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Abstract

In this paper, we present a high data rate implementation of a digital predistortion (DPD) algorithm on a modern mobile

multicore CPU containing an on-chip GPU. The proposed implementation is capable of running in real-time, thanks to the

execution of the predistortion stage inside the GPU, and the execution of the learning stage on a separate CPU core. This

configuration, combined with the low complexity DPD design, allows for more than 400 Msamples/s sample rates. This is

sufficient for satisfying 5G new radio (NR) base station radio transmission specifications in the sub-6 GHz bands, where

signal bandwidths up to 100 MHz are specified. The linearization performance is validated with RF measurements on two

base station power amplifiers at 3.7 GHz, showing that the 5G NR downlink emission requirements are satisfied.

Keywords Digital predistortion (DPD) · 5G · GPU · Real-time · High data rate

1 Introduction

Modern wireless communications are continuously evolv-

ing to offer higher data rates to an ever-increasing number of

users. Owing to this, a high spectral efficiency is particularly

sought within the scarce radio frequency spectrum [9]. In

this context, higher-order symbol alphabets as well as more

wideband signals are beginning to be utilised. One recent

example is the fifth generation (5G) new radio (NR) stan-

dard [1], where the physical layer is based on orthogonal
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frequency division multiplexing (OFDM). The 5G NR stan-

dard specifies signal bandwidths up to 100 MHz in fre-

quency range (FR) 1 (sub-6 GHz), and up to 400 MHz in

FR2 (24-53 GHz).

These characteristics allow the increase of data rates in

the wireless transmission to a new level, but the transmit

(TX) chain requirements also become naturally tougher,

since the transmitters’ nonlinearities are excited more

aggressively. The main challenge in this context is the power

amplifier (PA), which is typically operated close to satura-

tion to ensure a high power efficiency [20]. At this point,

we can distinguish two distinct effects that are particularly

harmful for the PA: the high peak-to-average power ratio

(PAPR) of the transmit signal due to the random construc-

tive addition of different parallel subcarriers, and the wide

bandwidth of the signal, which excite the memory effects

present in the PA [2].

To avoid these undesired effects in the TX chain, a

backoff can be applied to the output power of the PA,

thus driving it in a more linear region, at the expense of a

reduction in the power efficiency, since it decreases as the

output power deviates from the 1 dB compression point [5].

Another more elegant solution is to make use of the so-

called digital predistortion (DPD). Digital predistortion [4,

14, 22, 25, 31] is a PA linearization technique that estimates
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the PA behavior and tries to invert it in a preceding stage.

Hence, the undesired nonlinear and memory contributions

at the PA output are minimized, while a high output power is

still reached and the power efficiency remains good. There

are many DPD models studied in the literature, most of

them being simplifications of the Volterra series, such as the

Volterra series with dynamic deviation reduction [10], the

generalized memory polynomial (GMP) [23, 24], and the

memory polynomial (MP) [8].

Literature has examples of such DPD algorithms being

implemented on FPGAs, such as [7, 17, 21, 28]. While

these works demonstrate favorable linearization perfor-

mances with real-time computing, the effort required by

FPGA programming is high. This is due to FPGA requir-

ing compile and synthesis for each code adjustment, and

these are time consuming tasks. As a consequence, in

this paper the high throughput computation is achieved

with a GPU. Previous works have shown that GPU imple-

mentations can achieve similar data rate performances as

the FPGA equivalents, with the added benefit of design

flexibility [18].

The software based DPD solution presented in this paper

provides real-time predistortion performance on an off-the-

shelf mobile CPU that has an on-chip GPU inside and a

modest TDP (Thermal Design Power) of 15 W. Such pro-

cessors are available e.g. inside fanless industrial PCs and

laptops [19]. On one hand, real-time filtering is achieved

by the high parallelism offered by the GPU, and on the

other hand by performing pipelined data transfer between

the CPU and GPU. The parallel processing offered by the

multicore CPU allows executing DPD coefficient learn-

ing concurrently with filtering. The software implementa-

tion is based on a dataflow programming environment [6]

that takes care of data transfer and synchronization bet-

ween the CPU cores and the GPU. The GPU code is writ-

ten in OpenCL for cross-platform portability, whereas the

DPD functionalities executed on the CPU cores are written

in C.

To support the proposed real-time implementation, two

independent experiments with two real PA measurement

setups have been conducted. To generate a tough nonlinear-

ity in the TX chain, we have excited the PAs with a transmit

signal of 100 MHz bandwidth and high PAPR. The PAs are

also operated close to their saturation points to achieve good

and realistic power efficiencies. The first measured PA is

designed to perform as the amplification stage of a band

78 local area (i.e. small cell) BS, with a transmit power

below +24 dBm. The second PA corresponds to a medium

range BS, with a transmit power below +38 dBm, in order

to show that the proposed technique is also capable of lin-

earizing higher power PAs. In this work, we have used the

error vector magnitude (EVM) and adjacent channel power

ratio (ACPR) metrics to test the in-band and out-of-band

linearization performances, respectively. In both cases, the

nonlinear and memory distortions are successfully sup-

pressed, satisfying the NR specifications and showing that

the proposed implementation is capable of linearizing the

target PAs in real-time.

The rest of the paper is organized as follows. Section 2

presents a mathematical description of the algorithm mod-

eling the nonlinear and memory effects of an arbitrary PA.

Stemming from this modeling, the implementation in the

GPU is carried out. Section 3 details the GPU implemen-

tation, having special emphasis on the asynchronous GPU

data transfer and DPD filtering. Section 4 introduces the

EVM and ACPR performance metrics, and follows with a

description of the RF measurement setup used to conduct

the two experiments. The tested PAs and their specific char-

acteristics are also presented. Section 5 presents the con-

ducted RF measurements, incorporating the local area BS

and medium range BS target PAs. For each case, we show

the PA nonlinear behavior with and without the proposed

linearization technique. Finally, Section 6 summarizes the

main findings of this work.

Mathematical Notation Throughout this paper, we adopt

complex-valued baseband modeling of the system. Matri-

ces are represented by capital boldface letters, e.g., A ∈

C
(M×N). Vectors are represented with lowercase boldface

letters, e.g., v ∈ C
M×1 = [v1 v2 · · · vM ]T . Ordinary

transpose, conjugate-transpose, and conjugation operators

are denoted by (·)T , (·)H , and (·)∗, respectively. Addition-

ally, the absolute value and ceil operators are represented as

| · | and ⌈·⌉, respectively.

2 Digital Predistortion Algorithm
Description

In this section, the decorrelation-based DPD algorithm

from [3], which is utilized in this work, is described.

Both the main and learning paths are detailed, where the

predistortion and coefficient estimation are carried out,

respectively. The MP model is adopted as the behavioral

identification model for this work, as it has been proven

to obtain high performance when modeling the nonlinear

behavior of real PAs in different scenarios [3, 15, 30].

However, we note that the learning solution described in [3]

supports any other Volterra-based model as well.

The complete scheme of the closed-loop DPD architec-

ture adopted in this work is presented in Fig. 1, where the

predistortion and learning stages are depicted. In this con-

text, x[n] is the original baseband signal, xDPD[n] is the

predistorted signal, and yRF(t) is the RF PA output signal, to

be finally transmitted with low levels of nonlinear distortion

thanks to the DPD operation.
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Figure 1 An illustration of the closed-loop decorrelation-based DPD scheme used in this work, showing both predistortion and learning stages.

The 1
G

factor (G being the estimated gain of the measurement loop) is obtained with a linear fitting LS technique in the digital domain.

Following this nomenclature, and considering a classical

MP PA model, we can express the complex envelope model

of yRF(t) as

yMP[n] =

P
∑

p=1

p odd

M
∑

m=0

ap,m x[n − m]|x[n − m]|p−1, (1)

where P is the polynomial order and M the memory depth

of the MP model, and ap,m contains the PA model coef-

ficients. This expression constitutes the base to formulate

the proposed decorrelation based DPD structure in the

following subsection.

2.1 DPD Processing

The main idea of the DPD algorithm is to inject weigh-

ted nonlinear basis functions (BF), similar to those in the

assumed PA model in (1), to the baseband signal, such

that the nonlinear distortion at the PA output is minimized.

Following this principle, the predistorter operation, as

depicted in Fig. 1, is formulated as

xDPD[n]=x[n]+

P
∑

p=1

p odd

M
∑

m=0

α∗
p,mx[n−m]|x[n−m]|p−1, (2)

where αp,m are the coefficients of the model. Note that this

double summation also includes an overlapping linear term

α∗
1,0 x[n], when p = 1 and m = 0, however it is omitted in

the DPD processing.

Naturally, this expression can be formulated with matrix

notations when processing over a signal block of length N ,

as

xDPD = x + X
[2:end]

BF,Q ααα∗, (3)

where x ∈ C
(N×1) = [x[n] x[n + 1] · · · x[n + N − 1]]T ,

ααα ∈ C
(⌈ P

2 ⌉(1+M)−1×1) contains the estimated coefficients of

the DPD model, and the matrix XBF,Q ∈ C
(N×⌈ P

2 ⌉(1+M))

is the set of orthogonalized basis functions of the transmit

signal, in this expression only containing the columns from

the second to the last. The orthogonalized BF matrix is

defined as

XBF,Q = XBFQ, (4)

where XBF ∈ C
(N×⌈ P

2 ⌉(1+M)) is the original, monomial,

basis function matrix defined as

XBF =
[

x1,0· · · xP,0 x1,1 · · · xP,1 · · · x1,M · · · xP,M

]

, (5)

with

xp,m =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0m

x[n]|x[n]|p−1

x[n + 1]|x[n + 1]|p−1

...

x[n + N−1−m]|x[n + N−1−m]|p−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (6)

and where 0m is a vector of m zeros. The matrix

Q ∈ C
(⌈ P

2 ⌉(1+M)×⌈ P
2 ⌉(1+M)) is an upper triangular

orthogonalization matrix with a one as its first element to

leave the first column of XBF (i.e., x1,0 = x) untouched, and

it is formally defined as

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 q1,2 q1,3 · · · q1,⌈ P
2 ⌉(1+M)

0 q2,2 q2,3 · · · q2,⌈ P
2 ⌉(1+M)

0 0 q3,3 · · · q3,⌈ P
2 ⌉(1+M)

...
...

...
. . .

...

0 0 0 · · · q
⌈ P

2 ⌉(1+M),⌈ P
2 ⌉(1+M)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7)

The orthogonalization is necessary because, in general, the

original BFs of the form x[n]|x[n]|p−1, p = 1, 3, 5, ... are
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highly mutually correlated, and this will slow down the

convergence speed in the coefficient learning process [11,

16]. In the proposed solution, a Cholesky decomposition-

based orthogonalization method is adopted to orthogonalize

the basis functions, as outlined for example in [16]. The

orthogonalization matrix Q can be precomputed based

on the statistics of the input signal x[n], and thus its

computation does not affect the real-time computing load of

the DPD system.

As a final item, the DPD main path processing complex-

ity of the predistorter is analyzed in terms of floating opera-

tions (FLOPs) per linearized sample. As similarly presented

in [3], the DPD main path computational effort can be

separated in two stages:

– BF generation −→ 3⌈P
2
⌉ − 1 FLOPs,

– Main path processing −→ 8⌈P
2
⌉(M + 1) − 2 FLOPs.

2.2 DPD Learning

In this subsection, we focus on the iterative estimation

of the coefficient vector ααα, to formulate an efficient

and computationally simple DPD learning solution. The

learning of ααα is based on the decorrelation principle, where

the correlation between the nonlinear distortion at the PA

output and the BFs representing the nonlinear distortion is

minimized.

Firstly, the linear signal component (i.e. x[n]) needs to

be subtracted from the observed PA output signal, hence

leaving only the distortion terms. Note that an estimate

of the complex linear gain of the measurement loop is

required, which can be easily obtained by utilizing some

linear estimation technique, such as least squares (LS).

Hence, the instantaneous error signal e[n] at time instant n

can be formulated as

e[n] =
y[n]

G
− x[n], (8)

where y[n] is the complex envelope of the measured PA

output signal, and G represents the estimated complex gain

of the measurement loop, which in this case is estimated

with linear LS fitting.

The learning principle is based on finding the DPD

coefficients that minimize the correlation between the non-

linearities at the PA output and the generated BFs. For this

purpose, a learning solution based on a least mean square

(LMS) algorithm [26, 27] is used. The block-adaptive

decorrelation-based DPD coefficient update at iteration i is

now formulated as [3]

αααi+1 = αααi − µα

(

eH X
[2:end]

BF,Q

)T

, (9)

where e ∈ C
(N×1) = [e[n] e[n + 1] · · · e[n + N − 1]]T

is the error signal vector, XBF,Q is the set of orthogonalized

BFs defined in (4), and µα is the learning rate of the LMS

algorithm.

This coefficient vector is then used in the predistortion

stage, within the N-size data block, to compensate for the

static nonlinearity of the PA. The process is then iterated

until convergence of αααi is reached.

The learning stage processing complexity, following the

block-adaptive filtering of size N used in the update, in

terms of FLOPs per N samples can be expressed as similarly

done in [3]:

– Gain estimation and scaling (G) −→ 18N − 4 FLOPs,

– DPD estimation −→ 2⌈P
2
⌉(M + 1)(4N + 1) FLOPs.

3 DPD Implementation

The decorrelation-based DPD was implemented targeting

a mobile Intel CPU that has an integrated GPU. Real-

time implementation needed to consider the fact that DPD

filtering has to run in real-time more or less continuously,

whereas the learning functionality can operate in the

background updating the DPD weights whenever required.

To this extent, the performance-critical filtering operation

was mapped to the integrated GPU, whereas learning was

left to be executed on a CPU core.

The targeted sample rate of the filtering operation was

set to 400 Msamples/s, which resulted in a final data rate

of 3.2 Gbytes/s considering that the numeric precision

was complex 32-bit float. Looking at Fig. 1, it can be

seen that the basis function generation (BF generation)

and orthogonalization (Orth.) are on the critical real-time

filtering path. Moreover, orthogonalization yields P − 1

signals, each having the data rate of 3.2 Gbytes/s. For P = 9

this means that, including the main signal path, the data

bandwidth between orthogonalization and filtering is 28.8

Gbytes/s. Such a data rate is not feasible for inter-circuit

communication, and for this reason the only viable choice

was to perform the BF generation, orthogonalization and

DPD filtering within one single GPU kernel (function).

Consequently, the input and output data rates of the

GPU remained at 3.2 Gbytes/s. The only drawback of

this function mapping was that the BF generation and

orthogonalization had to be performed redundantly in the

CPU-mapped DPD coefficient learning block. This has

some negative impact on the maximum coefficient update

frequency, as well as on power dissipation.

Figure 2 shows a Gantt chart of the real-time processing

of DPD filtering on the GPU for three sample blocks,

j = 0, 1, 2, each block consisting of 218 − 1 samples.

The processing schedule has been acquired from the GPU

programming API (Application Programming Interface)

and reflects real start and end times for each operation. The

J Sign Process Syst (2020) 92:475–486478
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Figure 2 Asynchronous GPU data transfer and DPD filtering of three sample blocks, j = 0, 1, 2.

Gantt chart has five lines, which are in top-down order as

stated below

1. Transfer of I samples to the GPU (i r)

2. Transfer of Q samples to the GPU (q r)

3. Joint BF generation, orthogonalization and filtering of I

and Q samples (BF gen orth filter)

4. Transfer of I samples from the GPU to the CPU (i w)

5. Transfer of Q samples from the GPU to the CPU (q w)

Therefore, the Gantt chart shows that

– Data transfer to/from the GPU necessarily needs to

happen in parallel with filtering to achieve the desired

sample rate.

– I and Q sample streams need to be transferred in parallel

for maximum performance.

– Both data read from the GPU and the filtering consume

a similar amount of time and hence together form the

performance limit.

The software description of the DPD was authored within

a dataflow computing framework [6] that provided support

for multiprocessing, GPU interfacing and synchronization

between CPU cores and the GPU. The DPD filtering func-

tion that was executed on the GPU was written in the

OpenCL language[29], which allows the filtering to be exe-

cuted on almost any modern GPU. The other functionalities

of the DPD were written in C language and executed on the

CPU cores.

The GPU-mapped part of the code was parallelized

in a straightforward way such that each complex input

sample is computed in a separate OpenCL work item.

Profiling of several GPU code versions revealed that the

best performance is achieved when orthogonalization and

filtering are computed jointly in a nested loop. This fastest,

yet redundant GPU code requires 448 FLOPs per complex

input sample, whereas the non-redundant version requires

322 FLOPs, but performs slightly worse.

4 Experimental Verification

For the purposes of verifying the operation of the imple-

mented DPD algorithm, series of tests were conducted.

First, the real-time capabilities of the algorithm were studied

by data rate performance testing. These tests were carried

out on two different CPUs with integrated GPUs. Addi-

tionally, the linearization performance of the algorithm was

tested with two PAs. In order to validate the performance,

the EVM and ACPR are used as figures-of-merit. The EVM

can be defined as

EVM =

√

√

√

√

√

√

√

√

K
∑

k=1

|smeas(k) − s(k)|2

K
∑

k=1

|s(k)|2

× 100 (%), (10)

where s(k) are the original data symbols, smeas(k) are the

measured symbols which have been equalized for any linear

distortion, and K is the total number of symbols over

which the EVM is calculated. Likewise, the ACPR can be

determined as

ACPR = 10 log10

(

Pmain

Padj

)

(dB), (11)

where Pmain and Padj are the measured powers on the main

and the adjacent channel of the PA output signal. In this

paper, the ACPR is given separately for the left and right

adjacent channels.

As a last comment, Table 1 gathers the BS configura-

tions, requirements, and limits specified in the 3GPP’s NR

BS radio transmission and reception standard [1].

Table 1 BS configurations,

limits, and requirements

according to the new radio

(NR) 3GPP standard [1]. There

is no upper limit for the

radiated power of the Wide

Area BS.

Type of BS TX power EVM limit (64-QAM) Absolute basic limit

Local Area ≤24 (dBm) 8% −32(dBm/MHz)

Medium Range ≤38 (dBm) 8% −25 (dBm/MHz)

Cat. A Wide Area – 8% −15 (dBm/MHz)

Cat. B Wide Area – 8% −13 (dBm/MHz)

J Sign Process Syst (2020) 92:475–486 479



Ethernet (2)

Figure 3 Experimental DPD setup used in the RF measurements.

Measurement Setup The linearization performance of the

implemented DPD algorithm was measured with the setup

shown in Fig. 3. The setup includes a laptop, which has

the Intel CPU incorporated, a National Instruments (NI)

PXIe-1082 chassis holding an NI PXIe-8880 embedded

controller, an NI PXIe-5840 vector signal transceiver

(VST), and the PA under test, connected to an attenuator.

The laptop is connected to the embedded controller via

an Ethernet cable. For the measurements, two PAs were

utilized: a Skyworks SKY66293-21 and an Analog Devices

HMC1114PM5E gallium nitride (GaN) PA. Both of the PAs

are featured in Fig. 4. The PAs were measured at 3.7 GHz,

where the SKY66293-21 typically provides 32.6 dB of gain

while the HMC1114PM5E provides approximately 33.8 dB

of gain. Due to their available output powers, the former

PA is aimed towards local area BS and the latter towards

medium range BS according to the new 3GPP NR standards

featured in Table 1. For the purposes of the measurements,

the output power of the SKY66293-21 was tuned to +22

dBm and the output power of HMC1114PM5E to +36 dBm,

which satisfy the local and medium range BS TX power

limits, respectively. At the same time, the transmit powers

are close to their respective upper limits, thus corresponding

to realistic, nonlinear, operation points.

The transmit signal is generated on the laptop computer,

and the signal is stored in a file for future use. The signal

used in the measurements is an NR FR1 compliant OFDM

signal with 100 MHz bandwidth, 64-QAM subcarrier

modulation, and 30 kHz subcarrier spacing. The native

minimum sampling rate for this configuration is 122.88

MHz, but for DPD processing an oversampling factor of

three is used, thus yielding a sampling rate of 368.64 MHz.

The signal generator also includes PAPR reduction based

on iterative clipping and filtering (ICF), and windowing to

reduce the spectral sidelobes of the OFDM signal. After

PAPR reduction, the generated signal has a PAPR of 7 dB.

The ICF technique also creates in-band distortion, such that

an EVM floor of about 4.8% is induced.

Figure 4 The PAs used in the

measurements. The figure on the

left corresponds to the Skyworks

SKY66293-21, and the figure on

the right shows the Analog

Devices HMC1114PM5E.

J Sign Process Syst (2020) 92:475–486480



Table 2 Computation platforms used for the DPD performance results. When presenting the number of cores, the first number refers to the

physical cores, and the number in the parenthesis to the virtual cores.

Tag CPU GPU OS/Compiler

HD Intel Core i7-6700HQ 2.6 GHz, 4(8) cores Intel HD Graphics 530 OpenCL 2.0, driver r3.0.57406 Ubuntu 18.04 g++ 7.3.0

NEO Intel Core i7-8650U 1.9 HGz, 4(8) cores Intel UHD Graphics 620 OpenCL 2.0, driver 19.17.12918 Ubuntu 18.04 g++ 7.4.0

After generating the baseband signal, the measurement

procedure is as follows. A block of the signal with length

N = 216 − 1 is sent to the embedded controller via a

TCP/IP connection, and then further forwarded to the VST

for transmission. The VST transmits the signal through the

PA and attenuator and finally receives it on the receiver

side of the RF front-end. The received signal is sent to

the embedded controller, which synchronizes the transmit

and received signals. For the purpose of improving the

SNR in the DPD estimation, the same block of signal is

transmitted five times, and the received signals are averaged.

The averaging is also computed on the embedded controller.

After the averaging is done, the signal is sent back to the

laptop via the TCP/IP connection. The laptop CPU saves the

received data on a file. The transmit and received signals are

then used to determine the weights on the CPU, and the next

block of signal is predistorted on the GPU using the newly

calculated weights. The predistorted signal is then sent to

the embedded controller for transmission. This loop is run

until the weights have converged.

5 Performance Results

In this section, we present the performance of the proposed

real-time DPD implementation. Specifically, we study the

achieved data rate with the CPU processors and the

nonlinearity suppression in terms of EVM and ACPR.

5.1 Data Rate Performance

The computation performance was benchmarked on two

mobile processors that have built-in GPUs. The first

processor was a 2015 Intel quad-core processor (’Skylake’)

with 45 W TDP, and the second one a 2017 Intel quad-

core (’Kaby Lake R’) with TDP of 15 W. The details of the

platforms around these processors are listed in Table 2.

Table 3 shows the learning and filtering performance

of the DPD with various transmission block sizes. It

can be seen that with the GPU of the HD platform the

filtering performance constantly increases with the block

size, approaching asymptotically 400 Msamples/s. With the

more recent GPU of the NEO platform, 400 Msamples/s are

achieved already with a block size of 217 − 1 samples, and

increasing the block size beyond 218 − 1 actually reduces

the achievable sample rate.

The GPU-mapped functionality of the DPD needs to

compute 448 FLOPs for each complex input sample to per-

form the filtering. On the HD platform, for block size 219−1

this equals to 180 GFLOPs/s. As the Intel product specifi-

cation [12] reveals that the maximum operating frequency

of the HD GPU is 1.050 GHz, and that the HD GPU can

theoretically provide a maximum of 384 FLOPs per clock

cycle [13], we can calculate that the GPU achieves 45%

of its theoretical floating point performance. Acknowledg-

ing that the GPU also needs to perform memory reads and

writes, as well as some integer arithmetic-logical operations,

it can be concluded that the GPU is well-utilized.

The learning functionality is executed and profiled on a

single CPU core of the HD and NEO platforms, and shows

considerably smaller performance than filtering. In practice

this is not a problem, since the learning functionality can

be executed as a background process whenever needed.

Furthermore, to ensure high sample rate of the system, the

learning can also be executed for shorter block lengths than

those of the filtering.

Table 4 shows the achieved filtering sample rates in the

context of an earlier work. This previous work explored

Table 3 Columns 2-4:

performance in terms of

Msamples/second of the DPD

filtering and learning stages;

column 5: filtering latency in

milliseconds.

Function Block size (samples) HD (Ms/s) NEO (Ms/s) Latency (ms)

Filtering (GPU) 10 000 86.8 103.3 0.10

32 767 203.0 236.5 0.14

65 535 280.8 328.7 0.20

131 071 324.0 432.5 0.30

262 143 392.8 483.6 0.54

524 287 401.7 400.3 1.31

Learning (CPU) – 5.2 6.2 –
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Table 4 Comparison between the peak data rates of earlier and this

work.

Processing unit Peak throughput

(Msamples/s)

Kepler GPU @ 852 MHz [18] 153.5

Maxwell GPU @ 998 MHz [18] 221.8

ARMv7 CPU @ 2.32 GHz [18] 214.4

ARMv8 CPU @ 1.91 GHz [18] 200.1

HD 530 GPU (HD) @ 1.05 GHz 401.7

UHD 620 GPU (NEO) @ 1.15 GHz 483.6

both the suitability of a GPU and a SIMD-enabled CPU

for filtering, whereas this work concentrates only on GPUs

for filtering purposes. It can be seen from the table that the

demonstrated sample rates are around twofold compared to

the previous work, acknowledging that in this work the DPD

has 10 branches and memory depth 1, whereas in [18] the

DPD had 5 branches and a memory depth of 5.

5.2 Linearization Performance

The linearization performance of the implemented algo-

rithm with the SKY66293-21 and the HMC1114PM5E PA

are illustrated in Fig. 5. The figures show the power spec-

tral densities of the PA output signal without DPD and

with the proposed DPD implementation, in addition to the

absolute basic emission limits for the out-of-band power

densities from Table 1. In order to fulfill these limits, the

power densities of the transmit signals have to lay below the

limits outside the BS RF bandwidth whatever the type of

transmitter considered. The figures show that the absolute

Table 5 Linearization performance of the tested PAs, in terms of EVM

and ACPR performance metrics. The PAPR of the original signal with

no PAPR reduction method is 10 dB, leading to the values of 4.8 %

and 52.07 dB of original EVM and ACPR, respectively.

PA model Type of EVM (%) ACPR (L/R) (dB)

measurement

SKY66293-21 Without DPD 8.85 −24.80 / −28.70

With DPD 5.60 −40.00 / −40.90

HMC1114PM5E Without DPD 11.31 −26.30 / −26.30

With DPD 6.16 −38.60 / −37.80

basic limits are satisfied with the algorithm implementation,

with adequate difference between the limits and the out of

band power densities of the predistorted signals, even on the

edges of the signal band.

The EVM and ACPR of the measured signals without

and with DPD are shown in Table 5. Since the effects of the

nonlinear distortion are mitigated with the use of DPD, the

EVM is consequently diminished in both PAs. Within the

context of the 3GPP limits given in Table 1, neither of the

PA outputs satisfy the EVM limit of 8 % without the DPD

operation. However, with the use of DPD, the EVM in both

cases falls well below the limit. Without the DPD, the only

way to achieve the required 8 % limit would be to decrease

the transmission power, therefore decreasing the power

efficiency of the PA. With the DPD, the PAs can be operated

more efficiently and could even be more saturated in terms

of the EVM limit. EVM reduction is especially desirable

when considering the HMC1114PM5E PA, since the initial

condition without DPD is considerably over the limit. To

further illustrate the effect the linearization has on the EVM,
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Figure 5 Linearization performances obtained with the Skyworks’ and Analog Devices’ PAs, respectively. The specified 3GPP out-of-band

absolute basic limits for local area (-32 dBm/MHz) and medium range (-25 dBm/MHz) base stations are also depicted in the figures.
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Figure 6 Phase and quadrature digital 64-QAM constellations of the Analog Devices’ PA output signal when no DPD and the proposed DPD

solution is applied.

Fig. 6 shows the in-phase and quadrature constellations of

the HMC1114PM5E output without and with DPD. Although

there are no requirements for the ACPR per se, the ACPR

reduction is linked with the absolute basic limit set for the

signals. Table 5 shows that the DPD algorithm reduces the

ACPR with the SKY66293-21 to around -40 dB on both

sides and with the HMC1114PM5E to around -37 dB, which

in these test scenarios are enough to satisfy the absolute

basic limits. Additionally, Fig. 7 presents the convergence

of the αααi coefficients as a function of the iteration number,

in the measurements performed with the SKY66293-21 PA.

It can be seen from the figure that all the coefficients are

already converged in the last iteration of the DPD loop.

As is evident from Fig. 5a, the spectrum of the PA

output is not symmetric, due to memory effects of the
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Figure 7 Coefficient αααi convergence against iterations in the DPD

learning stage.

PA. The DPD implementation only has memory depth of

M = 1, which might not be enough to compensate for

such strong memory effects. Thus adding memory to the

filters would very likely improve the performance of the

algorithm. Another approach to improve the performance

would be to use a more complex DPD model, such as the

GMP [24]. Additionally, the whole algorithm utilizes 32-

bit numeric precision, which also hinders the performance

by introducing quantization noise to the calculations.

Using wider bit widths would reduce the errors, thus

potentially improving the performance. However, all these

improvements would require additional hardware resources,

which are not available on the current platform. Despite

these shortcomings, the presented results demonstrate that

the DPD implementation is capable of providing sufficient

linearization of the PAs, and thus show its feasibility for 5G

NR local and medium range base stations.

6 Conclusions

In this paper, a high throughput DPD implementation and

its functionality are presented. In order to achieve real-time

operation, the predistortion of the transmit signal is executed

within a GPU, while the adaptive part of the algorithm is

implemented in a CPU core. The DPD implementation utili-

zes a dataflow computing framework, written in OpenCL for

the GPU and C for the CPU. This configuration, combined

with the low complexity of the DPD algorithm, allows for

more than 400 Msamples/s sample rates for the DPD filtering,

which is demonstrated on two different CPU/GPU combi-

nations. The DPD implementation is shown to successfully

linearize a 100 MHz 5G NR signal on two different power
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amplifiers operating at 3.7 GHz, such that the in-band and

out-of-band emission limits set by the latest 3GPP NR base

station radio transmission and reception standards are satisfied.
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