
Nanophotonics 2017; 6(3): 507–530

Review article Open Access

Joe Touch*, Yinwen Cao, Morteza Ziyadi, Ahmed Almaiman, Amirhossein Mohajerin-Ariaei

and Alan E. Willner

Digital optical processing of optical
communications: towards an Optical Turing
Machine

DOI 10.1515/nanoph-2016-0145

Received August 15, 2016; revised November 1, 2016; accepted

November 5, 2016

Abstract: Optical computing is needed to support Tb/s in-

network processing in a way that unifies communication

and computation using a single data representation that

supports in-transit network packet processing, security,

and big data filtering. Support for optical computation

of this sort requires leveraging the native properties of

optical wave mixing to enable computation and switch-

ing for programmability. As a consequence, data must be

encoded digitally as phase (M-PSK), semantics-preserving

regeneration is the key to high-order computation, and

data processing at Tb/s rates requires mixing. Experiments

have demonstrated viable approaches to phase squeezing

and power restoration. This work led our team to develop

the first serial, optical Internet hop-count decrement, and

to design and simulate optical circuits for calculating the

Internet checksum and multiplexing Internet packets. The

current exploration focuses on limited-lookback compu-

tational models to reduce the need for permanent storage

and hybrid nanophotonic circuits that combine phase-

aligned comb sources, non-linear mixing, and switching

on the same substrate to avoid the macroscopic effects

that hamper benchtop prototypes.

Keywords: digital optics; non-linear processing; optical

computing; wave mixing.

1 Introduction

Optical communication is becoming more prevalent

because it supports higher-bandwidth data transmission

over longer distances than electronics. Increased band-

width is not always enough, though – often the data needs

to be computationally processed in-transit. This results in

the need to support network functions at communication

rates, preferably in the optical domain as well. In particu-

lar, in-transit computation benefits most from a means to

compute and communicate using the same optical data

format.

1.1 Use cases of optical processing

It can be very useful to unify communication and compu-

tation using a single data encoding to efficiently support

both long-distance transmission and in-transit processing

[1, 2]. Networks can transfer data opaquely, but increas-

ingly need to support in-network computation involv-

ing data meta-information (headers) or the data itself.

Common examples include network packet processing,

bulk network security, and big data filtering (Figure 1).

Networks transfer information using either circuits or

packets; circuits are more efficient when traffic patterns

are predictable; however, packets (whether fixed or vari-

able length) are more efficient for unpredictable uses and

are thus preferred, where possible [3]. Packet processing

can focus on simple switching, address indexing, and

label/header rewriting [4, 5], or include more complex

hop-count update, managing checksums, and colli-

sion resolution [6] – all necessarily occurring inside the

network where traffic from different sources combines to

share resources. This processing can include encapsula-

tion (and decapsulation) or direct translation, support-

ing virtual networks, software-defined networking, and

network address translations (NAT) [7, 8].

*Corresponding author: Joe Touch, USC/ISI, 4676 Admiralty Way,

Marina del Rey, CA 90292, USA, e-mail: touch@isi.edu

Yinwen Cao, Morteza Ziyadi, Ahmed Almaiman, Amirhossein

Mohajerin-Ariaei and Alan E. Willner: EE/Systems Dept., USC,

Los Angeles, CA 90089, USA

 ©2017, Joe Touch et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

mailto:touch@isi.edu

508      J. Touch et al.: Optical Turing Machine

Data transiting a network is vulnerable to tampering

and copying, and thus is often processed to include integrity

protection or encryption [7]. Such security is often applied

between the communicating endpoints, but additional

layers of security can ensure protection between enterprises

or when transiting an untrusted area. This additional pro-

tection can only be implemented inside the network, at the

boundaries between trusted network components. Network

security also protects the network itself from both control-

plane attacks and data-plane denial-of-service attacks.

Big data filtering involves collecting and exploring

large amounts of information, some collected in advance

and others collected on-the-fly. It can be impractical to

store these data sets for off-line processing; instead, an

on-line approach can digest large streams, either com-

pletely or as a preprocessing reduction step. In-network

processing enables on-line filtering or coalescing of these

streams. Note that filtering need not be perfect; a low

occurrence of false positives can be tolerated if false nega-

tives can be avoided.

1.2 The need for a new approach

It is currently common to compute using electronics and

communicate using optics. Electronic switching can be

fast (< 1.7 ps), integrated easily (4 G transistors per device),

and support bit- and device-level parallelism (128 bit-wide

processors, 3500 graphics cores, 384 bit-wide memory).

However, high-bandwidth electronic signals do not prop-

agate well; signals of 10 Gb/s over > 10 m are necessarily

optical, as shown in Figure 2 [9].

Optics is more efficient for long-distance, high-band-

width communication. Unamplified signals can propa-

gate tens of kilometers, each symbol representing several

bits, encoding 100 Gb/s on each of dozens of wavelengths.

However, it is difficult to integrate the building blocks of

optical systems, including laser pumps, comb sources

(coherent multiwavelength sources), passive components

(e.g. filters, splitters), and non-linear devices (for wave

mixing) into a single optical circuit and optical switches

are limited to operating in the ms-ns range.

The electronic and optical approaches conflict when

considering functions that occur on data in transit. A

hybrid approach using electronics for computation and

optics for communication requires optical-electrical-opti-

cal (OEO) conversion, which is complex, expensive, and

can waste energy. A unified approach would avoid these

issues, but only if a single encoding were used for both

communication and computation. High-bandwidth, long-

distance communication is necessarily optical, so the

encoding must be optical, too.

Merely replacing electronics with optics remains a

significant challenge. Photons do not interact in ordi-

nary environments; they interact only indirectly through

matter. These interactions typically require either out-

of-band electronic control (e.g. by inducing a voltage or

current on the material) or high-power optical signals (e.g.

for frequency mixing). As a result, we do not assume that

a shift to optical computing will result in reduced energy

consumption.

Optical wavelengths are 100 × larger than commer-

cial IC processes in each dimension (1500 nm vs. 14 nm),

so optics requires 10,000 × more area for an equivalent

device [10]; this difference grows by another 50 : 1 in each

dimension considering the 200 fm size of a single atom

(Figure 3) [11]. As a result, each nanoscale optical device

occupies the space of up to 25 million transistors.

Figure 2: Bandwidth-distance limits of electronic communication.

Figure 3: Device scale of optics vs. electronics.

Figure 1: Use cases for digital optical computing.

J. Touch et al.: Optical Turing Machine      509

The overall challenge is that electronics and optics

have evolved different approaches to improving perfor-

mance. As shown in Table 1, electronics is typically limited

to 1 b/symbol over comparatively short distances and low

channel capacity. It achieves high performance using very

fast switching, extraordinarily high-density integration,

and large parallelism. Optics more easily supports higher-

channel capacity over much longer distances, but suffers

in size and slow switching speed, offset only by a slightly

higher symbol bit density. The table uses values for long-

haul optical communication; distances decrease to 10–

1000 m and wavelengths to 850–1310 nm for short and

medium haul, but do not greatly impact the consequence.

The table also uses values for existing commercial

transistors; at the limit of a single atom, feature size

decreases to 200 fm (0.2 nm). The consequence of these

differences is the need for optical processing that can

support multibit encodings without relying on switching

in the data plane.

1.3 Digital optical processing

A single multibit optical data encoding should suffice

for both long-distance communication and digital

computation. Processing needs to leverage the native

properties of optical wave mixing to support Tb/s data

rates and thus avoid the limitations of slow optical

switching. It needs to focus on computation needed to

support in-transit data processing, including develop-

ing new optics-friendly algorithms that reduce the need

for arbitrary persistent state, lookup tables, indefinite

recirculation, and other techniques that have no current

optical equivalent. We call this approach an “Optical

Turing Machine” (OTM) [1, 2].

2 Background

Before considering optical computation, it is important

to understand the context of computation more gener-

ally. Much current work in optical computation is limited

to very simplistic combinatorial functions or finite-state

machines, which can severely limit the types of problems

that can be supported.

This section addresses these issues, as well as the

limitations of some previous approaches and what makes

optical processing uniquely challenging. It also addresses

our focus on bandwidth rather than energy conservation.

2.1 Principles of computation

Computation is a very well understood and precisely

defined concept in computer science. The most basic

computational hierarchy is based on the amount of state

and a program’s ability to access that state (Table 2). All

variants assume combinatorial logic based on a math-

ematical field, i.e. an algebraic structure composed of

a set of symbols and a pair of operations that satisfy

a set of conditions (Figure 4, leftmost machine). Most

electronic computations use Boolean logic, the smallest

finite field.

Beyond that field, different levels of computational

complexity assume more state and more complex state

access, and support increasing levels of capability. Com-

binatorial logic has no internal state and is limited to

generating non-feedback mappings, i.e. tables that map

inputs to outputs with no context from previous lookups.

A finite-state machine (FSM) includes exactly one state,

which provides limited context of previous behavior

and can generate so-called regular grammars, simple

Table 1: Domain impact on computation and communication.

Electronics Optics

Bits/symbol 1 4–8 +

Bits/path 64–256 + 1

Switching < 1.7 ps > 1 ns

Feature size < 14 nm > 1500 nm

Distance < 1 m 10 km +

Bandwidth < 600 GHz 40 THz +

Table 2: Hierarchy of computational models.

Machine   Functions   Optical computer

Combinatorial logic   Non-feedback maps   Most signal proc.

Finite-state machine   Regular grammars (cannot count)   Hop-count decrement, neural nets

Pushdown automata   Context-free grammars   Backtracking (AI search)

Linearly bounded TM   Context-sensitive grammars   Bounded feedback functions

TM   Recursive languages (“computable”)  Any feedback function, incl. checksum

510      J. Touch et al.: Optical Turing Machine

expressions used in some search systems (Figure 4,

second machine). FSMs cannot count but can perform

limited arithmetic (e.g. hop-count decrement), and they

describe the basic neuron, the building block of neural

networks.

The next more complex level of computing is the

pushdown automata (PDA), in which memory operates as

an infinite stack of values in which one can access only

the topmost value (Figure 4, third machine). PDAs support

context-free grammars, including conversion from reverse

Polish notation (RPN) to infix, and are important in artifi-

cial intelligence (AI) backtracking algorithms.

The two most complex levels define what is comput-

able, i.e. the recursively enumerable languages. They are

both based on the Turing Machine (TM), a generalized

abstract computer that can (by definition) compute any-

thing that is computable, including checksums, encryp-

tion algorithms, and big data filtering using arbitrary

context (Figure 4, rightmost machine). Like a PDA, a TM

has a large number (or infinite) set of values, but a TM can

access them in any order.

Both TMs and PDAs are defined as having infinite

storage; however, this is often misunderstood as preclud-

ing their real existence. The amount of memory required

for a TM or PDA is always finite; otherwise, the machine

could not stop (or “halt”) – a requirement of computation.

A linearly bounded TM is a limited form of TM whose state

is bounded by a linear function of the size of the input, i.e.

it never needs more than K × N, where K is a (potentially

large) constant and N is the size of the input.

This hierarchy thus defines what a device can

compute, even if that device is replicated in parallel (e.g.

a neural computer composed of a network of neurons or

a grid of FSMs). Combinatorial logic and FSMs are not

computationally capable of identifying strings of A/B

symbols in which the number of A’s matches the number

of B’s. PDAs and LB-TMs cannot compute cryptographic

hash functions. This is why we call our project the OTM –

because in-network processing may need the full power

of a TM. This also highlights the computational limitation

of approaches based on computational logic, FSMs, or

even PDAs.

2.2 The limits of previous approaches

Most previous approaches can be grouped into two

 categories that we call “Field of Dreams” and the

“ Aluminum Feather”. The former (from the movie of the

same name) explores the variety of potential device designs

and the latter focuses on developing an “optical transistor”.

Field of Dreams explores the design space by building

new components in the anticipation that they will become

useful to others in the future (“build it and they will

come”, again from the movie). Many of these approaches

directly interfere with computation, component composi-

tion, or communication using a single format.

This includes lenses (which perform Fourier trans-

forms), spatial light modulators, electro-optical and

mechanical switches, gratings, etc. [12–15]. These

approaches compared favorably to older technology,

where even a small number of analog processing of com-

binatorial logic in two dimensions was sufficient to out-

perform 1980s uniprocessor architectures [16]; however,

they do not compete as well with GPUs with thousands of

cores. Noise accumulated by cascaded stages or feedback

prohibits their use for all but the simplest functions [17].

Aluminum Feather refers to the following approach to

airplane design: birds fly using feathers; thus, building an

aluminum bird (an airplane) clearly requires aluminum

feathers. Transistors support electronic computation,

and this has been used as the primary justification that

optical computation requires optical transistors [18–21].

However, most optical devices are very different from

their electronic counterparts (Figure 5). Optical switching

in microelectromechanical systems (MEMS) is very slow (1

kHz) and electro-optical photonic switches are limited by

the radio frequency (RF) transmission effects of their high-

voltage driving electronics.

Electro-optical switching at 1 GHz is often compared

to silicon electronics at 3 GHz; however, such a compari-

son is unfair because EO devices require exotic materi-

als. A more fair comparison would be to germanium and

other exotic electronic devices, which are much faster

(600 GHz). Our team’s OTM project thus focuses on wave

mixing, which processes light via interactions during

transmission and is capable of 40 THz.

2.3 Optical computation is difficult

Computation is a complex process by which an output

is generated based on a set of inputs and (usually) state.

These functions are often cascaded, where the output of

one function is the input of the next, and which may also

Figure 4: State and various machines.

J. Touch et al.: Optical Turing Machine      511

involve feedback (where the output returns to the input).

State is a kind of delayed feedback of this sort, where it is

written as output and read as input later.

These factors make computation difficult. Cascad-

ing and feedback both require noise dampening, which

requires non-linear signal processing. Some of the combi-

natorial functions themselves are non-linear as well. The

key to both issues is non-linear processing.

Non-linearities come in several forms, either as con-

tinuous or discrete functions. A neuron is modeled as a

non-linear transfer function and a transistor is a degen-

erate case of a neuron with a highly discretized function.

Non-linearities can be supported by switches or transfor-

mational processing.

Most electronic computation uses switching, in which

an input signal is used to control whether the output is

connected to one of two or more other signal sources.

These sources are typically the direct-current anode or

cathode, so the output either sources or sinks electrons

via the power supply. The input signal stops at the switch;

the output is controlled by, but not a direct derivation of

the input (Figure 6, left).

Optics also supports switching, but often far more

slowly than electronics (15 ps for 22-nm CMOS [22], and

roughly 10 × faster for germanium devices), typically

because optical switching often relies on mechanical

mirrors (1 ms), bulk thermal (1 µs), or electro-optic prop-

erties (1 ns). High-bandwidth optical processing more

typically relies on transforms in which the input waveform

is converted to an output waveform (Figure 6, right), such

as wave mixing – which are limited by frequency band-

width rather than symbol rates. We call this “transforma-

tional” processing, and it is critical to optical computing [1].

It can be tempting to try to support optical computing

using complex native optical capabilities, notably Fourier

transforms and filters. These are linear transforms, and

thus are insufficient to support computation [15].

It can similarly be tempting to consider optical com-

putation as potentially being more energy efficient than

electronic computation. Although this may be possible for

optical switching (which is inherently too slow), current

wave mixing is inefficient, losing approximately 1 dB of

power in highly non-linear fibers (HNLFs) and 5 dB in

periodically poled lithium niobate (PPLN) devices. Mixing

also requires 0.1–1 W pump signals, which are consumed

in the mixing process. As a result, it may not be appropri-

ate to assume that mixing-based optical computation is

power efficient.

2.4 Wave mixing

Non-linear processes can be used to perform computation,

leveraging Kerr non-linearities to combine optical signals

well into the THz range. In wave mixing, multiple optical

signals at different wavelengths interact with each other in

a non-linear medium, as graphically depicted in Figure 7.

Mixing can occur as either second-order (χ(2)) or

third-order (χ(3)) non-linear processes. χ(2) processes can

generate harmonics and compute sums and differences

by mixing two input waves and a continuous wave (CW)

pump to yield a third wave, known as three wave mixing.

χ(3) can perform four-wave mixing (FWM), combining

three input waves and a pump to yield a fourth wave.

In both types of mixing, phase-aligned optical signals

are sent through a non-linear medium of the correspond-

ing type. Each such medium has a characteristic zero-dis-

persion wavelength, also known as the center frequency.

Figure 5: Domain impact on speed.

Figure 6: Switched vs. wave mixed processing. Figure 7: Graphical depiction of wave mixing.

512      J. Touch et al.: Optical Turing Machine

Depending on the arrangement of the input signals and

pump relative to this center frequency, a variety of results

can be obtained. These include generation of conjugates,

harmonics, and frequency-shifted copies of the input

signals, phase summation, and phase difference. These

devices are realized in a variety of ways. Periodically

poled lithium niobate (LiNbO
3
) is a common χ(2) medium,

using a series of 5–50 µm layers of LiNbO
3
 with varying

polarization orientations (also depicted in Figure 7). HNLF

is a χ(3) medium that can support FWM. PPLN can be dif-

ficult to fabricate as an integrated nanophotonic device

because its layers can be difficult to orient in the natural

direction of waveguides. HLNF typically requires tens of

meters of fiber and is impractical as an integrated device.

There are a variety of other χ(2) and χ(3) materials that can

be integrated but are less commonly used in macroscopic

laboratory systems, such as ours.

3 Requirements

An assessment of the basic requirements for high-band-

width, long-distance communication and those for high-

level computation can together be used to determine a

viable unified approach. Optical communication is funda-

mentally driven by the need for dense symbol encodings

(many bits per symbol), to overcome the serial nature of

most long-distance optical media, as well as by the need

to accurately regenerate symbols for relaying over global

distances. Computation is driven by the requirements of

processing, which include the need to support a field,

the need to support uniform transforms, and the need to

support serial algorithms.

3.1 Communication

Optics is necessary and already widely used for high-

bandwidth, long-distance communication. It is efficient

only if the encoding is dense, supporting many bits per

symbol, and that it can be efficiently restored at relays,

the latter because unamplified signals can travel only a

few tens of kilometers in fiber and amplification typically

decreases the optical signal-to-noise ratio (OSNR).

3.1.1 Density

Communication over long distances requires symbols with

a high density, i.e. where each symbol is one of a large set;

thus, each symbol encodes many bits [9, 23]. Commercial

modulating electronics typically achieves rates up to 40 G

symbols/s, and a binary encoding would limit an optical

channel to 40 Gb/s. Parallel channels (WDM over one

waveguide or one wavelength over multiple waveguides)

can be used over short distances, but variation of dis-

persion, loss, and latency between different channels or

fibers typically limits their use to datacenter scales or low

data rates (10 Gb/s per channel).

Germanium electronics can modulate optics at higher

frequencies, up to the serial electronic limit of 600 GHz.

Unfortunately, use of such signals at the necessary voltage

ranges (e.g. to drive a Pockels cell) often results in the

driver circuit becoming a (very inefficient) transmission

line because the drive signal wavelength approaches the

length of the interconnect. At 600 GHz, the 1/10 wave-

length rule of thumb indicates that traces longer than

30 µm become transmission lines. As a result, there are

only two ways to achieve high density – either natively

convert parallel electronics into multibit symbols (e.g.

quadrature phase-shift keying – QPSK) or optically multi-

plex binary-modulated streams. OTM assumes the former

may be possible, but explores the latter in Section 5.2.3.

3.1.2 Regeneration

Regeneration is needed to support communication over

large geographic distances. It enables long-distance trans-

mission by recovering symbols before they become ambig-

uous by both increasing the OSNR and restoring power.

This is already a very active area of current optical pro-

cessing research [24–27].

3.2 Computation

Optics is less natively compatible with computation.

Computation requires processing to support the function

operations of a mathematical field. It requires accurate

composition, to cascade values through a series of these

function operations. For all but the most basic level of the

hierarchy, computation requires state to enable feedback

from the output to the input, which enables context-sensi-

tive processing. Finally, computation is often most useful

when it is flexible, so that it can be “reprogrammed” or

reconfigured for a variety of different tasks.

3.2.1 Processing

Computational processing requires functions that support

the processing operations required for a field [2]. Although

J. Touch et al.: Optical Turing Machine      513

simple operations support basic counting, the full power

of a field is required for error detecting/correcting check-

sums, encryption, and authentication.

In discrete mathematics, a field is a set of symbols

and two binary operators (i.e. two-input functions). The

symbol set is closed under both operators, each operator

has an identity element (a·I = a), and every element of the

set an inverse under each operator (a·a− 1 = I). Both opera-

tors are commutative (a·b = b·a), and one operator is dis-

tributive over the other [a·(b°c) = (a·b)°(b·c)].

A field defines common arithmetic. It is also the

foundation of most mechanical and electronic comput-

ing, whether in high-density symbols (e.g. decimal for

the Eniac) or binary (Boolean logic). Because these are

all based on the same abstract concept, they all easily

support the same common arithmetic and logic opera-

tions. Other, more obscure mathematics have been con-

sidered, including residue arithmetic [28] and directed

logic (which replaces scalars with vectors) [29]; however,

neither provides a sufficient advantage for optics over that

of a basic field.

Support for a field requires considering how its

symbols are represented and how they are processed by

its binary operations. Information is represented as a set

of discrete symbols and a value mapping (a value assigned

to each symbol). Candidate encodings include optical

phase (e.g. PSK; Figure 8, right) and {phase, amplitude}

pairs (e.g. QAM; Figure 8, left). Value maps assign specific

information to each symbol (e.g. numbers in Figure 8).

Binary operations can be performed by switching

or transformation, and optics can support high symbol

rates only through the use of wave mixing transforma-

tions. Transformation processing is simpler with continu-

ous, uniform transitions between its states (Hamiltonian

paths). Such processing strictly requires unambiguous

Hamiltonian paths; otherwise, on the way between transi-

tions, the transformation device would enter a state with

multiple outcomes, and the result of the computation

would be ambiguous.

Different encodings can enable or impede these

binary operations [30]. Consider the “+ 1” Hamiltonian

path whose values increase by 1 (shown as the dashed

paths in Figure 8). The PSK path is continuous, uniform,

and unambiguous; the transitions are in the same relative

direction, each transition is the same relative phase shift,

and the path never crosses itself. The QAM path has dis-

continuities – short jumps (3–4, 7–8, 11–12), and a large

jump (15–0). None of the transitions can be represented as

a single transform of either absolute or relative amplitude-

phase pairs. The QAM path also crosses itself in five differ-

ent places. This is why M-PSK encodings can support field

operations, whereas QAM cannot.

3.2.2 Composition

A field also relies on the ability to chain its operations,

where the output of one operation is cascaded into others.

This enables creating complex functions through the com-

position of simpler ones [17]. Composition requires that

information be regenerated, to avoid the accumulation of

noise during this cascade.

There are a variety of ways to regenerate symbols, i.e.

to restore power levels and OSNR, so the information can

be distinguished from background noise. Some methods

rely on pilot signals that experience the same noise as the

data; others remove noise by taking the differential of the

signal (the difference between symbols). In the latter case,

relatively stationary noise accumulated through transmis-

sion or processing can be removed because it cancels out

between adjacent symbols.

3.2.3 State

All computations beyond combinatorial logic require a

state that persists, even if temporarily [1]. A single state

is required for an FSM, many states accessed in a limited

way (the value on the top of a “stack”) for a PDA, or arbi-

trary access to a “tape” of many states for TMs. In all cases

where the state exists, that state depends on previous

input data and affects the interpretation of subsequent

input – i.e. it is effectively a time-delayed recirculation

of information. Without a persistent state, only combi-

natorial functions can be generated; all feedback would

be prohibited. This feedback enables recursion, a key

requirement for general-purpose computation.

There are various forms of storage that can be used

for optical data. Permanent storage, with arbitrary per-

sistence, requires conversion of the optical signal to

another form (e.g. electronic) because photons cannot be

“stopped”. Ephemeral storage, such as fiber loops, can Figure 8: Encoding impact on state transition properties.

514      J. Touch et al.: Optical Turing Machine

be used instead, as long as the data can be recirculated if

needed. There is a large body of work in using ephemeral

storage, beginning with acoustic waves in mercury delay

lines in early electronic computers and in recent reservoir

computing [31].

It may be important to also assume a complete recon-

sideration of computation architecture based on these

capabilities combined with the serial nature of commu-

nication. Current architectures focus on increased paral-

lelism and synchronous, phased operation due to the use

of switched, highly integrated transistor systems. Digital

processing of optical communication streams is better

matched to asynchronous serial processing.

3.2.4 Control/programmability

A computational device can be fixed, supporting only a

single algorithm, or can be reconfigurable to support the

entire variety of algorithms available for a given level of

complexity. For in-transit computation, reconfigurable

devices are much more useful because the specific for-

warding, data filtering, or cryptographic operation is very

likely to vary. This reconfiguration can be accomplished

either by changing the signal path directly (known as

“rewiring”, even for optical systems) or by using some

portion of the data (known as a “program”) to control the

signal path. The latter falls into two general classes: using

program data that is distinct from the processed data

(called the “Harvard” architecture) and treating program

and processed data as co-mingled (called the “von

Neumann” architecture). It is important to appreciate that

all three of these variants – rewiring, Harvard, and von

Neumann – have equivalent capabilities.

Rewiring is easy to achieve in an optical system using

any type of deflection switch controlled by a configurable

state [1]. The state need not be represented optically, as

it applies only to reprogramming. The deflection switch

need not be fast or lossless (i.e. it can interrupt the signal

flow), as it can be used only when reconfiguring an entire

system. This allows the use of a variety of optical switches

for reconfigurability, including MEMS.

4 Implications of requirements

The communication and computational requirements dis-

cussed in the previous section result in a set of implied

design requirements. These requirements suggest a

preferred data-encoding format used to support both

communication and computation, and a preferred

approach to supporting the field operations needed

for computation. They also help indicate require-

ments for regeneration methods and the overall system

implementation.

4.1 Encoding

Support for in-transit processing of optical communica-

tion requires that a single format be used for both commu-

nication and computation. These data must be encoded

with a high density and in a digital format to support both

efficient high-bandwidth communication and complex

computation using composition and recirculating state.

Candidate multibit encodings modulate phase

(M-PSK), power (PAM), or both (QAM). Other encod-

ings are limited to binary values (e.g. OOK, polarization)

or create independent channels rather than codes [e.g.

polarization, OAM, WDM, code division multiple access

(CDMA)]. The need for transformational processing favors

one-dimensional encodings, e.g. M-PSK or PAM, rather

than those that vary multiple properties, e.g. QAM and

CDMA.

Of the candidate encodings, only M-PSK supports the

required Hamiltonian properties (continuous, uniform,

and unambiguous). M-PSK additionally is desirable

because its symbols have uniform power. Receiver pro-

cessing of phase encodings requires coherent detec-

tion, which depends on carrier recovery; however, this is

already mature and efficient.

4.2 Computation

Support for in-transit computation requires processing

that can support data rates of 1 Tb/s and beyond. For opti-

cally encoded data, only wave mixing supports these rates

and is already known to support many of the operations

needed to emulate a field. Additionally, serial algorithms

are preferable to parallel, because optics can support

native serial Tb/s symbol rates more easily than it can

support the complexity of parallelization.

Wave mixing includes a variety of processes avail-

able in non-linear optical materials, including harmonics

generation, sum frequency generation (SFG), difference

frequency generation (DFG), and optical parametric ampli-

fication and oscillation. The key feature is that optical

signals affect how other optical signals are combined;

thus, the input and output symbols are all encoded in the

same domain (a requirement of a field). They differ from

J. Touch et al.: Optical Turing Machine      515

processes that vary optics based on other input domains,

e.g. electro-optics (as in Pockels cells), which may be

useful for device configuration and reprogramming but

cannot support all-optical computation.

Wave mixing is supported in both χ(2) and χ(3) materi-

als. SFG/DFG is supported in χ(2) materials via three-wave

mixing, whereas χ(3) materials are required for FWM. For

Tb/s computation, χ(2) materials currently appear to be

sufficient to support the optical processes needed for field

operations.

Optical wave mixing is inherently serial, support-

ing the data rates needed in a single, linear sequence

of symbols over a single wavelength. By contrast, most

electronic computation relies on a significant parallel-

ism – 64b is common for primary processors, with 256b

and above used in graphics and network processors

[1]. In electronics, parallelism is used to overcome the

limited symbol rate of individual components – e.g. typi-

cally 3–6 Gb/s.

The use of parallelism to overcome limited electronic

symbol rates comes with a significant cost. Some func-

tions that are the most complex when parallel become

nearly trivial when serialized; addition has O(NlogN) ele-

ments and O(logN) delays for N-bit summands (Figure 9,

left), because each bit of the output is computed based on

whether the bits to its right of both the summands would

generate a carry (known as “carry look-ahead”). The same

operation in serial optics requires only one element, using

delay and feedback instead (Figure 9, right), because

the carry is propagated through the summation as each

output bit is computed.

Many functions important for in-network processing

support efficient serial implementations, including statis-

tics (sums, averages, standard deviations), pattern match-

ing (correlators), error processing (checksums, CRCs), and

cryptographic processing (authentication, integrity pro-

tection, encryption). In some cases, there are simple serial

equivalents of conventional algorithms (e.g. hop-count

decrement), and in other cases there may be algorithms

that compute different values with similar properties,

such as alternate checksum algorithms. Cryptography

is notable among the latter because many current algo-

rithms are designed for parallel architectures and rely on

indexing (lookup) functions, both of which are difficult in

optics. Alternate algorithms exist that avoid these issues

and may be better suited to use with optical signals.

There are many issues in developing a serial, optics-

friendly algorithm. In some cases, there are known equiv-

alent serial circuits or algorithms for parallel methods

– in some cases, the serial variant comes first, such as for

addition and multiplication. In other cases, there are no

dependencies between adjacent bits, so serialization is

trivial – as for bitwise logical operations (AND, OR, etc.).

In an abstract sense, a programmer or circuit designer

needs to consider the dependencies between the bit posi-

tions of the input and output bit fields and the operations

that combine them as a graph, and seek a Hamiltonian

path through that graph. This remains somewhat of an art.

Additionally, an optics-friendly serial algorithm

needs to minimize the amount of state recirculation, to

reduce the amount of regeneration needed. In some cases,

this can be accomplished through redesigning the circuit

to compute the same results. More often, such feedback

reduction may require using a different algorithm, e.g.

one that computes a different but similarly useful result. A

good example is encryption, in which the typical method

of cypher-block chaining uses part of the result of encrypt-

ing one block of data to initialize the encryption for the

next block. This chaining accumulates data through

signal feedback that can degrade and require regenera-

tion. An alternate approach is known as “counter mode”,

which uses a simple counting index as the seed instead,

avoiding the continued use of recirculated data.

4.3 Regeneration

The ability to cascade computation, to include state as

context, and to transmit information over very long dis-

tances require that symbols be regenerated. Regeneration

includes removing noise that increases symbol ambiguity

and increasing power to improve detection, and is some-

times referred to as “redigitization”.

For M-PSK symbols, power should be constant across

all symbol values and is thus relatively simple to restore

using simple saturation amplification. The challenge is

that amplification increases phase noise and phase noise

reduction often decreases power. A solution is needed that

can increase both power and OSNR simultaneously.

It is important that signal regeneration retain symbol

representation and meaning. There are efficient methods

that reduce noise by converting from one symbol format

to another or from one symbol semantics to another. For

example, if noise is relatively stationary, it can be possible Figure 9: Parallel vs. serial 4-bit addition.

516      J. Touch et al.: Optical Turing Machine

to cancel noise by taking the signal difference [27]. A QPSK

stream enters as A, B, C, D values and is output as the

sequence (A–B), (B–C), (C–D), etc. Noise is cancelled out

and the output may retain QPSK encoding; however, the

symbol semantics have changed. Such changes interfere

with computation because advanced levels of complexity

rely on recirculation of symbols as state (Figure 4) [32].

It is also important that signal regeneration supports

a format that is compatible with high-bandwidth trans-

mission and computation. Efficient regeneration exists

for OOK, which may support computation; however, this

binary encoding is inefficient for transmission [33]. Effi-

cient regeneration also exists for differential PSK, where

the symbol sequence represents the difference between

phases of successive information values [34]; however,

that format does not support computation on individual

optical symbols.

It is also important that regeneration relies only on

the data that has experienced computation or commu-

nication. Some methods rely on the data symbols being

accompanied by a pilot tone or reference symbols, either

on a different frequency or interleaved with the data

symbol sequence. These supplemental signals will not

experience the same computational path as the data

should, so they will not accumulate correlated properties

(noise, power degradation, etc.). As a consequence, they

need to be avoided because they, too, do not preserve the

semantics of the computationally processed data stream.

4.4 Implementation

The requirements, thus far, strongly suggest that M-PSK

symbols are preferred and should be processed using

wave mixing. The resulting computational system is

highly sensitive to phase noise and variation. Bench-

top experiments are notoriously difficult to phase stabi-

lize; they often create interferometers as a side effect of

selective signal processing, which become very sensitive

instruments that unintentionally measure the laboratory

environment. Mixing can require phase-aligned sources

that are similarly difficult to stabilize in a macroscopic

configuration.

As a result, it is critical to developing optical com-

putation for in-transit processing using integrated nan-

ophotonic components on a common substrate. This

requires combining non-linear χ(2) elements, linear ele-

ments (filters), and optical vias on a single chip. It also

requires including phase-aligned sources, e.g. frequency

combs, with relatively high power (1 W) on the same

substrate.

5 Experiment results

The following is a summary of experiments to support

computation and regeneration on M-PSK symbols. Com-

putation is needed to support the two binary operations of

a field, and regeneration is needed to support composing

these operations, using state for high-level computational

complexity and communication.

For computation, methods are shown to support key

field operations. Serial algorithms compatible with optical

processing are also shown. The key remaining challenge,

besides implementation complexity (requiring hybrid

integration), is the computational need for regeneration,

notably to support carry generation.

Regeneration of M-PSK symbols requires phase

squeezing, often via phase-sensitive amplification (PSA),

to restore the digital nature of the stream. It requires

amplification to restore power levels. Finally, because

of some of the limitations of phase squeezing to support

higher-density encodings, it may be important to support

optical aggregation and deaggregation of lower-density

symbols that can be more efficiently regenerated.

5.1 Computation results

Our team has explored the potential for optical computa-

tion by developing increasingly complex algorithms with

various encodings. A circuit was developed to decrement

an OOK-encoded hop-count field, one of the simplest

operations performed in a packet switch. A correspond-

ing M-PSK variant was designed, as was a more complex

packet checksum calculator. The checksum relies on

components that support modular arithmetic and carry

generation. In addition, the team explored the potential

to support recirculating state, as is needed for most high

levels of computational complexity. Note that in all cases,

we assume that packet boundaries are indicated, e.g.

using an out-of-band signal or by correlation detection

of a preamble pattern, as in our previous work on packet

header pattern matching [35].

5.1.1 Hop-count decrement and checksums

The simplest network function is hop-count processing.

Packets contain a hop count (a.k.a. “time to live”) field

to ensure that forwarding loops and misdirected traffic

does not overload the network [36]. Each packet is given

an initial count (e.g. 255), which is decremented at each

hop visited. When the count reaches zero, the packet is

J. Touch et al.: Optical Turing Machine      517

silently discarded. This avoids the need for a coordinated

mechanism to flush out stale packets.

Hop-count processing is currently implemented using

either a general-purpose CPU or complex, dedicated bit-

parallel arithmetic hardware. Subtraction is typically

implemented as addition of “− 1”, a complex operation cas-

cading “carries” across the bit field in parallel, similar to

the approach shown for parallel addition in Figure 9 (left).

A simpler approach is possible when processing

the data serially, using only three active components

(Figure 10). Subtraction of an unsigned bit field involves

inverting the “0” values (starting at the low-order bit) until

the first “1” value is encountered. That value is inverted,

and all subsequent inputs are copied (Figure 10, left). The

entire system can be implemented using only three active

elements (Figure 10, right) – an inverter, a 2 × 2 switch, and

a set-reset (S/R) flip-flop (FF). The switch is set to select the

inverted input until the first “1” bit arrives. That bit sets the

flip-flop, whose output is delayed by one symbol to change

the switch just before the next symbol. After the change,

the input is copied to the output without inversion.

Our team implemented this mechanism for a binary

OOK encoding, using an electronic S/R FF (Figure 11) [36].

All-optical OOK micro-ring S/R FFs have been demon-

strated [37], but were too costly to replicate.

The mechanism has been extended to support

M-PSK multibit encoding, replacing inversion by a “− 1”

transformation, and all of the optical components already

exist for M-PSK encodings. For example, “− 1” trans-

form for 8PSK encoding is a − π/4 phase shift that can be

accomplished using a fixed difference in signal path, e.g.

of 187.5 nm for a 1500 nm wavelength signal. The OOK

micro-ring flip-flop can be extended to support M-PSK

encoding using phase interference with a reference signal

as input, and a Mach-Zehnder modulator can serve as an

optical switch that can be controlled using an independ-

ent M-PSK input (i.e. the flip-flop output).

Internet packet routers support hop-count process-

ing, but also rely on other, more complicated functions.

One such function is a checksum, a mathematical func-

tion that validates that the contents of a message have

not been corrupted in transit. There are a wide variety of

such checksums used in various protocol layers, includ-

ing cyclic redundancy checks (CRCs, as for Ethernet and

Bluetooth), parity (a 1-bit CRC, as for memory checks),

and very complex hash functions (e.g. MD5, SHA-1) that

also detect deliberate tampering. Parity and CRCs are very

simple operations using position-based symbol feedback

and serial modular arithmetic (shown as an XOR symbol),

and are already well suited to all-optical implementa-

tion (Figure 12). The key challenge to their computation

is maintaining signal integrity through the feedback

of state, i.e. regeneration. Note that Figure 12 depicts a

binary implementation using XOR gates; multibit encod-

ing would use optical adders for modular arithmetic [38].

The Internet checksum is of particular interest as it is

used for IP version 4 packet header error detection and as

a check on the entire end-to-end message at higher proto-

col layers, e.g. TCP and UDP [6]. This checksum is a 16-bit

one’s complement sum of the message, i.e. the entire

message is added as adjacent byte pairs of 16 bits. The

summation function is one’s complement, which differs

from the more familiar two’s complement arithmetic by

looping its high-order (most significant bit) carry-out back Figure 10: Serial ones-complement subtraction.

10 Gbit/s

NRZ

MOD

MOD

MOD

PPLN

PPLN

TTL start

D-flip flop

Electronic control

λ1

D

PD

Q

Q

Data

Data

Signal inversion

SOA Dropped

packet

(TTL = 0)

λ2 TTL-

Updated

data out

1 × 2

Switch

λ
1

(CW)

λpump

λpump

Figure 11: Optical packet hop-count decrement.

518      J. Touch et al.: Optical Turing Machine

around as a low-order (least significant bit) carry-in. This

feature of one’s complement summation enables a simple

serial design.

When computed on two’s complement hardware,

a one’s complement sum is typically computed using a

larger accumulation register (e.g. 32 bits). As values are

added into the accumulator (in bit-parallel), the high-

order carry-out bits accumulate in the top half of the reg-

ister. When the computation is complete, the carries are

“folded over” and added back into the bottom half of the

register. This operation is simple in typical two’s comple-

ment hardware; however, it is even easier in one’s comple-

ment, where the entire checksum can be computed using

a single “full adder”, i.e. one device that adds two symbols

and a carry-in, and generates the sum and a carry-out

(Figure 13). This serial circuit relies on delay and recircu-

lation to overcome the need for one adder per bit position

and complex carry-look-ahead, as is needed in the corre-

sponding parallel circuit (Figure 9). Because one’s com-

plement accumulates carries through wrap around, there

is no need to reset the circuit as bits are summed in series;

instead, the carries wrap around (from Co to Ci) the same

way as the partial sum (from S to Yi).

The primary challenge in implementing a CRC or the

Internet checksum using serial optics is the need to recir-

culate state, which requires regeneration. An additional

challenge for the Internet checksum is the need for a full

adder, which is significantly complex in optics.

5.1.2 Modular arithmetic

Support for the mathematical field that is the basis of

computation typically requires support for modular

arithmetic, as this is the basis of the operations in the

most familiar fields. In binary logic, the corresponding

field is Boolean algebra, which includes addition (OR),

multiplication (AND), and complementation (NOT). For

fields with more than two symbols, modular operators are

needed, whose outputs “wrap around”.

Members of our group previously developed modular

arithmetic for M-PSK symbols [39], as depicted in

Figure 14. Three symbols encoded as QPSK were added

and subtracted in a non-degenerative FWM process in an

HNLF (Figure 15). Three-input operations are often more

useful than two-input operations, as they natively support

the combination of two new values as well as a carry-in

from either a previous or adjacent stage. A similar mecha-

nism was used to extend this QPSK method to 8PSK and

16PSK encodings [38].

5.1.3 Extension to a full adder

Although modular arithmetic is useful on its own, e.g. for

CRC calculations, most computing relies on the ability

to extend the symbol space of a field using positional

notation, so that a fixed set of symbols can represent an

indefinitely large number of values. Support for positional

notation requires the extension of modular arithmetic to

carry-based arithmetic. This evolution typically requires

the design of a half-adder and full-adder, the former

combining two symbols to generate a sum and carry-out

symbols and the latter combining three symbols: two

input symbols and a carry-in symbol. It is a basic exercise

to extend binary half-adders to create a full adder, using

two half-adders and an OR to merge the carry-out values

(Figure 16, left). A less typical design can combine mul-

tivalued (i.e. so-called “multibit”) half-adders to create a

corresponding full-adder; however, this design requires

Figure 12: Parity and CRC via simple serial feedback circuits.

Figure 13: Serial, optics-friendly Internet checksum.

A:

B:

C:

Sig. Sig.

Sig. Sig.

Sig.

–Sig.C

Wavelength

Wavelength

B

BA

A –C

C

Non-degenerate four-wave mixing (FWM)DQPSK: Quaternary

base numbers

Q

0
I

3 (3π/2)

1 (π/2)

2 (π)

Nonlinear

A+B–C:

A+B–C

Idler

A+B+C

Idler

A+C–B:

A+C–

Idler

B+C–A:

B+C–

Idler

A+B+C:

Figure 14: Modular arithmetic via wave mixing concept.

J. Touch et al.: Optical Turing Machine      519

three half-adders (Figure 16, right). The final carry-out (Co)

of the last half-adder is never active and can be ignored.

Half-adder and full-adder designs rely on both

modular arithmetic (for the sum) and carry generation.

Modular addition loses the information needed to indicate

whether a carry is needed or not, e.g. for 8PSK, 1 + 2 = 3 but

also 6 + 5 = 3 (Figure 17). In M-PSK modular addition, no

part of the FWM “remembers” whether the phase simply

rotates as needed (1 + 3) or “wraps around” (6 + 5).

Our team has proposed a method to determine

whether a carry is generated or not. The goal is to keep

track of whether the accumulation of phase would have

“wrapped” or not. This approach first halves the original

values, so that instead of adding 1 + 3 or 5 + 6, the values of

0.5 + 1.5 and 2.5 + 3 are computed (as shown in Figure 18).

The resulting value cannot wrap around because the

inputs are at most half the maximum symbol value. The

half-sum ends up either on the bottom or top half of the

phase diagram (Figure 19, left). The bottom half indicates

no carry and the top half indicates carry. The key is to then

squeeze the phase of the half-sum to represent two distinct

values (Figure 19, middle) and then shift those values to

represent the appropriate carry symbols (Figure 19, right).

The circuit for accomplishing this method is based on

shifting the input symbols using a CW pump, summing

the result using modular addition, and then squeezing

and transforming the result (Figure 20). It demonstrates

the way in which carry generation relies on phase squeez-

ing. This circuit has been proposed and analyzed, but it

PC

PC

PC

PC EDFA BPF

BPF

BPF BPF OUTBPF

HNLF

BPF

EDFA

EDFA

EDFA

1% tap

1% tap

1% tap 1% tap

BPFOC OC
Rx

OCOC

OC OC

BPF

BPF

EDFA

EDFA
ODL

EDFA

PC

PC

OC

ODL

ODL
RZ-DQPSK

PC

PC
Sig. C

Sig. B

Sig. A

Tx

WSS

Three-Input quaternary addition and subtraction (A+B–C, A+C–B, B+C–A, A+B+C)

CW

CW

IN

C

Quaternary base numbers A/B/C/A+B–C /A+C–B /B+C–A /A+B+C: 0, 1, 2, 3

C to –
C (–C)

B

A HNLF

C – C

– C

Figure 15: Modular arithmetic system design.

Figure 16: Full adders via half-adder composition.

Figure 17: Loss of carry context during modular add.

Figure 18: Carry context via adding half-phase.

Figure 19: Half-phase add transformed into encoded carry out.

520      J. Touch et al.: Optical Turing Machine

is currently difficult to implement using benchtop equip-

ment due to the number of cascaded components and the

constraint that signals cannot be regenerated between

the intermediate stages (as this would defeat the overall

goal).

5.1.4 Need for recirculating state

Computation beyond simple combinatorial logic

requires both retaining state and recirculating that

state back into the combinatorial logic together with the

input. As noted earlier, various levels of computational

complexity hold state in different forms (a single value

for an FSM, a stack for a PDA, or an arbitrary-access

“tape” for a TM) and for different lengths of time. Even

some of the simplest functions, including hop-count

decrement, CRCs, and Internet checksums, all require

this type of state recirculation.

This state either needs to be continually recirculated

(as with an FSM) or held in a way that emulates persis-

tent storage, which may itself require recirculation (e.g.

in a delay loop). Optical signals can be delayed off-chip

using fiber loops and on-chip using convoluted wave-

guide paths. On-chip delays are limited in length to a few

centimeters; however, the capacity of that delay increases

as baud rate increases, e.g. at 1 T baud, each 1 cm of wave-

guide can store 33 symbols.

There are many forms of “limited lookback” computa-

tion that restrict the amount of time a state is held, notably

linearly bounded TMs that can leverage such limited

storage. These approaches assume that state is recircu-

lated only a limited number of times or expires after a

fixed period (whether recirculated or not), which can limit

the kinds of computation that they can perform.

Regeneration can be coupled with delay-based

storage to extend its lifetime and/or enable increased

recirculation. This is critical because most examples

of computation assume arbitrary recirculation of state

through the combinatorial logic and/or indefinite storage

of state. A simple 8-bit binary hop count requires seven

such cycles; the Internet checksum, over a typical 1500B

Internet packet, could require as many as 750 such recir-

culation cycles. Optical signals tolerate traversing only

a very small number of devices before signal integrity

cannot be recovered, so regeneration is critical to sup-

porting these advanced levels of computation for even

the most basic operations. Similarly, the limitations of

on-chip delays require regeneration to recycle state over

longer periods.

5.2 Regeneration results

Regeneration of optical signals is a very active area of

investigation, as it is critical to relaying signals over long

distances through fiber that consumes power and distorts

symbols. There are two distinct aspects to this regenera-

tion: increasing the resolution of different symbols and

increasing the difference between a symbol and back-

ground noise. The former is known as symbol restoration

and the latter amplification. For M-PSK symbols, which

are the only symbols known to support computation and

high-bandwidth communication, restoration is known as

phase squeezing. This section explores recent results in

phase squeezing and amplifying M-PSK symbols. Some of

the limits of phase squeezing suggest that it may be neces-

sary to consider aggregating and deaggregating medium-

density encodings (e.g. QPSK to 16PSK).

Fixed phase

CW wave

Phase

squeezing

12

03

03

12

A

B

Offset-A

Offset-B

12

3 0

12

3 0

Carry out = 1

Carry out = 0

Rotate and

offset

1

0

Carry as

input-encoded

Figure 20: Generating the carry of the sum of QPSK symbols (A) and (B) via half-sum and phase squeezing.

J. Touch et al.: Optical Turing Machine      521

5.2.1 Phase squeezing

Signal regeneration begins with restoring the distinct-

ness of the symbol representations. There are a variety of

methods that have been used to restore M-PSK symbols,

including differential regeneration and PSA. Note that

phase restoration focuses on reducing accumulated

phase noise and does not address other noise sources (e.g.

amplitude noise).

One of the most effective methods is differential

regeneration, often referred to as “non-PSA” squeezing,

in which a symbol stream is processed with a one-sym-

bol delayed copy of itself [40] (Figure 21). This method

assumes that phase noise is mostly stationary compared

to the symbol stream, i.e. that adjacent symbols experi-

ence similar noise, irrespective of their symbol values.

This might occur if a symbol stream is noisily amplified or

if it experiences phase-insensitive transmission loss.

In non-PSA squeezing, harmonics are generated in a

non-linear medium (a PPLN or HNLF) using wave mixing

injected pumps. In two different stages, the signal is

first copied as a conjugate and then the third harmonics

are generated. The conjugate and third harmonic of the

original signal are delayed by one symbol, and combined

using SFG/DFG processes in a final non-linear device. The

resulting output is the differential of the input, i.e. it rep-

resents the difference of adjacent symbols. Because the

phase noise is relatively stationary, it cancels out of this

difference and OSNR is improved, as shown in Figure 22.

The challenge with using non-PSA squeezing is that

the output is semantically different from the input. Even

though both are represented using the same symbols, the

meaning has changed. Computation requires that each

symbol be independent, so it can be manipulated without

needing adjacent context. Differential output lacks this

property, and cannot support computation. Further, it is

impossible to recover a non-differential equivalent, e.g.

by “integrating” the output signal [32]. Doing so requires

inserting reference symbols in the data stream (to provide

Conjugate generation Higher harmonics

generation

Desired delays, phases, and

amplitudes

Phase noise mitigation

SFG mixing

Pump QPSK
signal

PPLN PPLN

SLM

filter

SLM

filter

HNLF

φ
s

–φ
s

–φ
s

φ
s

φ
s

–3φ
s

3φ
s

–3φ
s
(t) 3φ

s
(t–T) – 3φ

s
(t) 3φ

s
(t–T)

–φ
s
(t–T) –φ

s
(t–T)φ

s
(t) φ

s
(t)

λ

λ

λ λ λ

Output

DFG

Figure 21: Non-PSA phase squeezing system design.

150
100%

0%

100%

0%

180

210

240
270

EVM = 22.5%

300

330 210

240
270

300

330

120
90

60

30 150

120
90

60

30

210

240
270

300

330

150

120
90

60

30

δ ρ

δ φ

150

180

210

240
270

300

330

120
90

60

30

Input noisy signal Phase quantizer output

δφ = 45.1°, δ
ρ
= 21.6%

EVM = 17.3%

δφ = 36°, δ
ρ

 = 20.4%

EVM = 16%

δφ = 19.9°, δ
ρ

 = 38.6%

EVM = 17.7%

δφ = 22.2°, δ
ρ
= 37.5%

A

B

Figure 22: Non-PSA phase squeezing results.

the “constant” needed to perform integration); however,

those reference values would have needed to be kept sepa-

rate from the data and not participate in computation.

A different approach is to amplify signals that are

close to valid symbol values and attenuate signals that

are not. This is known as PSA; it does not actually correct

any phase variation directly, but rather it tries to discard

the portion of the signal that is slightly phase misaligned

and to copy or reinforce the portion that is aligned. The

particular variant explored by our team is non-degenerate

PSA, which uses a distinct idler to amplify and select the

desired portion of the signal [27] (Figure 23). Degenerate

522      J. Touch et al.: Optical Turing Machine

PSA overlaps the idler with the signal, but is more difficult

to control.

This system uses pumps to generate harmonics in a

non-linear medium (an HNLF) and combines those pumps

and signals in a SFG/DFG process in another non-linear

medium (a PPLN). There are two complications to this

approach – the system requires generating the harmonic

in direct proportion to the number of distinct symbols –

e.g. QPSK requires the fourth harmonic, 8PSK requires

the eighth, and the system implementation includes an

interferometer as a side effect, which is very difficult to

stabilize.

The harmonic required depends on the number of

symbols. Our experiments showed a 3.6 dB OSNR gain for

BPSK using the second harmonic, but only a 0.4 dB OSNR

gain for QPSK using the fourth harmonic (Figure 24). As

symbol density increases, the harmonics become more

difficult to generate and are generated less efficiently,

rapidly reducing the system impact.

The system design includes an interferometer created

because of how the signals are processed. The first non-

linear process converts the signal and pump to gener-

ate the needed harmonic. An injection-locked pump is

added to amplify the harmonic; however, the harmonic

has a much lower power, so the harmonic needs to be

separated from the other signals for the injection-locked

laser to synchronize to the desired signal. This creates an

 interferometer – one arm where the harmonic is coupled to

the injection-locked laser and another where other signals

bypass that laser. This device is very difficult to implement

macroscopically on an optical bench using fibers, because

the system is sensitive to vibration and thermal distur-

bances, and the result requires active phase stabilization.

In an attempt to avoid the need for this stabilization,

our group explored PSA based on Brillouin amplification

[41] (Figure 25). It replaced the interferometer and injec-

tion-locked laser with a Brillouin amplifier, which has an

inherently narrow band and is able to selectively amplify

the harmonic only. This method achieves 11 dB OSNR gain

at 1E-5 BER for 10 Gb/s BPSK, 9.1 dB OSNR for 20 Gb/s

BPSK, as shown in Figure 26. Brillouin PSA remains com-

patible with computation because it neither changes the

signal semantics nor uses reference signals.

5.2.2 Amplification

In addition to differentiating the symbols, it is important

that each symbol be detectable. Improving the power

level of the symbol is known as amplification. For M-PSK

symbols, each symbol should have the same power level,

so nearly any efficient amplification should suffice and

will also reduce amplitude noise. However, it is impor-

tant that amplification should not decrease intersymbol

OSNR, i.e. it should not “spread” the phase of the symbols

at the same time.

Our team explored using saturation amplification in

an HNLF [40]. The results show improved signal power

at the expense of an increase in phase noise. Figure 27

shows the noisy input signal, where the noisy input (left)

is phase squeezed (right) using differential noise reduction

(although already indicated as not viable for computation,

Figure 23: Non-degenerate PSA phase squeeze system design.

BPSK

Polarization-X Polarization-Y

QPSK

Input Output Input Output

Figure 24: Non-degenerate PSA phase squeezing results.

J. Touch et al.: Optical Turing Machine      523

Noisy

BPSK

Generate idler

Idler
Idler × GB

Idler × GBS S

S

P P P

P

HNLF1
Isolator

90%

10% tap

Pass idler

Slave
laser

Frequency
shifter(νB)

Brillouin
pump

Brillouin
pump
generation λ

λ

λ λ λ

λ
P: Pump
S: Signal
GB: Brillouin gain

Amplified idler Phase regeneration

SMF(Gain medium) HNLF2
BPF

Clean

BPSK

S+S*

S+S*

Figure 25: Brillouin phase squeezing system design.

Figure 26: Brillion phase squeezing results.

120
90

60 120
90

60

30 150150

180

100%

0%

100%

0%

210 210

240

270
300

330

0

30

60

90
120

240

270

300 240

270

300

330 330

30 150

210

120
90

60 120
90

60

30 150
150

180

210
210

240

270
300

330

0

30

60

90
120

240

270

300 240
270

300

330 330

30 150

210

Input noisy signal Phase quantizer output Parametric amplifier output

δ ρ

δ φ

EVM = 22.5%

δφ = 45.1°, δρ = 21.6%

EVM = 17.7%

δφ = 22.2°, δρ = 37.5%

EVM = 14.3%

δφ = 27.5°, δρ = 18.2%

EVM = 18.5%

δφ = 36°, δρ = 20.4%

EVM = 16.1%

δφ = 19.9°, δρ = 38.6%

EVM = 13.8%

δφ = 24.8°, δρ = 18.2%

A

B

Figure 27: Saturation amplification results.

524      J. Touch et al.: Optical Turing Machine

the phase squeezing method used in this experiment is not

critical to the next step), and then saturation amplified

(right). This type of amplification was able to compensate

for power lost during the squeezing operation; however,

it also introduced phase dispersion (the right signal is

“wider” than the middle). The phase noise introduced by

amplification was lower than in the noisy input signal, but

the overall result did not squeeze enough.

Our team also explored using Raman amplification

in an attempt to increase the signal power without intro-

ducing phase dispersion [42]. The concept is similar to the

saturation amplifier, replacing the HNLF with a Raman

amplifier (shown in Figure 28). The result had similar per-

formance, resulting in a 19.3 dB gain for a − 26 dBm input

signal but had no significant impact on phase noise.

5.2.3 Aggregation and deaggregation

Because phase squeezing requires harmonics linearly pro-

portional to the number of symbols, it may not be feasible

to assume symbol regeneration for very dense encodings.

It may be useful to consider long-distance transmission

using aggregates of less dense encodings, where signals

are deaggregated for computation. This is similar to the

OEO/OOO conversion that should generally be avoided,

but might be necessary and useful if limited to conver-

sions that are feasible in all-optical devices. Note that this

refers to combining or splitting multiple lower-baud-rate

streams (on separate waveguides or different wavelengths

in a single waveguide) into a single higher-baud-rate

stream on a single wavelength.

Our team explored aggregating and deaggregating

(multiplexing and demultiplexing) M-PSK signals. The

aggregation method (Figure 29) uses an apparatus based

on phase-coherent addition (Figure 30) [43]. Both BPSK

and QPSK signals were combined to generate QPSK (via

two BPSKs). The approach depends on the availability of

phase-locked comb sources.

Deaggregation of an M-PSK was achieved by separat-

ing the I and Q planes of the source signal, resulting in

BPSK for QPSK inputs and PAM for higher-density inputs

[44] (Figure 31). This system uses the apparatus shown in

Figure 32, with results as shown in Figure 33. For computa-

tion, only the QPSK to BPSK conversion would be useful;

the 8PSK to 4PAM output would require subsequent con-

version from 4PAM to QPSK.

6 Discussion

The viable ways in which digital optical computation can

support network functions is influenced by deductions

from basic principles, the results of experiments, and

past experience. The basic principles dictate the need for

phase-based encodings and wave mixing as processing,

as well as the need for state. Experimental results indicate

that this approach may be possible, but also indicate that

it can be very challenging to implement. This entire set

of investigation suggests that the most useful next steps

toward all-optical in-transit computation will need to

focus on hybrid integration, efficient regeneration, and

possibly the need to support aggregation/deaggregation.

PRBS 231–1

Pattern

generator

Data channel

λs:1558.4 nm
Pre-Amp

5dBm 50%

50%

EDFA

21.7dBm
800 MHz

PRBS 215–1

I Q

IQ

modulator

Phase

modulator
PSA-pump

λp: 1553.2 nm

HNLF-1

~300 m

HNLF-2

~500 m

HNLF-3

~200 m

EDFA (NF = 4dB)

PM-1

SLM

filter

Raman

pump

Raman amp+PSA

ATT-1ATT-1

PM-2

LO

Coherent

receiver

A

B

1540 1545 1550 1555 15601565

Wavelength (nm)

1540 1545 1550 1555 1560 1565

Wavelength (nm)

1540 1545 1550 1555 1560 1565

Wavelength (nm)

1540 1545 1550 1555 1560 1565

Wavelength (nm) Time (min)

0

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

1
0
d
B

/D

1
0
d
B

/D

1
0
d
B

/D

1
0
d
B

/D

G
E

R
 (

d
B

)

GER

1

1

2

2 3 4

3 4

Figure 28: Raman-assisted PSA system design.

J. Touch et al.: Optical Turing Machine      525

6.1 Deductions

In seeking a way to support in-transit processing of opti-

cally encoded signals, only phase encodings support the

needed field operations and wave mixing is required to

process those operations at data rates that can exceed

electronics. In addition, only digital encodings enable

both operation composition and feedback to implement

Figure 29: Aggregation concept.

Optical frequency
comb (10-GHz)

– 10

– 20

– 30

– 40

– 50
1546 1548 1550 1552 1554

Optical frequency
comb (20-GHz)

– 10

– 20

– 30

– 40

– 50
1546 1548 1550 1552 1554

Flat frequency
comb

– 10

– 20

– 30

– 40

– 50
1546 1548 1550 1552 1554

400m

MLL

20-GHz

DLI

HNLF

LCoS

filter
5 nm

BP Nested MZM

EDFA

5
 n

m

5
 n

m

1
 n

m

D
C

F

4
0

0
 m

P
P

L
N

2 nm
SMF

80-km20-km

2 nm1 nm1 nm 2 nm
DCF

ATT

PC

λ
Pump

Coherent

receiver

MLL: Mode-locked laser

Nested MZM: Mach-Zender modulator

DCF: Dispersion compensating fiber

PC: Polarization controller

DLI: Delay line interferometer

BPF: Bandpass filter

100-km

Transmission line

Figure 30: Aggregation system design.

526      J. Touch et al.: Optical Turing Machine

state, where state is required to support the more complex

levels of computation beyond basic combinatorial logic.

Finally, hybrid integrated devices are important to enable

stable, efficient implementations.

6.1.1 Phase encodings

Phase-based encoding is the only multibit optical repre-

sentation that supports the operations of a mathematical

field with transformations that are continuous, uniform,

and unambiguous. The lack of ambiguity is needed to

allow operations to have deterministic consequences.

Having continuous and uniform transforms means that a

single device can process a single operation, without need

for conditional (value-dependent) processing.

Phase encoding is attractive for other reasons. It

allows use of other encoding dimensions (such as polari-

zation) as independent channels, potentially enabling a

single device to process multiple channels concurrently. It

also simplifies amplification because all symbols are rep-

resented using the same power. Receivers require phase

recovery, but this is already mature and efficient.

Binary encodings also support the operations needed

to implement a field but are very inefficient for commu-

nication. Their use would necessitate the same very high

level of aggregation and deaggregation that would be

required for OEO conversion and would render an optical

computing solution uncompetitive with one using con-

ventional electronics.

6.1.2 Digital encodings

The need for digital encodings is driven by the desire to

cascade processing functions and to support state feed-

back. Analog systems can cascade functions, but only

through a limited number of levels due to signal degrada-

tion, which constrains the computational complexity and

prevents any but the most basic computational model of

combinatorial logic.

Figure 31: Deaggregation concept.

Figure 32: Deaggregation system design.

Figure 33: Deaggregation results.

J. Touch et al.: Optical Turing Machine      527

Regeneration is the key to supporting digital encod-

ings and is the largest impediment to developing effec-

tive optical computation. Current methods are complex,

consume significant power, and have limited impact.

There are a wide variety of approaches to regeneration,

but the more efficient and effective methods – such as dif-

ferential processing – fail to preserve the semantics of the

symbol stream, rendering them useless for computation.

6.1.3 Wave mixing

Although phase encodings and digitization are more obvi-

ously needed, the need to use wave mixing is less so. It is

driven primarily by the need to support field operations

on symbols at rates that exceed that of electronics.

Wave mixing has the benefit of being able to support

transformational processing transparently to the symbol

coding rate. Some functions (i.e. some field operations)

are completely transparent, depending only on the fre-

quency over which the symbols are encoded. Others, such

as regeneration, can depend on the symbol density (i.e.

the number of distinct phase values used for encoding),

but remain transparent to the symbol rate.

6.1.4 Need for state

The desire to use digital phase encoding and mixing is

not uncommon for optical computation, but there is less

consideration for state. The amount of state and the com-

plexity of its state access patterns determine the computa-

tional capabilities of the resulting processing system.

A combinatorial system can never be used to iden-

tify context-dependent patterns, as are needed for the

most basic packet forwarding operations or even basic

data filtering beyond exact match. An FSM cannot

count or support AI backtracking, so it cannot be used

for triggers based on threshold levels, compression, or

encryption. A PDA cannot compute recursive functions,

as are sometimes needed for hash functions used for

authentication.

State is the key to supporting these higher levels of

computation. Many optical signal processing systems are

only combinatorial, using no state feedback at all. Others

have a single state, either as direct feedback or encoded in

the device itself; some systems use a single such device,

others an array, but all are limited to the capability of an

FSM. Most in-transit operations require more than just a

single state, e.g. either PDA or TM capabilities. This is why

our focus is on seeking a viable approach to an OTM.

The key to supporting state for such a TM is the use of

optical delays. Implemented in on-chip waveguides, these

may be limited to tens-hundreds of symbols, recirculated

with phase restoration. That should be sufficient for many

of the kinds of algorithms that are useful for in-transit pro-

cessing. Additional storage may be possible off-chip, e.g.

using board-level fiber “spools”. The amount of recircula-

tion is limited by the efficiency of symbol restoration and

access to state needs to be coordinated with the symbol’s

position in the delay line. The latter may require splitters

and configurable delays to align stored state with incom-

ing data. These issues are under active investigation by

our team.

6.1.5 Need for hybrid integration

The desire to encode data using phase and to use wave

mixing drives the need for hybrid nanophotonic inte-

gration. Benchtop systems are too difficult to stabilize

because the optical paths often create multiple overlap-

ping interferometers. Although a single interferometer

can be stabilized, multiple overlapping interferometers

cannot.

This extreme phase sensitivity can be avoided through

nanoscale integration. Distances between components

can be engineered as needed, often within < 1% of a wave-

length (e.g. 14-nm fabrication resolution used to imple-

ment 1400-nm-wide devices).

Passive optics can be easily fabricated on a silicon

substrate, including filters, couplers/splitters, and vias.

Silicon can also be used to implement detectors and some

forms of wave mixing. Full processing requires pumps

(to support mixing), generation, and modulation, all

of which require other substrates. Integration supports

stability and efficiency only when all these devices are

implemented on a single underlying substrate, to enable

environment control (temperature, vibration) and to avoid

the coupling loss of chip-to-chip interfaces.

6.1.6 Some additional caveats

This discussion began with an assumption that optical

computation should focus on in-transit operations

because that might be where it would be most useful. The

corollary is that optical computation is likely not useful as

an end system alternative to electronics.

Optical processing already requires the use of exotic

materials to do anything beyond limited passive process-

ing. It is unfair to compare it to silicon electronics, whose

528      J. Touch et al.: Optical Turing Machine

frequencies have recently plateaued near 4 GHz. A more

appropriate comparison would be to GaAs, germanium,

or other more exotic materials, which already support

switching upwards of 600 GHz.

Fast optical processing, at rates competitive with elec-

tronics, requires wave mixing, which, in turn, requires

(and consumes) pumps. The power needed for these

pumps suggests that optical computation should never be

considered as power efficient. There is no optical equiva-

lent of adiabatic (zero heat or friction loss) or reversible

(zero energy) computing, as there is for electronics.

As a result, it seems less useful to consider optical

processing as a replacement for electronics in the end

system, or to seek an optical solution as a power-efficient

alternative to an electronic approach.

6.2 Impact of the experiments

The analysis of the basic principles of computation, com-

munication, and optics yields the previous conclusions

regarding optical computation. The results of recent

experiments have further impact on viable approaches,

including the significant impact of carry generation and

regeneration as the two most significant challenges.

6.2.1 Computation

Computation relies on two capabilities: the operations of

a mathematical field (for combinatorial logic) and support

for state recirculation (for all higher levels). Wave mixing

already natively supports some of the functions that corre-

spond to the needed field operations, including addition,

subtraction, and multiplication. These functions require

substantial signal manipulation, including frequency

conversion, harmonics generation, conjugate generation,

and the need for phase-aligned pump sources.

Carry generation is required to support positional

representations. Current approaches to carry generation

require a cascade of several wave mixing operations,

including phase division (via phase-amplitude offset),

symbol addition, phase squeezing, and output normaliza-

tion. The challenge of these cascaded operations is that

regeneration cannot be supported between the first three

(division, addition, squeezing) operations.

6.2.2 Regeneration

Regeneration is known as the most significant challenge

for optical computation. It is widely understood as needed

to support function composition, to cascade processing

operations, and to allow single-state feedback (to support

the computational complexity of an FSM).

The need for regeneration to support state is also

widely appreciated. State is a form of delayed signal recir-

culation and recirculation is easily seen as amplifying

signal distortion. Given regeneration, state can be sup-

ported using delay, as was done in the earliest electronic

computers.

Regeneration is also critical for carry generation.

Carries are inherently a type of digitization, taking a set

of symbols and returning either a 0 (no carry) or 1 (carry).

In this case, regeneration needs to be even more powerful,

collapsing previously distinguishable states.

Efficient regeneration is difficult to achieve. The

power needed for phase-sensitive amplification or phase

squeezing via wave mixing processes can be substantial.

Denser encodings require correspondingly higher har-

monics, which are increasingly inefficient to generate.

This density-harmonic relationship may place an effec-

tive upper bound on the encoding density, requiring some

aggregation/deaggregation to support efficient commu-

nication, but it may still retain enough symbol density to

remain competitive as an alternative to binary electronics.

7 Conclusions

The desire to support in-transit processing of optically

encoded information drives the need for digital optical

processing. That processing requires computational com-

plexity beyond simple field operations, e.g. combinatorial

logic. The need to support state to enable higher levels

of computational complexity thus further motivates the

search for an OTM.

Overall, for optical computation to move forward,

there need to be significant advances in both regenera-

tion and hybrid integration. The need for regeneration is

already well understood, but the need for regeneration to

support carry generation for positional representations is

less so. The need for nanophotonic integration, especially

hybrid integration that supports pumps, mixing, and

other active devices together with passive components

on the same substrate, is widely appreciated; however,

the critical need for this hybrid substrate is much less so

as well. In particular, hybrid integrated nanophotonic

devices with multiple interconnected components needs

to become reliably available.

In addition, the limits of regeneration due to the

relation between encoding density and the level of

J. Touch et al.: Optical Turing Machine      529

harmonics needed may require all-optical aggregation

and deaggregation. This would enable high-density

communication for efficient long-distance communica-

tion while supporting digital optical computation for in-

transit processing.

Ultimately, this work suggests that there is a path

toward a feasible OTM that can exceed the limits of elec-

tronic computation. Optics may never be as efficient as

electronics for end systems; however, if a signal is already

optically encoded, the power and design requirements of

optical processing may be worth the effort.

Acknowledgments: This work was partly supported

by National Science Foundation (NSF) under contract

(1344221). Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the NSF.

References

[1] Touch J, Willner A. Native digital processing for optical network-

ing. In: Proc. IEEE Third Int’l. Conference on Future Generation

Communication Technologies (FGCT), 2014.

[2] Touch J, Cao Y, Ziyadi M, et al. A candidate approach for optical

in-network computation. Invited paper, IEEE Summer Topicals,

2016.

[3] Green P. An all-optical computer network: lessons learned. IEEE

Netw 1992;6:56–60.

[4] Harai H, Murata M. High-speed buffer management for 40

Gb/s-based photonic packet switches. IEEE/ACM Trans Netw

2006;14:191–204.

[5] Jeon M, Pan Z, Cao J, et al. Demonstration of all-optical packet

switching routers with optical label swapping and 2R regenera-

tion for scalable optical label switching network application.

IEEE/OSA J Lightwave Technol 2003;21:2723.

[6] Touch J, Bannister J, Suryaputra S, Willner A. A design for an

Internet router with a digital optical data plane. Invited paper,

Photonics West, 2014.

[7] Chowdhury N, Boutaba R. A survey of network virtualization.

Comput Netw 2010;54:862–76.

[8] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: ena-

bling innovation in campus networks. ACM SIGCOMM Comput

Commun Rev 2008;28:38.

[9] Gringeri S, Basch E, Xia T. Technical considerations for

 supporting data rates beyond 100 Gb/s. IEEE Commun

2012;50:521–30.

[10] Athale R, Psaltis D. Optical computing: past and future. Optics

Photon News 2016;27:29–39.

[11] Xu Q, Fattal D, Beausoleil R. Silicon microring resonators with

1.5-µm radius. Optics Express 2008;16:4309–15.

[12] Arrathoon R. Digital optical computing: possibilities and

 pitfalls. In: Proc. SPIE Real Time Signal Processing IV, V564,

1985, pp. 108–18.

[13] Caulfield H, Dolev S. Why future supercomputing requires

optics. Nat Photon 2010;4:261–3.

[14] Jackson D. Photonic processors: a systems approach. Appl

Optics 1994;33:5451–66.

[15] Miller D. Correspondence – the role of optics in computing. Nat

Photon 2010;4:406.

[16] Feitelson D. Optical computing: a survey for computer scien-

tists. MIT Press, Cambridge, MA, 1992.

[17] Tucker R. Correspondence – the role of optics in computing.

Nat Photon 2010;4:405.

[18] Abraham W, Seaton C, Smith S. The optical computer. Sci Am

1983;85–93.

[19] Ambs P. Optical computing: a 60-year adventure. Adv Opt Tech

2010;2010:1–15.

[20] Jain K, Pratt GW Jr. Optical transistor. Appl Phys Lett

1976;28:719–21.

[21] Miller D. Are optical transistors the logical next step? Nat

 Photon 2010;4:3–4.

[22] Mistry K. Tri-gate transistors: enabling Moore’s law at 22nm

and beyond. In: Presentation at Semicon West 2014. Available

at: http://www.semiconwest.org/sites/semiconwest.org/files/

docs/Kaizad%20Mistry_Intel.pdf. Accessed June 2014.

[23] Chattopadhyay T, Roy JN. All-optical quaternary comput-

ing and information processing: a promising path. J Optics

2013;42:228–38.

[24] Kakande J, Slavík R, Parmigiani F, et al. Multilevel quantization

of optical phase in a novel coherent parametric mixer architec-

ture. Nat Photon 2011;5:748–52.

[25] Slavík R, Parmigiani F, Kakande J, et al. All-optical phase and

amplitude regenerator for next-generation telecommunications

systems. Nat Photon 2010;4:690–5.

[26] Zhu Z, Funabashi M, Pan Z, Xiang B, Paraschis L, Yoo S.

Jitter and amplitude noise accumulations in cascaded

all-optical regenerators. IEEE/OSA J Lightwave Technol

2008;26:1640–52.

[27] Yang JY, Akasaka Y, Ziyadi M, et al. PSA and PSA-based optical

regeneration for extending the reach of spectrally efficient

advanced modulation formats. Invited paper, IEEE Summer

Topicals 2015.

[28] Sawchuk A, Strand T. Digital optical computing. Proc. IEEE

1984;72:758–79.

[29] Hardy J, Shamir J. Optics inspired logic architecture. Optics

Express 2007;15:150–65.

[30] Huang A. Parallel algorithms for optical digital computers.

In: Proc. SPIE Int’l. Optical Computing Conf., April 1983,

pp. 13–17.

[31] Paquot Y, Duport F, Smerieri A, et al. Optoelectronic reservoir

computing. Sci Rep 2012;2:1–6.

[32] Touch J, Mohajerin-Ariaei A, Chitgarha M, et al. The impact of

errors on differential optical processing. USC/ISI Tech Report

ISI-TR-690, 2014.

[33] Mamyshev P. All-optical data regeneration based on self-phase

modulation effect. In: ECOC 1998.

[34] Striegler A, Schmauss B. All-optical DPSK signal regeneration

based on cross-phase modulation. IEEE Photon Technol Lett

2004;16:1083–5.

[35] Hauer M, McGeehan J, Kumar S, et al. Optically-assisted

Internet routing using arrays of novel dynamically reconfigur-

able FBG-based correlators. IEEE/OSA J Lightwave Technol Spec

Issue Opt Netw 2003;21:2765–78.

[36] McGeehan J, Kumar S, Gurkan D, et al. All-optical decrementing

of a packet’s time-to-live (TTL) field and subsequent dropping

http://www.semiconwest.org/sites/semiconwest.org/files/docs/Kaizad%20Mistry_Intel.pdf
http://www.semiconwest.org/sites/semiconwest.org/files/docs/Kaizad%20Mistry_Intel.pdf

530      J. Touch et al.: Optical Turing Machine

of a zero-TTL packet. IEEE/OSA J Lightwave Technol Spec Issue

Opt Netw 2003;21:2746–52.

[37] Liu L, Kumar R, Huybrechts K, et al. An ultra-small, low-power,

all-optical flip-flop memory on a silicon chip. Nat Photon

2010;4:182–7.

[38] Wang J, Yang JY, Wu X, Yilmaz O, Nuccio S, Willner A.

40-Gbaud/s (120-Gbit/s) octal and 10-Gbaud/s (40-Gbit/s)

hexadecimal simultaneous addition and subtraction using

8PSK/16PSK and highly nonlinear fiber. In: OFC 2011.

[39] Wang J, Yang JY, Huang H, Willner A. Three-input optical addi-

tion and subtraction of quaternary base numbers. Optics

Express 2013;21:488–99.

[40] Mohajerin-Ariaei A, Ziyadi M, Chitgarha M, et al. Phase noise

mitigation of QPSK signal utilizing phase-locked multiplex-

ing of signal harmonics and amplitude saturation. Optics Lett

2015;40:3328–31.

[41] Almaiman A, Cao Y, Ziyadi M, et al. Experimental demonstration

of phase-sensitive regeneration of a 20–40 Gb/s QPSK channel

without phase-locked loop using Brillouin amplification. In:

ECOC 2016.

[42] Cao Y, Alishahi F, Akasaka Y, et al. Experimental investigation of

quasi-periodic power spectrum in Raman-assisted phase sensi-

tive amplifier for 10/20/50-Gbaud QPSK and 10-Gbaud 16QAM

signals. In: ECOC 2016.

[43] Chitgarha MR, Khaleghi S, Ziyadi M, et al. Demonstration of

tunable optical generation of higher-order modulation formats

using nonlinearities and coherent frequency comb. Optics Lett

2014;39:4915–8.

[44] Ziyadi M, Chitgarha M, Mohajerin-Ariaei A, et al. Optical

channel de-aggregator of 30-Gbaud QPSK and 20-Gbaud

8-PSK data using mapping onto constellation axes. Optics Lett

2015;40:4899–902.

