disk images) are well recovered.

Let us note that when the reconstructed image of an object,

here the inclusion, is realized, a scale factor must be applied to

retrieve the correct diameter. This point is not developed here

but the process is the same as in [34], see Eq. (39). Furthermore,

the finite dimensions of the pixels and the coherence here are

not taken into account [35].

4 DIGITAL IN-LINE HOLOGRAMS FOR A
SPHERICAL PARTICLE

In this section, the particle is considered as a droplet in a ho-

mogeneous medium. This is a phase particle in the sense that

the index and the spherical shape of the droplet is taken into

account. Here, we have chosen to compare our holographic

model with a general numerical standard of holograms of

fields of particles based on the rigorous near-field Lorenz–

Mie scattering theory (LMT) [36]. The comparison between

the theoretical development proposed in this publication and

the near-field Lorenz–Mie scattering theory is based on a par-

ticle of diameter D and refractive index ni with the surround-

ing medium index n. In the context of the near-field Lorenz–

CCD

sensor
λ ζ - axis

ξ

ψ

z

ni ,D

FIG. 6 Configuration under study with n the refractive index of the medium and ni the

refractive index of the droplet.

Mie scattering theory, the incident beam on the particle must

be a plane wave, something which modifies here only the def-

inition of the ABCD matrices. The configuration under study

is illustrated in Figure 6.

The spherical shape of the droplet usually leads to treating the

droplet as a thin lens in the same way as a ball-shaped lens

does [37]. In the present study, we consider two ways of ap-

proximating the droplet. The first is the classical approxima-

tion, which is to model the droplet as a thin lens. For the sec-

ond way, let us recall that in digital holography practice, atten-

tion is limited to the edge function defined by the boundaries

of the object, while we propose to use the thickness function

of the object. The thickness function leads to a variable optical

path of the beam inside the droplet in the sense of geometric

optics. This means that this point of view remains an approxi-

mation compared to the LMT. Each result presented in this ar-

ticle is systematically compared to the other available result,

notably the near-field Lorenz–Mie scattering theory. With the

near-field Lorenz–Mie scattering theory and the approxima-

tion of the droplet as an opaque disk defining the framework

of the study, Figure 7 illustrates the simulated holograms for

a droplet (i.e., by means of the LMT) and for an opaque disk.

The arrows indicate the positions where the zero crossings

of the modulation functions of the pattern show large devia-

tions [38]. Consequently, the reconstructed images of the par-

ticles from these holograms differ. Figure 8 illustrates a dig-

ital reconstruction by means of the fractional Fourier trans-
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FIG. 7 Simulated intensity distribution in the plane of the CCD sensor with λ = 642 nm, n = 1, ni = 1.33, D = 20 µm, z = 3 mm.
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FIG. 8 Reconstruction by FRFT with axo = ayo = 0.701 in the cases of (a) the opaque disk approximation and (b) the near-field Lorenz–Mie scattering theory

formation. The optimal fractional orders from Eqs. (32) are

axo = ayo = 0.701.

As one can see, in the case of the LMT in Figure 4(b), the cen-

tered light spot has been reconstructed whereas in the case

of the opaque disk approximation, Figure 4(a), we obtained

only the reconstructed image of a disk but not the centered

light spot. Note that the spot of light at the center of the

reconstructed image predicted by LMT been experimentally

observed in [28]. To quantify the difference between these

two results, the 2D-correlation coefficient of the Wigner dis-

tribution function of the profiles in Figure 7 has been com-

puted [29]. This choice was largely motivated by the fact that

in this phase space representation, the linear chirp is clearly

identified (a pure linear chirp is a Dirac impulse in the phase

space representation) and the aperture of the object, i.e., the

diameter, is retained as a result. When the diameter is small,

it is the linear chirp which is predominant, but, reciprocally,

when the diameter is large, it is the aperture which is pre-

dominant. The opaque disk approximation of a droplet gives

us a good approximation, close to the LMT (which is the

numerical standard), with a 2D-correlation coefficient equal

to 0.96. This comparison was carried out on the basis of a

disk with a diameter of 20 µm, and located at a distance of

z = 3 mm from the sensor. This implies a Fraunhofer coeffi-

cient (i.e., πD2/(2λz)) equal to 0.326. The study has been ex-

tended to Fraunhofer coefficients from 0.02 to 8.156, i.e., for

5 µm< D < 100 µm at λ = 642 nm. The opaque disk approx-

imation of a droplet remains valid with a mean 2D-correlation

coefficient equal to 0.96 with a standard deviation of 0.02.

While this 2D-correlation coefficient is high, the absence of the

light spot in the reconstructed image indicates that the mod-

ulation functions for these two cases do not agree. Therefore,

we have to study another way of interpreting the holograms.
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FIG. 9 Profiles of the simulated intensity distribution in the plane of the CCD sensor with λ = 642 nm, n = 1, ni = 1.33, D = 20 µm, z = 3 mm.
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FIG. 10 Reconstruction by FRFT with axo = ayo = 0.701 in the cases of (a) the quadratic phase approximation and (b) the near-field Lorenz–Mie scattering theory.

4.1 The case of a droplet in the quadratic
phase approximation

Under the paraxial Gauss conditions, we assume that the

droplet is equivalent to a thin lens. Then, the p function of

the droplet over the aperture D can be described by

p(s, θ) =
[
1 − exp

(
−iπκs2

)]
· Z0

0(s, θ), (35)

with κ = D2/(4λ f ) and f = ni ·D
4(ni−n)

the effective focal length

of the ball-shaped lens. Note that κ can be a complex num-

ber so as to take into account, for example, any absorption in

the droplet. This point is not further addressed here. It is well

known that

exp
[
−iπκs2

]
· Z0

0(s, θ) =
∞

∑
n=0

n even

γ0
n(κ) · Z0

n(s, θ), (36)

where n = 0, 2, ..., and the Zernike moments γ0
n(κ) are given

by

γ0
n = (n + 1) exp

(
−iπ

κ

2

)
(−i)

n
2 · j n

2

(
κ

π

2

)
. (37)

Then, in the case of a circular system, i.e., δ = 0, the semi-

analytical expression for Gm
n (σ, ϕ) in Eq. (23) is

G0
n(σ, ϕ) = 2π

∞

∑
n=0

n even

γ0
n · V0

n (2πσ, χ), (38)

with γ0
n as defined in Eq. (37). Figure 9 illustrates the results

of the quadratic approximation of the droplet compared to the

LMT.

As one can see here, the two optical signals agree quite well. A

minor shift of the linear chirp can be noticed. This is due to the

modulation function’s not being exactly the same as before.

Nevertheless, in the reconstructions of these two holograms

by a FRFT with axo = ayo = 0.701, illustrated in Figure 10),

the light spot is visible in both cases.

Again, the quadratic phase approximation of a droplet gives

us a good approximation, close to the numerical standard

with a 2D-correlation coefficient equal to 0.93. Under the same
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conditions as the opaque disk approximations for Fraunhofer

coefficients from 0.02 to 8.156, the mean 2D-correlation coef-

ficient reaches 0.93 with a standard deviation of 0.04. Note

that in the two previous approximations, the models of the

droplet were defined using the zero and first order Maclaurin

series of the phase function of the droplet (the paraxial ap-

proximation). In the next subsection, we propose to model the

droplet with an approximation that we shall refer to as the

quasi-spherical phase approximation; it is based on the idea

of using a thickness function to extend the model beyond the

paraxial approximation.

4.2 The case of a droplet in the
quasi-spherical phase approximation

In this case, we must study Eqs. (10) and (12). The droplet is

purely spherical-shaped, generally with a constant refractive

index, denoted here ni. The diameter of the droplet is again

denoted D. In the theory of aberration, a pupil function can

be considered as a plane or spherical wave. We need here an

adequate description of the pupil function. Here, we adopt

the same Zernike based approach as in subsection 4.1. Then,

an appropriate transmittance function for the droplet will al-

low us to evaluate Eqs. (10) and (12). Consequently, the inten-

sity distribution in the plane of the CCD sensor comes from a

droplet whose transmittance function has been extended be-

yond the paraxial approximation. To do this, and by means of

the developments introduced in [39], see Eqs. (5-1) and (5-2)

on p. 74, the total phase delay φ(r) of the wave at r = (ξ, ψ)

when passing through the droplet equals

φ(r) = 2π(ni − n)
∆(r)

λ
, (39)

where ∆(r) is the thickness function of the deflected ray at r.

By recalling that r = sD/2, we have ∆̂(s) = D ·
(
1 − c2s2

)1/2
,

with the numerical aperture c = (n/ni) such that 0 < c < 1

and ∆̂(s) = ∆(sD/2). It is important to note that in Eq. (39),

we assumed that the coordinates of the entrance ray in the

droplet and the exit ray are the same. In other words, the

bending of the beam is not taken into account. Consequently,

in this approximation, the phase transformation due to the

droplet, which is nothing else than the pupil function p, can

be written as

p(s, θ) =
[
1 − exp

(
iπκ

ni

√
1 − c2 · s2

)]
· Z0

0(s, θ), (40)

with κni = 2(ni − n)D/λ. By considering [40], the pupil func-

tion in Eq. (40) can be expanded in terms of circle polynomials:

exp
(

iπκ
ni

√
1 − c2 · s2

)
Z0

0(s, θ) =

∞

∑
n=0

n even

γ0
n(−πκni · uc) · Z0

n(s, θ) (41)

with uc = 1 −
√

1 − c2 and

γ0
n(x) = (n + 1) ·

[
x

2
· j n

2 −1 · h
(2)
n
2

− x

2vc
j n

2
· h

(2)
n
2 +1

]
,

vc =
1 −

√
1 − c2

1 +
√

1 − c2
. (42)

The jn are the spherical Bessel functions of the first kind and

h
(2)
n are the spherical Hankel functions of the second kind.

Each spherical Bessel function has argument x/2 and each

spherical Hankel function has argument x/(2vc). Then, in the

case of a circular system, i.e., δ = 0, the semi-analytical expres-

sion for Gm
n (σ, ϕ) in Eq. (23) is

G0
n(σ, ϕ) = 2π

∞

∑
n=0

n even

γ0
n · V0

n (2πσ, χ), (43)

with γ0
n defined in Eq. (42).

The result is illustrated in Figure 11 and compared to the

LMT simulation. The quasi-spherical phase approximation of

a droplet is close to the numerical standard with the pres-

ence of the light spot at the center. For the Fraunhofer coeffi-

cients from 0.02 to 8.156, the mean 2D-correlation coefficient

reaches 0.95 with a standard deviation of 0.03. As a result,

the description of the droplet as a thickness function seems to

yield a satisfactory approximation. Again here, the light spot

is reconstructed from these two holograms by a FRFT with

axo = ayo = 0.701, see Figure 12. Finally, the profile of the

three reconstructions shown in Figure 13). Qualitatively, the

results obtained through approximations are close to the nu-

merical standard LMT.

At the moment, there is only a qualitative and not quantitative

comparison. Further study will permit a quantitative compar-

ison. In this publication we limit ourselves to the first estimate.

However, the other advantage of this point of view, i.e. the

thickness function, is that it is probably possible to consider

an other shape of the object, provided that a circular symmet-

rical exists.

5 NUMERICAL ESTIMATION OF THE
ZERNIKE COEFFICIENTS

Recall that Gm
n in Eq. (23) allows us to describe the object func-

tion in the sense of holography, from a general point of view,

and its knowledge is important when a metrology for the par-

ticle must be realized, for example, to measure its diameter.

In Eq. (23), the characteristic function of the particle is con-

tained in the Zernike coefficients. In the previous cases, the

Zernike coefficients were clearly defined from the shape of the

particle (alternatively, of the inclusion). However, there may

be random physical situations where the pure spherical shape

of the particle may be disturbed. Then, the expression of the

pupil function in Eq. (10) becomes a complicated mathemat-

ical expression, for example if the phase Φ(s, θ) of the pupil

function contains non-linear chirps (i.e., aberrations). In this

case, the Zernike coefficients do not have a closed form. Con-

sequently, the Zernike coefficients in Eq. (12) should be nu-

merically evaluated. A good digital evaluation of the Zernike

coefficients in Eq. (12) means that it is possible from the esti-

mated Zernike coefficients to reconstruct the initial function,

that may contain high-order spatial frequencies. For this, the

double exponential formula (DE) of numerical integration is

used [45]. The aim of this formula is to find the optimal change

of variable which transforms the original integral over a finite

interval to an integral over an infinite interval. Such transfor-
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FIG. 11 Profiles of the simulated intensity distribution in the plane of the CCD sensor with λ = 642 nm, n = 1, ni = 1.33, D = 20 µm, z = 3 mm.
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FIG. 12 Reconstruction of the image of the droplet in the cases of (a) the quasi-spherical phase approximation and (b) the near-field Lorenz–Mie scattering theory.
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FIG. 13 Profiles of the reconstruction of the image of the droplet in the three cases: LMT, quadratic approximation, and quasi-spherical phase approximation.
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mations of the variables allow applying the trapezoidal rule

over (−∞,+∞). For Eq. (12), the change of variables is

s = φ(u) =
1

2

[
1 + tanh

(π

2
sinh(u)

)]
,

θ = ψ(v) = π
[
1 + tanh

(π

2
sinh(v)

)]
, (44)

where

φ(−∞) = 0, φ(∞) = 1, ψ(−∞) = 0, ψ(∞) = 2π. (45)

In this way, the integral expression for the Zernike coefficient,

denoted here by Γm
n , becomes

Γm
n =

(n + 1)

π
·
∫

R2
Fm

n (φ(u), ψ(v)) · φ(u)φ′(u)ψ′(v) dudv. (46)

with

Fm
n (s, θ) = A(s, θ) · exp [iΦ(s, θ)] · Zm

n (s, θ). (47)

The amplitude A(s, θ) can be a constant or a Gaussian func-

tion, denoted by exp(−αs2), α ∈ R+. The phase Φ(s, θ) is a

real function of s and θ. Note that

φ′(u) =
π

4

cosh(u)

cosh2 (π
2 sinh(u)

)

= O
(

exp
(
−π

2
(1 − α) exp |u|

))
, |u| −→ ∞, (48)

and

ψ′(v) =
π2

2

cosh(v)

cosh2 (π
2 sinh(v)

)

= O
(

exp
(
−π

4
(1 − α) exp |v|

))
, |v| −→ ∞ (49)

holds for arbitrary 0 < α < 1 [46]. The integrand decays dou-

bly exponentially after the transformation. This is the reason

it is called the double exponential formula. After this trans-

formation, the integrand in Eq. (46) has singular points in the

complex plane where there are zeros zo of φ′(u), which are

given by

cosh(zo) = 0, zo = ±i
π

2
+ i2πZ, (50)

and the poles po are given by

cosh2
(π

2
sinh(po)

)
= 0,

po = ±i arcsin (1) = ±i
π

2
+ i2πZ. (51)

Then the integrand in Eq. (46) is regular in the strip [47]

|ℑ {u} | < d =
π

2
(52)

where d is the minimum distance between the singular points

of the integrand in Eq. (46) and the real axis. In order to evalu-

ate the integral in Eq. (46), we employ the trapezoidal formula

Γm
n =

(n + 1)

π
· δuδv

+N

∑
k=−N

+N

∑
l=−N

Fm
n [φ(kδu), ψ(lδv)]

· φ(kδu)φ
′(kδu)ψ

′(lδv) + ∆γδ (53)

with δu,v the constant sampling period along the u−axis and

the v−axis, and ∆γδ is linked to the discretization and the

truncation errors given in [47], Eqs. (3.13) and (3.19), pp. 909–

910 by

∆γδ = O

(
exp

[
−2πd

δu,v

])

+ O
(π

4
exp

(
−π

2
(1 − α) exp(Nδu,v)

))
. (54)

Next, the sampling distance δu,v is chosen such that the trun-

cation error and discretization error have the same order of

magnitude. Thus, setting

exp

[
−2πd

δu,v

]
=

π

4
exp

[
−π

2
(1 − α) exp(Nδu,v)

]
, (55)

we can determine the sampling period δu,v or the number of

evaluation N. To illustrate our purpose, the results of Eqs. (37)

and (53) are compared in Figure 14. In this case, the κ coeffi-

cient is equal to 7.7296.

The comparison produces an error, which is denoted here by

∆e, and is defined by

∆e = max (||ℜ(Γm
n )−ℜ(γm

n )|+ |ℑ(Γm
n )−ℑ(γm

n )||) . (56)

In the case presented in Figure 14, with m = 0, the maximal

error is 0.557 · 10−13 over the range n = [0, 34]. Secondly, the

comparison between Eqs. (42) and (53) is illustrated in Fig-

ure 15).

The maximal error is equal to 0.519 · 10−13 over the same

range. This formula seems to work well for a pure-phase pupil

function containing high order aberrations. For example, if p

is defined by

p(s, θ) = exp
(

iαR1
3(s) cos θ

)
≃ ∑

n,m

Γm
n · Zm

n (s, θ), α = 1, (57)

the numerical estimation of the Zernike coefficients Γm
n can

be compared to the theoretical Zernike coefficients given in

[48], Eq. (A18). To do this, Figure 16 present the numeri-

cal and theoretical Zernike coefficients, with real and imag-

inary parts denoted here by ℜ and ℑ. The maximum er-

ror from Eq. (56) is evaluated at 0.854 · 10−15 over the range

(n, m) = [0, 20]× [−20, 20].f

6 CONCLUSIONS

In this paper, we have proposed a mathematical model of the

intensity distribution for a particle’s hologram. Three approx-

imations of the pupil function of a spherical particle have

been considered: the opaque disk, the quadratic phase ap-

proximation, and the quasi-spherical phase approximation.

We have compared these three approximations with the near-

field Lorenz–Mie scattering theory. The quadratic phase and

quasi-spherical phase approximations of the pupil function

have been represented in terms of the circle polynomials.

These three points of view are rather good approximations

but as we have seen, the opaque particle approximation fails

to explain the presence of a light spot at the center of the re-

constructed images unlike the other two approximation. The
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FIG. 14 Comparison between the theoretical γmn and numerically obtained Γmn Zernike coefficients with m = 0 in the case of a droplet described by a quadratic phase

approximation. N = 100, δu = δv = 0.0486167.
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FIG. 15 Comparison between the theoretical γmn and numerically obtained Γmn Zernike coefficients with m = 0 in the case of a droplet in the quasi-spherical phase approximation.

N = 100, δu = δv = 0.0486167.

quasi-spherical approximation is considerably better than the

quadratic approximation because it takes into account the true

thickness function. The main simplifying approximation in

our analysis has been the beam has the same coordinates at

its entrance into and its exit from the droplet. The limits of

our models are included within the Fresnel’s approximation,

since the models are developed using the Fresnel’s integral.

However, we observe that here the diameters increased be-

yond 100 µm, the model of the quadratic phase approxima-

tion was worse than the model of the quasi-spherical approx-

imation, of course, in the experimental context of this publi-

cation. Note again that the limitation is the object’s refractive

index should be higher than the refractive index of water (or

surrounding medium). Next, if the thickness function is not a

trivial function, the theoretical expression for the Zernike co-

efficients does not have a closed form. Evaluating the Zernike

coefficients is then not straightforward and a satisfactory eval-

uation of the intensity distribution in the hologram depends

on the quality of the numerical estimation of the Zernike co-

efficients. Consequently, a numerical evaluation is necessary

and we have adopted the double exponential formula, which

is known for its high accuracy. This formula works well even

for pupil functions containing high order aberrations.
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A THE MATRICES Mi AND Mt

Here the incident matrix is defined by means of the experi-

mental values given in Figure 2. Then, along the x-axis, the

incident matrix is defined by

Mi(x,y) =

(
1 δ

n

0 1

)(
1 0

na−n
d/2 1

)(
1 e3

na

0 1

)

·
(

1 0

− 1
f2

1

)(
1 e2

na

0 1

)(
1 0

− 1
f1

1

)(
1 e1

na

0 1

)
(58)

and along the y-axis, the incident matrix is the same when

the optical setup is symmetric. To obtain an astigmatic optical

system, it is possible to modify one of the focal lengths. Now,

for the transmitted matrix, we have

Mt(x,y) =

(
1 z

na

0 1

)(
1 0

n−na
−d/2 1

)(
1 d−δ

n

0 1

)
(59)

B THEORETICAL DEVELOPMENT OF Gmn

To get a semi-analytical computation method for the remain-

ing integral in Eq. (20), the approach is as follows. Firstly, write

exp[isTLts] = exp

[
i
1

2
s2(Lt(1,1) + Lt(2,2))

+i
1

2
s2(Lt(1,1) − Lt(2,2)) cos(2θ)

]
. (60)

Then expand, using β-coefficients as before,

exp

[
i
1

2
s2(Lt(1,1) − Lt(2,2)) cos(2θ)

]

=
+∞

∑
q=−∞

∞

∑
p=0

iq · β
|2q|
|2q|+2p

(δ) · Z
2q

|2q|+2p
(s, θ) (61)

with δ = 1
2 (Lt(1,1) − Lt(2,2)) and where the expansion coeffi-

cients β
|2q|
|2q|+2p

are expressed explicitly in terms of the hyper-

geometric functions 2F3, cf. [26], as

β
|2q|
|2q|+2p

(δ) = d0
0 (−1)r(2|2q|+ 4r + 1)

(
1

2
δ

)|2q|+2r

· 2F3

(
r + 1

2 |2q|+ r + 1
2

1
2 |2q|+ 2r + 3

2 |2q|+ 2r + 1
;−1

4
δ2

)
(62)

in the case where 2r − p = 0 and

β
|2q|
|2q|+2p

(δ) = d1
0 (−1)r(2|2q|+ 4r − 1)

(
1

2
δ

)|2q|+2r

· 2F3

(
r + 1

2 |2q|+ r + 1
2

3
2 |2q|+ 2r + 1 |2q|+ 2r + 1

2

;−1

4
δ2

)
(63)
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in the case where 2r − p = 1. In Eqs. (62) and (63), the coeffi-

cients d0
0 and d1

0 are defined as follows:

d0
0 =

(2r)!(2|2q|+ 2r)!

r!(|2q|+ r)!(2|2q|+ 4r + 1)!
,

d1
0 =

(2r)!(2|2q|+ 2r)!

r!(|2q|+ r)!(2|2q|+ 4r)!
. (64)

When Eq. (61) is introduced into Eq. (21), we see that there

arises the product of two circle polynomials,

Zm
n (s, θ) · Z

2q

|2q|+2p
(s, θ) . (65)

In [23], Eqs. (40)–(44) these products are linearized:

Zm
n (s, θ) · Z

2q

|2q|+2p
(s, θ) = ∑

t

A
m,2q,m+2q

n,|2q|+2p,t
· Z

m+2q
t (s, θ) . (66)

The summation range over t is

t = max (|m + 2q|, |m − |2q| − 2p|) (2)(n + |2q|+ 2p) (67)

where a(2)b denotes a, a + 2, . . . , b when b − a is non-negative

and even. Then, A can be given in terms of Wigner or Clebsch–

Gordan coefficients [44, 43]:

Ai,k,m
j,l,n =

∣∣∣∣C
j
2 , l

2 , n
2

i
2 , k

2 , m
2

∣∣∣∣
2

. (68)

Note that when t is not as in Eq. (24), then Ai,k,m
j,l,n = 0. The

integral in Eq. (21) is now

∫ 1

0

∫ 2π

0
exp

[
iχs2

]
Z

m+2q
t (s, θ)

· exp [−i2πσs cos(ϕ − θ)] s ds dθ, (69)

with χ = 1
2 · Tr(Lt). This latter integral can be expressed in

term of V functions from the extended Nijboer–Zernike theory

[26, 24]. Indeed, we have

∫ 1

0

∫ 2π

0
eiχs2 · Z

m+2q
t (s, θ) · e−i2πσs cos(ϕ−θ)s ds dθ

= 2π(i)m+2q · V
|m+2q|
t (2πσ, χ) · ei(m+2q)ϕ, (70)

and the power-Bessel series for V is given by Eqs. (26) and

(27). This yields the final result of the semi-analytical formula

for the integral Gm
n that we were looking for:

Gm
n (σ′, ϑ) = 2π

+∞

∑
q=−∞

∞

∑
n,m,p

∑
t

γm
n · (−i)m+q · A

m,2q,m+2q

n,|2q|+2p,t

· β
|2q|
|2q|+2p

(δ) · V
|m+2q|
t (2πσ, χ) · ei(m+2q)ϕ. (71)
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