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Abstract. Artificial intelligence (AI) and machine learning, in particular, have gained
significant interest in many fields, including pharmaceutical sciences. The enormous growth
of data from several sources, the recent advances in various analytical tools, and the
continuous developments in machine learning algorithms have resulted in a rapid increase in
new machine learning applications in different areas of pharmaceutical sciences. This review
summarizes the past, present, and potential future impacts of machine learning technologies
on different areas of pharmaceutical sciences, including drug design and discovery,
preformulation, and formulation. The machine learning methods commonly used in
pharmaceutical sciences are discussed, with a specific emphasis on artificial neural networks
due to their capability to model the nonlinear relationships that are commonly encountered
in pharmaceutical research. AI and machine learning technologies in common day-to-day
pharma needs as well as industrial and regulatory insights are reviewed. Beyond traditional
potentials of implementing digital technologies using machine learning in the development of
more efficient, fast, and economical solutions in pharmaceutical sciences are also discussed.
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INTRODUCTION: BIG DATA IN PHARMACEUTICAL
SCIENCES

There has been a remarkable increase in the amount of
data—including pharmaceutical data—that are generated
each day. The term “big data” has gained increasing interest
in various research areas. In addition, data-driven companies
currently show how various industries are able to profit from
the massive generation of data. Several definitions have been
proposed for the term “big data.” One of the widely
recognized definitions used is the “4 Vs” definition. The
definition was first proposed by Douglas Laney and encom-
passes “3 Vs” which consist of volume, velocity, and variety
(1,2). This definition was later extended by IBM to include
the fourth “V” for veracity (3). However, the reported
definitions of “big data” usually lack consistency and
quantification.

Because of its potential value, data has been considered
as the new oil (4,5). Textbooks and publications, social media,
user-generated content, electronic health records, genomics,
sensor networks, and many other types of data all form “big
data” and contribute to its diversity and complexity. The
remarkable increase in the amount of data can be attributed
to advancements in data storage and innovative technologies

(6). Almost 2.5 million new scientific papers are published
annually (7). In addition, there were more than 15,000
PubMed-reported publications on “pharmaceutical sciences”
in 2019 only (8).

Thus, “big data” in pharmaceutical sciences can be
viewed as both a challenge and an opportunity. The evolution
of artificial intelligence (AI), particularly machine learning
technologies in which computers can “learn” and perform
tasks, has improved the potential of using big data in
pharmaceutical sciences. The scope of this review is specific
to machine learning because, among all AI branches, machine
learning is the most currently used AI technology in the field
of pharmaceutical sciences. Other AI fields, such as natural
language processing (NLP), expert systems, and robotics, are
becoming very popular in many healthcare settings, such as in
the diagnosis of diseases, patient monitoring, and robotic
surgeries (9,10). These methods, however, have not yet
received as much attention as machine learning in pharma-
ceutical sciences settings. The aim of this review is to
summarize the past, present, and potential future impacts of
machine learning on different areas of pharmaceutical
sciences, including drug design and discovery, preformulation,
and formulation. This review covers different machine
learning algorithms that are commonly implemented in
different areas of pharmaceutical sciences, with a special
emphasis on the use of artificial neural networks (ANNs).
Notably, compared with other machine learning methods,
ANNs have displayed superior performance in various
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pharmaceutical settings, as will be discussed in the following
sections.

PRINCIPLES OF AI AND MACHINE LEARNING

Despite its long history, as will be discussed below, there
is still no standard definition of AI. However, mimicking
human intelligence using computer systems is the basic
concept of AI. The physiology and function of neurons in
the brain inspired Warren McCulloch and Walter Pitts (1943)
to propose a computational model of artificial neurons.
Similar to human neurons, artificial neurons are characterized
by being “on” or “off” in response to sufficient stimulation
from neighboring neurons (11). The term “artificial intelli-
gence” was officially introduced by John McCarthy at the
Dartmouth conference in the summer of 1956 (12). Since
then, AI has had cycles of success as well as so-called “AI
winters” (13). Recently, AI has significantly advanced and
gained increasing interest in a wide range of fields, including
healthcare (14), engineering (15), and transportation (16).
This increased focus on AI applications has been fueled by
the growing availability of big data in healthcare and the
rapid advancement of numerous analytical techniques (10).

Machine learning is a popular AI technique (Fig. 1)
whereby computers can accurately adapt or modify their
actions (e.g., making predictions). Machine learning algo-
rithms can be classified into two major categories: supervised
learning and unsupervised learning (17). In supervised
learning, the algorithm uses generalizations to respond
appropriately to a set of training examples. Training examples
are input-output data that are provided in the dataset to be
learned. Because the output data here are known to be the
correct responses (or correct answers), they are termed as
“targets.” The machine learning model eventually aims to
predict an output that is closer to the target.

Examples of supervised machine learning methods
include regression analysis, support vector machines (SVMs),
random forests (RF), and ANNs. Unsupervised learning is
based on feature extraction methods in which no examples
are provided (17), such as principal component analysis
(PCA). Some supervised machine learning models may also
support unsupervised machine learning models such as SVMs
and ANNs (18). Table I shows a comparison of several
machine learning methods commonly used in pharmaceutical
research. Linear regression, ANNs, KNN, SVM, DT, and RF
are common machine learning methods used in pharmaceu-
tical sciences; PCA is considered as an unsupervised dimen-
sionality reduction technique usually integrated into
computing transformation of unlabeled data to find a lower-
dimensional set of axes (12). Although PCT may be
considered as a statistical technique used to analyze multidi-
mensional data, it is usually incorporated as a preprocessing
tool in machine learning (19).

In addition, there are other machine learning methods
used in pharmaceutical sciences such as the fuzzy logic
algorithm. In this method, reasoning with logical expressions
is used to describe membership in fuzzy sets (12). This
method has the advantage of eliminating the need for expert
knowledge regarding the system, considers the noise in the
data, and produces easily interpretable predictions (20).
Fuzzy logic algorithm provided good prediction models for

analyzing gene expression data (20). Additionally, genetic
algorithm (GA) is a population-based method commonly
used as an optimization technique. This algorithm also offers
the advantage of modeling nonlinear relationships. In phar-
maceutical research, GA is mainly used in quantitative
structure-activity relationship (QSAR) studies as a feature
selection tool (21,22). Recently, there is an emergence of
several novel machine learning applications in pharmaceuti-
cal settings using non-conventional machine learning tech-
niques such as light gradient boosting machine (lightGBM).
This method has offered numerous useful features as
compared to the other classic machine learning methods as
shown in Table I.

Furthermore, an emerging machine learning technique is
the transfer learning. Transfer learning is based on reusing a
pre-trained model in order to build a new, improved model to
address the intended target (23). In transfer learning, a
relatively large dataset size of the original model is an
important determinant for optimum transfer learning perfor-
mance. Important recent progress of using transfer learning
has been achieved in the field of pharmaceutical sciences (24)
as will be discussed in a following section.

Moreover, machine learning models can be classified into
two categories: parametric and nonparametric models
(Table I). Parametric models summarize data with a set of
constant number of parameters (regardless of the number of
training examples), whereas nonparametric models are de-
pendent on the number of parameters and therefore on the
number of training examples (12). Table I summarizes the
common parametric and nonparametric machine learning
methods encountered in different drug research and devel-
opment studies. Note that each of these machine learning
methods may have further subtypes, and a general compar-
ison among these models can be unfair. For example,
although certain machine learning methods may require large
datasets, an optimum dataset size is usually lacking. The
reader is encouraged to refer to the cited references for
details. Additionally, no machine learning method is generally
considered superior to all others, and each problem (classi-
fication or regression) should be addressed individually.

Artificial Neural Networks

ANNs are biologically inspired computational models
that mimic the brain’s ability to learn by example (Fig. 2).
Our brains consist of billions of processing units called
neurons. These neurons are fully interconnected through an
enormous number of synapses that connect one neuron to
another (34). A biological neuron consists of a cell body that
contains a nucleus and controls cell activities, dendrites,
which compose the fine threads among neurons and carry
the information to the cell, and axons, which consist of one
long thread that transports information to the next cell (34).

Similar to human neurons, ANNs consist of artificial
neurons or processing elements (PEs) that are connected via
coefficients (weights) (34). A typical ANN (Fig. 2) consists of
three main structural components: input, hidden, and output
layers. The first layer of an artificial neuron is the input layer,
which corresponds to the dendrites of the biological neuron
and transfers information to the next layer. The following
layer is the hidden layer, which is the middle layer between
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the input layer and the output layer. The hidden layer
connects these two layers through certain coefficients
(weights). Each hidden layer consists of a number of neurons
(also called nodes). The choice of the number of neurons in
the hidden layer of ANNs is generally achieved by a trial-and-

error approach (35). Although there is no definite number of
neurons to be used, using too few neurons in the hidden layer
may result in a reduction in the ANN learning ability,
whereas too many neurons in the hidden layer may result in
the memorization or overfitting of the training data,

Fig. 1. Schematic showing the relationship between AI, machine learning, and artificial neural
networks (left), and a number of applications of artificial neural networks in pharmaceutical
sciences (right)

Table I. Comparison of Different Machine Learning Methods Commonly Used in Pharmaceutical Research* (12,17,25–33)

Machine learning
method

Learning
algorithm

Machine
learning model

Learning
problem

Dataset size Advantages Disadvantages/limitations

Linear regression Supervised Parametric Regression Varies (25) Easy implementation Applicable only for linear modeling
Artificial Neural

Networks
(ANNs)

Supervised
and
unsupervised

Parametric Classification
and
regression

Large Modeling complex
nonlinear relationships

Overfitting/underfitting
Relatively slow training time

K-Nearest
Neighbor
(KNN)

Supervised Nonparametric Classification
and
regression

Large
(dependent
on noise
level in
data)

Simple and easy to implement
with single pre-defined
parameter
(i.e., the number of nearest
neighbors)

Intolerant of noise

Support
vector machine
(SVM)

Supervised
and
unsupervised

Nonparametric Classification
and
regression

Small Able to represent
complex functions

Offer resistant to overfitting

Relatively slow training time
High complexity of
the model
Long computing time

Decision
tree (DT)

Supervised Nonparametric Classification
and
regression

small Easier than RF
Can deal with noisy
and missing data
Fast

Unstable. Its performance can be
affected by slight variations in
the training data

Random
forest (RF)

Supervised Nonparametric Classification
and
regression

large Similar to decision trees
in addition
to its capability to
overcome overfitting

Complex

Principal
Component
Analysis (PCA)

Unsupervised Feature
extraction

Classification
and
regression

Large Reduces the dimensionality
of multivariate data while
maintaining the relevant
information in the original
dataset

It assumes Gaussian
distribution of data which might
limit their use if data are not
normally distributed such as gene
expression data

LightGBM** Supervised Nonparametric Classification
and
regression

Large Fast training speed
High efficiency and accuracy

Sensitive to overfitting

*Note that this table presents a general comparison of the different machine learning methods commonly used in drug research and
development. Different methods may have relative variations compared with other methods
**LightGBM is an emerging machine learning method recently been implemented in pharmaceutical sciences
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ultimately decreasing the generalization ability of the ANN.
Thus, the number of hidden neurons in the neural network
that will give the highest correlation coefficient (r2) and
lowest error (i.e., the minimum difference between observed
and predicted values) should be selected as the optimal ANN.
The final layer of an artificial neuron is the output layer,
which consists of the outputs (targets). Moreover, by
examining the magnitude of the ANN connection weights,
ANNs can provide quantitative estimates of the relative
importance of the input variables for the output in question
(36). Figure 2 illustrates a schematic representation of a
typical biological neuron (a) and an ANN (b).

The process of designing a neural network that can learn
to ultimately solve a problem occurs through iterative use of
examples with known answers (targets). This process is called
learning or training. The learning/training process as illus-
trated in Fig. 2 starts with receiving signals (inputs) from the
input layer. These inputs are multiplied by connection weights
and summed in the hidden layer. The results are then sent to
the output layer through a transfer function. Several activa-
tion functions are available including identity, logistic, tanh,
and exponential functions (17,37). The sigmoid function is a
commonly used activation function in pharmaceutical re-
search. During neural network learning, a process called
“error back-propagation” is usually implemented (38). In
back-propagation, the weights are adjusted to minimize the
error between the calculated (predicted) output and the
observed (target) output.

ANNs are particularly powerful in modeling nonlinear
relationships and can make highly accurate predictions due to
their ability to analyze complex data primarily based on
generalization and pattern recognition (39,40). Nevertheless,
some challenges with using ANNs can be encountered, such

as trapping at local minima, controlling noise, and overfitting/
underfitting. To avoid local minima and control noise, a time-
invariant noise algorithm (TINA) can be implemented (41).
In addition, there are various ways to overcome overfitting/
underfitting problems, including splitting the data into
training and validation sets (42). This technique can reduce
overfitting. Moreover, stopping the training process at the
right point can also prevent both overfitting and underfitting
(17). Figure 3 illustrates the optimum stopping point for ANN
training.

From ANNs to Deep Learning

DL is a machine learning technique that is also a
representation learning method (43). The state-of-the-art of
DL methods includes recent advances in neural networks.
The major difference between ANNs and DL is that DL
includes larger numbers of hidden layers (usually more than
three), and each layer comprises many more nodes. There-
fore, DL uses multiple levels of representations that can
ultimately learn very complex functions. Generally, DL
requires very large training sets, which may limit the use of
such methods. There are different types of neural network
architectures in DL, including convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and fully con-
nected feed-forward networks, which have been comprehen-
sively discussed elsewhere (44). DL has become very popular
and has gained interest in diverse research areas of pharma-
ceutical research such as in pharmaceutical formulation
development (45), drug discovery (46), and drug repurposing
(47). Their predictability and generalization performance are
generally better than that of other machine learning methods,
such as SVMs and RFs (45). This can be due to the

Fig. 2. Schematic of a typical biological neuron (a), and an artificial
neural network (b)
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improvements in algorithms, computers, and the availability
of large datasets. Specific DL applications in pharmaceutical
sciences is an interesting topic for future reviews.

APPLICATIONS OF MACHINE LEARNING IN
PHARMACEUTICAL SCIENCES

Machine learning has been utilized in different pharma-
ceutical applications from the early stages of drug discovery
to the late phases of drug development. The following
sections present three major areas of pharmaceutical sciences
that have witnessed a considerable use of ANNs together
with a number of other machine learning methods. These
studies can be categorized into drug design and discovery,
preformulation, and formulation studies.

Machine Learning in Drug Design and Discovery

Drug discovery accounts for a significant share of the
machine learning applications in pharmaceutical sciences,
mainly due to the use of high-throughput screening, combi-
natorial chemistry, and computer-aided drug design (45,48).
One of the early areas in which ANNs were applied is QSAR
studies (49–51). The QSAR approach correlates the physico-
chemical properties of a compound with the corresponding
chemical or biological activities (52,53). The most commonly
used physicochemical properties in QSAR studies include
molecular weight, partition coefficient (logP), and hydrogen
bonding capacity. Because QSAR studies usually involve
complex and nonlinear characteristics, ANNs were among the
best available QSAR modeling tools. Additionally, due to
their usefulness and success, the importance of neural
networks has continued to grow in drug discovery with the
rapid rise of QSAR studies based on ANNs (54). Table II
summarizes several input-output data used to build various
machine learning models in different QSAR studies.

Machine Learning in Pharmaceutical Preformulation

Preformulation is the stage of drug development in
which the physicochemical properties of a drug substance

are assessed. Determining the physicochemical properties of
a drug substance is very important because it governs various
parameters, such as its solubility, stability, interaction with
excipients, and ultimately, bioavailability (62).

Determining the aqueous solubility of a new drug
substance is an essential first step in preformulation. Any
drug to be absorbed must possess a certain degree of water
solubility. This is true for oral, parenteral, ophthalmic, topical,
and other routes of administration. Various solubilization
techniques are used to improve the aqueous solubilities of
drug substances, such as using surfactant, complexation, salt
formation, using hydrotropes, or forming cocrystals
(36,63,64).

The in silico prediction of the aqueous solubility of drug
substances has gained significant interest using different
computational approaches, such as molecular dynamics
simulations (65) and machine learning techniques (36). For
example, Damiati et al. (2017) developed a machine learning
application using ANNs to predict the solubility enhancement
effect of several hydrotrope molecules. The input data
consisted of experimental data together with 10 physicochem-
ical properties (used as descriptors) related to 10 hydrotrope
molecules at different hydrotrope concentrations. The phys-
icochemical properties included logP, melting point, and
hydrogen bonding capacity. The developed ANN model was
subsequently used to predict the solubility enhancement of
another 16 potential hydrotrope molecules from an external
dataset. The trained model was also able to identify new
prospective hydrotropes for the drug molecule. In addition to
providing accurate predictions, by determination of the
connection weights, the developed ANN was able to provide
a quantitative assessment of the relative importance of
various physicochemical properties that are required for a
good hydrotrope (36). The reported use of ANNs in the
prediction of solubility enhancements for drug substances and
their successful use in other solubility applications in various
research areas (66,67) are encouraging for further exploration
of their potential uses in more pharmaceutical preformulation
research.

Moreover, based on the pharmacokinetic profile of a
drug substance, a suitable pharmaceutical formulation can be

Fig. 3. An illustration of the effect of overfitting/underfitting of the
data on the training and validation error curves showing the optimum
point where the training/learning process of ANNs should stop
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designed. As stated earlier, important progress has been
achieved in utilizing the emerging machine learning technique
of transfer learning in pharmaceutical settings. Ye et al. (2019)
developed an integrated transfer learning and multitask
l ea rn ing approach fo r the pred i c t i on o f four
pharmacokinetic-related properties, namely oral bioavailabil-
ity (BA), plasma protein binding rate (PPBR), apparent
volume of distribution at steady-state (VDss), and elimination
half-life (HL). Eight molecular descriptors have been used for
1104 approved drug molecules. Descriptors included molec-
ular weight, hydrogen bond donor count, hydrogen bond
acceptor count, rotatable bond count, topological polar
surface area, heavy atom count, complexity, and covalently
bonded unit count. The developed model showed good
performance and generalization ability compared to other
conventional machine learning techniques including partial
least-squares regression (PLSR), SVM, ANNs, RF, and KNN
(24). In preformulation studies, transfer learning is a prom-
ising machine learning approach for further exploration.

Machine Learning in Pharmaceutical Formulations

Another stage of drug development is the formulation of
pure drug substances into drug products to be administered
by patients. ANNs have gained significant interest in this area
and became the most popular machine learning tool in
pharmaceutical formulation prediction (45). Table III sum-
marizes numerous pharmaceutical researches that have been
performed utilizing ANNs (as the only method used or as an
approach that outperformed other machine learning
methods) in the area of pharmaceutical formulation develop-
ment in the past 20 years. This table compares these studies
from different machine learning aspects including the diverse
input-output data used, amount of data (dataset sizes), input
variables, and purpose(s). Notably, a large number of these
studies have utilized ANNs for the development and optimi-
zation of formulations and the prediction of formulation- and
process-related factors associated with different parameters,
such as drug dissolution and release. Additionally, the

Table II. Summarization of Input-Output Data Used to Build Various Pharmaceutical Machine Learning Models in Different QSAR Studies

Machine learning method* Learning algorithm Dataset size Inputs/descriptors Output(s)/purpose Reference

ANN
Linear regression

Supervised 30 5 molecular descriptors:
- water–accessible surface area
- polar surface area
- maximal electrostatic potentials
- ovality
- hydrophobicity (logP)

Prediction of tumor
specificity of
chemotherapeutic agents

(55)

ANN
SVM
DT
RF

Supervised 89 10 molecular descriptors related to:
- hydrophobicity
- electronic features
- topological features
- protein-inhibitor interactions

Prediction of
activity of HIV inhibitors

(56)

RBFNN
KNN
SVM
RF

Unsupervised and
supervised
for RBFNN
model and
the other models,
respectively

Twodatasets:
128 (Phenol
dataset)
105 (ROCK
dataset)

- For phenol datasets:
6 molecular descriptors (related 2D
and 3D descriptors such as log P).
- For ROCK datasets:
6 molecular descriptors
(related 2D descriptors such as ring
count)

Prediction of the biological
activity of various phenols
and Rho kinase (ROCK)
inhibitors.

(57)

ANN
Linear partial least squares (linear
statistical method)

Supervised 36 4 molecular descriptors:
- minimum bond
dissociation enthalpy
- electron transfer enthalpy
- proton affinity
- hydration energy

Prediction of antioxidant
activity of flavonoids

(58)

RF
ANN

Supervised 91 166 molecular
descriptors including:

- structure
- topology
- molecular connectivity index
- geometric descriptors

Prediction of
the carcinogenicity of polycyclic
aromatic hydrocarbons

(59)

ANN Supervised 33 6 molecular descriptors (related 2D
and 3D descriptors)

Prediction of anti-malarial
activity of imidazolopiperazine
compounds

(60)

ANN
SVM

Supervised 639 341 molecular descriptors
related to:

- simple constitutional
- topological indices
- electrotopological state indices
- charge-based
- hydrogen-bonding
descriptors

Prediction of nephrotoxicity
of traditional Chinese
medicines ingredients

(61)

*The top-ranked machine learning methods in each of these studies demonstrated better predictive ability than the other machine learning
methods tested. ANN artificial neural network, SVM support vector machine, DT decision tree, RF random forest, KNN K-nearest neighbor,
RBFNN radial basis function neural network

AAPS PharmSciTech (2020) 21: 206206 Page 6 of 12



optimization of formulations (including the optimization of
ingredients and/or operating conditions) using machine
learning tools—particularly ANNs—has provided consider-
able success and displayed great promise for future applica-
tions that usually require fast and efficient manufacturing.

Recently, non-traditional machine learning techniques have
been utilized in the development of in silico predictive models in
pharmaceutical formulation. LightGBM has recently shown high
potential predictive ability compared to conventional machine
learning methods in pharmaceutical formulation researches.
Zhao et al. (2019) compared lightGBM, RF, and DL for the
prediction of complexation free energy between cyclodextrins
(CDs) and guest molecules with a dataset consisting of 3000 data
points. Over 30 numerous descriptors related to the guest
molecule, CD, and experimental conditions have been imple-
mented in designing the machine learning models. LightGBM
showed better prediction performance compared to the other
models including RF and DL (33). Gao et al. (2020) also
implemented the lightGBM method for prediction of complexa-
tion performance of 341 drugs/phospholipid complex formula-
tions described by over 40 molecular descriptors related to the
properties of the drugs, solvents, and experimental conditions.
Compared with other conventional machine learning techniques
such as SVM and DT, lightGBM model showed the best
predictive performance for predicting drug/phospholipid com-
plexation (68). Also, in 2020, He and co-workers used lightGBM
to predict the particle size and polydispersity index (PDI) of
nanocrystals prepared by different methods. The dataset
consisted of 910 experimental size data and 341 PDI data under
various conditions and using various API-, stabilizer-, and
nanocrystal preparation-related descriptors. The prediction per-
formance of lightGBMwas better than that obtained from several
classic machine learningmethods including deep neural networks
(DNN), SVM, and DT for both size and PDI datasets (69). In all
these lightGBM studies, it has been proved that lightGBM is a
powerful and promising machine learning technique that can be
further explored in the future for various pharmaceutical
applications not only for its ability to provide accurate predictions
but also due to its capability to provide an informative assessment
of the importance of the input descriptors.

CURRENT AND FUTURE PROSPECTS

Benefits, Risks, and Efforts

In terms of applying AI and machine learning technol-
ogies in common day-to-day pharma needs, a number of
aspects are to be considered including the benefits, risks, and
efforts.

The benefits of machine learning applications in phar-
maceutical sciences are evident. This is true for both the
classic machine learning tools such as ANNs as well as for the
newly emerging tools such as lightGBM. Accelerating ad-
vances across the entire spectrum of the development of drug
substances and drug products by dramatically reducing the
timeline in unnecessary attempts is a substantial benefit of AI
in pharmaceutical settings. This may not only allow for
improving outcomes in less time, but it also can help to find
more efficient solutions in order to sustain manufacturing
efficiency and rapid throughput. In addition, depending upon
the therapeutic class, the problem of high drug attrition rates

(87) can be reduced. Thus, the high costs associated with drug
research and development processes can be significantly
reduced if performed in silico using data digitalization and
reduced extensive laboratory testing.

For instance, considering a real pharmaceutical problem
in which substantial efforts are needed is the problem of low
aqueous solubilities of drugs. It is estimated that approxi-
mately 90% of drug candidates in research and development
pipelines are poorly water-soluble (88). Considering that only
small quantities (< 50 mg) of a drug substance exist in early
preformulation (62), determining the baseline solubility and
subsequently the optimum solubilization technique for each
drug substance may require extensive screening and labora-
tory work, as well as substantial resources. If well-trained and
well-validated machine learning models can be incorporated
in such settings, only drug candidates that show positive
results in silico may then undergo laboratory testing. Thus,
successful drug candidates can ultimately reach the intended
patient in less time and with less material waste.

Based on the type of data, there is an important
advantage of machine learning is that no restrictions are
encountered while implementing machine learning algo-
rithms. Different types of data, including binary classification,
multiple classes, and continuous data all can be modeled and
analyzed by machine learning. Moreover, machine learning
models may be used individually or in combination. Com-
pared with traditional statistical models, a number of machine
learning technologies (e.g., ANNs) offer the advantage of
modeling complex and nonlinear relationships that are
frequently encountered in pharmaceutical sciences. Tradi-
tional models are usually used to find inference about
relationships in the data, whereas machine learning models
are designed to model complex relationships which can
ultimately produce accurate predictions. For example, the
nature of the solubilization effect using hydrotropes is
complex, nonlinear, and do not follow a constant pattern
(36). Traditional statistical tool would not be able to provide
accurate predictions for the solubilizing effect of these
systems, whereas machine learning models not only were
able to produce highly accurate predictions, but also proved
to be powerful tools that can provide useful insights into the
relative importance of the different input features in deter-
mining the outputs by interrogation of the connection
weights. In addition, the machine learning approach also
provided valuable insights that eventually lead to the
identification of new prospective solubilizing compounds (36).

The quality of data is one of the challenges that must be
considered when using AI and machine learning in the pharma-
ceutical sciences. Quality encompasses the consistency, reliability,
accuracy, availability, and accessibility of the data. The dataset
size also should be considered. Small dataset size can be modeled
using simple machine learningmethods; if the dataset size is large
and more complex to be modeled using simple machine learning
methods, the advanced ANNmodels based on DL approach can
offer a potential solution. Other challenges that must also be
considered include the training/learning time, underfitting, and
overfitting. Therefore, the risk of applying unreliable machine
learning models can be eliminated if these challenges were
appropriately considered, and well-trained and well-validated
machine learning models were carefully designed. Hence,
digitalizing pharmaceutical data using AI may require domain
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Table III. Summarization of Input-Output Data Used to Build Various ANN Models in Different Pharmaceutical Formulation Studies

Dataset size Inputs/variables Output(s) Purpose Reference

125 19 variables related to:
- the composition of the formulations
- the processing conditions

- Time taken for 10% of
the drug to be released
- Time taken for 90% of
the drug to be released

Prediction of the most important formulation and
processing variables contributing to the in vitro
dissolution of sustained-release (SR) minitablets

(70)

Two datasets: 154
(for synthetic
samples)

169 (for
pharmaceutical
samples)

- 5 principle components
for synthetic samples

- 6 principle components for
pharmaceutical samples

Concentrat ions of 3
vitamins in synthetic and
pharmaceutical samples

Prediction of vitamins
in synthetic and pharmaceutical samples

(71)

30 3 input variables:
- acid concentration
- acid solution to chitin ratio
- reaction time

Percentage production
yield of glucosamine

Prediction of glucosamine production yield from
chitin under various reaction conditions

(72)

180 4 input variables related to different formula
ingredients:
- Methocel® K100M
- xanthan gum
- Carbopol® 974P
- Surelease®

In vitro dissolution time
profiles at six different
sampling times

Development and optimization
of sustained-release salbutamol
sulfate formulation

(73)

300 5 input variables related
to 5 active ingredients and excipients
(three physical–chemical properties of
active ingredients in addition to two
formulation factors):

- solubility
- mean particle size
- specific surface area
- the weight ratios of microcrystalline
cellulose
- the weight ratios of magnesium stearate

Tablet tensile strength
and disintegration
time before and after
accelerated test

Prediction of responses to
differences in quantities of excipients
and physical–chemical properties of
active ingredients in tablets

(74)

327 6 input variables related to 14 active
ingredients:
- melting point
- solubility
- specific surface area
- mean particle size
- size distribution
- contents of APIs

- Tablet tensile strength
- Disintegration time

Prediction of the contribution
of different physicochemical
properties of APIs to tablet properties

(75)

15 3 formulation factors:
- weight ratio of drug to lipid
- the concentration of polymer
- the concentration of surfactant

- Drug loading
efficiency

- Mean particle size

Optimization of controlled-release
nanoparticle formulation

(76)

45 3 input variables:
- chitosan (Cs) concentration
- potasodium tripolyphosphate (TPP)
concentration
- mass ratio of Cs and TPP

- Nanoparticle size
- Percentage yield

Optimization of formulation
parameters of chitosan-tripolyphosphate nanopar-
ticles

(77)

43 7 input variables:
- alginate percentage
- concentration of CaCl2 solution in the
emulsion
- percentage of Tween™ 85 in the emulsion
- percentage of Tween™ 85 in the receptor
bath
- flow rates of alginate
- flow rates of emulsion
- frequency of vibration

- Shape
- Oil content
- Oil distribution

Optimization of encapsulation
of active pharmaceutical
ingredients (API) for efficient delivery
of hydrophobic compounds

(78)

20 3 input variables:
- the amounts of drug
(pilocarpine hydrochloride)
- the amounts of bile salt

(sodium deoxycholate)
- the amounts of water

Entrapment efficiency Optimization of ocular formulation of flexible nano-
liposomes containing pilocarpine hydrochloride

(79)

16 3 input variables:
- amount of oil
- amount of surfactant
- amount of co-surfactant

Minimal globule size Optimization of self-emulsifying
drug delivery system

(80)
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experience and the ability to train algorithms; each machine
learning method should be implemented “task specifically.”

AI and Pharma Industry

The pharmaceutical industry would greatly benefit from
the use of AI and machine learning, due to its wide range of
applications as discussed in this review. From proof of
concept to product evaluation and marketing, AI can be
applied to nearly every aspect of drug development.

With the long-standing figures of an average of $2.6 billion
and over 10 years to develop new medicines (89), AI can offer a
substantial investment to hasten and improve this process. In the
last 10 years, there is a remarkable growing number of
pharmaceutical companies and startups usingAI in drug research
and development. A number of pharma companies either
collaborated with or acquired AI technologies such as Novartis
and Pfizer with IBM Watson (90). Mak and Pichika (2019)
provided a comprehensive list of AI and pharmaceutical
companies and the corresponding collaboration areas in drug
development such as drug repurposing, personalized medicine,
and drug discovery (91). Other areas where pharma companies
have been actively investigating inAI applications include process
automation, robotic manufacturing, and targeted marketing (90).
Investing in data management and AI power can sustain
manufacturing efficiency and rapid throughput of data digitaliza-
tion which is powered by advancing algorithms as well as the
availability of the diverse, complex, and large amount of data. AI
may, therefore, improve decision-making and eventually create
new and better medicines. Nonetheless, it has been reported that
AI has not yet influenced the pharma industry significantly due to
several reasons/challenges suggested by Henstock (2019) includ-
ing data management (e.g., managing diversity and large amount
of data), finding solutions for a large number of problems,
insufficient skillsets, shifting towards alternatives to traditional

scientific approaches, and lack of investments. To overcome these
challenges, the author also suggested internal investment in data
management and AI talent (90).

Mary and co-workers in 2019 conducted a survey-based
study to clarify and understand the adoption and effect of AI
in pharmaceutical and biotechnology companies. Across 217
organizations, a number of important AI activities have been
identified including the use of AI for patient selection and
recruitment for clinical trials, in addition to identification of
medicinal products data gathering. Major factors for not
utilizing AI technology have been identified including lack of
skilled staff, safety, regulatory, and compliance concerns, and
budget constraints (92).

Regulatory and Recommendation Insights

In terms of regulatory and recommendation insights,
Food and Drug Administration (FDA) recently published a
discussion paper “Proposed Regulatory Framework for
Modifications to Artificial Intelligence/Machine Learning
(AI/ML)-Based Software as a Medical Device (SaMD) -
Discussion Paper and Request for Feedback” which discusses
the current approach made to subject software as a medical
device driven by AI and machine learning to a premarket
review in order to ensure safety and effectiveness. Several
types of changes/modifications which may have an impact on
users (including patients, healthcare professionals, and
others) using these softwares have been reviewed. For
example, changes/modifications related to re-changing the
inputs, training with new data sets, and change in the AI/ML
architecture. To ensure lifecycle safety and effectiveness from
its premarket development to postmarked performance, FDA
also proposed a total product lifecycle regulatory approach
for AI/ML-Based SaMD (TPLC) to acquire evaluation and
monitoring of a software product (93).

Table III. (continued)

Dataset size Inputs/variables Output(s) Purpose Reference
8 2 formulation variables:

- ratio of carrier to coating
- type of solubilizing agent

Amount of API resealed
in 10 min and 30 min

Development of a new liquisolid formulation (81)

160 160 NIR and Raman spectral data
of each of intact tablets

Dissolution of the tablets Prediction of the in vitro
dissolution of pharmaceutical tablets

(82)

29 4 formulation and process variables:
- microcrystalline cellulose concentration
- sodium starch glycolate concentration
- spheronization time
- extrusion speed

- Drug release
(at 15 min, 30 min,
45 min, and 60 min)

- Aspect ratio
- Yield

Prediction of the effects of formulation
and process variables on drug release

(83)

144 Amino acid composition of each monoclonal
antibody and different formulation conditions
(i.e., pH and salt concentrations)

- Melting temperature
- Aggregation onset
- Temperature
- Interaction parameter

Prediction of biophysical properties
of therapeutic monoclonal antibodies

(84)

32 4 input variables:
- concentration of shell material
- concentration of core material
- type of shell material
- type of core material

- Tensile strength
- Brittleness index

Prediction of powder compact ability
of tablets using core/shell technique

(85)

646 24 variables related to:
- formulation (including molecular weight,
melting point, hydrogen bonding for both
drug and polymer)
- experimental conditions
(including temperature, relative humidity,
and storage time)

Stability results Prediction of the physical stability
of solid dispersions

(86)
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Beyond Traditional Applications

The growing success of machine learning technologies,
particularlyANNs, inmany pharmaceutical settings showed great
potentials for the development of beyond traditional machine
learning applications. This trend has already begun in areas such
as drug and gene delivery. Therapeutic agents are often
transported into the cell using special transporter systems such
as cell-penetrating peptides (CPPs). The efficiency of CPPs is
usually investigated and screened based on extensive laboratory
work, which has recently been successfully performed in silico
using ANNs. The developed CPPs/ANN model provided highly
accurate predictions and informative assessments for 13 different
input features (94).Additionally, drug repurposing also can highly
benefit from these technologies (95).

At present, although the first AI-designed drug has not
reached themarket yet, there is an ongoing race to find a treatment
for the currentCOVID-19 pandemic.AI plays an important role in
the ongoing efforts by identifying potential molecules that could be
used as anti-COVID-19 drugs. For example, Benevolent AI
(96,97) reported the use of machine learning to identify drugs for
COVID-19 in which clinical trials are already underway.

CONCLUSIONS

Digitalizing pharmaceutical sciences is a very promising
area in which numerous AI and machine learning technologies
can be discovered and effectively employed. The growing
success of machine learning technologies in many pharmaceu-
tical settings shows great potentials for the development of
beyond traditional AI applications. In practice, the choice of the
machine learning method to be implemented may depend on
various factors, including the type of the data and the size of the
dataset. Therefore, the choice of which machine learning
method should be implemented can be considered task-specific.
With a sufficient amount of carefully curated data, building high-
value applications using advancingAI algorithmsmay become a
common practice that has the potential to solve many challenges
in drug research and development. It is likely that AI will
flourish a new era of digital pharmaceutical sciences with
efficient, fast, and economical solutions.
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