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A variation of the Hough Transform that is aimed at detect-

ing digital lines has been recently suggested. Other Hough

algorithms are intended to detect straight lines in the ana-

log pre-image. These approaches arc analyzed and com-

pared in terms of the relation between the achievable reso-

lution and the required number of accumulators, using a

definition of resolution that is based on the Geometric Pro-

bability measure of straight lines. It is shown that the "ana-

log" approach is greatly superior in high resolution appli-

cations, where a "digital" Hough Transform would gen-

erally require an infeasibly large number of accumulators.

The Hough Transform [2,4] is a well known technique for

recognizing predefined features in edge maps. In this paper,

the Hough Transform for detecting straight lines is con-

sidered.

Most Hough algorithms consist of an incrementation stage,

in which each edge point "votes" for the parameter-pairs of

all possible straight lines on which it can lie, and an exhaus-

tive search for peaks. These correspond to large collinear

sets of edge-points.

Originally, the slope-intercept (m,b) parametrization of

straight lines had been employed in the Hough Transform.

It has the advantage that an edge point corresponds to a

straight line in the parameter space, thus voting is simple.

Its drawback is that the parameter space is unbounded,

implying some theoretical and practical difficulties. With

normal (p,0) parametrization of straight lines, as suggested

by [2], an edge point corresponds to a sinusoid in the

parameter space, thus voting is somewhat more complex.

The normal parametrization has the advantage that a

bounded image leads to a bounded parameter space. Other

straight-line parametrizations have also been suggested, see

[4,11,17].

In most implementations of the Hough algorithm the param-

eter space is represented by a rectangular accumulator

array, such that each accumulator corresponds to a rec-

tangular, constant size domain in the parameter space. The

quantization of the parameter space greatly influences the

resolution and detection capabilities of the algorithm, as

well as the computational and storage requirements; see

[6,16].

Errors in the location of the edge points impair the

performance of conventional Hough algorithms. Such errors

are usually due to the effects of image noise and distortion,

including image digitization, on the output of the edge

detector. Modern forms of the Hough Transform, e.g.

[6,10,15], provide some compensation for location errors in

the data, thus improving the performance of the algorithm.

These variants do not provide special treatment for location

errors which are due to image digitization; this is justified

by the ability of modern edge detection schemes to offer

sub-pixel accuracy when the levels of other sources of

image noise are low. In this paper, [6,10,15] and related

versions arc referred to as "Analog Hough Transforms",

since they are intended to detect straight lines in the analog

"pre-image".

An interesting form of the Hough Transform has recently

been described in [1]. It is specifically aimed at detecting

digital straight lines [3], and is thus referred to here as the

"Digital Hough Transform". This version of the Hough

Transform employs the slope-intercept paramctrization, and

a non-uniform parameter space quantization scheme that, in

principle, assigns an accumulator to each of the triangular

or quadrilateral domains in the (m ,b) space that correspond

to distinct digital lines. Such domains have been originally

described and characterized in [3]. It is claimed in [1] that

the Digital Hough Transform is a computationally attractive

alternative to usual high resolution implementations of the

Hough Transform. The purpose of this paper is to compare

the analog and digital approaches to the Hough Transform,

and in particular to compare the resolution that a certain

number of accumulators can "buy".

DIGITAL HOUGH TRANSFORM

A fundamental observation underlying the digital approach

to the Hough Transform is \haxAD (N), the number of possi-

ble distinct digital straight lines in an NxN digital binary

image, is finite. Recently, Lindenbaum, Koplowitz and

Bruckstein [8] have shown that

AD (N) = ~N
4
 + O (N

3
log N).

7T
(1)

Dorst and Smculdcrs [3] have shown that each digital line

corresponds to an (infinite) set of "analog" straight lines

that can be represented by a distinct domain in the (m,b)

parameter space. A digital Hough algorithm to detect digital
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straight lines can, in principle, be constructed by assigning

an accumulator to each of the AD(N) domains. Clever data

structures [1] can reduce this number if the number of edge

pixels in the image is small.

The Digital Hough Transform is at its best when the image

digitization process is the dominant source of location

errors in the data points, i.e. when the image contains true

digital straight lines. It may be observed that if the task is to

merely verify that a digital arc is a digital straight line, then

alternative, extremely efficient O(N) algorithms [7,13] arc

available.

Unlike most conventional Hough algorithms, the "resolu-

tion" of the Digital Hough Transform given an NxN image

cannot be set or modified by design, since the number of

accumulators is fixed, equal to the number of possible digi-

tal straight lines in the digital image. (Decimation of the

digital image would, however, allow to reduce the number

of accumulators and degrade resolution.)

To enable comparison with other Hough variants, a mean-

ingful measure of resolution must be devised. For the Digi-

tal Hough Transform a reasonable approach seems to be the

quantification of the "residual ambiguity" in the position of

a straight line once the digital straight line to which it

relates has been identified. This requires to, somehow,

measure the infinite set of straight lines that belong to the

corresponding domain in the (m Jb) parameter space.

In the Digital Hough Transform the quantization of the

(m,b) parameter space is nonuniform in the sense that

accumulators are assigned to domains of different sizes and

shapes. One might be tempted to determine an "average"

domain and perhaps regard its area as a measure of the resi-

dual ambiguity. This is, however, unacceptable since

domains of equal area in different locations in the (m ,b)

place cannot be meaningfully associated with equal residual

ambiguities. Furthermore, lines in real images are usually

not drawn from a uniform probability source, so there is lit-

tle engineering justification in using the average as a figure

of merit.

To avoid averaging, one might want to focus on the particu-

lar digital straight line that leads to the worst-case residual

ambiguity. But the worst cases relate to straight lines that

set very few pixels in the image, such as lines that traverse

the image near its corners. The ambiguity in the location of

such lines is not very interesting, so a better approach seems

to be to measure the worst-case residual ambiguity among

lines that intersect opposite sides of the image and set all

pixels in between.

A meaningful measure of (an infinite set of) straight lines

should be invariant to translation and rotation of the coordi-

nate system. A unique measure satisfying these require-

ments is known in the field of Geometric Probability [12].

Two important conclusions, informally rephrased, are that

patches of equal area in a (p,0) normal parameter space (but

not in the (m ,b) space!) correspond to (infinite) sets of lines

of equal measure, and that the measure of straight lines that

traverse a convex region is equal to the perimeter of the

region.

By the Geometric Probability measure of straight lines, the

worst-case residual ambiguity in the location of lines that

intersect opposite sides of the image and set all pixels in

between is clearly associated with digital lines that are

parallel to one of the axes of the grid, as shown in Figure 1.

The computation of the ambiguity is described with refer-

ence to Figure 2.
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Figure 1. The digital line that induces worst-case residual

ambiguity among lines that intersect opposite sides of the

image and set all pixels in between.

Figure 2. The geometric structures used for computing the

measure of straight lines that intersect both the segment AB

and the segment CD.

Let Lx denote the set of straight lines that intersect a

geometric feature X, and let Mx =M(LX) denote the meas-

ure of that set. The worst-case residual ambiguity is defined

as the measure of the set of lines that intersect both seg-

ments AB and CD:

Clearly, nLCD ^

(2)

r\LCDO- Furthermore,

-
 M

 (L/{BO u LCDO V>)
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But LMO u LCDO - LMCD > so

= MMO (4)

The triangles ABO and CDO, and the rectangle ABCD are

convex polygons, thus the measure of the lines that traverse

each of them is simply the respective perimeter. Hence,

/jV
2
) _ (2/N + 2)RDHT(N) = 2(l/N +

If TV is large the following approximation holds:

(5)

(6)

(7)

with the Digital Hough Transform with respect lo the

dependence of the effective resolution on the number of

accumulators. Relevant ideas and results from [6] are

presented and extended in the rest of this section.

Consider the Duda and Hart [2] algorithm, in which detec-

tion of collinear points is substituted by the detection of

sinusoid intersections. The voting process is intended to

produce at the accumulator array a discrete approximation

of the continuous-support Hough Transform /j(p,9) defined

as follows: Let p,- > 0 and 0 < 0,- < 2rc denote the polar

coordinates of any edge point p,- e P. Then every />,- e P

generates a sinusoid pj°(0) in the (p,6) parameter plane:

= p1cos(01-e) 0e[O,Tc). (8)

It is concluded that the resolution of the Digital Hough

Transform is such that the worst-case residual ambiguity

among lines that intersect opposite sides of the image and

set all pixels in between is approximately UN
2
 according to

the rotation and translation invariant measure of straight

lines. The required number of accumulators is asymptoti-

cally 3JV4/TI2.

ANALOG HOUGH TRANSFORM

By specifically tailoring the Hough algorithm to detect digi-

tal straight lines, one implicitly assumes that the discretiza-

tion of the image is the dominant source for errors in the

location of edge points. Very often this is not the case; the

accuracy of modern edge detectors largely depends on the

level of image noise, and can reach sub-pixel levels when

the signal to noise ratio is high. Thus "analog" Hough algo-

rithms, capable of detecting straight lines in the analog pre-

image, are useful.

In conventional Hough Transforms, errors in the coordi-

nates of data points were altogether ignored or believed to

be compensated by the quantization of the parameter space.

The shortcomings of that approach manifest themselves in

the spreading of peaks in the parameter space and in the

appearance of false peaks. These phenomena can lead to

considerable degradation in the performance of the Hough

algorithm in terms of detection capability and effective

resolution. Thus, the simplistic assumption that the resolu-

tion of conventional Hough algorithms is directly related to

the quantization density of the parameter space fails to

account for errors in the location of edge points.

Variants of the Hough Transform that provide compensa-

tion for errors in the location of data points have been avail-

able for some time, but have usually been difficult to

analyze. Recently, Kiryati and Bruckstein [6] studied an

extended Hough Transform [15] that provides compensa-

tion for edge-point location errors, and using a signal-

theoretic analysis were finally able to show how its resolu-

tion depends on the quantization of the parameter space, i.e.

on the number of accumulators. This algorithm is thus an

"analog" Hough Transform that is convenient to compare

An indicator function is associated with each sinusoid:

Q f l p = Pi°(0)
h (P.9) = 1 0 otherwise

(9)

Summing up the indicator functions yields the continuous-

support Hough Transform:

h (p,9) is a discontinuous - hence non-bandlimitcd - func-

tion. This is not changed by the spatial-dependent transfor-

mation inherent in the voting process. It is well known that

due to aliasing effects a non-bandlimited signal cannot be

properly represented by a discrete set of samples.

This basic inadequacy in the algorithm was studied in depth

[6]; the key to the solution is the replacement of /i(p,0) by

an "almost" bandlimited function, such that "sufficient"

parameter-space sampling can be carried out. Interpolation

by an appropriate low-pass filter then allows high resolution

search for maxima in the parameter space. The smoothing

of h (p,0) must be performed before sampling, in a way that

preserves the useful properties of the algorithm in line

detection, and in a computationally feasible manner.

In particular, it has been suggested [6,15] that the indicator

function (9) be replaced by

where C(-) is an "influence function" to be discussed in the

sequel. This results with a modified continuous-support

Hough Transform

(12)

z(p,9) can be point-sampled by assigning accumulators to a

discrete set of sampling points, and evaluating (12) only at

these points.

The replacement of (9) and (10) by (11) and (12) can be
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visualized as the replacement of the sinusoids in the Duda

and Hart algorithm by sinusoidal bands whose vertical pro-

file is C(-)- If C(-) has finite support, the algorithm remains

computationally feasible (and apt for parallelization).

The introduction of the influence function C Q into the

Duda and Hart algorithm is equivalent to surrounding each

edge-point by a circularly symmetric density distribution

(which is the inverse Abel Transform of the influence func-

tion) and replacing the Duda and Hart Transform by the

Radon Transform. By choosing C(-) to be symmetric, posi-

tive, reasonably "well behaved" and of finite support

(-rm ,rm), the useful properties of the algorithm are main-

tained, and compensation for location errors (limited to rm)

is provided.

Kiryati and Bruckstein [6] have shown that if C(-) is

bandlimited to (-com,com), then the modified continuous-

support Hough Transform z(p,9) is also 2-D bandlimited,

and can be fully represented by a discrete set of samples.

The uncertainty principle of signal representation dictates,

however, that the influence function C(-) and its Fourier

Transform cannot both be of "short duration". Since imple-

mentation of the modified Hough Transform implies an

influence function C(-) of finite support, the use of support

limited influence functions that have the smallest possible

"effective bandwidth" in a certain sense has been suggested,

e.g.

k cos{wl2rm) \r\<rm

(13)

where k is a constant. With k > 0 this influence function is

a positive, symmetric and monotonically decreasing func-

tion of I r I. Furthermore, it has the smallest possible effec-

tive bandwidth (in the sense of the second order energy

moment of its Fourier Transform) among all functions that

are support limited to rm.

With a support limited influence function which is also

effectively bandlimited, z(p,8) is effectively bandlimited,

has finite support in the p direction and is periodic in the 0

direction. Thus it can be represented by a finite set of point

samples with negligible aliasing. It has been shown that due

to the bow-tie shaped band-region of z(p,9), optimal sam-

pling of z(p,9) is on an hexagonal grid, and sampling on a

rectangular grid doubles the sampling requirement, i.e. the

required number of accumulators.

Assuming a circular image of radius p m , Kiryati and Bruck-

stein [6] have shown that the minimum required number of

accumulators is

amj )+3)/it (14)

where \_x J is the largest integer equal to or smaller than x.

To compare with the Digital Hough Transform a unit square

image is considered. A unit square circumscribes a circle of

radius 0.5 and is inscribed in a circle of radius ^2/2. Rea-

sonably assuming rm « 1, it immediately follows that AA,

the minimum required number of samples in this "analog-

type" Hough Transform satisfies

AA=a
2n

(15)

where 0.5 < a < 1 is a constant. Using the influence func-

tion (13) and the convention that its effective bandwidth is

triple the square root of the normalized second order energy

moment of its Fourier Transform,

a>n=3n/2rm. (16)

Therefore, the minimum required number of accumulators

is:

9n
AA=a

8/, 2 (17)

where rm is the radius of support of the influence function

C(-), and represents the ambiguity in the location of the

data points. Hence, the resolution of this version of the

Hough Transform is upper-bounded either by the assumed

magnitude of edge-point location errors (forcing certain rm

and AA) or by the available number of accumulators AA,

forcing rm to be larger than a certain minimum.

To compare with the Digital Hough Transform, we proceed

to determine (in terms of rm, and through (17) in terms of

AA) the worst-case ambiguity in lines that intersect opposite

sides of the image and set all pixels in between. As in the

case of the Digital Hough Transform, the worst-case

corresponds to lines that are parallel to one of the image

sides and yield collinear edge-points. See Figure 3.

Figure 3. In the Analog Hough Transform [6], the worst-

case ambiguity among lines that intersect opposite sides of

the image and set all pixels in between is associated with

lines thai are parallel to one of the coordinate axes.

If rm « 1 as assumed, one can simply substitute

VN=2rm

in (7), to obtain

(18)
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(19)

This means that the resolution of this Analog Hough

Transform is such that the worst-case ambiguity among

lines that intersect opposite sides of the image is approxi-

mately 4r£ according to the rotation and translation invari-

ant measure of straight lines. The minimum required

number of accumulators is 9a%/&r£, where 0.5 < a < 1 is a

constant. (Note that if the errors in the location of the data

points are mainly due to digitization, choose rm ~ 1/2N ).

CONCLUSIONS

In this paper digital and analog Hough algorithms are com-

pared. The Digital Hough Transform is aimed at detecting

digital straight lines; it implicitly assumes that the discreti-

zation of the image is the dominant source for edge-point

location errors. When the image is corrupted with noise, or

when edge detectors capable of sub-pixel accuracy are

employed, that assumption is not valid. The term "Analog

Hough Transform" refers to algorithms that are aimed at

detecting straight lines in the analog "pre-image". In partic-

ular, the digital approach is advocated by [1]; analog Hough

algorithms are represented by the algorithm of [6].

The comparison is made in terms of the relation between

the achievable resolution in each of the approaches as a

function of the number of accumulators. In the Digital

Hough Transform, the resolution and the required number

of accumulators are fixed and governed by the dimensions

of the digital image, which can only be coarsely modified

by decimation. In Analog Hough Transforms the number of

accumulators (and the resulting resolution) can be set by

design according to specifications.

Resolution is defined in terms of the worst-case ambiguity

in the location of straight lines that intersect opposite sides

of the image and set all pixels in between. Ambiguity is

measured by the translation and rotation invariant measure

of straight lines [12]. A similar approach was used in [5] to

quantitatively evaluate digitization schemes. Worst-case

analysis is convenient and usually meaningful in terms of

engineering specifications.

In the Digital Hough Transform of an NxN image the

ambiguity RDHT(N) is given by (7), and AD(N), the

required number of accumulators, is given by (1). Asymp-

totically,

AD(N) a (20)

In the Analog Hough Transform (of [6]) the ambiguity

RAHT is given by (19), and AA, the minimum required

number of accumulators is given by (17). It follows that

AA a lIRurr. (21)

The comparison between (20) and (21) reveals that, in high

resolution applications, the Analog Hough Transform is

markedly superior to the Digital Hough Transform in terms

of the resolution that an added accumulator "buys".

In the Digital Hough Transform the tessalation of the

parameter space is very non-uniform, meaning that certain

digital lines correspond to small sets of lines in the pre-

image, while other digital lines, that constitute the worst-

case, correspond to large sets of lines in the pre-image. The

"Muff Transform [17] is a variant of the Hough Transform

that has some "digital flavour", yet achieves better unifor-

mity in the tessalation of the parameter space. An important

contribution of [1] is in providing a conceptual link between

the theory of Digital Geometry and Hough Transform

research.
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