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Thin soft elastic layers serving as joints between relatively rigid bod-
ies may function as sealants, thermal, electrical or mechanical insu-
lators, bearings or adhesives. When such a joint is stressed, even
though perfect adhesion is maintained, the exposed free meniscus in
the thin elastic layer becomes unstable, leading to the formation of
spatially periodic digits of air that invade the elastic layer, reminis-
cent of viscous fingering in a thin fluid layer. However, the elastic
instability is reversible and rate independent, disappearing when the
joint is unstressed. We use theory, experiments and numerical sim-
ulations to show that the transition to the digital state is sudden
(first-order), that the wavelength and amplitude of the fingers are
proportional to the thickness of the elastic layer, and that the re-
quired separation to trigger the instability is inversely proportional
to the in-plane dimension of the layer. Our study reveals the en-
ergetic origin of this instability, has implications for the strength of
polymeric adhesives. It also suggests a method for patterning thin
films reversibly with any arrangement of localized fingers in a digital
elastic memory, which we confirm experimentally.

fingering | adhesion | elastic

In adhesive joints the strains and stresses due to joint loading
are magnified by the effects of geometric confinement and

scale separation [1] making them susceptible to stress-driven
instabilities that often lead to failure. Joints usually fail in
one of two broad ways: via adhesive failure along the solid-
solid interface [2, 3, 4, 5], or via bulk cohesive failure of the
glue joint via cavitation [6, 7, 8]. While these modes of failure
have been well documented and studied (see [1] for a review),
there is a third mode of failure, where an elastic instability at
the meniscus may lead to fracture in its vicinity and can arise
either when a joint is loaded under tension [9] or by a fluid
that is injected into a cavity in the confined elastic layer [10].
This mode of failure has been largely overlooked experimen-
tally and is not understood theoretically. Interestingly, the
last experiment is an elastic analog of a well studied classical
hydrodynamic free surface instability associated with the rela-
tive motion between liquids of different viscosities in a narrow
gap [11, 12], and provides a point for comparison. As we will
see, the elastic instability is fundamentally different given its
reversible nature and lack of dependence on interfacial forces.
We use a combination of theory, experiment and computation
to unravel the mechanism behind the elastic meniscus insta-
bility, the threshold strain for its onset, the critical wavelength
of the resulting fingers, as well as the nonlinear development
of its amplitude.

Geometrically, our setup, sketched in Fig. a, consists of a
thin highly-elastic layer occupying the region −a/2 < z < a/2,
−∞ < x < ∞, 0 < y < l with a/l << 1 that is adhered to
rigid plates at z = ±a/2. Experimentally we used a layer of
polyacrylamide gel with a shear modulus of 550Pa, thickness
a ∈ [0.28, 10.64]mm and width l ∈ [50, 60]mm bound between
10mm thick glass plates that were about 200mm long. The
plates are then pulled apart, increasing their separation to
a+∆z, while maintaining adhesion. Experimentally, the sep-
aration was increased at a constant speed of 2mms−1. As the
rigid plates are separated, the free boundaries of the elastomer
(at y = 0 and y = l) retreat to form an elastic meniscus that
is curved in the direction perpendicular to the plates but re-

mains parallel to its original position, thus penetrating into
the elastic film without causing any loss of adhesion to the
glass plates. At a critical separation of the plates, this curved
meniscus loses stability via a sharp transition to an undula-
tory configuration in which fingers of air protrude into the
elastomer, shown schematically in Fig. a. To ensure that elas-
tic equilibrium was achieved at each stage, and to rule out
any rate-dependence, we also performed experiments at much
lower velocities and saw quantitatively similar results.

Fig. b shows the undulatory pattern observed. We note
that this instability is qualitatively different from the crack-
like adhesive undulatory instabilities seen at the glass-gel con-
tact line when adhesion starts to fail [2]. In our experiments
adhesion is maintained everywhere due to the natural propen-
sity of polyacrilamide to stick strongly to glass. Thus, fin-
gers appear along the retreating elastic meniscus. Fig. 1b
also shows a loading-unloading hysteresis loop for the transi-
tion, showing that the instability sets in suddenly past a given
threshold in displacement via a subcritical instability, leading
to large amplitude “digits” or fingers whose amplitude grows
further upon further loading (Supplementary movie 1). On
unloading, the fingers snap back at a lower value of the dis-
placement, suggestive of the hysteretic nature of this first or-
der transition (Supplementary movie 2). We find that the un-
dulatory transition is fully reversible and has no dependence
on the shear modulus of the elastomer, strongly suggesting
that the phenomenon is purely elastic. The similarity in
the small smooth part of the loading and unloading curves,
which corresponds to a plate separation of ∼ 1.5% at most
is likely due to inhomogeneities in the meniscus when it was
first formed via our moulding protocol. To test this, we waited
for up to thirty minutes after the destabilization of the front,
and did not see any additional fingers form. On retracing the
loading-unloading cycle, we saw that the system traced the
same curves as the first time, consistent with this explana-
tion. Finally, we performed identical experiments in oil rather
than in air to determine the effect of surface tension on the
instability (Supplementary movie 3), and find that the system
responds just as when it is in air, eliminating a role for the
effects of surface tension in the phenomenon. It is useful to
contrast these observations with the case of viscous fingering
[11], where fingering is dynamic and out of equilibrium, and
surface tension effects cannot be neglected.

Since the deformations involved are large, we resorted to
numerical simulations of the process in terms of a finite el-
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ement method, using an incompressible neo-Hookean consti-
tutive model for the elastic layer. To capture the subcritical
nature of the instability, we needed to carry out a dynamical
simulation with damping, modeled via a Rayleighian dissipa-
tion function. The boundary conditions were imposed using
the symmetry of the problem and a small amount of initial
noise in the position of the meniscus was used to seed the in-
stability. All numerical simulations were carried out using a
commercial finite element package ABAQUS (see Supplemen-
tary Information) allow us to reproduce this instability. We
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Fig. 1. a) Schematic of an elastic layer between two rigid plates. Pulling the

plates apart causes the two free menisci to lose stability by forming a series of un-

dulating digital fingers. b) The experimentally measured amplitude of the fingers as

a function of plate separation ∆z, along with a top-view of the undulating menis-

cus showing the fingers of air (bottom) invading the elastic layer (top). The layer

thickness a = 3.05mm and the width l = 56mm. Observe the hysteresis in the

transition associated with the difference between the loading and unloading curves. c)

Numerical results for an identical quasi-static loading and unloading protocol (see SI)

calculated using a finite element method for an elastic layer of thickness a = 1mm

and width l = 40mm show the same qualitative features - a hysteretic transition

(top) associated with the formation of undulating fingers (bottom).

Fig. 2. a) The simplest model that characterizes the phenomenon focuses on

the central (z = 0) plane of the elastomer and considers it to be composed of

many independent thin strips of width dx. b) A schematic of the deformation of the

strips when stretched perpendicular to the plane of the paper leads them to undergo

independent planar deformations. c) The constraint of incompressibility causes the

energy of a stripEs to not be a convex function of λx so the minimal average energy

with 〈λx〉 = 1 is achieved by most strips taking the optimal value of contraction

and a small number taking divergent values and hence receding deeply into the bulk

and forming fingers. This minimal model highlights the mechanism of instability but

provides no information about the wavelength and threshold for the instability (see

text).

note that once the fingers develop and have a finite ampli-
tude, they may not be described by a single-valued function,
but this is not an issue in our simulations which use a natural
coordinate system for the meniscus. In Fig. c, we show that
both the form of the fingers and the hysteresis loop associ-
ated with a loading-unloading loop arise in a purely elastic
simulation.

To understand our experiments and numerical simula-
tions, we start by estimating the energies and length-scales
in the problem. Displacement of a point in the central plane
of the elastomer by an amount u ∼ a in the y direction of the
x− y plane, leads to a shear strain in the elastomer γ ∼ u/a.
Since the subcritical fingering transition is purely elastic, it is
likely to occur at large strains with a threshold γ ∼ 1 when
geometrically non-linear effects are important. Incompress-
ibility of the elastomer implies that ∆zl ∼ ua, so that the
instability threshold ∆zt ∼ O(a2/l), which vanishes for in-
finitesimally thin films, when l/a → ∞. We note that this
threshold arises from purely geometric considerations and ex-
pect that it does not depend on any material properties since
the only energy scale in the system, the shear modulus, can
be scaled away. Furthermore, if fingers form with wavelength
λ and amplitude A, this introduces additional strain associ-
ated with the in-plane distortion of magnitude A/λ. At the
onset of the instability, the elastic screening length O(a) must
scale with the thickness of the layer, so that we expect the
wavelength of the instability to also be independent of any
material parameters, with λ ∼ O(a). But how is it that the
formation of fingers, which are areas that have receded deeply
into the bulk and therefore undergone huge shear strains, can
reduce the total shear energy in the elastomer?

In order to clarify how fingering can alleviate shear, we
first build a very simple model completely neglecting in-plane
strain. Again, focusing our attention on the central plane of
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the elastomer, we assume that it is made of thin strips of width
dx which we treat as elastically independent. If one of these
strips is stretched in-plane by a factor λy in the y direction and
a factor λx in the x direction, as shown in Fig. a, b, the small
thickness of the strip guarantees that the displacements in the
x direction are small compared to a and therefore do not give
rise to large shear strains. However a point with coordinate y
is moved by an amount (y− l/2)(1−λy) and so suffers a strain
γ ∼ (y−l/2)(1−λy)/a, and the elastic shear energy of the strip

is therefore Es =∝
∫ l

0
γ2dy ∝ (1−λy)

2. A stretch in the z di-
rection by a factor of (1+∆z/a), together with volume conser-
vation requires (1+∆z/a)λxλy = 1, which allows us to rewrite
the shear energy of our strip as Es ∝ (1 + ∆z/a − 1/(λx))

2.
Plotting this as a function of λx in Fig. c, we see that the
energy has a minimum at λx = 1/(1 +∆z/a) < 1 for ∆z > 0.
However, since our system is infinite in the x direction we
know that the average x-stretch < λx >= 1, otherwise the
strips will build up infinite displacements in the x direction.
Inspecting Fig. c we see a large non-convex region extending
from the minimum till λx → ∞, i.e. the total energy of the
system is minimized when ∆z > 0 with most strips being
stretched by the optimal value of λx = 1/(1 +∆z/a) < 1 and
a very small number having large λx; these “digits” dig deep
into the bulk of the elastomer leading to the fingering insta-
bility. We note that if the energy was convex, the minimum
energy compatible with the average stretch λ̄x = 1 would be
achieved by each strip individually taking λx = 1. This sim-
ple explanation thus accounts for how the lack of convexity
drives the energetics of finger formation and predicts a first-
order transition to a large-amplitude state, consistent with
the experimentally observed hysteresis shown in Fig. b.

While our zero-dimensional model provides a mechanism
for the instability, it is unable to provide information about
the wavelength and threshold for the instability. For this,
we now turn to an asymptotic simplification of the three-
dimensional problem by taking advantage of the small thick-
ness and symmetry of the elastic layer. We expand the dis-
placement vector U(x, y, z) to leading order in z and impose
the condition that U = ±∆zẑ/2 at z = ±a/2, leading to the
form

U = (1− 2z/a)(1 + 2z/a)u(x, y) + (z∆z/a)ẑ, [1]

where u(x, y) is the two-dimensional displacement of a point
on the central (z = 0) plane. With ∇ as the in-plane gradient
operator and I as the two-dimensional identity matrix, we
can then write the three-dimensional deformation gradient,
Fij = δij + ∂jUi, as

F = I + (1− 4z2/a2)∇u− 8zuẑ/a+ (1 + ∆z/a)ẑẑ, [2]

and see the decomposition that results as a consequence of
scale separation.

To characterize the energetic cost of this deformation, we
model the elastomer as an incompressible neo-Hookean solid
with volumetric elastic energy density 1

2
µTr

(

F.F T
)

, which we
can explicitly integrate in the thickness direction. Here we
assume that surface tension effects are unimportant, as our
experiments show. Thus, when the energy of the system is
rescaled by this single constant, what remains is a purely geo-
metric problem. The constraint of volume preservation in the
elastomer when integrated through the depth requires us to
introduce a two-dimensional pressure field P (x, y) that con-
strains the depth-averaged volume change at each point in the
elastomer, and leads us to an effective two-dimensional energy

density L

L(u, P ) = µ

∫ a/2

−a/2

1
2
Tr

(

F.F T
)

− P (Det(F )− 1)

1 + ∆z/a
dz [3]

∝ 1
2
Tr

(

G.GT
)

+ 16
5
|u/a|2 − P

(

Det(G)− 1 + 6
5
∆z/a

)

.

In carrying out the integral (see Supplementary Information)
we have introduced an effective two-dimensional deformation
gradient G = I+ 4

5
∇u and, since we expect ∆zt ∼ a2/l << a,

retained only the leading order term in ∆z/a. We note that
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Fig. 3. Comparison of experimental and theoretical/numerical predictions. a)

Threshold separation ∆zc times width l as a function of thickness a shows that the

experimental and numerical results follow the theoretical prediction (13). b) Finger

wavelength λ at instability as a function of thickness a shows that the experimental

and numerical results follow the theoretical prediction (14). c) Finger amplitude A

just after threshold as a function of thickness a shows that the experimental and

numerical results agree, but only over a range of thickness values. For large a the

separation of scales between the thickness a and width of the film l is less and the

number of wavelengths in the sample is smaller, leading to end effects that make

agreement between theory and experiment only qualitative.
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∂L
∂∇u

= 4
5
(G−PDet(G)G−T ), so extremizing this energy leads

to the following Euler-Lagrange equations for the planar dis-
placement field u and the pressure P ,

4
5
∇2u−Det(G)G−T · ∇P = 8u/a2 [4]

Det(G) = 1− 6
5
∆z/a,

It is interesting to note that the form of the depth-integrated
equation (4) is similar to the Darcy-Brinkman equation for
flow through a dilute porous media [13], with the displace-
ment reinterpreted as a velocity. Here, the most interesting
aspect of the equation is the appearance of the bare displace-
ment of the central plane u. On the free surfaces y = 0, l, we
must satisfy the natural boundary condition

(

G− P Det(G)G−T
)

· ŷ = 0. [5]

Taking each field to be the sum of a large translationally
invariant base state corresponding to the deformations prior
to the instability and an infinitesimal oscillation in the x di-
rection, we may write

u = Y1(y)ŷ+ ǫ cos (kx)Y2(y)ŷ + ǫ sin (kx)X2(y)x̂ [6]

P = 1 + P1(y) + ǫ cos (kx)P2(y). [7]

Substituting this into (4)-(5) and solving for the translation-
ally invariant fields we get:

Y1(y) =
3
4
∆z(l − 2y)/a [8]

P1(y) = 6y∆z(y − l)/a3 − 6
5
∆z/a. [9]

At order ǫ, the Euler-Lagrange equations (eqns. 4) can be
solved algebraically for X2 and P2 to yield a linear fourth or-
der eigenvalue equation for Y2 whose solution provides us the
wavelength and threshold for instability (see Theoretical Sup-
plementary Information). A substantial simplification arises
by considering the limit l >> a and consequently ∆z << a
which allows us to drop all terms proportional to ∆z except
those also containing powers of l reducing the final equation
to
(

a2k2 + 10
)

a2k2Y2(y) + a4Y
(4)
2 (y) = 2

(

a2k2 + 5
)

a2Y ′′
2 (y)
[10]

which has the allowable decaying solutions

Y2 = c1 exp
(

−
√

10/a2 + k2y
)

+ c2 exp (−ky). [11]

Substituting this into eqn. 5 gives c1 = −c2k
2/(5/a2 + k2)

and a condition which yields the threshold separation ∆zt for
instability at wavenumber k

∆zt =
a2

l

(

a2k2 −
√
a2k2 + 10ak + 10

)

a2k2 + 25

15ak
. [12]

Minimizing this expression with respect to k yields the thresh-
old of the first unstable mode (∆zt) and the wavelength (λ)
which are given by

∆zt ≈ 1.69a2/l [13]

λ ≈ 2.74a [14]

We see that the wavelength of the instability scales with the
thickness of the elastic layer and the threshold displacement
is inversely proportional to the slab width, and are indepen-
dent of any material parameters, as we argued earlier based
on scaling arguments.

In Fig. , we show a comparison of these predictions with
experiments and numerical simulations (see Supplementary
Information); the results compare very well. Although our
linearized analysis cannot extend beyond the point of insta-
bility, our finite element simulations have no such limit. Ex-
perimental and numerical results show that the amplitude of
the fingers A ≈ 1.4a, and confirm the subcritical nature of
the instability with a region of bistability wherein the homo-
geneous and undulatory phases of the interface co-exist. In
this regard, our elastic instability is fundamentally different
from the hydrodynamic Saffman-Taylor instability that is su-
percritical.

Our study has uncovered the form and nature of the con-
fined elastic meniscus fingering instability in a minimal recti-
linear setting using a combination of theory, experiment and
numerical simulation. We show the origin of the transition is
essentially geometric and hence likely to be ubiquitous, just
as its fluid counterpart is, and predict and verify the wave-
length and threshold of the instability. At a practical level,
our results have implications for the strength of elastic ad-
hesive layers; since the peak strain jumps very significantly
during the fingering transition, fingering is very likely to lead
to fracture and adhesive failure. From our 2-D model, the
stored energy per unit area scales as µa(∆zl/a2)2, so that the
normal-stress that must be applied to the plates σt ∼ µl/a,
and predicts that the fracture stress of polymeric adhesives is
inversely proportional to the thickness of the layer and that
the total strength of the adhesive bond increases faster than
the adhesion area.

We have also shown that the transition is sudden with a re-
gion of bi-stability between the fingered and flat states. The
hysteretic nature of the transition permits control over the
placement of fingers or “digits”; if the system is in the bistable
regime one may “write” out arbitrary “bits” onto the inter-
face by applying a large perturbation at the desired location
(see Supplementary Movie 4). These “bits” are completely
reversible localized elastic structures, so that this fingering
transition might be used to build a digital mechanical mem-
ory. Since our system produces fingers with wavelength pro-
portional to the smallest length-scale in the problem, namely
the thickness of the layer, without any pre-patterning on this
length-scale, this mechanism may also have uses in microfabri-
cation. Although the digitization instability is fully reversible,
it may be easily made permanent by further cross-linking; ad-
ditionally, the use of a nematic-elastomer may allow the tran-
sition to be driven by heat or light rather than separation.
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