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Digital navigation of energy–structure–function
maps for hydrogen-bonded porous molecular
crystals
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Graeme M. Day 4✉ & Andrew I. Cooper 2,3✉

Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular

crystals by predicting the stable crystalline arrangements along with their functions of

interest. Here, we compute ESF maps for a series of rigid molecules that comprise either a

triptycene or a spiro-biphenyl core, functionalized with six different hydrogen-bonding moi-

eties. We show that the positioning of the hydrogen-bonding sites, as well as their number,

has a profound influence on the shape of the resulting ESF maps, revealing promising

structure–function spaces for future experiments. We also demonstrate a simple and general

approach to representing and inspecting the high-dimensional data of an ESF map, enabling

an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically

favourable or functionally interesting. This is a step toward the automated analysis of ESF

maps, an important goal for closed-loop, autonomous searches for molecular crystals with

useful functions.
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H
ydrogen bonding is widely used for controlling supra-
molecular assembly of organic building blocks1,2 because
it is directional and relatively strong for a non-covalent

interaction. Molecules that combine hydrogen-bonding interac-
tions and geometries that hinder close packing are known to
promote porosity in crystalline molecular networks3–6. Indeed,
there is a rapidly growing class of hydrogen-bonded organic
frameworks (HOFs) with potential applications in gas storage and
separation7,8, molecular recognition9,10, ion conduction11,12, and
catalysis13.

Porous-bonded frameworks such as metal–organic frameworks
(MOFs) and covalent organic frameworks (COFs) are assembled
according to strong and predictable bonding patterns14. By
contrast, porous molecular crystals are defined by the balance of
many weak intermolecular interactions, such as hydrogen
bonding and π–π stacking. As a result, small changes to the
molecular structure can drastically change the crystalline packing
of the molecule and its propensity for polymorphism, as well as
the resultant physical properties. It is a long-standing challenge to
control the crystallization of organic molecules to achieve specific
structures with desired functions. The introduction of hydrogen-
bonding groups, such as carboxylic acids, to create directional
molecular building blocks or “tectons”15 is one popular route for
this, but such routes may also introduce synthetic complexity or
chemical characteristics that are not aligned with the intended
function (e.g., rigid, polar polyaromatic molecules can have very
poor solubility). In the absence of a predictive understanding of
molecular assembly in the solid state, it is challenging to ration-
ally select or design appropriate molecular tectons for the
synthesis of new functional molecular crystals—this is in sharp
contrast to MOFs and COFs, for example, where intuitive iso-
reticular design strategies have proved powerful14.

Recently, we proposed the concept of energy–structure–
function (ESF) maps to aid the discovery of porous molecular
crystals with arresting properties3. To generate ESF maps, we
combine crystal structure prediction (CSP), which determines the
stable crystalline arrangements that are available to a molecule,
with predictions of materials properties of interest. ESF maps,
which are constructed using the molecular structure as the only
input, reveal the possible structures and properties that are
available for the molecule within the energetically accessible
regions of its lattice–energy surface. This de novo strategy of
exploring potential molecules using their predicted ESF maps is
therefore applicable to both known and hypothetical molecules,
and to any materials properties that can be computed from crystal
structures such as gas adsorption and charge transport16. ESF
maps can also be used to computationally pre-screen multiple
candidate molecules for target applications to focus experimental
efforts, which can often require months of synthetic work to access
new molecular tectons. ESF maps have been shown to help guide
synthetic control over pore size in isostructural porous organic
cages17–19 and to enable the discovery of new ‘hidden’ porous
polymorphs of trimesic acid and adamantane-1,3,5,7-tetra-
carboxylic acid, two archetypal molecules that had been studied
for decades by crystal engineers20. The potential of small organic
molecules to give rise to promising molecular photocatalysts13 and
electronics16,21 may also be evaluated a priori by ESF maps.

Going forward, the fast yet accurate generation of ESF maps, as
well as visualization and interpretation of the data, will require
further development of techniques in fields that span computa-
tional chemistry, machine learning, and algorithms. First, the
computational expense involved with CSP increases dramatically
with the size and complexity of the molecule. For example, large,
flexible molecules require extensive sampling of their coupled
inter- and intra-molecular phase spaces in the search of stable
crystal structures13,22,23. Second, materials properties that derive

from the crystal structure’s electronic structure (e.g., band gap) or
that require a long system equilibration (e.g., gas selectivity) can
be very expensive to evaluate for large numbers of predicted
structures, which is commonplace for the CSP landscapes of
organic molecules. Third, it is challenging to explore the high-
dimensional energetic, structural, and functional landscapes
defined by an ESF map—in this respect, they differ from two-
dimensional geographical maps.

Until now, ESF maps have usually been represented by pro-
jecting onto their corresponding CSP landscapes; that is, onto a
plot of the crystal lattice energy as a function of the crystal
density. This has proved powerful in highlighting functionally
interesting structures that are also energetically favourable; for
example, when there are pronounced local minima that are well
separated from the bulk of the CSP landscape, sometimes referred
to as “spikes”3. However, minima, or spikes, in the original high-
dimensional ESF space could also be hidden in a simple one-
dimensional representation, such as landscapes plotted against
the crystal density or the pore surface area. One solution is to
generate multiple ESF maps by ‘cutting’ through the ESF space
along individual dimensions. Alternatively, more sophisticated
structural representations—such as smooth overlap of atomic
positions (SOAP) representations of atomic environments24,25

and persistent homology barcodes of pore structures26—have
been combined with machine learning techniques to learn two-
dimensional representations of ESF maps.

Here, we explored the in silico computational design of a series
of molecular tectons that comprise either a triptycene or a spiro-
biphenyl core, functionalized with various different hydrogen-
bonding moieties. Hydrogen bonding and π–π stacking were
quantitatively analyzed for all the structures on the ESF maps to
reveal how the maps evolve based on the different balance of
intermolecular interactions in the various tectons. We show that
the number of hydrogen bonding sites, as well as their position,
has a profound influence on the resulting ESF maps. By applying
unsupervised learning to pore descriptors, as well as SOAP
representations, two-dimensional embeddings of the high-
dimensional ESF data could be learned, which are human inter-
pretable. ESF maps represented in this way enable the navigation
of the complex ESF space within a unified framework, rather than
using more traditional heuristics.

Results
CSP landscapes. We studied a series of awkwardly shaped
molecules with different hydrogen-bonding functionalities (Fig. 1,
Supplementary Fig. 2). Following our previous study3,27, we chose
triptycene and spiro-biphenyl cores with the aim of frustrating
close packing of the molecules in the solid state. To influence
crystal packing, the molecular cores were functionalized by dif-
ferent hydrogen-bonding moieties. Benzimidazolones T2 and S2
are included here for comparison; T2 was shown previously to
afford stable, porous crystals. We also studied five six-membered-
ring-based hydrogen-bonding moieties: 4-pyridone, 2-pyridone,
2,6(1H,3H)-pyridinedione, 2,4(1H,3H)-pyrimidinedione and 1,4
(2H,3H)-pyrazinedione. In combination with the triptycene core,
five new molecules were generated: quinolones TH1 and TH2;
isoquinolinedione TH3; quinazolinediones TH4 and TH5
(Fig. 1). For the spiro-biphenyl core, only two molecules were
considered: quinolone SH1 and quinazolinediones SH2 (Sup-
plementary Fig. 2). These seven molecules bear different numbers
and ratios of hydrogen-bond donors and acceptors, offering a
potentially diverse array of options for intermolecular hydrogen
bonding and crystal packing.

TH5 has been synthesized before28, while TH1–TH4, SH1 and
SH2 are, in theory, accessible experimentally via known organic
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reactions (Supplementary Figs. 16–21). However, we envisage
that some syntheses might be elaborate and challenging—for
example, in terms of isolating specific isomers—and also because
these rigid aromatic molecules often have poor solubility. As
such, computational pre-screening prior to experiments has
significant value. Molecules TH1–TH5, SH1–SH2 may undergo
keto–lactam to enol–lactim tautomerization via intra- or inter-
molecular proton transfer. In solution, the lactam–lactim
equilibrium is dependent on the solvent polarity, which is shifted
to lactam in polar solvents29. In the solid state, the lactam form is
often found to dominate;30 specifically, the molecular arms of
TH1–TH5 have been reported in their corresponding lactam
form in the Cambridge Structural Database (deposition numbers:
643895, 787295, 1178376, 702449 and 1178443). We did not
attempt any organic synthesis in this study, but we offer these
systems and the associated predictions as experimental targets for
the future.

Computational methods for CSP involve a global exploration of
the multidimensional lattice energy surface for stable energy
minima, followed by an assessment of the relative stabilities of the
resulting structures. Here, unbiased searches of the lattice energy
surface31 were used to determine the stable crystalline arrange-
ments that are available to each of the molecules (Fig. 1,
Supplementary Fig. 3). Organic molecules tend to pack densely

to maximize their intermolecular interactions, reducing the
energetic cost of void space in a solid. As such, generating
porosity in molecular crystals remains a challenging task for
crystal engineering. Having a rigid and contorted molecular shape
may not always be sufficient to prevent dense packing. Indeed,
most low-energy structures of triptycene are non-porous and the
lower edge of the energy–density distribution decreases nearly
monotonically, as is typical for most organic molecules3. The
‘leading edge’ of a CSP landscape comprises structures with the
lowest energy at a given density, and stable porous structures have
previously been realized experimentally in this region3.

The CSP landscape for T2 is markedly different to that of
triptycene, with multiple low-density structures predicted to be
substantially lower in energy than the bulk of the landscape, forming
the so-called ‘spikes’ (Fig. 1f). The emergence of spikes from the bulk
of a CSP landscape indicates that the molecule may form unusually
stable crystalline structures for their respective densities, and the
shape of the energy–density distribution suggests a large energetic
barrier separating these structures from higher-density regions of the
landscape. For T2, the minimum-energy structures within the two
spikes at densities of about 0.4 g cm−3 and 0.8 g cm−3—T2-γ and
T2-β, respectively—can be accessed experimentally by solvent
stabilization, even though they are about 50 kJmol−1 above the
global energy minimum3. Despite using a smaller selection of space

TH2 

TH3 TH4 

TH5 T2 

TH1 

Density (g/cm3) Density (g/cm3) 
 a  b 

 c  d 

e  f  

Fig. 1 Energy–structure–function maps. a–f Crystal structure prediction energy–density plots for the molecular building blocks shown in the figure: TH1

(a), TH2 (b), TH3 (c), TH4 (d), TH5 (e) and T2 (f). Each point corresponds to a computed crystal structure. The symbols are colour coded by the

dimensionality of the pore channels, assessed using a probe radius of 1.7 Å; see Supplementary Fig. 1 for alternative plots with shuffled plotting orders for

the points. Molecules TH1–4 each have two isomers arising from the arrangement of the hydrogen-bonding moieties on the triptycene core; only the

higher-symmetry isomers were considered here. Arrows indicate the spikes that are referred to in the text.
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groups for CSP here than previously (we used 23 out of the 89 space
groups used in ref. 4 see “Methods” section), the partial
energy–density landscape of T2 shown in Fig. 1f captures the same
key features as the landscape sampled more exhaustively, including
the major ‘spikes’ and the four experimental polymorphs (T2-σ, T2-
β, T2-γ, and T2-δ). We therefore carried out CSP in these 23 space
groups for all the other molecules in order to reduce
computational costs.

The leading edge of the energy–density landscape of TH1
decreases nearly monotonically, with no structures having a
density below 0.5 g cm−3 located within 100 kJ mol−1 above the
global energy minimum (Fig. 1a). TH2 is a positional isomer of
TH1: this arrangement of hydrogen-bonding sites broadens the
density distribution of the predicted structure landscape to lower
densities and a spike appears at around 0.65 g cm−3 (Fig. 1b). The
isoquinolinedione, TH3, has one extra carbonyl group per arm
compared to TH1 and TH2, and a methylene unit in the 6-
membered ring. The addition of three additional hydrogen-bond
accepting groups in TH3 with respect to TH2 does not seem to
promote low-density, stable structures (Fig. 1c). By contrast, the
energy–density distribution for TH4 (Fig. 1d) is reminiscent of
that for T2 (Fig. 1f) and shows multiple low-energy spikes. Three
spikes are apparent at densities of about 0.5 g cm−3, 0.7 g cm−3,
and 1.1 g cm−3, which are 63.9 kJ mol−1, 30.0 kJ mol−1, and
13.6 kJ mol−1 above the global energy minimum, respectively. By
analogy with T2, these structures fall in an energy range that we
would expect might be accessible via solvent stabilization. T2 does
not have any predicted structures with one-dimensional (1D)
channels (red points in Fig. 1) within 30 kJ mol−1 above the
global minimum (Fig. 1f; see also Fig. 2c in ref. 4). By contrast, the
plot for TH4 shows a significant number of structures with 1D
pore channels in the density range 1.25–1.35 g cm−3; the
minimum-energy structure among these is just 5.1 kJ mol−1

above the global minimum. The spikes on the landscape of
TH4 can also be recognized at similar density regions on the
landscape of TH2, although they are less pronounced. Among the
four triptycene-based molecules, the positioning of the hydrogen-
bonding groups (TH2 vs. TH1) appears to play a more significant
role in promoting porosity than their number (TH2 vs. TH3).

TH5 is a positional isomer of TH4 and has a higher point
symmetry of D3h (c.f., C3v for TH4). Two pronounced spikes
emerge from the landscape at densities of about 0.35 and 0.7 g cm−3

(Fig. 1e), with the minimum-energy structure in the lowest density
spike being only 46.0 kJ mol−1 above the global energy minimum.
This energy gap is comparable to that (47.6 kJ mol−1) for the
lowest-density experimental polymorph of T2, T2-γ (minimum-
energy structure in the spike at 0.5 g cm−3), indicating the
possibility of realizing this low-density structure of TH5. In
contrast to TH2, TH4 and T2, where the spikes mainly contain
structures with 1D pore channels, structures in the spikes for TH5
show higher (2D or 3D) pore connectivity (Fig. 1e).

The energy–density landscapes for SH1 and SH2 (Supplemen-
tary Fig. 3) show far fewer predicted structures within 100 kJmol−1

of the global energy minimum than their triptycene counterparts
bearing the same hydrogen-bonding motifs (TH2 and TH4,
respectively). Likewise, S2, having the same hydrogen-bonding
moieties as T2, does not show unusually stable low-density
structures. This suggests that spiro-linked tetrahedral geometries
are less effective at generating porosity.

Hydrogen bonds stabilize porous structures. Analysis of the
intermolecular hydrogen bonding in the leading-edge T2 struc-
tures revealed that structures within the spikes feature hydrogen
bonded networks with 2D rings propagating along a third
direction to form one-dimensional pore channels3. Here, we set

out to perform quantitative analyses of the hydrogen bonding in
the predicted structures of all the molecules studied here (Fig. 2a,
c, e and Supplementary Fig. 4). A hydrogen bond is defined here
for an interacting system of three atoms N–H•••O—where, the
hydrogen atom (H) is covalently bonded to the nitrogen atom (N)
and is interacting with the oxygen atom (O)—when the distance
between H and O is shorter than the sum of their van der Waals
radii minus 0.1Å and the angle formed by N–H•••O, centred on
H, is larger than 100°3.
Figure 2a, c, e shows the CSP landscapes of T2, TH4 and TH5,

colour coded by the number of hydrogen bonds each molecule
forms in the corresponding crystal structure; this number is
(by definition) the same for all the molecules in a given crystal
structure because only crystal structures with one symmetrically
unique molecule were considered in these CSP calculations (Z′=

1). The analogous results for the other molecules studied are
shown in Supplementary Fig. 4. The number of hydrogen bonds
for a molecule accounts for both cases when carbonyl groups act
as a hydrogen-bond acceptor and when N–H groups act as a
hydrogen-bond donor. For example, the maximum value of the
number of hydrogen bonds for a single T2 molecule is 12: that is,
the six N–H groups can each participate in one hydrogen bond,
while the three O atoms can each participate in two hydrogen
bonds. In a similar way, we also quantified the extent of
intermolecular stacking in each predicted crystal structure
(Fig. 2b, d, f and Supplementary Fig. 5) by counting the π–π

stacking modes formed between the arms of the various
molecules. Here, we only consider co-facial and parallel-
displaced stacking conformations but not T-shaped ones.

Across the whole series of molecules, intermolecular hydrogen-
bonding and intermolecular stacking (see “Methods” section for
the specific definitions used in this study) are found to be mostly
competing or orthogonal forces in driving the solid-state packing
of these molecules (Fig. 2 and Supplementary Figs. 4, 5): i.e., most
structures—particularly in the bulk of the CSP landscape—do not
simultaneously show a large number of hydrogen bonds and a
large number of π–stacked molecular arms. This results from the
positioning of the hydrogen-bonding motifs in the molecule,
together with the contorted molecular core. However, this simple
picture is more mixed for structures that are close to the leading
edge of the landscape or within the spikes. For T2 and TH5, such
structures are primarily stabilized by extensive hydrogen bonding
(Fig. 2a, e), except for some T2 structures in the medium density
range (around 0.8 g cm−3) that show enhanced but still moderate
stacking between the molecular arms (Fig. 2b). By contrast, the
leading-edge structures of TH4 benefit from both strong
hydrogen bonding and moderate-to-strong molecular stacking
(Fig. 2c, d), except for the lowest-density spike (<0.4 g cm−3)
where structures only exhibit strong hydrogen bonding. For all
the molecules, densely packed structures in the bulk of the
landscape are characterized by increased levels of intermolecular
stacking and decreased levels of intermolecular hydrogen
bonding. The conclusions for the spiro-linked SH1, SH2 and
S2 molecules are broadly the same as for their triptycene
analogues (Supplementary Figs. 4 and 5).

ESF data mapped onto individual structural descriptors. ESF
maps combine CSP, which determines the stable crystalline
arrangements available to a molecule, with predictions of mate-
rials properties of interest, using the molecular structure as the
only input (see “Methods” section for details). Conventionally—
and intuitively—ESF maps are projected on their corresponding
CSP energy–density landscapes, with each point on the ‘map’
representing a predicted crystal structure with its colour coded to
one of its physical or functional properties; for example, the pore
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topologies are colour coded in Fig. 1. This is not the only possible
representation: more generally, an ESF map can be projected onto
many different structural parameters. Figure 3 shows ESF maps
projected onto three different structural descriptors: crystal den-
sity, largest free sphere diameter, and accessible surface area.

For TH4, spikes emerge from the bulk of the landscape on all
three ESF maps, as shown in Fig. 3a–c. Low-energy structures
within these spikes show complete or almost complete saturation
of the hydrogen-bonding sites of the TH4 molecule, showing that
extensive intermolecular hydrogen bonding serves to facilitate
stable porous structures. The minimum-energy structure of each
pronounced spike in the energy–density landscape is shown in
Fig. 3d; these structures are also found on the leading edge of the
landscape when plotted against the largest free sphere diameter
(Fig. 3b) or the accessible surface area (Fig. 3c). These landmark
structures (Fig. 3d; A–F) all exhibit extended hydrogen-bonded
chains along the pore channels. In TH4-A, molecules pack ‘head-
to-head’ to form two-dimensional layers, using the hydrogen-
bonding sites at the tip of each arm (Supplementary Fig. 6a); these
layers stack along the third direction, forming linear hydrogen
bonds between the edges of the molecules. Similar hydrogen-
bonding patterns also appear in the other landmark structures
(Fig. 3d), with stacking between the molecular arms becoming
more extensive as the structure gets denser (Supplementary Fig. 6).

TH5 is predicted to yield landmark structures A, B, C1 and D2
(Supplementary Fig. 8) that are isostructural with TH2/4-A to D,
respectively, in terms of the 1D channel shapes. In contrast with
TH2/4-A having 1D pore channels, the 1D channels in TH5-A
are interconnected through apertures in the pore ‘walls’, as a
result of the packing of TH5 molecules along the channel
direction (Fig. 4). Similarly, interconnected 1D channels are
present in other TH5 landmark structures, such as B, C1, C2, D1
and D2 (Supplementary Fig. 9). TH5-A has a predicted density
of just 0.374 g cm−3, with a calculated accessible surface area
of 4447 m2 g−1, assessed by a probe radius of 1.70Å. This
highly porous structure might be accessible in the laboratory
because it is isostructural to T2-γ, which has been isolated3,27,
and it is predicted to have a similar relative stability (46.0 and
47.6 kJ mol−1 above the corresponding global minimum for TH5-
A and T2-γ, respectively). If it can be prepared and it is stable to
desolvation, TH5-A would be one of the lowest density molecular
crystals reported to date. Few (if any) desolvated molecular
crystals have densities lower than 0.4 g cm−3. Two triptycene-
based HOFs, reported by Stoddart and co-workers32,33, showed
ultra-low framework densities of 0.323 or 0.231 g cm−3, but both
of the solved crystal structures were for solvates. One of these
crystals was reported to have a theoretical surface area of
1690 m2 g−1, although the measured Brunauer–Emmett–Teller
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Fig. 2 ESF maps for intermolecular hydrogen bonding and intermolecular stacking. CSP energy–density landscapes, colour coded by the number of

intermolecular hydrogen bonds (HB; a, c and e) or the number of intermolecular stacking modes (π–π; b, d and f; defined as face-to-face stacking between

two molecular arms) formed by one molecule with its neighbours in the crystal structure: T2 (a, b), TH4 (c, d) and TH5 (e, f). Arrows indicate the spikes

that are referred to in the text.
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surface areas were much lower. We therefore suggest that TH5-A
has the potential to the most porous HOF to date, although its
very low predicted density implies that careful desolvation might
be required; for example, by using solvent exchange protocols or
supercritical drying.

TH2 gives similar ESF maps to those of TH4: spikes emerge
from the landscape in the same regions of the structural
descriptor used (Fig. 3e–g). This is because TH2 is predicted to
generate crystal structures TH2-A to F that are isostructural with
TH4-A–F, respectively, in terms of the shapes of the one-
dimensional pore channels (Fig. 3d and Supplementary Fig. 7);
for example, TH2-A and TH4-A both have hexagonal pore
channels. However, in these TH2 landmark structures, molecules
do not pack ‘edge-to-edge’, due to the absence of the hydrogen-
bonding sites on the edges of the molecule. Instead, TH2
molecules tend to form staggered hydrogen-bonded chains along
the pore channels: each molecular arm forms hydrogen bonds
with two other arms from two different molecules (Supplemen-
tary Fig. 7). This ‘head-to-tail’ hydrogen-bonding motif34,
labelled “type 2” in Supplementary Fig. 7g, h, helps the molecular
assembly to extend by repeating the bonding motif. TH2-A–F are
mostly found on the leading edge of the landscape plotted against
one of the structural descriptors (Fig. 3e–g); TH2-C is higher in
lattice energy than the corresponding region of the leading edge,
for all three ESF maps. In line with the above discussion for TH4,
TH2 structures on the leading edge and within the spikes—
particularly low-density, large-pore, or large-surface-area ones—
exhibit rich intermolecular hydrogen bonding. All six hydrogen-
bonding sites on each TH2 molecule are used in TH2-A, D, while
four hydrogen-bonding sites are used in TH2-B, C, E, F.

Decomposition of the lattice energy into its physical contribu-
tions (Supplementary Fig. 10) corroborates the picture built by
simple counting of the intermolecular hydrogen bonds and π–π

stacking modes. All landmark structures are characterized by
strong, stabilizing electrostatic interactions, with the TH4
structures consistently more stable than their TH2 counterparts
thanks to its larger number of hydrogen-bonding sites than TH2.
Structures A, B and D bear (nearly) linear hydrogen bonds and
hence are stabilized by strongly directional electrostatic interac-
tions, while structures E and F show enhanced dispersion
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Fig. 3 ESF maps for individual structural descriptors. ESF maps for TH4 (a–c) and TH2 (e–g), plotted against the crystal density (a, e), the largest free

sphere diameter (Df; b, f) or the accessible surface area (c, g); symbols are colour coded by the number of hydrogen bonds formed by each molecule in the

crystal structure. Selected TH4 ‘landmark’ structures A–F are displayed in (d) and labelled in (a–c), with their TH2 analogues labelled in (e–g).

connected channels

unconnected channels

a

b

Fig. 4 ESF maps predict a highly porous solid for TH5. Solvent accessible

surfaces (left) of TH5-A (a) and T2-γ (b). TH5-A shows a three-

dimensionally interconnected pore space within the structure. Unlike

for T2-γ, the 1D hexagonal pore channels in TH5-A are predicted to be

connected by apertures in the pore walls that are orthogonal to the

direction of the channels; one such aperture is indicated by the black

circle on the right-hand-side figure. Predicted surface area for TH5-A=

4447 m2 g−1 (cf., 3199 m2 g−1 predicted for T2-γ).
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interactions resulting from increased stacking between the
molecular arms. The landmark structures of TH2 and TH4 are
reminiscent of the experimental polymorphs of T2: structures
TH2/4-A, C, D and E have isostructural pore channels with T2-γ,
α, β and δ, respectively. Therefore, it is conceivable that these
landmark structures—particularly for TH4, whose landmark
structures are all minimum-energy structures within their
corresponding spikes—might be experimentally accessible should
this molecule be synthesized in the future.

To assist with both the analysis in this study and with future
interpretations of ESF maps, we developed an interactive
visualization tool—an ESF Explorer—using TH4 as an example
here (https://www.interactive-esf-maps.app). This tool allows the
user to interrogate the correlations, dependencies and relation-
ships between the various dimensions of the data. In the ESF
Explorer, a variety of ‘descriptors’ can be chosen as the X-axis, the
Y-axis and as colour-coding in the ESF map. The predicted
crystal structures are displayed interactively when points are
selected on the ESF plot. Our interactive visualization tool was
inspired by the pioneering efforts of Moghadam et al. in exploring
high-throughput screening data of MOFs35,36.

Two-dimensional embeddings of the high-dimensional ESF
data. While projecting an ESF map onto individual dimensions is
a useful way of exploring data, it can be laborious when many
structural and functional properties are associated with 1000 s to
10,000 s of structures typically on a single ESF map, even with the
help of our interactive ESF Explorer. It is therefore desirable to
devise a simple and general approach to represent the high-
dimensional data of ESF maps, allowing us to systematically
identify ‘landmark’ structures on the map, be they either ener-
getically favourable or functionally interesting structures. To do
this, we encoded each of the crystal structures on an ESF map by
a number of pore descriptors including pore diameters, surface
areas and some variants of these in order to capture, to some
extent, the heterogeneity of pore/channel sizes within a given map
(see Supplementary Methods). We then used the affinity propa-
gation algorithm37 to cluster all the crystal structures into unique
groups on the porosity space defined by these pore descriptors.
For each group, a landmark structure was identified as the lowest-
energy structure within the group; see Fig. 5d–g for where these
landmarks are located on the corresponding energy–density
landscapes.

We identified landmark structures for TH2, TH4, TH5 and T2
following the same protocol. Since our pore descriptors are
agnostic to the molecular structure, landmark structures can be
compared across the different molecules in a single projection.
For visual comparison, we applied the parametric Uniform
Manifold Approximation and Projection (UMAP)38 technique to
learn a mapping from the high-dimensional porosity space to a
2D representation (Fig. 5a), where each point represents a crystal
structure and the points are spatially arranged such that the closer
the two points are on the plot, the more similar the two structures
are in the porosity space. We further used the k-means
algorithm39 to identify clusters on the 2D UMAP space, which
are superposed on the 2D UMAP plot (inset, Fig. 5a).

All four experimental polymorphs of T2, as well as most of the
structures highlighted above for TH2, TH4 (Fig. 3) and TH5
(Supplementary Fig. 8), were identified as landmarks on the
porosity space; note that TH2-C, F, and TH5-C2, D2 are not
shown in Fig. 5a–c because they are not the representative
structure (in this case, the most stable structure) of their
corresponding cluster. The structures that have isostructural
pore channels—for example, TH2-A, TH4-A, TH5-A and T2-γ
all have hexagonal pore channels—are located in close proximity
on the 2D UMAP representation (Fig. 5a). An interactive explorer

for the 2D UMAP embeddings of the porosity spaces of TH2,
TH4, TH5 and T2 is available in our online visualization app
(https://www.interactive-esf-maps.app), which allows the user to
inspect landmark structures identified by having either the lowest
lattice energy or the largest free sphere within the group.

Overall, the structures become more porous, with a higher pore
dimensionality and/or a larger accessible surface area, when going
from the bottom-right to the top-left (or from k-means group 1 to
group 5; see inset in Fig. 5) of the UMAP-embedded porosity
space (Supplementary Fig. 11). Most landmark structures exhibit
extended hydrogen-bonded networks (Fig. 5b), while some
structures also benefit from a complementary stabilization by
π–π stacking interactions (Fig. 5c). Results for spiro-linked SH1,
SH2 and S2 are shown in Supplementary Fig. 12.

ESF maps are simplified representations of complex, high-
dimensional structure–property landscapes, providing a powerful
visualization of the range of properties and stabilities of the
associated crystal structures. However, ESF maps can be
challenging to interpret, especially as they become more complex.
Analogies with geographical maps break down when the
structure–property relationships are encoded by a high-
dimensional ESF landscape that may have 10,000 s of structures
on a single map. Inspecting ESF maps by eye is laborious and
increasingly intractable as the maps become larger, more
numerous, and higher-dimensional. The 2D embedding approach
shown here makes ESF maps machine readable. To give one use
case: it is often desirable to make comparisons between ESF maps
for different molecules to assess whether two molecules will be
functionally similar or not. This unified embedding approach will
be useful for comparing multiple CSP datasets and identifying
functionally similar structures using the encoding representation.
This might be used, for example, to select the most synthetically
accessible molecule in a set of candidates that is likely to express
the property of interest, such as a specific pore size. This
approach automatically and systematically identifies a small set of
landmark structures (typically, 10s to 100s) from the whole CSP
landscape (typically, 1000s to 10,000s structures). This allow us to
focus more expensive calculations on a smaller set of structures:
for example, to carry out solvent stabilization calculations to
better assess the synthetic accessibility of specific polymorphs.
These calculations are too expensive to perform on entire CSP
datasets and more simplistic filtering methods (e.g., using a lattice
energy cut-off) may miss key landmark structures.

Simple pore descriptors, such as pore diameters and surface
areas, do not have the resolution that is needed to distinguish
structures atomistically. By contrast, a range of numerical
representations, such as SOAP40, allow for measuring the
similarity between atomistic structures and have been widely
used in machine learning tasks41. Here, we used SOAP
descriptors to encode all the crystal structures of TH4 and,
together with a regularized entropy match (REMatch) kernel42, to
quantify the similarity between every pair of structures. The
resulting similarity matrix was then projected onto a 2D space by
a UMAP embedding, as shown in Fig. 6a.

For TH4, the crystal structures are split, broadly speaking, into
two disconnected ‘islands’ in the SOAP space (Fig. 6a). Both
islands contain structures that span the whole density range
(Fig. 6b, c). Tracing structures on each island back to the
energy–density landscape reveals that the smaller of the two
islands (blue dotted square) is overwhelmingly dominated by
structures exhibiting 1D pore channels (Fig. 6b), while the larger
island (red dotted square) has a greater number of structures with
different pore dimensionalities (Fig. 6c). All the landmark
structures, TH4-A to F, are located on the smaller, blue island,
as well as structures belonging to the spikes and most of the
leading-edge structures on the energy–density landscape (Fig. 6b).
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As discussed above, these structures all feature extended
hydrogen-bonded chains along the 1D channels. Higher-density
structures on the blue island show increased π–π stacking. Almost
all structures on the red island are found in the bulk of the
energy–structure landscape, featuring diverse packing patterns,
which is understandable as it covers a much larger area in the
SOAP space than the smaller blue island. For TH5, the 2D
UMAP embedding of the SOAP space (shown in Supplementary
Fig. 15) is not clearly separated into ‘islands’ but, like TH4, the
leading-edge structures are mostly located in one region of the
embedding.

SOAP descriptors, by design, encode atomic neighbour
environments within a cut-off radius, and they are therefore
effective at capturing local chemical information such as
hydrogen bonding and π–π stacking. A larger cut-off radius of
8.0Å (Supplementary Fig. 14) results in a similar picture to that
found with a cut-off radius of 6.0Å (Fig. 6). By contrast, SOAP
descriptors have been shown to not capture long-range order,
such as molecular packing26, so these projections are comple-
mentary to the pore-based descriptor projections shown in Fig. 5.

Discussion
We have computed ESF maps for a series of molecular tectons
that comprise either a triptycene or a spiro-biphenyl core, func-
tionalized with various different hydrogen-bonding moieties,
evaluating their abilities to generate porosity in the solid state.
Through quantitative analyses of the intermolecular hydrogen
bonding and π–π stacking for all the predicted crystal structures,
we showed how the ESF maps evolve arising from the different
balance of intermolecular interactions in the various tectons.
Across the whole series of the molecules studied, intermolecular
hydrogen bonding and intermolecular stacking are found to be
mostly competing forces in driving the solid-state packing of the
molecules. That is, high-porosity, low-density structures are pri-
marily stabilized by extensive hydrogen bonding with minimal
intermolecular stacking, while densely packed structures exhibit
high levels of stacking but decreased levels of hydrogen bonding.
Structures in the intermediate density range are stabilized by a
combination of hydrogen bonding and stacking. This results from
the positioning of the hydrogen-bonding sites, as well as the
number of them, and the contorted molecular core. TH4 and
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TH5 have been identified as promising targets for future
experimental efforts, because they are both predicted to give
multiple (highly) porous crystalline structures that may be
experimentally accessible, for example by solvent stabilization.
TH5 has been synthesized before28, and our results suggest that it
would be interesting to re-evaluate this molecule in terms of
porosity across a range of crystallization solvents20.

Inspecting a large and complex multidimensional ESF map can
be laborious, even with the help of our interactive ESF Explorer
(https://www.interactive-esf-maps.app). Here, we have demon-
strated a simple and general framework for representing the high-
dimensional data of ESF maps and for systematically identifying
‘landmark’ structures on the map. By applying unsupervised
learning to pore descriptors, as well as SOAP representations,
two-dimensional embeddings of the high-dimensional ESF data
could be learned, which are human interpretable. Our approach
of encoding, learning, and representing ESP maps enables an
efficient navigation of the complex ESF space within a unified
framework, allowing us to automatically identify energetically
favourable or functionally interesting structures across different
systems, as well as revealing complex structure–function corre-
lations that are hidden when inspecting individual structural
features. This marks a step toward an automated analysis of high-
throughput computation of ESF maps, which will be beneficial in
facilitating autonomous searches for functional molecular crystals
in the future—for example, to create machine-readable maps to
prioritize automated robotic searches43,44.

Methods
Crystal structure prediction (CSP). Geometries of all the molecules studied were
fully optimized at the B3LYP/6-311G(d,p) level of theory, using the
Gaussian16 software45, followed by frequency calculations to ensure that they are
all true local minima. These molecular geometries were held rigid throughout
crystal structure generation and lattice energy minimization.

Trial crystal structures were generated with one molecule in the asymmetric
unit for the 23 most common space groups: P21/c (34.4%), P�1 (24.8%), C2/c (8.4%),
P212121 (7.1%), P21 (5.1%), Pbca (3.3%), Pna21 (1.4%), Pnma (1.1%), Cc (1.0%), P1
(1.0%), C2 (0.8%), Pbcn (0.8%), Pca21 (0.7%), R�3 (0.7%), P2/c (0.6%), C2/m (0.5%),
P21/m (0.5%), Pc (0.4%), P21212 (0.4%), I41/a (0.4%), Pccn (0.4%), Fdd2 (0.3%),
and P42 (<0.3%); the values in the brackets are relative frequencies of the space
groups reported in the Cambridge Structural Database.

CSP was performed using a quasi-random sampling procedure, as implemented
in the Global Lattice Energy Explorer software31. The generation of crystal
structures involved a low-discrepancy sampling of all structural variables within
each space group: unit cell lengths and angles, and molecular positions and
orientations within the asymmetric unit. Space-group symmetry was then applied,
and a geometric test was performed for overlap between molecules, which was
removed by lattice expansion (the SAT-expand method in ref. 31). Lattice energy
calculations were performed with an anisotropic atom–atom potential using
DMACRYS46. Electrostatic interactions were modelled using an atomic multipole
description of the molecular charge distribution (up to hexadecapole on all atoms)
from the B3LYP/6-311G(d,p)-calculated charge density using a distributed
multipole analysis47. Atom–atom repulsion and dispersion interactions were
modelled using a revised Williams intermolecular potential48, which has been
benchmarked against accurate, experimentally determined lattice energies for a
range of molecular crystals49, and was applied successfully in our earlier CSP
studies of T2 and the related imide T1, reproducing the known crystal structures3.
Charge–charge, charge–dipole and dipole–dipole interactions were calculated using
Ewald summation; all other intermolecular interactions were summed to a 25-Å
cut-off between molecular centres of mass. All accepted trial structures were lattice
energy-minimized, and the search was run until a total of 5000 lattice energy
minimizations had been performed in each space group.

Removal of duplicate structures was performed in two steps. First, all structures
within a lattice energy window of 1.0 kJ mol−1 and within a density window of
±0.05 g cm−3 were compared using powder X-ray diffraction (PXRD) patterns
generated by Platon50 (wavelength: 0.7Å; two-theta range: 20°) using a constrained
dynamic time-warping method to compare pairs of structures. Structures were
considered a match when the Euclidean distance between the PXRD patterns
(normalized by area) was <10. This was followed by using the COMPACK51

algorithm for clustering: 1.0 kJ mol−1 and ±0.05 g cm−3 selection windows; a
distance tolerance of 40% and a maximum value of the RMSD of 0.4Å for 30
molecules.

Pore-geometry analysis. Topological analysis of the pore space within a crystal
structure was performed using the void analysis tool zeo++52. The outputs from
this analysis included the pore dimensionality (0D, 1D, 2D or 3D), pore diameters,
surface areas and pore volumes. A probe radius of 1.70 Å was used in all calcu-
lations. A total of 18 pore descriptors were used to describe the porosity space of
the predicted crystal structures, with full details of their definitions given in Sup-
plementary Methods. These 18 descriptors are simple extensions to four basic pore
descriptors: crystal density, largest pore diameter, total surface area and total pore
volume. First, the total surface area and the total pore volume were decomposed
into accessible and non-accessible contributions. Second, to capture the hetero-
geneity of the pore geometry within a structure, several descriptors were derived
based on the surface areas and pore volumes of individual channels and pockets.
We found that this set of descriptors satisfactorily captured different pore shapes,
such as those having multiple channels with different pore widths or having both
channels and pockets.
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Fig. 6 The ESF data of TH4 mapped onto its SOAP space. a 2D UMAP embedding of the SOAP space of TH4, colour coded by the pore dimensionality.

b, c Energy–density landscapes correspond to the regions marked out in (a), colour coded by the pore dimensionality.
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Hydrogen-bond and π–π stacking analysis. For each predicted crystal structure,
hydrogen bonds were identified with the following limits on geometry: rH···A < [sum
(van der Waals radii53 of H and A)] − 0.1 in Å and ∠D–H···A > 100°, where D and
A are the hydrogen-bond donor and acceptor atoms, respectively. Intermolecular
stacking was quantified as the number of face-to-face π–π stacking between two
molecular arms, which was identified by the distance between the centroids of two
neighbouring aromatic rings being less than 4.4 Å and the dihedral angle between
the two ring planes being less than 35°. The CSD Python Application Programming
Interface, together with in-house scripts, was used to perform these analyses.

Visualization of the porosity space and the SOAP space. The UMAP technique
was used for dimensionality reduction for mapping high-dimensional data to 2D
representations, while preserving both global and local topological structures of the
data in the high-dimensional space as much as possible. That is, the points are
arranged spatially such that the closer the two points are on the 2D plot, the more
similar the two molecules are, as described by the encoding descriptors. For the
porosity spaces (Fig. 5a, Supplementary Figs. 11–13), the pairwise distances between
crystal structures were computed as the Euclidean distances between vectors of the
pore descriptors. For the SOAP spaces (Fig. 6, Supplementary Figs. 14 and 15),
SOAP descriptors were generated for all atoms in the crystal structure, using the
DScribe package54. The regularized entropy match (REMatch)42 kernel was used to
measure global similarity between crystal structures from SOAP-encoded local
atomic environments.

Data availability
All the predicted crystal structures and properties are available at https://doi.org/10.5258/
SOTON/D1602. Data for the ESF maps of TH4, as well as data for the 2D embedded
porosity spaces and SOAP spaces of TH2, TH4, TH5 and T2, can be visualized online at
https://www.interactive-esf-maps.app.

Code availability
Python scripts to create interactive visualization tools, like the ESF Explorer shown in
this study, are available at https://github.com/Yuchees/esf_explorer_templates55.
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