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Abstract: Optical computing is needed to support Tb/s in-

network processing in a way that unifies communication 

and computation using a single data representation that 

supports in-transit network packet processing, security, 

and big data filtering. Support for optical computation 

of this sort requires leveraging the native properties of 

optical wave mixing to enable computation and switch-

ing for programmability. As a consequence, data must be 

encoded digitally as phase (M-PSK), semantics-preserving 

regeneration is the key to high-order computation, and 

data processing at Tb/s rates requires mixing. Experiments 

have demonstrated viable approaches to phase squeezing 

and power restoration. This work led our team to develop 

the first serial, optical Internet hop-count decrement, and 

to design and simulate optical circuits for calculating the 

Internet checksum and multiplexing Internet packets. The 

current exploration focuses on limited-lookback compu-

tational models to reduce the need for permanent storage 

and hybrid nanophotonic circuits that combine phase-

aligned comb sources, non-linear mixing, and switching 

on the same substrate to avoid the macroscopic effects 

that hamper benchtop prototypes.

Keywords: digital optics; non-linear processing; optical 

computing; wave mixing.

1  Introduction

Optical communication is becoming more prevalent 

because it supports higher-bandwidth data transmission 

over longer distances than electronics. Increased band-

width is not always enough, though – often the data needs 

to be computationally processed in-transit. This results in 

the need to support network functions at communication 

rates, preferably in the optical domain as well. In particu-

lar, in-transit computation benefits most from a means to 

compute and communicate using the same optical data 

format.

1.1   Use cases of optical processing

It can be very useful to unify communication and compu-

tation using a single data encoding to efficiently support 

both long-distance transmission and in-transit processing 

[1, 2]. Networks can transfer data opaquely, but increas-

ingly need to support in-network computation involv-

ing data meta-information (headers) or the data itself. 

Common examples include network packet processing, 

bulk network security, and big data filtering (Figure 1).

Networks transfer information using either circuits or 

packets; circuits are more efficient when traffic patterns 

are predictable; however, packets (whether fixed or vari-

able length) are more efficient for unpredictable uses and 

are thus preferred, where possible [3]. Packet processing 

can focus on simple switching, address indexing, and 

label/header rewriting [4, 5], or include more complex 

hop-count update, managing checksums, and colli-

sion resolution [6] – all necessarily occurring inside the 

network where traffic from different sources combines to 

share resources. This processing can include encapsula-

tion (and decapsulation) or direct translation, support-

ing virtual networks, software-defined networking, and 

network address translations (NAT) [7, 8].
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Data transiting a network is vulnerable to tampering 

and copying, and thus is often processed to include integrity 

protection or encryption [7]. Such security is often applied 

between the communicating endpoints, but additional 

layers of security can ensure protection between enterprises 

or when transiting an untrusted area. This additional pro-

tection can only be implemented inside the network, at the 

boundaries between trusted network components. Network 

security also protects the network itself from both control-

plane attacks and data-plane denial-of-service attacks.

Big data filtering involves collecting and exploring 

large amounts of information, some collected in advance 

and others collected on-the-fly. It can be impractical to 

store these data sets for off-line processing; instead, an 

on-line approach can digest large streams, either com-

pletely or as a preprocessing reduction step. In-network 

processing enables on-line filtering or coalescing of these 

streams. Note that filtering need not be perfect; a low 

occurrence of false positives can be tolerated if false nega-

tives can be avoided.

1.2   The need for a new approach

It is currently common to compute using electronics and 

communicate using optics. Electronic switching can be 

fast (< 1.7 ps), integrated easily (4 G transistors per device), 

and support bit- and device-level parallelism (128 bit-wide 

processors, 3500 graphics cores, 384 bit-wide memory). 

However, high-bandwidth electronic signals do not prop-

agate well; signals of 10 Gb/s over > 10 m are necessarily 

optical, as shown in Figure 2 [9].

Optics is more efficient for long-distance, high-band-

width communication. Unamplified signals can propa-

gate tens of kilometers, each symbol representing several 

bits, encoding 100 Gb/s on each of dozens of wavelengths. 

However, it is difficult to integrate the building blocks of 

optical systems, including laser pumps, comb sources 

(coherent multiwavelength sources), passive components 

(e.g. filters, splitters), and non-linear devices (for wave 

mixing) into a single optical circuit and optical switches 

are limited to operating in the ms-ns range.

The electronic and optical approaches conflict when 

considering functions that occur on data in transit. A 

hybrid approach using electronics for computation and 

optics for communication requires optical-electrical-opti-

cal (OEO) conversion, which is complex, expensive, and 

can waste energy. A unified approach would avoid these 

issues, but only if a single encoding were used for both 

communication and computation. High-bandwidth, long-

distance communication is necessarily optical, so the 

encoding must be optical, too.

Merely replacing electronics with optics remains a 

significant challenge. Photons do not interact in ordi-

nary environments; they interact only indirectly through 

matter. These interactions typically require either out-

of-band electronic control (e.g. by inducing a voltage or 

current on the material) or high-power optical signals (e.g. 

for frequency mixing). As a result, we do not assume that 

a shift to optical computing will result in reduced energy 

consumption.

Optical wavelengths are 100 × larger than commer-

cial IC processes in each dimension (1500 nm vs. 14 nm), 

so optics requires 10,000 × more area for an equivalent 

device [10]; this difference grows by another 50 : 1 in each 

dimension considering the 200 fm size of a single atom 

(Figure 3) [11]. As a result, each nanoscale optical device 

occupies the space of up to 25 million transistors.

Figure 2: Bandwidth-distance limits of electronic communication.

Figure 3: Device scale of optics vs. electronics.

Figure 1: Use cases for digital optical computing.
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The overall challenge is that electronics and optics 

have evolved different approaches to improving perfor-

mance. As shown in Table 1, electronics is typically limited 

to 1 b/symbol over comparatively short distances and low 

channel capacity. It achieves high performance using very 

fast switching, extraordinarily high-density integration, 

and large parallelism. Optics more easily supports higher-

channel capacity over much longer distances, but suffers 

in size and slow switching speed, offset only by a slightly 

higher symbol bit density. The table uses values for long-

haul optical communication; distances decrease to 10–

1000  m and wavelengths to 850–1310  nm for short and 

medium haul, but do not greatly impact the consequence.

The table also uses values for existing commercial 

transistors; at the limit of a single atom, feature size 

decreases to 200 fm (0.2 nm). The consequence of these 

differences is the need for optical processing that can 

support multibit encodings without relying on switching 

in the data plane.

1.3   Digital optical processing

A single multibit optical data encoding should suffice 

for both long-distance communication and digital 

computation. Processing needs to leverage the native 

properties of optical wave mixing to support Tb/s data 

rates and thus avoid the limitations of slow optical 

switching. It needs to focus on computation needed to 

support in-transit data processing, including develop-

ing new optics-friendly algorithms that reduce the need 

for arbitrary persistent state, lookup tables, indefinite 

recirculation, and other techniques that have no current 

optical equivalent. We call this approach an “Optical 

Turing Machine” (OTM) [1, 2].

2   Background

Before considering optical computation, it is important 

to understand the context of computation more gener-

ally. Much current work in optical computation is limited 

to very simplistic combinatorial functions or finite-state 

machines, which can severely limit the types of problems 

that can be supported.

This section addresses these issues, as well as the 

limitations of some previous approaches and what makes 

optical processing uniquely challenging. It also addresses 

our focus on bandwidth rather than energy conservation.

2.1   Principles of computation

Computation is a very well understood and precisely 

defined concept in computer science. The most basic 

computational hierarchy is based on the amount of state 

and a program’s ability to access that state (Table 2). All 

variants assume combinatorial logic based on a math-

ematical field, i.e. an algebraic structure composed of 

a set of symbols and a pair of operations that satisfy 

a set of conditions (Figure 4, leftmost machine). Most 

electronic computations use Boolean logic, the smallest 

finite field.

Beyond that field, different levels of computational 

complexity assume more state and more complex state 

access, and support increasing levels of capability. Com-

binatorial logic has no internal state and is limited to 

generating non-feedback mappings, i.e. tables that map 

inputs to outputs with no context from previous lookups. 

A finite-state machine (FSM) includes exactly one state, 

which provides limited context of previous behavior 

and can generate so-called regular grammars, simple 

Table 1: Domain impact on computation and communication.

Electronics Optics

Bits/symbol 1 4–8 +

Bits/path 64–256 + 1

Switching < 1.7 ps > 1 ns

Feature size < 14 nm > 1500 nm

Distance < 1 m 10 km +

Bandwidth < 600 GHz 40 THz +

Table 2: Hierarchy of computational models.

Machine   Functions   Optical computer

Combinatorial logic   Non-feedback maps   Most signal proc.

Finite-state machine   Regular grammars (cannot count)   Hop-count decrement, neural nets

Pushdown automata   Context-free grammars   Backtracking (AI search) 

Linearly bounded TM   Context-sensitive grammars   Bounded feedback functions

TM   Recursive languages (“computable”)  Any feedback function, incl. checksum
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expressions used in some search systems (Figure  4, 

second machine). FSMs cannot count but can perform 

limited arithmetic (e.g. hop-count decrement), and they 

describe the basic neuron, the building block of neural 

networks.

The next more complex level of computing is the 

pushdown automata (PDA), in which memory operates as 

an infinite stack of values in which one can access only 

the topmost value (Figure 4, third machine). PDAs support 

context-free grammars, including conversion from reverse 

Polish notation (RPN) to infix, and are important in artifi-

cial intelligence (AI) backtracking algorithms.

The two most complex levels define what is comput-

able, i.e. the recursively enumerable languages. They are 

both based on the Turing Machine (TM), a generalized 

abstract computer that can (by definition) compute any-

thing that is computable, including checksums, encryp-

tion algorithms, and big data filtering using arbitrary 

context (Figure 4, rightmost machine). Like a PDA, a TM 

has a large number (or infinite) set of values, but a TM can 

access them in any order.

Both TMs and PDAs are defined as having infinite 

storage; however, this is often misunderstood as preclud-

ing their real existence. The amount of memory required 

for a TM or PDA is always finite; otherwise, the machine 

could not stop (or “halt”) – a requirement of computation. 

A linearly bounded TM is a limited form of TM whose state 

is bounded by a linear function of the size of the input, i.e. 

it never needs more than K × N, where K is a (potentially 

large) constant and N is the size of the input.

This hierarchy thus defines what a device can 

compute, even if that device is replicated in parallel (e.g. 

a neural computer composed of a network of neurons or 

a grid of FSMs). Combinatorial logic and FSMs are not 

computationally capable of identifying strings of A/B 

symbols in which the number of A’s matches the number 

of B’s. PDAs and LB-TMs cannot compute cryptographic 

hash functions. This is why we call our project the OTM – 

because in-network processing may need the full power 

of a TM. This also highlights the computational limitation 

of approaches based on computational logic, FSMs, or 

even PDAs.

2.2   The limits of previous approaches

Most previous approaches can be grouped into two 

 categories that we call “Field of Dreams” and the 

“ Aluminum Feather”. The former (from the movie of the 

same name) explores the variety of potential device designs 

and the latter focuses on developing an “optical transistor”.

Field of Dreams explores the design space by building 

new components in the anticipation that they will become 

useful to others in the future (“build it and they will 

come”, again from the movie). Many of these approaches 

directly interfere with computation, component composi-

tion, or communication using a single format.

This includes lenses (which perform Fourier trans-

forms), spatial light modulators, electro-optical and 

mechanical switches, gratings, etc. [12–15]. These 

approaches compared favorably to older technology, 

where even a small number of analog processing of com-

binatorial logic in two dimensions was sufficient to out-

perform 1980s uniprocessor architectures [16]; however, 

they do not compete as well with GPUs with thousands of 

cores. Noise accumulated by cascaded stages or feedback 

prohibits their use for all but the simplest functions [17].

Aluminum Feather refers to the following approach to 

airplane design: birds fly using feathers; thus, building an 

aluminum bird (an airplane) clearly requires aluminum 

feathers. Transistors support electronic computation, 

and this has been used as the primary justification that 

optical computation requires optical transistors [18–21]. 

However, most optical devices are very different from 

their electronic counterparts (Figure 5). Optical switching 

in microelectromechanical systems (MEMS) is very slow (1 

kHz) and electro-optical photonic switches are limited by 

the radio frequency (RF) transmission effects of their high-

voltage driving electronics.

Electro-optical switching at 1 GHz is often compared 

to silicon electronics at 3 GHz; however, such a compari-

son is unfair because EO devices require exotic materi-

als. A more fair comparison would be to germanium and 

other exotic electronic devices, which are much faster 

(600 GHz). Our team’s OTM project thus focuses on wave 

mixing, which processes light via interactions during 

transmission and is capable of 40 THz.

2.3   Optical computation is difficult

Computation is a complex process by which an output 

is generated based on a set of inputs and (usually) state. 

These functions are often cascaded, where the output of 

one function is the input of the next, and which may also 

Figure 4: State and various machines.
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involve feedback (where the output returns to the input). 

State is a kind of delayed feedback of this sort, where it is 

written as output and read as input later.

These factors make computation difficult. Cascad-

ing and feedback both require noise dampening, which 

requires non-linear signal processing. Some of the combi-

natorial functions themselves are non-linear as well. The 

key to both issues is non-linear processing.

Non-linearities come in several forms, either as con-

tinuous or discrete functions. A neuron is modeled as a 

non-linear transfer function and a transistor is a degen-

erate case of a neuron with a highly discretized function. 

Non-linearities can be supported by switches or transfor-

mational processing.

Most electronic computation uses switching, in which 

an input signal is used to control whether the output is 

connected to one of two or more other signal sources. 

These sources are typically the direct-current anode or 

cathode, so the output either sources or sinks electrons 

via the power supply. The input signal stops at the switch; 

the output is controlled by, but not a direct derivation of 

the input (Figure 6, left).

Optics also supports switching, but often far more 

slowly than electronics (15 ps for 22-nm CMOS [22], and 

roughly 10 × faster for germanium devices), typically 

because optical switching often relies on mechanical 

mirrors (1 ms), bulk thermal (1 µs), or electro-optic prop-

erties (1 ns). High-bandwidth optical processing more 

typically relies on transforms in which the input  waveform 

is converted to an output waveform (Figure 6, right), such 

as wave mixing – which are limited by frequency band-

width rather than symbol rates. We call this “transforma-

tional” processing, and it is critical to optical computing [1].

It can be tempting to try to support optical computing 

using complex native optical capabilities, notably Fourier 

transforms and filters. These are linear transforms, and 

thus are insufficient to support computation [15].

It can similarly be tempting to consider optical com-

putation as potentially being more energy efficient than 

electronic computation. Although this may be possible for 

optical switching (which is inherently too slow), current 

wave mixing is inefficient, losing approximately 1  dB of 

power in highly non-linear fibers (HNLFs) and 5  dB in 

periodically poled lithium niobate (PPLN) devices. Mixing 

also requires 0.1–1 W pump signals, which are consumed 

in the mixing process. As a result, it may not be appropri-

ate to assume that mixing-based optical computation is 

power efficient.

2.4   Wave mixing

Non-linear processes can be used to perform computation, 

leveraging Kerr non-linearities to combine optical signals 

well into the THz range. In wave mixing, multiple optical 

signals at different wavelengths interact with each other in 

a non-linear medium, as graphically depicted in Figure 7.

Mixing can occur as either second-order (χ(2)) or 

third-order (χ(3)) non-linear processes. χ(2) processes can 

generate harmonics and compute sums and differences 

by mixing two input waves and a continuous wave (CW) 

pump to yield a third wave, known as three wave mixing. 

χ(3) can perform four-wave mixing (FWM), combining 

three input waves and a pump to yield a fourth wave.

In both types of mixing, phase-aligned optical signals 

are sent through a non-linear medium of the correspond-

ing type. Each such medium has a characteristic zero-dis-

persion wavelength, also known as the center frequency. 

Figure 5: Domain impact on speed.

Figure 6: Switched vs. wave mixed processing. Figure 7: Graphical depiction of wave mixing.
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Depending on the arrangement of the input signals and 

pump relative to this center frequency, a variety of results 

can be obtained. These include generation of conjugates, 

harmonics, and frequency-shifted copies of the input 

signals, phase summation, and phase difference. These 

devices are realized in a variety of ways. Periodically 

poled lithium niobate (LiNbO
3
) is a common χ(2) medium, 

using a series of 5–50 µm layers of LiNbO
3
 with varying 

polarization orientations (also depicted in Figure 7). HNLF 

is a χ(3) medium that can support FWM. PPLN can be dif-

ficult to fabricate as an integrated nanophotonic device 

because its layers can be difficult to orient in the natural 

direction of waveguides. HLNF typically requires tens of 

meters of fiber and is impractical as an integrated device. 

There are a variety of other χ(2) and χ(3) materials that can 

be integrated but are less commonly used in macroscopic 

laboratory systems, such as ours.

3   Requirements

An assessment of the basic requirements for high-band-

width, long-distance communication and those for high-

level computation can together be used to determine a 

viable unified approach. Optical communication is funda-

mentally driven by the need for dense symbol encodings 

(many bits per symbol), to overcome the serial nature of 

most long-distance optical media, as well as by the need 

to accurately regenerate symbols for relaying over global 

distances. Computation is driven by the requirements of 

processing, which include the need to support a field, 

the need to support uniform transforms, and the need to 

support serial algorithms.

3.1   Communication

Optics is necessary and already widely used for high-

bandwidth, long-distance communication. It is efficient 

only if the encoding is dense, supporting many bits per 

symbol, and that it can be efficiently restored at relays, 

the latter because unamplified signals can travel only a 

few tens of kilometers in fiber and amplification typically 

decreases the optical signal-to-noise ratio (OSNR).

3.1.1   Density

Communication over long distances requires symbols with 

a high density, i.e. where each symbol is one of a large set; 

thus, each symbol encodes many bits [9, 23]. Commercial 

modulating electronics typically achieves rates up to 40 G 

symbols/s, and a binary encoding would limit an optical 

channel to 40 Gb/s. Parallel channels (WDM over one 

waveguide or one wavelength over multiple waveguides) 

can be used over short distances, but variation of dis-

persion, loss, and latency between different channels or 

fibers typically limits their use to datacenter scales or low 

data rates (10 Gb/s per channel).

Germanium electronics can modulate optics at higher 

frequencies, up to the serial electronic limit of 600 GHz. 

Unfortunately, use of such signals at the necessary voltage 

ranges (e.g. to drive a Pockels cell) often results in the 

driver circuit becoming a (very inefficient) transmission 

line because the drive signal wavelength approaches the 

length of the interconnect. At 600 GHz, the 1/10 wave-

length rule of thumb indicates that traces longer than 

30  µm become transmission lines. As a result, there are 

only two ways to achieve high density – either natively 

convert parallel electronics into multibit symbols (e.g. 

quadrature phase-shift keying – QPSK) or optically multi-

plex binary-modulated streams. OTM assumes the former 

may be possible, but explores the latter in Section 5.2.3.

3.1.2   Regeneration

Regeneration is needed to support communication over 

large geographic distances. It enables long-distance trans-

mission by recovering symbols before they become ambig-

uous by both increasing the OSNR and restoring power. 

This is already a very active area of current optical pro-

cessing research [24–27].

3.2   Computation

Optics is less natively compatible with computation. 

Computation requires processing to support the function 

operations of a mathematical field. It requires accurate 

composition, to cascade values through a series of these 

function operations. For all but the most basic level of the 

hierarchy, computation requires state to enable feedback 

from the output to the input, which enables context-sensi-

tive processing. Finally, computation is often most useful 

when it is flexible, so that it can be “reprogrammed” or 

reconfigured for a variety of different tasks.

3.2.1   Processing

Computational processing requires functions that support 

the processing operations required for a field [2]. Although 
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simple operations support basic counting, the full power 

of a field is required for error detecting/correcting check-

sums, encryption, and authentication.

In discrete mathematics, a field is a set of symbols 

and two binary operators (i.e. two-input functions). The 

symbol set is closed under both operators, each operator 

has an identity element (a·I = a), and every element of the 

set an inverse under each operator (a·a− 1 = I). Both opera-

tors are commutative (a·b = b·a), and one operator is dis-

tributive over the other [a·(b°c) = (a·b)°(b·c)].

A field defines common arithmetic. It is also the 

foundation of most mechanical and electronic comput-

ing, whether in high-density symbols (e.g. decimal for 

the Eniac) or binary (Boolean logic). Because these are 

all based on the same abstract concept, they all easily 

support the same common arithmetic and logic opera-

tions. Other, more obscure mathematics have been con-

sidered, including residue arithmetic [28] and directed 

logic (which replaces scalars with vectors) [29]; however, 

neither provides a sufficient advantage for optics over that 

of a basic field.

Support for a field requires considering how its 

symbols are represented and how they are processed by 

its binary operations. Information is represented as a set 

of discrete symbols and a value mapping (a value assigned 

to each symbol). Candidate encodings include optical 

phase (e.g. PSK; Figure 8, right) and {phase, amplitude} 

pairs (e.g. QAM; Figure 8, left). Value maps assign specific 

information to each symbol (e.g. numbers in Figure 8).

Binary operations can be performed by switching 

or transformation, and optics can support high symbol 

rates only through the use of wave mixing transforma-

tions. Transformation processing is simpler with continu-

ous, uniform transitions between its states (Hamiltonian 

paths). Such processing strictly requires unambiguous 

Hamiltonian paths; otherwise, on the way between transi-

tions, the transformation device would enter a state with 

multiple outcomes, and the result of the computation 

would be ambiguous.

Different encodings can enable or impede these 

binary operations [30]. Consider the “+ 1” Hamiltonian 

path whose values increase by 1 (shown as the dashed 

paths in Figure 8). The PSK path is continuous, uniform, 

and unambiguous; the transitions are in the same relative 

direction, each transition is the same relative phase shift, 

and the path never crosses itself. The QAM path has dis-

continuities – short jumps (3–4, 7–8, 11–12), and a large 

jump (15–0). None of the transitions can be represented as 

a single transform of either absolute or relative amplitude-

phase pairs. The QAM path also crosses itself in five differ-

ent places. This is why M-PSK encodings can support field 

operations, whereas QAM cannot.

3.2.2   Composition

A field also relies on the ability to chain its operations, 

where the output of one operation is cascaded into others. 

This enables creating complex functions through the com-

position of simpler ones [17]. Composition requires that 

information be regenerated, to avoid the accumulation of 

noise during this cascade.

There are a variety of ways to regenerate symbols, i.e. 

to restore power levels and OSNR, so the information can 

be distinguished from background noise. Some methods 

rely on pilot signals that experience the same noise as the 

data; others remove noise by taking the differential of the 

signal (the difference between symbols). In the latter case, 

relatively stationary noise accumulated through transmis-

sion or processing can be removed because it cancels out 

between adjacent symbols.

3.2.3   State

All computations beyond combinatorial logic require a 

state that persists, even if temporarily [1]. A single state 

is required for an FSM, many states accessed in a limited 

way (the value on the top of a “stack”) for a PDA, or arbi-

trary access to a “tape” of many states for TMs. In all cases 

where the state exists, that state depends on previous 

input data and affects the interpretation of subsequent 

input – i.e. it is effectively a time-delayed recirculation 

of information. Without a persistent state, only combi-

natorial functions can be generated; all feedback would 

be prohibited. This feedback enables recursion, a key 

requirement for general-purpose computation.

There are various forms of storage that can be used 

for optical data. Permanent storage, with arbitrary per-

sistence, requires conversion of the optical signal to 

another form (e.g. electronic) because photons cannot be 

“stopped”. Ephemeral storage, such as fiber loops, can Figure 8: Encoding impact on state transition properties.
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be used instead, as long as the data can be recirculated if 

needed. There is a large body of work in using ephemeral 

storage, beginning with acoustic waves in mercury delay 

lines in early electronic computers and in recent reservoir 

computing [31].

It may be important to also assume a complete recon-

sideration of computation architecture based on these 

capabilities combined with the serial nature of commu-

nication. Current architectures focus on increased paral-

lelism and synchronous, phased operation due to the use 

of switched, highly integrated transistor systems. Digital 

processing of optical communication streams is better 

matched to asynchronous serial processing.

3.2.4   Control/programmability

A computational device can be fixed, supporting only a 

single algorithm, or can be reconfigurable to support the 

entire variety of algorithms available for a given level of 

complexity. For in-transit computation, reconfigurable 

devices are much more useful because the specific for-

warding, data filtering, or cryptographic operation is very 

likely to vary. This reconfiguration can be accomplished 

either by changing the signal path directly (known as 

“rewiring”, even for optical systems) or by using some 

portion of the data (known as a “program”) to control the 

signal path. The latter falls into two general classes: using 

program data that is distinct from the processed data 

(called the “Harvard” architecture) and treating program 

and processed data as co-mingled (called the “von 

Neumann” architecture). It is important to appreciate that 

all three of these variants – rewiring, Harvard, and von 

Neumann – have equivalent capabilities.

Rewiring is easy to achieve in an optical system using 

any type of deflection switch controlled by a configurable 

state [1]. The state need not be represented optically, as 

it applies only to reprogramming. The deflection switch 

need not be fast or lossless (i.e. it can interrupt the signal 

flow), as it can be used only when reconfiguring an entire 

system. This allows the use of a variety of optical switches 

for reconfigurability, including MEMS.

4   Implications of requirements

The communication and computational requirements dis-

cussed in the previous section result in a set of implied 

design requirements. These requirements suggest a 

preferred data-encoding format used to support both 

communication and computation, and a preferred 

approach to supporting the field operations needed 

for computation. They also help indicate require-

ments for regeneration methods and the overall system 

implementation.

4.1   Encoding

Support for in-transit processing of optical communica-

tion requires that a single format be used for both commu-

nication and computation. These data must be encoded 

with a high density and in a digital format to support both 

efficient high-bandwidth communication and complex 

computation using composition and recirculating state.

Candidate multibit encodings modulate phase 

(M-PSK), power (PAM), or both (QAM). Other encod-

ings are limited to binary values (e.g. OOK, polarization) 

or create independent channels rather than codes [e.g. 

polarization, OAM, WDM, code division multiple access 

(CDMA)]. The need for transformational processing favors 

one-dimensional encodings, e.g. M-PSK or PAM, rather 

than those that vary multiple properties, e.g. QAM and 

CDMA.

Of the candidate encodings, only M-PSK supports the 

required Hamiltonian properties (continuous, uniform, 

and unambiguous). M-PSK additionally is desirable 

because its symbols have uniform power. Receiver pro-

cessing of phase encodings requires coherent detec-

tion, which depends on carrier recovery; however, this is 

already mature and efficient.

4.2   Computation

Support for in-transit computation requires processing 

that can support data rates of 1 Tb/s and beyond. For opti-

cally encoded data, only wave mixing supports these rates 

and is already known to support many of the operations 

needed to emulate a field. Additionally, serial algorithms 

are preferable to parallel, because optics can support 

native serial Tb/s symbol rates more easily than it can 

support the complexity of parallelization.

Wave mixing includes a variety of processes avail-

able in non-linear optical materials, including harmonics 

generation, sum frequency generation (SFG), difference 

frequency generation (DFG), and optical parametric ampli-

fication and oscillation. The key feature is that optical 

signals affect how other optical signals are combined; 

thus, the input and output symbols are all encoded in the 

same domain (a requirement of a field). They differ from 
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processes that vary optics based on other input domains, 

e.g. electro-optics (as in Pockels cells), which may be 

useful for device configuration and reprogramming but 

cannot support all-optical computation.

Wave mixing is supported in both χ(2) and χ(3) materi-

als. SFG/DFG is supported in χ(2) materials via three-wave 

mixing, whereas χ(3) materials are required for FWM. For 

Tb/s computation, χ(2) materials currently appear to be 

sufficient to support the optical processes needed for field 

operations.

Optical wave mixing is inherently serial, support-

ing the data rates needed in a single, linear sequence 

of symbols over a single wavelength. By contrast, most 

electronic computation relies on a significant parallel-

ism – 64b is common for primary processors, with 256b 

and above used in graphics and network processors 

[1]. In electronics, parallelism is used to overcome the 

limited symbol rate of individual components – e.g. typi-

cally 3–6 Gb/s.

The use of parallelism to overcome limited electronic 

symbol rates comes with a significant cost. Some func-

tions that are the most complex when parallel become 

nearly trivial when serialized; addition has O(NlogN) ele-

ments and O(logN) delays for N-bit summands (Figure 9, 

left), because each bit of the output is computed based on 

whether the bits to its right of both the summands would 

generate a carry (known as “carry look-ahead”). The same 

operation in serial optics requires only one element, using 

delay and feedback instead (Figure 9, right), because 

the carry is propagated through the summation as each 

output bit is computed.

Many functions important for in-network processing 

support efficient serial implementations, including statis-

tics (sums, averages, standard deviations), pattern match-

ing (correlators), error processing (checksums, CRCs), and 

cryptographic processing (authentication, integrity pro-

tection, encryption). In some cases, there are simple serial 

equivalents of conventional algorithms (e.g. hop-count 

decrement), and in other cases there may be algorithms 

that compute different values with similar properties, 

such as alternate checksum algorithms. Cryptography 

is notable among the latter because many current algo-

rithms are designed for parallel architectures and rely on 

indexing (lookup) functions, both of which are difficult in 

optics. Alternate algorithms exist that avoid these issues 

and may be better suited to use with optical signals.

There are many issues in developing a serial, optics-

friendly algorithm. In some cases, there are known equiv-

alent serial circuits or algorithms for parallel methods 

– in some cases, the serial variant comes first, such as for 

addition and multiplication. In other cases, there are no 

dependencies between adjacent bits, so serialization is 

trivial – as for bitwise logical operations (AND, OR, etc.). 

In an abstract sense, a programmer or circuit designer 

needs to consider the dependencies between the bit posi-

tions of the input and output bit fields and the operations 

that combine them as a graph, and seek a Hamiltonian 

path through that graph. This remains somewhat of an art.

Additionally, an optics-friendly serial algorithm 

needs to minimize the amount of state recirculation, to 

reduce the amount of regeneration needed. In some cases, 

this can be accomplished through redesigning the circuit 

to compute the same results. More often, such feedback 

reduction may require using a different algorithm, e.g. 

one that computes a different but similarly useful result. A 

good example is encryption, in which the typical method 

of cypher-block chaining uses part of the result of encrypt-

ing one block of data to initialize the encryption for the 

next block. This chaining accumulates data through 

signal feedback that can degrade and require regenera-

tion. An alternate approach is known as “counter mode”, 

which uses a simple counting index as the seed instead, 

avoiding the continued use of recirculated data.

4.3   Regeneration

The ability to cascade computation, to include state as 

context, and to transmit information over very long dis-

tances require that symbols be regenerated. Regeneration 

includes removing noise that increases symbol ambiguity 

and increasing power to improve detection, and is some-

times referred to as “redigitization”.

For M-PSK symbols, power should be constant across 

all symbol values and is thus relatively simple to restore 

using simple saturation amplification. The challenge is 

that amplification increases phase noise and phase noise 

reduction often decreases power. A solution is needed that 

can increase both power and OSNR simultaneously.

It is important that signal regeneration retain symbol 

representation and meaning. There are efficient methods 

that reduce noise by converting from one symbol format 

to another or from one symbol semantics to another. For 

example, if noise is relatively stationary, it can be possible Figure 9: Parallel vs. serial 4-bit addition.
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to cancel noise by taking the signal difference [27]. A QPSK 

stream enters as A, B, C, D values and is output as the 

sequence (A–B), (B–C), (C–D), etc. Noise is cancelled out 

and the output may retain QPSK encoding; however, the 

symbol semantics have changed. Such changes interfere 

with computation because advanced levels of complexity 

rely on recirculation of symbols as state (Figure 4) [32].

It is also important that signal regeneration supports 

a format that is compatible with high-bandwidth trans-

mission and computation. Efficient regeneration exists 

for OOK, which may support computation; however, this 

binary encoding is inefficient for transmission [33]. Effi-

cient regeneration also exists for differential PSK, where 

the symbol sequence represents the difference between 

phases of successive information values [34]; however, 

that format does not support computation on individual 

optical symbols.

It is also important that regeneration relies only on 

the data that has experienced computation or commu-

nication. Some methods rely on the data symbols being 

accompanied by a pilot tone or reference symbols, either 

on a different frequency or interleaved with the data 

symbol sequence. These supplemental signals will not 

experience the same computational path as the data 

should, so they will not accumulate correlated properties 

(noise, power degradation, etc.). As a consequence, they 

need to be avoided because they, too, do not preserve the 

semantics of the computationally processed data stream.

4.4   Implementation

The requirements, thus far, strongly suggest that M-PSK 

symbols are preferred and should be processed using 

wave mixing. The resulting computational system is 

highly sensitive to phase noise and variation. Bench-

top experiments are notoriously difficult to phase stabi-

lize; they often create interferometers as a side effect of 

selective signal processing, which become very sensitive 

instruments that unintentionally measure the laboratory 

environment. Mixing can require phase-aligned sources 

that are similarly difficult to stabilize in a macroscopic 

configuration.

As a result, it is critical to developing optical com-

putation for in-transit processing using integrated nan-

ophotonic components on a common substrate. This 

requires combining non-linear χ(2) elements, linear ele-

ments (filters), and optical vias on a single chip. It also 

requires including phase-aligned sources, e.g. frequency 

combs, with relatively high power (1 W) on the same 

substrate.

5   Experiment results

The following is a summary of experiments to support 

computation and regeneration on M-PSK symbols. Com-

putation is needed to support the two binary operations of 

a field, and regeneration is needed to support composing 

these operations, using state for high-level computational 

complexity and communication.

For computation, methods are shown to support key 

field operations. Serial algorithms compatible with optical 

processing are also shown. The key remaining challenge, 

besides implementation complexity (requiring hybrid 

integration), is the computational need for regeneration, 

notably to support carry generation.

Regeneration of M-PSK symbols requires phase 

squeezing, often via phase-sensitive amplification (PSA), 

to restore the digital nature of the stream. It requires 

amplification to restore power levels. Finally, because 

of some of the limitations of phase squeezing to support 

higher-density encodings, it may be important to support 

optical aggregation and deaggregation of lower-density 

symbols that can be more efficiently regenerated.

5.1   Computation results

Our team has explored the potential for optical computa-

tion by developing increasingly complex algorithms with 

various encodings. A circuit was developed to decrement 

an OOK-encoded hop-count field, one of the simplest 

operations performed in a packet switch. A correspond-

ing M-PSK variant was designed, as was a more complex 

packet checksum calculator. The checksum relies on 

components that support modular arithmetic and carry 

generation. In addition, the team explored the potential 

to support recirculating state, as is needed for most high 

levels of computational complexity. Note that in all cases, 

we assume that packet boundaries are indicated, e.g. 

using an out-of-band signal or by correlation detection 

of a preamble pattern, as in our previous work on packet 

header pattern matching [35].

5.1.1   Hop-count decrement and checksums

The simplest network function is hop-count processing. 

Packets contain a hop count (a.k.a. “time to live”) field 

to ensure that forwarding loops and misdirected traffic 

does not overload the network [36]. Each packet is given 

an initial count (e.g. 255), which is decremented at each 

hop visited. When the count reaches zero, the packet is 
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silently discarded. This avoids the need for a coordinated 

mechanism to flush out stale packets.

Hop-count processing is currently implemented using 

either a general-purpose CPU or complex, dedicated bit-

parallel arithmetic hardware. Subtraction is typically 

implemented as addition of “− 1”, a complex operation cas-

cading “carries” across the bit field in parallel, similar to 

the approach shown for parallel addition in Figure 9 (left).

A simpler approach is possible when processing 

the data serially, using only three active components 

(Figure  10). Subtraction of an unsigned bit field involves 

inverting the “0” values (starting at the low-order bit) until 

the first “1” value is encountered. That value is inverted, 

and all subsequent inputs are copied (Figure 10, left). The 

entire system can be implemented using only three active 

elements (Figure 10, right) – an inverter, a 2 × 2 switch, and 

a set-reset (S/R) flip-flop (FF). The switch is set to select the 

inverted input until the first “1” bit arrives. That bit sets the 

flip-flop, whose output is delayed by one symbol to change 

the switch just before the next symbol. After the change, 

the input is copied to the output without inversion.

Our team implemented this mechanism for a binary 

OOK encoding, using an electronic S/R FF (Figure 11) [36]. 

All-optical OOK micro-ring S/R FFs have been demon-

strated [37], but were too costly to replicate.

The mechanism has been extended to support 

M-PSK multibit encoding, replacing inversion by a “− 1” 

transformation, and all of the optical components already 

exist for M-PSK encodings. For example, “− 1” trans-

form for 8PSK encoding is a − π/4 phase shift that can be 

accomplished using a fixed difference in signal path, e.g. 

of 187.5  nm for a 1500  nm wavelength signal. The OOK 

micro-ring flip-flop can be extended to support M-PSK 

encoding using phase interference with a reference signal 

as input, and a Mach-Zehnder modulator can serve as an 

optical switch that can be controlled using an independ-

ent M-PSK input (i.e. the flip-flop output).

Internet packet routers support hop-count process-

ing, but also rely on other, more complicated functions. 

One such function is a checksum, a mathematical func-

tion that validates that the contents of a message have 

not been corrupted in transit. There are a wide variety of 

such checksums used in various protocol layers, includ-

ing cyclic redundancy checks (CRCs, as for Ethernet and 

Bluetooth), parity (a 1-bit CRC, as for memory checks), 

and very complex hash functions (e.g. MD5, SHA-1) that 

also detect deliberate tampering. Parity and CRCs are very 

simple operations using position-based symbol feedback 

and serial modular arithmetic (shown as an XOR symbol), 

and are already well suited to all-optical implementa-

tion (Figure 12). The key challenge to their computation 

is maintaining signal integrity through the feedback 

of state, i.e. regeneration. Note that Figure 12 depicts a 

binary implementation using XOR gates; multibit encod-

ing would use optical adders for modular arithmetic [38].

The Internet checksum is of particular interest as it is 

used for IP version 4 packet header error detection and as 

a check on the entire end-to-end message at higher proto-

col layers, e.g. TCP and UDP [6]. This checksum is a 16-bit 

one’s complement sum of the message, i.e. the entire 

message is added as adjacent byte pairs of 16 bits. The 

summation function is one’s complement, which differs 

from the more familiar two’s complement arithmetic by 

looping its high-order (most significant bit) carry-out back Figure 10: Serial ones-complement subtraction.
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around as a low-order (least significant bit) carry-in. This 

feature of one’s complement summation enables a simple 

serial design.

When computed on two’s complement hardware, 

a one’s complement sum is typically computed using a 

larger accumulation register (e.g. 32 bits). As values are 

added into the accumulator (in bit-parallel), the high-

order carry-out bits accumulate in the top half of the reg-

ister. When the computation is complete, the carries are 

“folded over” and added back into the bottom half of the 

register. This operation is simple in typical two’s comple-

ment hardware; however, it is even easier in one’s comple-

ment, where the entire checksum can be computed using 

a single “full adder”, i.e. one device that adds two symbols 

and a carry-in, and generates the sum and a carry-out 

(Figure 13). This serial circuit relies on delay and recircu-

lation to overcome the need for one adder per bit position 

and complex carry-look-ahead, as is needed in the corre-

sponding parallel circuit (Figure 9). Because one’s com-

plement accumulates carries through wrap around, there 

is no need to reset the circuit as bits are summed in series; 

instead, the carries wrap around (from Co to Ci) the same 

way as the partial sum (from S to Yi).

The primary challenge in implementing a CRC or the 

Internet checksum using serial optics is the need to recir-

culate state, which requires regeneration. An additional 

challenge for the Internet checksum is the need for a full 

adder, which is significantly complex in optics.

5.1.2   Modular arithmetic

Support for the mathematical field that is the basis of 

computation typically requires support for modular 

arithmetic, as this is the basis of the operations in the 

most familiar fields. In binary logic, the corresponding 

field is Boolean algebra, which includes addition (OR), 

multiplication (AND), and complementation (NOT). For 

fields with more than two symbols, modular operators are 

needed, whose outputs “wrap around”.

Members of our group previously developed modular 

arithmetic for M-PSK symbols [39], as depicted in 

Figure  14. Three symbols encoded as QPSK were added 

and subtracted in a non-degenerative FWM process in an 

HNLF (Figure 15). Three-input operations are often more 

useful than two-input operations, as they natively support 

the combination of two new values as well as a carry-in 

from either a previous or adjacent stage. A similar mecha-

nism was used to extend this QPSK method to 8PSK and 

16PSK encodings [38].

5.1.3   Extension to a full adder

Although modular arithmetic is useful on its own, e.g. for 

CRC calculations, most computing relies on the ability 

to extend the symbol space of a field using positional 

notation, so that a fixed set of symbols can represent an 

indefinitely large number of values. Support for positional 

notation requires the extension of modular arithmetic to 

carry-based arithmetic. This evolution typically requires 

the design of a half-adder and full-adder, the former 

combining two symbols to generate a sum and carry-out 

symbols and the latter combining three symbols: two 

input symbols and a carry-in symbol. It is a basic exercise 

to extend binary half-adders to create a full adder, using 

two half-adders and an OR to merge the carry-out values 

(Figure 16, left). A less typical design can combine mul-

tivalued (i.e. so-called “multibit”) half-adders to create a 

corresponding full-adder; however, this design requires 

Figure 12: Parity and CRC via simple serial feedback circuits.

Figure 13: Serial, optics-friendly Internet checksum.
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three half-adders (Figure 16, right). The final carry-out (Co) 

of the last half-adder is never active and can be ignored.

Half-adder and full-adder designs rely on both 

modular arithmetic (for the sum) and carry generation. 

Modular addition loses the information needed to indicate 

whether a carry is needed or not, e.g. for 8PSK, 1 + 2 = 3 but 

also 6 + 5 = 3 (Figure 17). In M-PSK modular addition, no 

part of the FWM “remembers” whether the phase simply 

rotates as needed (1 + 3) or “wraps around” (6 + 5).

Our team has proposed a method to determine 

whether a carry is generated or not. The goal is to keep 

track of whether the accumulation of phase would have 

“wrapped” or not. This approach first halves the original 

values, so that instead of adding 1 + 3 or 5 + 6, the values of 

0.5 + 1.5 and 2.5 + 3 are computed (as shown in Figure 18).

The resulting value cannot wrap around because the 

inputs are at most half the maximum symbol value. The 

half-sum ends up either on the bottom or top half of the 

phase diagram (Figure 19, left). The bottom half indicates 

no carry and the top half indicates carry. The key is to then 

squeeze the phase of the half-sum to represent two distinct 

values (Figure 19, middle) and then shift those values to 

represent the appropriate carry symbols (Figure 19, right).

The circuit for accomplishing this method is based on 

shifting the input symbols using a CW pump, summing 

the result using modular addition, and then squeezing 

and transforming the result (Figure 20). It demonstrates 

the way in which carry generation relies on phase squeez-

ing. This circuit has been proposed and analyzed, but it 
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is currently difficult to implement using benchtop equip-

ment due to the number of cascaded components and the 

constraint that signals cannot be regenerated between 

the intermediate stages (as this would defeat the overall 

goal).

5.1.4   Need for recirculating state

Computation beyond simple combinatorial logic 

requires both retaining state and recirculating that 

state back into the combinatorial logic together with the 

input. As noted earlier, various levels of computational 

complexity hold state in different forms (a single value 

for an FSM, a stack for a PDA, or an arbitrary-access 

“tape” for a TM) and for different lengths of time. Even 

some of the simplest functions, including hop-count 

decrement, CRCs, and Internet checksums, all require 

this type of state recirculation.

This state either needs to be continually recirculated 

(as with an FSM) or held in a way that emulates persis-

tent storage, which may itself require recirculation (e.g. 

in a delay loop). Optical signals can be delayed off-chip 

using fiber loops and on-chip using convoluted wave-

guide paths. On-chip delays are limited in length to a few 

centimeters; however, the capacity of that delay increases 

as baud rate increases, e.g. at 1 T baud, each 1 cm of wave-

guide can store 33 symbols.

There are many forms of “limited lookback” computa-

tion that restrict the amount of time a state is held, notably 

linearly bounded TMs that can leverage such limited 

storage. These approaches assume that state is recircu-

lated only a limited number of times or expires after a 

fixed period (whether recirculated or not), which can limit 

the kinds of computation that they can perform.

Regeneration can be coupled with delay-based 

storage to extend its lifetime and/or enable increased 

recirculation. This is critical because most examples 

of computation assume arbitrary recirculation of state 

through the combinatorial logic and/or indefinite storage 

of state. A simple 8-bit binary hop count requires seven 

such cycles; the Internet checksum, over a typical 1500B 

Internet packet, could require as many as 750 such recir-

culation cycles. Optical signals tolerate traversing only 

a very small number of devices before signal integrity 

cannot be recovered, so regeneration is critical to sup-

porting these advanced levels of computation for even 

the most basic operations. Similarly, the limitations of 

on-chip delays require regeneration to recycle state over 

longer periods.

5.2   Regeneration results

Regeneration of optical signals is a very active area of 

investigation, as it is critical to relaying signals over long 

distances through fiber that consumes power and distorts 

symbols. There are two distinct aspects to this regenera-

tion: increasing the resolution of different symbols and 

increasing the difference between a symbol and back-

ground noise. The former is known as symbol restoration 

and the latter amplification. For M-PSK symbols, which 

are the only symbols known to support computation and 

high-bandwidth communication, restoration is known as 

phase squeezing. This section explores recent results in 

phase squeezing and amplifying M-PSK symbols. Some of 

the limits of phase squeezing suggest that it may be neces-

sary to consider aggregating and deaggregating medium-

density encodings (e.g. QPSK to 16PSK).
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5.2.1   Phase squeezing

Signal regeneration begins with restoring the distinct-

ness of the symbol representations. There are a variety of 

methods that have been used to restore M-PSK symbols, 

including differential regeneration and PSA. Note that 

phase restoration focuses on reducing accumulated 

phase noise and does not address other noise sources (e.g. 

amplitude noise).

One of the most effective methods is differential 

regeneration, often referred to as “non-PSA” squeezing, 

in which a symbol stream is processed with a one-sym-

bol delayed copy of itself [40] (Figure 21). This method 

assumes that phase noise is mostly stationary compared 

to the symbol stream, i.e. that adjacent symbols experi-

ence similar noise, irrespective of their symbol values. 

This might occur if a symbol stream is noisily amplified or 

if it experiences phase-insensitive transmission loss.

In non-PSA squeezing, harmonics are generated in a 

non-linear medium (a PPLN or HNLF) using wave mixing 

injected pumps. In two different stages, the signal is 

first copied as a conjugate and then the third harmonics 

are generated. The conjugate and third harmonic of the 

original signal are delayed by one symbol, and combined 

using SFG/DFG processes in a final non-linear device. The 

resulting output is the differential of the input, i.e. it rep-

resents the difference of adjacent symbols. Because the 

phase noise is relatively stationary, it cancels out of this 

difference and OSNR is improved, as shown in Figure 22.

The challenge with using non-PSA squeezing is that 

the output is semantically different from the input. Even 

though both are represented using the same symbols, the 

meaning has changed. Computation requires that each 

symbol be independent, so it can be manipulated without 

needing adjacent context. Differential output lacks this 

property, and cannot support computation. Further, it is 

impossible to recover a non-differential equivalent, e.g. 

by “integrating” the output signal [32]. Doing so requires 

inserting reference symbols in the data stream (to provide 
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Figure 22: Non-PSA phase squeezing results.

the “constant” needed to perform integration); however, 

those reference values would have needed to be kept sepa-

rate from the data and not participate in computation.

A different approach is to amplify signals that are 

close to valid symbol values and attenuate signals that 

are not. This is known as PSA; it does not actually correct 

any phase variation directly, but rather it tries to discard 

the portion of the signal that is slightly phase misaligned 

and to copy or reinforce the portion that is aligned. The 

particular variant explored by our team is non-degenerate 

PSA, which uses a distinct idler to amplify and select the 

desired portion of the signal [27] (Figure 23). Degenerate 
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PSA overlaps the idler with the signal, but is more difficult 

to control.

This system uses pumps to generate harmonics in a 

non-linear medium (an HNLF) and combines those pumps 

and signals in a SFG/DFG process in another non-linear 

medium (a PPLN). There are two complications to this 

approach – the system requires generating the harmonic 

in direct proportion to the number of distinct symbols – 

e.g. QPSK requires the fourth harmonic, 8PSK requires 

the eighth, and the system implementation includes an 

interferometer as a side effect, which is very difficult to 

stabilize.

The harmonic required depends on the number of 

symbols. Our experiments showed a 3.6 dB OSNR gain for 

BPSK using the second harmonic, but only a 0.4 dB OSNR 

gain for QPSK using the fourth harmonic (Figure 24). As 

symbol density increases, the harmonics become more 

difficult to generate and are generated less efficiently, 

rapidly reducing the system impact.

The system design includes an interferometer created 

because of how the signals are processed. The first non-

linear process converts the signal and pump to gener-

ate the needed harmonic. An injection-locked pump is 

added to amplify the harmonic; however, the harmonic 

has a much lower power, so the harmonic needs to be 

separated from the other signals for the injection-locked 

laser to synchronize to the desired signal. This creates an 

 interferometer – one arm where the harmonic is coupled to 

the injection-locked laser and another where other signals 

bypass that laser. This device is very difficult to implement 

macroscopically on an optical bench using fibers, because 

the system is sensitive to vibration and thermal distur-

bances, and the result requires active phase stabilization.

In an attempt to avoid the need for this stabilization, 

our group explored PSA based on Brillouin amplification 

[41] (Figure 25). It replaced the interferometer and injec-

tion-locked laser with a Brillouin amplifier, which has an 

inherently narrow band and is able to selectively amplify 

the harmonic only. This method achieves 11 dB OSNR gain 

at 1E-5 BER for 10 Gb/s BPSK, 9.1  dB OSNR for 20 Gb/s 

BPSK, as shown in Figure 26. Brillouin PSA remains com-

patible with computation because it neither changes the 

signal semantics nor uses reference signals.

5.2.2   Amplification

In addition to differentiating the symbols, it is important 

that each symbol be detectable. Improving the power 

level of the symbol is known as amplification. For M-PSK 

symbols, each symbol should have the same power level, 

so nearly any efficient amplification should suffice and 

will also reduce amplitude noise. However, it is impor-

tant that amplification should not decrease intersymbol 

OSNR, i.e. it should not “spread” the phase of the symbols 

at the same time.

Our team explored using saturation amplification in 

an HNLF [40]. The results show improved signal power 

at the expense of an increase in phase noise. Figure 27 

shows the noisy input signal, where the noisy input (left) 

is phase squeezed (right) using differential noise reduction 

(although already indicated as not viable for computation, 

Figure 23: Non-degenerate PSA phase squeeze system design.
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Figure 24: Non-degenerate PSA phase squeezing results.
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Figure 26: Brillion phase squeezing results.
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the phase squeezing method used in this experiment is not 

critical to the next step), and then saturation amplified 

(right). This type of amplification was able to compensate 

for power lost during the squeezing operation; however, 

it also introduced phase dispersion (the right signal is 

“wider” than the middle). The phase noise introduced by 

amplification was lower than in the noisy input signal, but 

the overall result did not squeeze enough.

Our team also explored using Raman amplification 

in an attempt to increase the signal power without intro-

ducing phase dispersion [42]. The concept is similar to the 

saturation amplifier, replacing the HNLF with a Raman 

amplifier (shown in Figure 28). The result had similar per-

formance, resulting in a 19.3 dB gain for a − 26 dBm input 

signal but had no significant impact on phase noise.

5.2.3   Aggregation and deaggregation

Because phase squeezing requires harmonics linearly pro-

portional to the number of symbols, it may not be feasible 

to assume symbol regeneration for very dense encodings. 

It may be useful to consider long-distance transmission 

using aggregates of less dense encodings, where signals 

are deaggregated for computation. This is similar to the 

OEO/OOO conversion that should generally be avoided, 

but might be necessary and useful if limited to conver-

sions that are feasible in all-optical devices. Note that this 

refers to combining or splitting multiple lower-baud-rate 

streams (on separate waveguides or different wavelengths 

in a single waveguide) into a single higher-baud-rate 

stream on a single wavelength.

Our team explored aggregating and deaggregating 

(multiplexing and demultiplexing) M-PSK signals. The 

aggregation method (Figure 29) uses an apparatus based 

on phase-coherent addition (Figure 30) [43]. Both BPSK 

and QPSK signals were combined to generate QPSK (via 

two BPSKs). The approach depends on the availability of 

phase-locked comb sources.

Deaggregation of an M-PSK was achieved by separat-

ing the I and Q planes of the source signal, resulting in 

BPSK for QPSK inputs and PAM for higher-density inputs 

[44] (Figure 31). This system uses the apparatus shown in 

Figure 32, with results as shown in Figure 33. For computa-

tion, only the QPSK to BPSK conversion would be useful; 

the 8PSK to 4PAM output would require subsequent con-

version from 4PAM to QPSK.

6   Discussion

The viable ways in which digital optical computation can 

support network functions is influenced by deductions 

from basic principles, the results of experiments, and 

past experience. The basic principles dictate the need for 

phase-based encodings and wave mixing as processing, 

as well as the need for state. Experimental results indicate 

that this approach may be possible, but also indicate that 

it can be very challenging to implement. This entire set 

of investigation suggests that the most useful next steps 

toward all-optical in-transit computation will need to 

focus on hybrid integration, efficient regeneration, and 

possibly the need to support aggregation/deaggregation.
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6.1   Deductions

In seeking a way to support in-transit processing of opti-

cally encoded signals, only phase encodings support the 

needed field operations and wave mixing is required to 

process those operations at data rates that can exceed 

electronics. In addition, only digital encodings enable 

both operation composition and feedback to implement 

Figure 29: Aggregation concept.
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state, where state is required to support the more complex 

levels of computation beyond basic combinatorial logic. 

Finally, hybrid integrated devices are important to enable 

stable, efficient implementations.

6.1.1   Phase encodings

Phase-based encoding is the only multibit optical repre-

sentation that supports the operations of a mathematical 

field with transformations that are continuous, uniform, 

and unambiguous. The lack of ambiguity is needed to 

allow operations to have deterministic consequences. 

Having continuous and uniform transforms means that a 

single device can process a single operation, without need 

for conditional (value-dependent) processing.

Phase encoding is attractive for other reasons. It 

allows use of other encoding dimensions (such as polari-

zation) as independent channels, potentially enabling a 

single device to process multiple channels concurrently. It 

also simplifies amplification because all symbols are rep-

resented using the same power. Receivers require phase 

recovery, but this is already mature and efficient.

Binary encodings also support the operations needed 

to implement a field but are very inefficient for commu-

nication. Their use would necessitate the same very high 

level of aggregation and deaggregation that would be 

required for OEO conversion and would render an optical 

computing solution uncompetitive with one using con-

ventional electronics.

6.1.2   Digital encodings

The need for digital encodings is driven by the desire to 

cascade processing functions and to support state feed-

back. Analog systems can cascade functions, but only 

through a limited number of levels due to signal degrada-

tion, which constrains the computational complexity and 

prevents any but the most basic computational model of 

combinatorial logic.

Figure 31: Deaggregation concept.

Figure 32: Deaggregation system design.

Figure 33: Deaggregation results.
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Regeneration is the key to supporting digital encod-

ings and is the largest impediment to developing effec-

tive optical computation. Current methods are complex, 

consume significant power, and have limited impact. 

There are a wide variety of approaches to regeneration, 

but the more efficient and effective methods – such as dif-

ferential processing – fail to preserve the semantics of the 

symbol stream, rendering them useless for computation.

6.1.3   Wave mixing

Although phase encodings and digitization are more obvi-

ously needed, the need to use wave mixing is less so. It is 

driven primarily by the need to support field operations 

on symbols at rates that exceed that of electronics.

Wave mixing has the benefit of being able to support 

transformational processing transparently to the symbol 

coding rate. Some functions (i.e. some field operations) 

are completely transparent, depending only on the fre-

quency over which the symbols are encoded. Others, such 

as regeneration, can depend on the symbol density (i.e. 

the number of distinct phase values used for encoding), 

but remain transparent to the symbol rate.

6.1.4   Need for state

The desire to use digital phase encoding and mixing is 

not uncommon for optical computation, but there is less 

consideration for state. The amount of state and the com-

plexity of its state access patterns determine the computa-

tional capabilities of the resulting processing system.

A combinatorial system can never be used to iden-

tify context-dependent patterns, as are needed for the 

most basic packet forwarding operations or even basic 

data filtering beyond exact match. An FSM cannot 

count or support AI backtracking, so it cannot be used 

for triggers based on threshold levels, compression, or 

encryption. A PDA cannot compute recursive functions, 

as are sometimes needed for hash functions used for 

authentication.

State is the key to supporting these higher levels of 

computation. Many optical signal processing systems are 

only combinatorial, using no state feedback at all. Others 

have a single state, either as direct feedback or encoded in 

the device itself; some systems use a single such device, 

others an array, but all are limited to the capability of an 

FSM. Most in-transit operations require more than just a 

single state, e.g. either PDA or TM capabilities. This is why 

our focus is on seeking a viable approach to an OTM.

The key to supporting state for such a TM is the use of 

optical delays. Implemented in on-chip waveguides, these 

may be limited to tens-hundreds of symbols, recirculated 

with phase restoration. That should be sufficient for many 

of the kinds of algorithms that are useful for in-transit pro-

cessing. Additional storage may be possible off-chip, e.g. 

using board-level fiber “spools”. The amount of recircula-

tion is limited by the efficiency of symbol restoration and 

access to state needs to be coordinated with the symbol’s 

position in the delay line. The latter may require splitters 

and configurable delays to align stored state with incom-

ing data. These issues are under active investigation by 

our team.

6.1.5   Need for hybrid integration

The desire to encode data using phase and to use wave 

mixing drives the need for hybrid nanophotonic inte-

gration. Benchtop systems are too difficult to stabilize 

because the optical paths often create multiple overlap-

ping interferometers. Although a single interferometer 

can be stabilized, multiple overlapping interferometers 

cannot.

This extreme phase sensitivity can be avoided through 

nanoscale integration. Distances between components 

can be engineered as needed, often within < 1% of a wave-

length (e.g. 14-nm fabrication resolution used to imple-

ment 1400-nm-wide devices).

Passive optics can be easily fabricated on a silicon 

substrate, including filters, couplers/splitters, and vias. 

Silicon can also be used to implement detectors and some 

forms of wave mixing. Full processing requires pumps 

(to support mixing), generation, and modulation, all 

of which require other substrates. Integration supports 

stability and efficiency only when all these devices are 

implemented on a single underlying substrate, to enable 

environment control (temperature, vibration) and to avoid 

the coupling loss of chip-to-chip interfaces.

6.1.6   Some additional caveats

This discussion began with an assumption that optical 

computation should focus on in-transit operations 

because that might be where it would be most useful. The 

corollary is that optical computation is likely not useful as 

an end system alternative to electronics.

Optical processing already requires the use of exotic 

materials to do anything beyond limited passive process-

ing. It is unfair to compare it to silicon electronics, whose 
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frequencies have recently plateaued near 4 GHz. A more 

appropriate comparison would be to GaAs, germanium, 

or other more exotic materials, which already support 

switching upwards of 600 GHz.

Fast optical processing, at rates competitive with elec-

tronics, requires wave mixing, which, in turn, requires 

(and consumes) pumps. The power needed for these 

pumps suggests that optical computation should never be 

considered as power efficient. There is no optical equiva-

lent of adiabatic (zero heat or friction loss) or reversible 

(zero energy) computing, as there is for electronics.

As a result, it seems less useful to consider optical 

processing as a replacement for electronics in the end 

system, or to seek an optical solution as a power-efficient 

alternative to an electronic approach.

6.2   Impact of the experiments

The analysis of the basic principles of computation, com-

munication, and optics yields the previous conclusions 

regarding optical computation. The results of recent 

experiments have further impact on viable approaches, 

including the significant impact of carry generation and 

regeneration as the two most significant challenges.

6.2.1   Computation

Computation relies on two capabilities: the operations of 

a mathematical field (for combinatorial logic) and support 

for state recirculation (for all higher levels). Wave mixing 

already natively supports some of the functions that corre-

spond to the needed field operations, including addition, 

subtraction, and multiplication. These functions require 

substantial signal manipulation, including frequency 

conversion, harmonics generation, conjugate generation, 

and the need for phase-aligned pump sources.

Carry generation is required to support positional 

representations. Current approaches to carry generation 

require a cascade of several wave mixing operations, 

including phase division (via phase-amplitude offset), 

symbol addition, phase squeezing, and output normaliza-

tion. The challenge of these cascaded operations is that 

regeneration cannot be supported between the first three 

(division, addition, squeezing) operations.

6.2.2   Regeneration

Regeneration is known as the most significant challenge 

for optical computation. It is widely understood as needed 

to support function composition, to cascade processing 

operations, and to allow single-state feedback (to support 

the computational complexity of an FSM).

The need for regeneration to support state is also 

widely appreciated. State is a form of delayed signal recir-

culation and recirculation is easily seen as amplifying 

signal distortion. Given regeneration, state can be sup-

ported using delay, as was done in the earliest electronic 

computers.

Regeneration is also critical for carry generation. 

Carries are inherently a type of digitization, taking a set 

of symbols and returning either a 0 (no carry) or 1 (carry). 

In this case, regeneration needs to be even more powerful, 

collapsing previously distinguishable states.

Efficient regeneration is difficult to achieve. The 

power needed for phase-sensitive amplification or phase 

squeezing via wave mixing processes can be substantial. 

Denser encodings require correspondingly higher har-

monics, which are increasingly inefficient to generate. 

This density-harmonic relationship may place an effec-

tive upper bound on the encoding density, requiring some 

aggregation/deaggregation to support efficient commu-

nication, but it may still retain enough symbol density to 

remain competitive as an alternative to binary electronics.

7   Conclusions

The desire to support in-transit processing of optically 

encoded information drives the need for digital optical 

processing. That processing requires computational com-

plexity beyond simple field operations, e.g. combinatorial 

logic. The need to support state to enable higher levels 

of computational complexity thus further motivates the 

search for an OTM.

Overall, for optical computation to move forward, 

there need to be significant advances in both regenera-

tion and hybrid integration. The need for regeneration is 

already well understood, but the need for regeneration to 

support carry generation for positional representations is 

less so. The need for nanophotonic integration, especially 

hybrid integration that supports pumps, mixing, and 

other active devices together with passive components 

on the same substrate, is widely appreciated; however, 

the critical need for this hybrid substrate is much less so 

as well. In particular, hybrid integrated nanophotonic 

devices with multiple interconnected components needs 

to become reliably available.

In addition, the limits of regeneration due to the 

relation between encoding density and the level of 
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harmonics needed may require all-optical aggregation 

and deaggregation. This would enable high-density 

communication for efficient long-distance communica-

tion while supporting digital optical computation for in-

transit processing.

Ultimately, this work suggests that there is a path 

toward a feasible OTM that can exceed the limits of elec-

tronic computation. Optics may never be as efficient as 

electronics for end systems; however, if a signal is already 

optically encoded, the power and design requirements of 

optical processing may be worth the effort.
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