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Digital Multiplierless Realization of Two Coupled
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Abstract—Modeling and implementation of biological neural
networks are significant objectives of the neuromorphic research
field. In this field, neuronal synchronization plays a significant
role in the processing of biological information. This paper
presents a set of piecewise linear (MLPWL1) and multiplierless
piecewise linear (MLPWL2) neuron models, which mimic be-
haviors of different types of neurons, similar to the biological
behavior of conductance-based neurons. Both simulations and a
low-cost digital implementation are carried out to compare the
proposed models to a single ML neuron and two coupled ML
neurons, demonstrating the required range of dynamics with a
more efficient implementation. Hardware implementations on a
field-programmable gate array (FPGA) show that the modified
models mimic the biological behavior of different types of neurons
with higher performance and significantly lower implementation
costs compared to the previous realizations of the ML model.
The mean normalized root mean square errors (NRMSEs) of the
MLPWL1 and MLPWL2 models are 3.70% and 4.89%, respec-
tively, as compared to the original ML model.
Index Terms—Field-programmable gate array (FPGA), Morris-

Lecar (ML) neuron model, spiking neural networks (SNN).

I. INTRODUCTION

I N RECENT decades, neuroscientists have been searching
pathways to elucidate neural networks and activity in the

brain. In elucidating how the brain works, neuroscientists typi-
cally propose specific models that can explain their theoretical
and experimental observations [1], [2]. In order to explain the
central neural system, one can consider a system that consists
of primary basic units, i.e., neurons. Therefore, understanding
of single neuron behavior as a primary building block, plays a
critical role in this approach [3].

Spiking Neural Network (SNN) paradigms are significant
for neuromorphic engineers and their research efforts in devel-
oping artificial neural networks have increased, recently [3],
[4], [5]–[22].

A number of mathematical equations model behaviors under-
lying spiking neural networks [2], [13]. In the general case, the
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equations of single neuron can produce systems with dynam-
ical behaviors [6], [8] and can be represented by a set of models.
Moreover, these models are described by nonlinear ordinary dif-
ferential equations and hardware implementations of them have
been studied intensively [3], [17], [23]–[27]. On the other hand,
to provide devices that more accurately mimic biological sys-
tems, realization and implementation of neural networks are sig-
nificant areas of interest [28].

In recent years, different types of neuron models have
been presented. In these models, two main mechanisms are
significant:

• Conductance-based models with biological precision.
• Spiking-based models, which describe temporal behavior

of cortical spike trains [2], [13].
In these cases, when it is required to understand how neuronal

behavior depends on measurable physiological parameters, the
Hodgkin-Huxley type [5] models are more suitable and can ex-
plain the physiological mechanisms of neuronal behaviors [13].
However, for realization of cortical spike trains or spike-timing
behaviors of neurons, spike-based models are appropriate. On
the other hand, spike-based models such as the Integrate and
Fire (IF), the Leaky-Integrate and Fire (LIF), and Izhikevich
models, cannot describe the biological behaviors of neurons in
the central nervous system (CNS). Indeed, conductance-based
models, such as the Hodgkin-Huxley (HH) model, are compu-
tationally high cost for large scale simulation and have a pro-
hibitive bottleneck when implemented [10]. There is a trade-off
between model accuracy and its complexity. Thus we need to
choose a simpler model to adopt hardware realization that dis-
plays the required biological behaviors.

Among the biological models that are suitable for these goals,
the Morris-Lecar (ML) model is a prime example. The Morris-
Lecar model [34] is a simple biophysical model and a prototype
for a wide variety of neurons. It is a conductance-based model,
introduced to explain the dynamics of the barnacle muscle fiber
that describes the neuronal firing in a manner closely related to
the biology. The ML model is described by two coupled first
order differential equations. The first, models the evolution of
the membrane potential and the second, models the activation
of potassium current.

The implementation of neural models on different platforms
has been studied [2], [13], [14]. Electronic components, cir-
cuits, and VLSI have been utilized to mimic neuronal dynamics.
Moreover, an analog VLSI implementation can be used for the
realization of neural models. Although these analog implemen-
tations are fast and efficient, they are inflexible and require a
long development time [2], [13], [28].

While digitally implemented neurobiological networks con-
sume more silicon area and power in comparison to analog
implementations, they have shorter development times and

1549-8328 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.





HAYATI et al.: DIGITAL MULTIPLIERLESS REALIZATION OF TWO COUPLED BIOLOGICAL MORRIS-LECAR NEURON MODEL 1807

Fig. 1. The Hopf bifurcation for the Morris-Lecar model. (a)–(c) Stable region by increasing the stimulus current. (d)–(e) Unstable region in the Hopf bifurcation.
(f) Stable region in the Hopf bifurcation.

TABLE I
PARAMETER VALUES FOR THE HOPF AND SADDLE-NODE BIFURCATIONS.

ABBREVIATIONS: PARAMETER (PA.), HOPF BIFURCATION (HB),
SADDLE-NODE BIFURCATION (SNB)

For a bifurcation analysis of equilibrium points, the Jacobean
matrix and eigenvalues are required [6], [8], [36] and the Ja-
cobean matrix can be obtained as

(6)

where

(7)

(8)

According to , the stability of the fixed point is deter-
mined. The fixed points are stable if and they are
unstable if . On the other hand, the fixed point is
stable if both of the eigenvalues of this matrix have a negative
real part and is unstable if at least one of the eigenvalues has a
positive real part.

Bifurcation theory is elucidated in terms of how solutions
change, as parameters in a model are varied. Using bifurcation
theory, we can classify the types of transitions that take place as
we change parameters. In particular, we can predict for which

TABLE II
EQUILIBRIUM POINTS FOR THE HOPF BIFURCATION DIAGRAM

value of the fixed point loses its stability and oscilla-
tions emerge. There are several different types of bifurcations.
The most important types of bifurcations can be realized by the
ML model.

A. The Hopf Bifurcation

The Hopf bifurcation is the mechanism through which one
can go from a stable fixed point to an oscillation [2]. In this type
of bifurcation, the stable fixed point first becomes unstable be-
fore merging with the other fixed points. In this case, we choose
the parameters as in Table I. For the Hopf regime, the bifurca-
tion diagram can be described by variation of , in the
ML equations. In this state, by increasing the input stimulus,
there are two fixed points for this current that a Hopf bifurca-
tion occurs at . It is expected that
a fixed point is stable if all of the eigenvalues have a negative
real part and it is unstable if at least one of the eigenvalues has
a positive real part.

Fig. 1 demonstrates that Hopf bifurcation can appear by
varying the stimulus current, , where the fixed point is
stable for or .
Also, it is unstable for other regions. Therefore, a Hopf bifur-
cation occurs at and . Also, in Table II we can see that for

, the fixed points are stable and
for , there are unstable fixed points.

B. Saddle-Node Bifurcation

Another mechanism is called a saddle-node on a limit cycle
(SNLC). It is also called a saddle-node on an invariant circle
(SNIC) [2]. As depicted in Fig. 2, one of the fixed points is
always a saddle (unstable) fixed point and when the saddle and
node points are come together, finally disappear. On the other
hand, when these points merge, they are called a saddle-node
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Fig. 9. Output of the MLPWL2 model implemented on XILINX Virtex-II Pro XC2VP30. (a) Membrane potential at current variable . (b) Mem-
brane potential at (tonic). (c) Membrane potential at (tonic). (d) Membrane potential at different stimulus currents. (e) Membrane potential
(tonic bursting spiking pattern). (f) Membrane potential at (tonic). (g) Membrane potential at current variable . (h) Membrane potential
at current variable ). The horizontal axis denotes time (time ), and the vertical axis shows voltage (voltage ).

TABLE VII
DEVICE UTILIZATION OF THE XILINX VIRTEX-II PRO. ABBREVIATIONS:

RESOURCE (RES.), UTILIZATION (UTIL.), AVAILABLE (AV.), FF' SLICE (FF' S.),
4 INPUT LUTS (LUTS), BONDED IOBS (IOBS), MULT18 18 S (MU.), AND

FREQUENCY (FREQ.)

structures have been proposed and implemented based on an
effective reduction of hardware and computation. These models
are conveniently implemented on FPGA. This hardware is used
to demonstrate different dynamics of the ML neuron model
depending on the current stimulus, and producing different
patterns of spiking activity with minimal computational error.
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